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Abstract 
A novel derivation of the parallel ion velocity, and the bootstrap and Pfirsch-Schlüter currents in 
an imperfectly optimized (that is, almost omnigenous) stellarator magnetic field,  

!
B , is presented 

that somewhat more generally recovers expressions completely consistent with previous analytic 
results. However, it is also shown that, when the conventional radially local form of the drift 
kinetic equation is employed, the flow velocity and the bootstrap current acquire a spurious 
contribution proportional to ω /ν , where ω  denotes the  

!
E×
!
B  rotation frequency (due to the 

radial electric field  
!
E ) and ν  the collision frequency. This contribution is particularly large in 

the ν  regime and at smaller collisionalities, where  ω /ν !
>1 , and is presumably present in most 

numerical calculations, but it disappears if a more accurate drift kinetic equation is used.  
  
1. Introduction 
 In stellarators and tokamaks, the flow velocity of each plasma species along the magnetic 
field is affected by the cross field (radial) derivatives of the density, electrostatic potential and 
temperature, and so is, therefore, the parallel current. The existence of this “bootstrap” current is 
of great practical importance, but in stellarators it is still incompletely understood. It can be 
calculated numerically from the drift kinetic equation, but analytical expressions have only been 
derived in the so called 1/ ν  regime of moderately small collisionality (Shaing et al. 1989; 
Helander et al. 2011 & 2017), the omnigenous limit (Landreman & Catto 2012), and, more 
recently, for a Lorentz collision operator extension into the ν  regime of lower collisionalty 
(Helander et al. 2017). In all these regimes, the theory predicts a current (or parallel flow 
velocity) that is independent of collisionality, but numerical simulations (Beidler et al. 2011; 
Kernbichler et al. 2016) suggest otherwise down to very small collisionalities. They also find 
that the bootstrap current depends sensitively on the radial electric field – an effect not contained 
in the analytical expressions.  
 In the present paper, a possible reason for radial electric field sensitivity is proposed. It is 
shown that the standard drift kinetic equation solved by most numerical codes leads to a spurious 
term in the parallel flow velocity proportional to ω /ν , where ω  denotes the poloidal  

!
E×
!
B  

rotation frequency and ν  the collision frequency. (Here  
!
E  denotes the radial electric field and  

!
B  

the magnetic field strength.) This contribution to the bootstrap current is particularly important in 
the ν  regime and at smaller collisionalities, where ω /ν >>1 , and does not appear in analytical 
formulas, but it will be present in most numerical simulations. However, it is also shown that this 
term proportional to ω /ν  is incorrect. It results from the use of a radially local approximation of 
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the drift kinetic equation, which is nearly always employed in the neoclassical theory of 
stellarators, both in analytical theory and in numerical simulations. It usually seems to be 
admissible, but apparently fails for parallel flows.  
  In the absence of turbulence, optimized stellarators attempt to confine all collisionless 
charged particle orbits by clever design of the magnetic equilibrium. If the magnetic field 
strength B on a flux surface (labeled by the poloidal flux function ψ ) depends on the toroidal 
( ζ ) and poloidal (ϑ ) angles in a single linear combination (Mϑ −Nζ ), 

 B=B(ψ,Mϑ −Nζ) , (1.1) 
the field is said to be quasisymmetric (Nührenberg & Zille 1988, Boozer 1995), as in the 
Helically Symmetric Experiment (HSX) stellarator (Anderson et al. 1995), and the collisionless 
orbits are all confined. Here M and N are integers corresponding to the number of times a line of 
constant B on a flux surface must traverse the torus toroidally and poloidally, respectively, 
before closing on itself. Quasisymmetric behavior is thought to be possible on only an isolated 
flux or constant pressure surface (Garren & Boozer 1991; Plunk & Helander 2018; Landreman & 
Sengupta 2018; Landreman et al. 2019). More generally, confined collisionless charged particle 
orbits are possible if the magnetic field has the property normally referred to as omnigeneity 
(Cary & Shasharina 1997a&b), with the quasi-isodynamic behavior of the Wendelstein 7-X 
(W7-X) stellarator (Nührenberg 2010; Beidler et al. 1990; Grieger et al. 1992) being the most 
notable example (although it is only approximately realized). (Presumably this more general 
property can also only be satisfied on or in the vicinity of a single flux surface.)  Using ψ , 
α ≡ ζ−qϑ , and B variables, with q the safety factor, and  

!
B  given by the Clebsch representation 

  
!
B=B

!
b =∇α×∇ψ , (1.2) 

a magnetic flux suface is omnigenous when the local condition  

 
 

∂
∂α

Σ
1

|
!
b ⋅∇B|

= 0 , (1.3) 

is satisfied, where Σ  denotes a sum over both branches adjacent to the magnetic well. This 
condition, first found by Cary & Shasharina (1997a,b), requires that the sum of the incremental 
lengths  dℓ= dB/

"
b ⋅∇B  associated with the same B on each side of the well be alpha independent 

[for a more detailed explanation see Helander (2014) following Eq. (79)]. Omnigeneity is just the 
condition required to make the second adiabatic invariant, 
 

 
J ≡ (Mc/Ze) dℓ

α"∫ v|| , (1.4) 

independent of α , 

 
 

∂J
∂α

=
Mc
Ze

dBv||
∂
∂α

Σ
1

|
!
b ⋅∇B|α"∫ , (1.5) 

where the subscript α  on an integral is a reminder that it is to be held fixed while performing the 
B integration. Here Z and M are the species charge number and mass, while c is the speed of 
light and e is the charge on a proton.  Stellarator optimization schemes try to approach these 
idealized limits over a large fraction of the cross section (Henneberg et al. 2019), while 
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maintaining good stability properties and avoiding substantial turbulent transport, because 
significant departures from omnigeneity result in unacceptably large collisional transport.  
 The neoclassical properties of perfectly omnigenous fields are well understood (Helander 
& Nührenberg 2009; Landreman & Catto 2012), and the effect of departures from omnigeneity 
on radial particle and heat transport are becoming better documented as simulations and analysis 
improve. However, understanding of the effect of departures from omnigeneity on the bootstrap 
current at low collisionalities is less clear. It is likely that transitional particles that spend time 
trapped in multiple wells are responsible for much of the puzzling behavior as the radial electric 
field vanishes, and therefore must also be responsible for some of the sensitivity to the radial 
electric field observed in simulations (Beidler et al. 2011; Kernbichler et al. 2016) but not 
exhibited by the analytic expressions (Shaing et al. 1989; Helander et al. 2011; Landreman & 
Catto 2012; Helander et al. 2017). However, the procedure used here also finds that in the 
presence of an  

!
E×
!
B  drift tangential to the magnetic surfaces there is a spurious modification to 

the ion flow that becomes large at low collisionality on weakly non-omnigenous flux surfaces. It 
introduces a different sensitivity to the radial electric field in both the bootstrap current and the 
parallel flow velocity and arises when the full magnetic plus electric drift is replaced by only the 
 
!
E×
!
B  drift as in most simulations (Beidler et al. 2011; Kernbichler et al. 2016). 

 When the full drift is retained the bootstrap current and parallel ion flow expressions 
found here are completely consistent with the moderate or 1/ν  collisionality results of (Shaing et 
al. 1989; Helander et al. 2011 & 2017), the omnigeous limit of (Landreman & Catto 2012), and 
the moderate (1/ν ) and weak ( ν ) collisionality limits of (Helander et al. 2017). As in these 
earlier treatments the expressions found here for the bootstrap current and parallel ion flow are 
independent of collision frequency. They are obtained by a very different procedure that is valid 
in the ν  and standard 1/ν  regimes of collisionality (Galeev et al. 1969; Ho & Kulsrud 1987; 
Calvo et al. 2017), and contain slightly more explicit and compact geometrical coefficients than 
(Shaing et al. 1989; Helander et al. 2011 & 2017). It is only when the full drift term term is 
approximated as in simulations that spurious effects arise. The erroneous effects are considered 
separately in the hope that they will provide some insight into the behavior of the simulations at 
very small collisionalities. 
 The analytic expressions for the bootstrap current and parallel flow derived here are also 
valid in the superbanana plateau regime of collisionality (Shaing 2015; Calvo et al. 2017), where 
the tangential magnetic drift frequency vanishes at some pitch angle. This regime is considered 
in only one published neoclassical stellarator simulation (Beidler et al. 1995) as it is not of 
interest for the background ions unless the  

!
E×
!
B  drift is smaller than the magnetic drift.  

 The next section discusses ambipolarity and radial transport in weakly non-optimized 
stellarators. Then section 3 introduces notation, evaluates drifts, and discusses transit and flux 
surface averages. Important equilibrium properties are discussed in section 4. Section 5 
reformulates stellarator drift kinetics to extract the terms odd in the parallel velocity as the lowest 
order corrections to the Maxwellian. In section 6 the drift kinetic equation is solved properly by 
retaining the full, nonlocal effects of the magnetic plus electric drifts. These results are employed 
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in section 7 to evaluate the parallel ion flow velocity and parallel currenty density. At low 
collisionality, the specious tangential  

!
E×
!
B  term retained in most similations and for analytic 

radial transport evaluations is considered and found to give rise to an incorrect modification of 
the ion flow velocity and bootstrap current, which is evaluated in section 8. A brief discussion 
follows in section 9. 
 
2. Ambipolarity and radial transport   
 To treat collisional transport in a non-quasisymmetric stellarator it is normally assumed 
that the electrons and ions are in the 1/ ν  and ν  regimes, respectively. In both regimes 
collisions must be retained, but ion streaming is smaller than electron streaming so the ions are 
sensitive to the tangential  

!
E×
!
B  drift and the electrons are not. Consequently, as ν  gets small, 

the electron diffusivities increase as 1/ ν , while the ion diffusivities decrease as ν  (Galeev et 
al. 1969; Ho & Kulsrud 1987). The radial ion and electron particle losses balance and set the 
electric field to maintain ambipolarity. Consequently, both collisionality regimes must be 
considered when evaluating the bootstrap current.  
 Ambipolar operation requires considering this mixed collisionality regime where the 
lowest order radial electric field,   

!
E " −∇Φ(ψ) , is roughly at the ion diamagnetic level (to bring 

ion transport down to the electron level), given by the estimate 
 Zeni∂Φ /∂ψ ~ −Ti∂ni /∂ψ , (2.1) 
with the poloidal flux function ψ  related to the toroidal flux function Ψ  by dΨ = qdψ , and the 
safety factor q and rotational transform ι  related by ιq =1. The tangential  

!
E×
!
B  drift frequency 

is then 

 
 
ωE ≡ −

!vE ⋅∇α = c
∂Φ
∂ψ

~ − cTi
Zeni

∂ni
∂ψ

~ vi
2

Ωia
2 =

ρi
a2
vi , (2.2) 

while the ∇B  drift,  
!v∇B ~ ρivi /R , results in a tangental drift frequency of 

  ω∇B ≡ −
!v∇B ⋅∇α ~ ρivi /aR , (2.3) 

where ρi and vi  are the ion gyroradius and thermal speed, Ωi = ZeB/Mic , and r, a, and R are the 
distance from the magnetic axis, the nominal radial scale, and the major radius. The ion charge 
number and mass are Z and Mi . Normally ωE ~ Rω∇B / a >>ω∇B , so the magnetic drift is often 
neglected as small. Then, there is no superbanana plateau regime as the vanishing of the 
combined magnetic and electric drift is unlikely for the background ions (at any pitch angle).  
 As already noted, when all collisionsless orbits are confined, a stellarator is referred to as 
omnigenous, and the special case of the magnitude of the magnetic field B depending on only a 
single helical variable is referred to as quasisymmetry. For an omnigenous, but non-
quasisymmetric, stellarator, ambipolarity requires that the radial electric field reduce the ion 
particle transport to the typically smaller electron level by setting it at the ion diamagnetic level 
as already estimated. More precisely, the ion root is given by (Landreman & Catto 2012) 

 
 
Zeni

∂Φ
∂ψ
! −

∂pi
∂ψ

+1.17ni
∂Ti
∂ψ

. (2.4) 
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As flux surfaces become non-omnigenous the ion particle diffusivity enters the ν  regime and 
decreases as the collisionality is reduced. The electron particle diffusivity increases as 1/ ν  as 
the tangential drift is unimportant. At some point the omnigenous ion root may be altered and 
become sensitive to collisions as ∂Φ /∂ψ  becomes small and it transitions to the electron root,  

 ene∂Φ /∂ψ ~ Te ∂ne /∂ψ , (2.5) 
to keep the electron particle transport at the now lower ion level. If a change in the sign of 
∂Φ /∂ψ  occurs, then there are flux surfaces with very small  

!
E×
!
B  drift where the ∇B  drift 

matters (Matsuoka et al. 2015). As the ∇B  drift vanishes at some pitch angle, there can be flux 
surfaces for which superbanana plateau transport becomes important. The treatment here allows 
for this possibility, but many simulations do not (Beidler et al. 2011; Kernbichler et al. 2016). 
 Typically the 1/ ν , ν , and superbanana plateau collisionality regimes are evaluated by 
a transit averaged kinetic equation for the trapped (subscript t) particles of the form, 

  

!vd ⋅∇ψ
∂f0
∂ψ

+
!vd ⋅∇α

∂ht
∂α

=C{ht} ,  (2.6) 

with f0  a Maxwellian and ht  a trapped particle modification to it. The overbar notation indicates 
transit or bounce average and will be defined carefully in the next section. The tangential drift 
frequency in the ν  regime is normally assumed to be just due to the  

!
E×
!
B  drift, 

  
!vd ⋅∇α→

!vE ⋅∇α =−ω(ψ)= −c∂Φ /∂ψ  , (2.7) 
and is often assumed to be a flux function. Only in the superbanana plateau regime is the 
magnetic drift retained in  

!vd ⋅∇α .  
 In the transit averaged equation, only the radial drift term  

!vd ⋅∇ψ "
!v∇B ⋅∇ψ  need retain 

the departure from omnigeneity. Two basic approximations have been made in Eq. (2.7). The 
radial component of the drift acting on ht  has been neglected, and the tangential part of the drift 
has been approximated by its  

!
E×
!
B  component. Although these approximations are common in 

neoclassical stellarator theory, it is shown later that they can, in fact, be misleading and lead to 
errors in the parallel flows.  
 For the electrons the tangential drift is negligible (ω << νe ), giving 
  

!v∇B ⋅∇ψ∂f0e /∂ψ ~ C{hte} ~ νehte ,  (2.8) 
hte /f0e∝1/νe , and electron diffusivitities proportional to 1/ νe , with νe  the electron collision 
frequency. The tangential drift frequency ω  matters for the ions (ω >> νi ). In the ν  regime 
tangential and radial drift balance for the ions giving hti /f0i∝1/ω , except in a the narrow 
boundary layer of width (νi /ω)

1/2  at the trapped-passing boundary. This boundary layer in pitch 
angle, λ = 2µB0 /v

2 , is required to make f vanish and its width is set by ω∂hti /∂α ~ νi∂
2 hti /∂λ

2 . 
As its width is narrower than the usual trapped bounday layer width ε1/2 , the collisionality is 
assumed weak enough to satisfy νi /ω<< ε  or 
 ρi /a >>Rνi /vi =R /λ , (2.9) 
where λ  is the mean free path, with λ ~ vi /νi ~ ve /νe  and ve  the electron thermal speed. 
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 For Ti  = 10 keV, ni =10
14 cm−3 , and B = 5 T;  vi ! 10

8cm / sec ,  νi ! 50sec
−1 , and 

 ρi ! 0.3cm . Then  a = 100 cm and R = 1000 cm give Rνi /vi = 5×10
−4 and ρi /a = 3×10

−3 , so the 
resulting inequality is typically satisfied.  
 In the next section, the tangential and radial drifts are evaluated for an imperfectly 
optimized stellarator along with transit and flux surface averages. 
 
3. Imperfectly optimized stellarator notation, drifts and averages 
 To retain both the 1/ ν  and ν  regimes, the ion drift kinetic equation is employed 
(Hazeltine 1973;  Simakov & Catto 2005), 

  
(v||
!
b+ !vd ) ⋅(∇f1 +

Zef0
T

∇φ)+ !vd ⋅∇f0 =C{f1} , (3.1)
 

where f1  is the perturbed distribution function, C{f1}  is the linearized collision operator, f0  is 
the Maxwellian 

 
f0 = f0 (ψ,E)= n(ψ)[

Mi

2πT(ψ)
]3/2 e−Miv

2 /2T(ψ) = n(ψ)[ Mi

2πT(ψ)
]3/2 e−[MiE−ZeΦ(ψ)]/T(ψ) , (3.2) 

and the drift velocity (ignoring the unimportant parallel velocity correction) is 

  

!vd =
c
B2
!
B×∇Φ+ µ

Ω

!
b×∇B+ v||

2

Ω

!
b× (
!
b ⋅∇
!
b) " v||

Ω
∇× (v||

!
b) . (3.3) 

The kinetic equation will be solved in ψ , α = ζ −qϑ , B, E = v2/2+ZeΦ(ψ)/Mi , and µ = v⊥
2 /2B  

variables, with the lowest order electrostatic potential Φ  taken as a flux function. The remaining 
spatial variables are ϑ  and ζ , the poloidal and toroidal angle variables, respectively, and the full 
electrostatic electric field is  
  

!
E = −∇[Φ(ψ)+φ(ψ,ϑ,ζ)] . (3.4) 

The magnetic field is  
!
B=B

!
b  and the parallel velocity is v|| =σvξ , with ξ = 1−λB/B0 , pitch 

angle defined as λ = 2µB0 /v
2 , σ =±1 , and B0  a flux function (B0

2 = 〈B2 〉 ). Here and throughout 
∂f0 /∂ψ  is evaluated holding E fixed. 
 Using a Boozer (1981) representation for the magnetic field gives 

  
!
B=K(ψ,ϑ,ζ)∇ψ+G(ψ)∇ϑ + I(ψ)∇ζ ,  (3.5) 

with K periodic in ϑ  and ζ , and RG /r I ~ Bp /B . The conventional stellarator poloidal and 
toroidal covariant flux functions (G and I) are interchanged in (3.5) to more closely conform to 
tokamak notation. The preceding and  

!
B=∇α×∇ψ  give  B= (G+qI)

!
b ⋅∇ϑ , as well as 

 
!
B⋅∇α = 0 =

!
B⋅∇ψ  and  q

!
B⋅∇ϑ =

!
B⋅∇ζ .  

 The well depth δ  of the nearly omnigenous magnetic field is  
 δ = (Bmax−Bmin ) / (Bmax+Bmin ) . (3.6) 
Here Bmax and Bmin denote the maximum and minimum field strength on the magnetic surface in 
question. As shown by Cary and Shasharina (1997a), in an omnigenous field these values are 
reached not in isolated points but along lines that close toroidally, poloidally or helically on the 
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flux surface. Any departure from omnigeneity is assumed to result in smaller non-omnigenous 
magnetic field variation or weak ripple such tha  
 δno<< δ . (3.7) 
The non-omnigenous behavior can only introduce weak gradients comparable to those of the 
omnigeous portion of the magnetic field (Calvo et al. 2017) in order to avoid introducing any 
significant non-omnigenous magnetic wells. An additional, mild restriction on δno  will be found 
in section 6. The omnigenous portion of the magnetic field is assumed to be N toroidal cells (N = 
0 is quasiaxisymmetry) of well depth δ , with mod B contours closing on themselves after M 
toroidal turns and N poloidal turns. In ψ , α , and B variables  dϑdζ = (

!
b ⋅∇ϑ /

!
b ⋅∇B)dBdα . 

When performing flux surface averages it is convenient to be aware of the periodic variable 
  !α =α /(M−qN)   (3.8) 
since  !α→ 2π+ !α = !α  for M toroidal circuits and N poloidal circuits on a constant B curve. As 
there are two points on either side of the B minimum,  

⌣
B , in each of the N cells, both sides must 

be summed or integrated over and are referred to as branches (Landreman & Catto 2012). 
 In ψ , α , B variables the divergence of an arbitrary vector  

!
A  is 

 
 
∇⋅
!
A=
!
B⋅∇(

!
A ⋅∇B!
B⋅∇B

)+
!
B⋅∇B[ ∂

∂α
(
!
A ⋅∇α!
B⋅∇B

)+ ∂
∂ψ
(
!
A ⋅∇ψ!
B⋅∇B

)] . (3.9) 

The tangential  
!
E×
!
B  drift is then 

 
 

!vd ⋅∇α = v||
!
b ⋅∇(v||

!
B⋅∇α×∇B
Ω
!
B⋅∇B

)+v||
!
b ⋅∇B ∂

∂ψ
( v|| B

2

Ω
!
B⋅∇B

) " Bv||
Ω

∂v||
∂ψ
" −c∂Φ

∂ψ
≡ −ω(ψ) , (3.10) 

with ω  positive for the ion root, and the radial drift is 

 
 

!vd ⋅∇ψ = v||
!
b ⋅∇(v||

!
B⋅∇ψ×∇B
Ω
!
B⋅∇B

)− Bv||
2

Ω

!
b ⋅∇B ∂

∂α
( 1!
b ⋅∇B

) . (3.11) 

Using pressure balance to find  
!
b×∇ψ⋅ (∇B−

!
b ⋅∇
!
b)= 0  as in Helander & Nührenberg (2009) and 

Landreman & Catto (2012), gives the alternate radial drift form 

 
 

!vd ⋅∇ψ =
!
B⋅∇ψ×∇B!
B⋅∇B

v||
!
b ⋅∇(v||

Ω
) ,  (3.12) 

where for a quasisymmetric flux surface with Bqs =B0[1−δcos(Mϑ −Nζ)] , 

 
 

!
B⋅∇ψ×∇B!
B⋅∇B

→
MI+NG
M−qN "

<RB , (3.13) 

with the tokamak and quasiaxisymmetric cases given by N = 0.  
 The transit average of an arbitray function A is defined variously as 

 
 
A =

dℓ
α"∫ A /v||
dℓ

α"∫ /v||
=

dτ
α"∫ A
dτ

α"∫
=

dϑ
α"∫ A /v||

#
b ⋅∇ϑ

dϑ
α"∫ /v||

#
b ⋅∇ϑ

=
Σ dB

α"∫ A /v||
#
b ⋅∇B

Σ dB
α"∫ /v||

#
b ⋅∇B

, (3.16) 

with  dτ = dℓ/v|| = dϑ /v||
"
b ⋅∇ϑ = dB /v||

"
b ⋅∇B . The integrals are over a full bounce for trapped 

particles and over a complete poloidal circuit for passing. A sum Σ  is inserted in integrals over 
all allowed B as a reminder that both "branches" or sides of the magnetic well must be integrated 
over (the two "branches" are on either side of the minimum  

⌣
B  in each identical stellarator cell). 
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The subscript α  on an integral means that it is to be held fixed while performing the integration. 
In a transit averaged description passing particles trace out flux surfaces, and it can take a 
passing particle many toroidal circuits in a non-omnigenous magnetic field to return to close to 
its starting field line point (Helander 2014). In particular, the passing flux surface average of v||  
can be viewed as 
 

 
〈v||〉p =

L→∞
lim( dℓ

0

L
∫ v|| B

−1/ dℓ
0

L
∫ B−1)=( dα"∫ Σ dB"∫ v|| /

#
B⋅∇B) / ( dα"∫ Σ dB"∫ /

#
B⋅∇B) . (3.17) 

This expression is consistent with the usual definition of the flux surface average of any quantity 
A sampling the entire flux suface: 

  
〈A〉 =

dζ!∫ dϑ!∫ A /
"
B⋅∇ϑ

dζ!∫ dϑ!∫ /
"
B⋅∇ϑ

=
dζ!∫ dϑ!∫ A /B2

dζ!∫ dϑ!∫ /B2
=

dαΣ!∫ dB!∫ A /
"
B⋅∇B

dα!∫ Σ dB!∫ /
"
B⋅∇B

. (3.18) 

The relation between transit and flux surface averages for passing and A(ψ,α,B,v,λ)  is  
 A

p
= 〈BA/v||〉p / 〈B/v||〉p . (3.19) 

 A few useful properties associated with a MHD equilibrium are briefly discussed next.   
 
4. MHD equilibrium properties and radial drift 
 Some useful relations follow from conditions associated with force balance and 
ambipolarity. Force balance ( 

!
J×
!
B= c∇p ) and charge conservation ( ∇⋅

!
J = 0 ) require there be 

no radial current ( 
!
J ⋅∇ψ = 0 ), where p = pi +pe  is the total pressure and the current density is 

 
!
J = cB−2 !B×∇p(ψ)+ J||

!
b . Ambipolarity,  

!
J ⋅∇ψ = 0 ,  requires ∇ψ⋅∇×

!
B= 0 =∇⋅(

!
B×∇ψ) , giving 

 
 

!
B⋅∇(

!
B⋅∇ψ×∇B!
B⋅∇B

)=
!
B⋅∇B ∂

∂α
( B

2

!
B⋅∇B

) , (4.1)  

Integrating along a field line (fixed α ) on the flux surface traced out by the field line gives 

 
 

!
B⋅∇ψ×∇B!
B⋅∇B

−
∂
∂α

dB'B'!
b'⋅∇B'B0

B

∫ = X(ψ)= 〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉 − 〈
∂
∂α

dB'B'!
b'⋅∇B'B0

B

∫ 〉 , (4.2) 

where B0
2 = 〈B2 〉  is chosen so that the lower limit will satisfy  

!
b ⋅∇B0= 0  as desired. The α  

derivatives are always at fixed B unless otherwise noted, and ∂B0 /∂α = 0 . In an omnigenous 
system the lower limit B0  of the integral over B can be replaced by another α  independent value 
such as  

⌢
B=Bmax  or  

⌣
B=Bmin . The last equality in (4.2), follows upon flux surface averaging.  

 As a result, ambipolarity always requires 

 
 

!
B⋅∇ψ×∇B!
B⋅∇B

= 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉+
∂F0
∂α

− 〈
∂F0
∂α

〉 , (4.3) 

where the integrals over B are at fixed α , and F0  is defined as 

 
 
F0 =

dB'B'!
b'⋅∇B'B0

B

∫ . (4.4) 

Integrating over both branches on either side of the the single minimum  
⌣
B=Bmin  gives 

〈∂F0 /∂α〉 = 0  according to (1.3).  
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 In Eqs. (4.2) and (4.4), the integrals are taken at fixed ψ  and α  (therefore following a 
field line) starting from a point where B' =B0  and proceeding along the field to the point where 
B' =B . As already mentioned, in an omnigenous field, all level curves B=B0  wrap around the 
torus poloidally, toroidally, or helically (Cary & Shasharina 1997a), so that it is indeed possible 
to find a point where B=B0  on each field line within one period of the device. The field is 
allowed to be non-omnigenous, but only slightly so, in order that it still possesses this property. 
Otherwise it would be difficult to ascribe any precise meaning to these integrals.  
 Force balance and charge conservation require a geometrical function U proportional to 
J||  to exist satisfying 
  

!
B⋅∇(U / B)=

!
B⋅∇ψ×∇B−2=∇⋅ (B−2 !B×∇ψ) . (4.5) 

Rewriting using the divergence in ψ,α  and B variables, 

 
 

!
B⋅∇(U

B
−

!
B⋅∇ψ×∇B
B2
!
B⋅∇B

)= −
!
b ⋅∇B ∂

∂α
( 1!
b ⋅∇B

) . (4.6) 

Using the same procedure to integrate over the flux surface traced out by a field line leads to  

  
BU−

!
B⋅∇ψ×∇B!
B⋅∇B

+B2 ∂
∂α

dB'!
B'⋅∇B'B0

B

∫ = Y(ψ)B2 . (4.7) 

Flux surface averaging gives Y 

  
Y(ψ)〈B2 〉 = 〈BU〉 − 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉+ 〈B2 ∂
∂α

dB'!
B'⋅∇B'B0

B

∫ 〉 . (4.8) 

Eliminating Y yields 

 
 

U
B
−
〈BU〉
〈B2 〉

= (
!
B⋅∇ψ×∇B
B2
!
B⋅∇B

−
∂
∂α

dB'!
ʹB ⋅∇B'

)
B0

B

∫ −
1

〈B2 〉
(〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉 − 〈B2 ∂
∂α

dB'!
B'⋅∇B'B0

B

∫ 〉) . (4.9) 

Terms in U/B that are only flux functions do not contribute to  
!
B⋅∇(U/B) . Therefore, picking 

 
 
〈BU〉 =〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 − 〈B2 ∂
∂α

dB'!
B'⋅∇B'B0

B

∫ 〉 , (4.10)  

where the last term vanishes for an omnigenous flux surface due to (1.3), leaves 

 
 
BU =

!
B⋅∇ψ×∇B!
B⋅∇B

−B2 ∂
∂α

dB'!
B'⋅∇B'B0

B

∫ = 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 − 〈
∂F0
∂α

〉+
∂
∂α

dB'(B'2−B2 )!
B'⋅∇B'B0

B

∫ , (4.11) 

and the last form follows by using ambipolarity. As a result, BU is a flux function for a 
quasisymmetric flux surface, or when summed over both branches on an omnigenous surface. 
Otherwise, BU is nearly a flux function when  B

2>>
⌢
B2−
⌣
B2 , where  

⌢
B=Bmax  and  

⌣
B=Bmin . 

 The next section formulates the drift kinetic equation in a particularly convenient form. 
 
5. Drift kinetics for imperfectly optimized stellarators 
 To find the modifications to the Maxwellian it is convenient to let  
  f1 = h(

!r,!v)−Zeφf0 /T , (5.1) 
then using form (3.12) for the radial drift, h satisfies  
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v||
!
b ⋅∇h+ !vd ⋅∇h−C{h} = −

!
B⋅∇ψ×∇B!
B⋅∇B

∂f0
∂ψ
v||
!
b ⋅∇(v||

Ω
) . (5.2) 

where radial nonlocality and tangential drift are included  in  
!vd ⋅∇hp  via  

!vd ⋅∇ψ∂hp /∂ψ  and 

 
!vd ⋅∇α∂hp /∂α ,  respectively. In writing (5.2), a  Zeφ

!vd ⋅∇(f0 /T)  correction to  
!vd ⋅∇f0  is ignored 

as small. For radial transport calculations and in many simulations the local approximation 
 
!vd ⋅∇h→−ω∂h /∂α  is employed. However, it will be shown in the next section that this 
replacement gives rise to spurious effects that will be considered in section 8. Consequently, the 
full drift is retained until section 8, although in making estimates only the  

!
E×
!
B  drift is retained. 

 Rewriting the preceding using (4.1) gives the form 

 
 
v||
!
b ⋅∇(h+ v||

!
B⋅∇ψ×∇B
Ω
!
B⋅∇B

∂f0
∂ψ
)+ !vd ⋅∇h−C{h} =

B
Ω
∂f0
∂ψ
v||
!
b ⋅∇B ∂

∂α
( v||!
b ⋅∇B

) , (5.3) 

and, thereby, the particularly convenient form  

 
 
C{h}− !vd ⋅∇h = v||

!
b ⋅∇H = v||

!
b ⋅∇h+v||

!
b ⋅∇Δ∂f0

∂ψ
= v||
!
b ⋅∇h+ !vd ⋅∇ψ

∂f0
∂ψ

, (5.4) 

where 
 H ≡ h+Δ∂f0 /∂ψ , (5.5) 

 
 
Δ ≡

v||
!
B⋅∇ψ×∇B
Ω
!
B⋅∇B

−
∂"J
∂α

=
v||
Ω
(〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉 − 〈
∂F0
∂α

〉+
∂F0
∂α
)− ∂
"J

∂α
, (5.6) 

and 

 
 
!J ≡ Mc

Ze
dB'v||

'

"
b'⋅∇B'B

B

∫ , (5.7) 

with v||
' = v||(B',v,λ) . The function  !J  is related to, but not the same as, the second adiabatic 

invariant (1.4), for which ∂J/∂α = 0  on an omnigenous flux surface. The lower limit B  in  !J  
remains unspecified except that it must satisfy ∂B/∂α = 0  to allow 

 
 
( dB'v||

,

B

B

∫ ∂
∂α
( 1!
b'⋅∇B'

)= ∂
∂α
( dB'v||

,

!
b'⋅∇B'B

B

∫ ) . (5.8) 

The lack of precise omnigeneity means that  v||
!
b ⋅∇Δ  no longer quite vanishes, 

 
 
v||
!
b ⋅∇Δ = v||

!
b ⋅∇(v||

Ω
∂F0
∂α

−
∂"J
∂α
)= v||

!
b ⋅∇B{ ∂

∂α
[ ∂
∂B
(v||
Ω
F0 − "J)]} =

∂F0
∂α
v||
!
b ⋅∇(v||

Ω
)≠ 0 , (5.9) 

as α  dependence causes Σ∂F0 /∂α ≠ 0  and  Σ∂!J /∂α ≠ 0  when summed over both branches.  
 The kinetic equation (5.4) agrees with the omnigenous form obtained from (3.12) by 
Helander & Nührenberg (2009) and Landreman & Catto (2012). They also write 
  

!vd ⋅∇ψ=v||
!
b ⋅∇Δ , (5.10) 

but make the replacement 

 
 
Δ→Δom ≡

v||
Ω
〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉+ dB'∂F0
'

∂αB

B

∫ ∂
∂B'

( v||
'

Ω '
) , (5.11) 

where  B=
⌢
B=Bmax  when  λ <B0 /

⌢
B , and B=B0 /λ  otherwise, as their choice of the lower limit. 

To see the results here are consistent with their omnigenous results, integrate by parts to obtain 
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v||
Ω
∂F0
∂α

−
∂!J
∂α

= dB'∂F0
'

∂αB

B

∫ ∂
∂B'

( v||
'

Ω '
)= − Bv

2Ω
dB'
B'2

∂F0
'

∂αB

B

∫ (2−λB'/ B0 )
1−λB'/ B0

, (5.12) 

where v||
' = v||(B' =B,v,λ)= 0  is needed.  

 The omnigenous limit is recovered only if the lower limits used by Helander & 
Nührenberg (2009) and Landreman & Catto (2012) can be employed. The alternate form given 
here only reduces to their form (5.10) and (5.11) for an omnigenous flux surface. More 
generally, Δ  must satisfy (5.6) with the lower limit B  of  !J  equal to  

⌢
B=Bmax  for the passing 

( λ <B0 /
⌢
B) and B0 /λ  for the trapped ( B0 /Bmin=B0 /

⌣
B> λ >B0 /

⌢
B ) with a negligible population of 

transitional particles that spend time trapped in multiple wells.  
 In the next section the corrections to the Maxwellian are evaluated for a non-optimized 
stellarator by assuming that the population of transitional particles is small. 
 
6. Solution for a weak departure from omnigeneity 
 The drift kinetic equation will be solved separately for the trapped (t) and passing (p), 
using subscripts t and p as necessary for clarity. A solution to the passing kinetic equation (5.4) 
is obtained by recalling (5.4) and (5.5), writing  
  Hp =Hp + !Hp , (6.1) 
where  Hp >> !Hp . Assuming streaming dominates, then to lowest order 
  v||

!
b ⋅∇Hp = 0  , (6.2) 

where 
 Hp =Hp(ψ,v,λ,σ) . (6.3) 
 To next order 
  v||

!
b ⋅∇ "Hp = C{hp}−

!vd ⋅∇hp . (6.4) 
Upon transit averaging and using (3.19) the right side vanishes 

 

 

〈
B
v||
C{hp}〉p = 〈

B
v||

!vd ⋅∇hp 〉p = 〈∇ ⋅ (
B
v||

!vdhp )〉 =
1
V'

∂
∂ψ
V'[〈(Hp −Δp

∂f0
∂ψ
) B
v||

!vd ⋅∇ψ〉

=
1
V'

∂
∂ψ
V'[〈(Hp −Δp

∂f0
∂ψ
)
!
B⋅∇Δp 〉 =

1
V'

∂
∂ψ
V'[Hp 〈

!
B⋅∇Δp 〉 −

∂f0
∂ψ

〈
!
B⋅∇(

Δp
2

2
)〉]= 0

, (6.5) 

where  
!vd ⋅∇ψ = v||

!
b ⋅∇Δp  and 

 
V' = dζ!∫ dϑ!∫ /B2  are employed.  

 The preceding careful drift kinetic treatment retaining the full nonlocal behavior of the 
drift departure from a flux surface results in the constraint 

 〈
B
v||
C{hp}〉p = 0 .  (6.6) 

However, most simulations retain effects associated with solving for h when the approximation 
  

!vd ⋅∇h→ −ω(ψ)∂h /∂α " ω(ψ)(∂Δ /∂α)∂f0 /∂ψ , (6.7) 
is employed. When used in (6.5), it gives the specious constraint 

 
 
〈
B
v||
C{hp}〉→ω

∂f0
∂ψ

〈
B
v||

∂Δp
∂α

〉=ω
∂f0
∂ψ
[ B
Ω
〈
∂2F0
∂α2

〉 − 〈
B
v||
∂2 !J
∂α2

〉]p≠ 0 . (6.8) 



 12 

As the departure from omnigeneity is assumed weak (δno<< δ ) and the tangential drift ω  and 
collision terms are small, it is tempting to perform the flux surface averages by assuming the flux 
surface is omnigenous to lowest order to make 〈Bv||

−1∂Δp /∂α〉  vanish. However, as the 
approximation (6.7) has been employed in most numerical simulations, integrating the right side 
of (6.8) by parts in α , results in B integrals of α  derivatives of the  

!
b ⋅∇B  from the flux surface 

averages. Therefore, any departure from omnigeneity gives 〈Bv||
−1∂Δp /∂α〉 ≠ 0 , which will 

contribute at very low collisionalities and lead to questionable behavior in the results for the flow 
and bootstrap current as discussed further in section 8. 
 Returning to the passing constraint (6.6) leads to the lowest order relation 
 hp =Hp −Δp∂f0 /∂ψ . (6.9) 
Using  

!
B⋅∇ψ×∇B/

!
B⋅∇B~ BU

"
<RB , the transit averaged constraint 〈Bv||

−1C{hp}〉p= 0  suggests 
that for the ions 

 
 

hp
f0
~
Hp

f0
~

Δp
RBpa !

<
ρpi
a

, (6.10) 

while the equation non-averaged equation (6.4) with  
!vd ⋅∇hp →−ω∂hp /∂α  gives 

 
 

!Hp

f0
~ (ω+ νi )R

vi

Hp

f0 !
<
(ω+ νi )Rρpi

vi a
, (6.11) 

where (ω+ νi )R << vi . Here and elsewhere, ρpi =ρiB/Bp , and ρi  the ion gyroradius and Bp  the 
poloidal magnetic field. As Hp and Δp are odd in v||  in (6.6),  

!Hp  from (6.4) will be even in v|| . 
 Here and in the next section, the correct constraint equation (6.6) is solved by considering 

 
 
0 = 〈B

v||
C{Hp−

v||
Ω
〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉
∂f0
∂ψ
}〉 = 〈B

v||
C{Hp−

v||f0
ΩT
(Miv

2

2T
−
5
2
)〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉
∂T
∂ψ
}〉 , (6.12) 

where conservation of momentum for ion-ion collisions, C{v||f0} = 0 , is employed to obtain the 
final form. As the flux surface average sums over both well branches, omnigeneity is used to 
neglect  Σ∂F0 /∂α ! 0  and  Σ∂!J /∂α " 0  as small compared to the large term retained. Within a 
geometric factor the preceding constraint equation is the same found as for a tokamak and for an 
omnigenous flux surface (Landreman & Catto, 2012).  
 To form the parallel flow and parallel current density the trapped equation must also be 
solved. In this case, the kinetic equation must be written in a form with the Δ  terms appearing in 
the large parallel streaming term. Recalling (5.9) means that a non-omnigeous flux surface   
  

!vd ⋅∇ψ=v||
!
b ⋅∇Δ t ≠ 0 , (6.13) 

so  v||
!
b ⋅∇Δ t  must be retained. Therefore, using 

 Ht = ht+Δ t∂f0 /∂ψ , (6.14) 
gives 
 Ht = ht+Δ t∂f0 /∂ψ , (6.15) 
(and not Ht= ht ), where both Ht=Ht(ψ,α,v,λ)  and ht= ht (ψ,α,v,λ)  are even functions of v|| , 
with  

!
b ⋅∇Ht = 0 =

!
b ⋅∇ht ,  ht− ht =

!ht , and  Ht −Ht = !Ht . Moreover, 
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!Ht= !ht+ (Δ t −Δ t )∂f0 /∂ψ , (6.16) 

where  
  

!ht ~ Δ t ∂f0 /∂ψ !
< δ ρpif0 / a . (6.17) 

The trapped equation, 
  C{ht}−

!vd ⋅∇ht = v||
!
b ⋅∇ "Ht = v||

!
b ⋅∇(ht+Δ t∂f0 /∂ψ) , (6.18) 

is transit averaged and  
!vd ⋅∇ht →−ω∂ht /∂α  employed to obtain the combined ν  and 1/ν  form  

  ω∂ht /∂α + C{ht} = v||
!
b ⋅∇Δ t ∂f0 /∂ψ , (6.19) 

where in the small tangential drift and collision terms on the left the lowest order omnigenous 
trapped orbits are used in the averages so  

!ht does not contribute. In the superbanana plateau 
regime the magnetic drift must be retained, but as this only alters the even part of the perturbed 
distribution function it does not affect the parallel flow and bootstrap current.  
 The assumption that streaming dominates means (ω+ ν)<< v|| /qR ~ v|| /R . As a result, 

using  v||
!
b ⋅∇Δ t ~

!v∇B⋅∇ψ ~ δnoρiviBp  and observing that the functions Δ t  and ht  are even in v||  
yields the estimate  

 
 

ht
f0 !
<

δno viρi
(ω+ νi )Ra

<<1 , (6.20) 

where v||
2 ~ δvi

2  is not used as the non-omnigenous ∇B  drift dominates in (5.6) with  

 Δ !
< v||RB/Ω  from (3.13). The unaveraged form of the trapped equation (6.18) suggests   

 
 

!Ht
!ht
~ (ω+ νi )R

vi δ
<<1 , (6.21) 

so that  !Ht can be neglected as small in (6.16), giving 
  

!ht= −(Δ t −Δ t )∂f0 /∂ψ " −Δ t∂f0 /∂ψ , (6.22) 
as Δ t  is small. Allowing  ht ~

!ht , (6.17) and (6.20) yield another constraint on δno<< δ  of  

 δno δ ~ (ω+ νi )R
vi

~
ρpi
a
+
R
λ
<<1, (6.23) 

where the mean free path is λ ~ vi /νi >>R  and vi >>ωR .  

 Just as the departure from an omnigenous flux surface makes  v||
!
b ⋅∇Δ t ≠ 0 , the transit 

averaged radial trapped step Δ t  no longer vanishes as 

 
 
Δ t =

v||
!
B⋅∇ψ×∇B
Ω
!
B⋅∇B

−
∂"J
∂α

=
v||
Ω
∂F0
∂α

−
∂"J
∂α

≠ 0 . (6.24) 

The trapped F0  and  !J  now depend on the field line label α  so that 〈Bv||
−1∂F0 /∂α〉 ≠ 0  and 

 〈∂
!J/∂α〉 ≠ 0 . Moreover, the omnigenous choice for the lower limit B  of  !J  for the trapped is no 

longer quite right when the maximum field on a field line varies from one end to the other and 
also depends on the field line.  
 As ht is even in v||  it will not contribute to the parallel ion flow or the parallel current 
density, and there is no need to evaluate it to determine the bootstrap current.  
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 To find the contributions to the parallel ion flow and parallel current density the passing 
constraint (6.12) must be solved. The solution procedure uses the linearized model like particle 
collision operator of Kovrizhnikh & Connor (Rosenbluth et al. 1972; Connor et al. 1973), 

 
C{g} = νQ(v)[L{g}+Mi

T
uv||f0 ]= νQ(v)L{g−

Mi

T
uv||f0} , (6.25) 

where L is the Lorentz operator 

  
L{g} = 1

2
∇v ⋅[(v

2
!
I − "v"v) ⋅∇vg]=

2B0
Bv2

v||
∂
∂λ
(λv||

∂g
∂λ
) , (6.26) 

with L{v||f0} = −v||f0 , and u the term retained to preserve collisional momentum conservation, 

 u = 3T d3∫ vQv||g /Mi d3∫ vQv2f0 . (6.27) 
The function Q is defined as 

 Q(x)= 1
x3
[(1− 1

2x2
)erf(x)+ 1

2x
d
dx
erf(x)] , (6.28) 

with x = v(Mi /2T)
1/2 , and erf(x)= 2π−1/2 dte− t

2

0

x
∫ the error function. For ions 

 
 
νi ≡

2 πZ4e4niℓnΛ
Mi

1/2Ti
3/2 →

3 2π
4

νii , (6.29) 

with  νii = 4 π Z4e4niℓnΛ / 3Mi
1/2Ti

3/2 . 
 The flux surface averaged passing form is then 

 
〈
B
v||
C{g}〉 = 2νQB0

v2
∂
∂λ
[λ〈v||

∂
∂λ
(g−

Mj

T
uv||f0 )〉] , (6.30) 

where based on constraint (6.12) 

 
 
g =Hp−

v||f0
ΩT
(Miv

2

2T
−
5
2
)〈
!
B⋅∇ψ×∇B
Ω
!
B⋅∇B

〉
∂T
∂ψ

. (6.31) 

Integrating from λ = 0 , and using v||∂v|| /∂λ = −Bv
2/2B0  leads to 

  

〈v||〉p
f0

∂Hp

∂λ
= −

Miv
2

2TB0
〈Bu〉 − v2

2Ω0T
(Miv

2

2T
−
5
2
)〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉
∂T
∂ψ

, (6.32) 

where Ω0 = ZeB0/Mic  and 
 〈Bu〉 = 3TMi

−1B−1 d3∫ vQv||〈B
2g〉 / d3∫ vQv2f0 . (6.33) 

The second λ  integration is performed to make g  vanish at the trapped-passing boundary 

 λ=B0 /
⌢
B , with 

⌢
B  the maximum value of B on a flux surface, to find 

 
 
Hpi = 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉(Miv
2

2Ti
−1.33)σ vf0i

2Ω0Ti
∂Ti
∂ψ

dλ '
〈 1−λ 'B/B0 〉λ

B0 /
⌢
B

∫ . (6.34) 

 Using (6.9), (6.14), (6.22), and (6.34) gives 

 
 

f1i
f0i
−
Zeφ
Ti

=
hi
f0i
=
Hpi + hti + !Hti + !Hpi

f0i
−[
Δp
f0i
+
(Δ t −Δ t )
f0i

]∂f0i
∂ψ
"
Hpi + hti + !Hpi

f0i
−
Δ
f0i
∂f0i
∂ψ

, (6.35)  

where the last form neglects  !Hti  and Δ t , and uses Δ = Δp+Δ t . Inserting Δ  and the solution for 
Hpi  obtained by Landreman and Catto (2012) with the geometric and notational replacements  
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MI+NG
M−qN

→ 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 , (6.36) 

yields 

 

 

f1i
f0i
=
Hti + !Hpi

f0i
+
Zeφ
Ti

− (v||
"
B⋅∇ψ×∇B
Ω
"
B⋅∇B

−
∂!J
∂α
)[ 1
pi
∂pi
∂ψ

+
Ze
Ti
∂Φ
∂ψ

+ (Miv
2

2Ti
−
5
2
)1
Ti
∂Ti
∂ψ
]

+〈

"
B⋅∇ψ×∇B"
B⋅∇B

〉(Miv
2

2Ti
−1.33)σvH(B0/

⌢
B−λ)

2Ω0Ti
∂Ti
∂ψ

dλ '
〈 1−λ 'B / B0 〉λ

B0 /
⌢
B

∫
, (6.37) 

where Hti  and  
!Hpi  are unimportant for parallel flow as they must be even functions of v||  with 

 
!Hpi<<Hpi  with Hpi  odd in v|| . A Heaviside step function  H(B0/

⌢
B−λ) , with value one for 

 λ <B0/
⌢
B  and vanishing otherwise, is inserted to combine the trapped and passing forms.  

 The next section evaluates the parallel ion flow velocity and parallel current density 
associated with the perturbed distribution function f1i  given by (6.37). 
 
7. Flow and current density for a weak departure from omnigeneity 
 Determining the parallel ion velocity requires evaluating d3∫ vv||hi = d3∫ vv||(hpi +hti ) . 

The procedure is straightforward to summarize. First, as Hti  and  
!Hpi  are even in v|| ,  

 
 
d3∫ vv||(Hti+ !Hpi)= 0 . (7.1) 

Also, integrating  

 Mi d3∫ vv||
2 ∂f0
∂ψ

= (∂p
∂ψ

+Zen ∂Φ
∂ψ
) . (7.2) 

In addition, recalling the omnigenous result (5.12), using d3v→ 2π(Bv2/B0ξ)dvdλ  as all 
integrals are even in v|| , and following the procedure below (49) in Landreman & Catto (2012), 

 

Mi d3∫ vv||
∂!J
∂α
∂f0
∂ψ

=Mi d3∫ vv||
∂f0
∂ψ
[v||
Ω
∂F0
∂α

+v2 dB'
B

B

∫ ∂F0
'

∂α
(2−λB'/ B0 )
2Ω 'B'v||

' ]= 1
Ω
∂F0
∂α
(∂p
∂ψ

+Zen∂Φ
∂ψ
)

−
πMiB
Ω0

dv
0

∞

∫ v4 ∂f0
∂ψ

dB'
B'2B

⌢
B

∫ ∂F0
'

∂α
dλ

0

B0 /B'

∫ (2−λB'/ B0 )
1−λB'/ B0

= ( 1
Ω
∂F0
∂α

−
W
Ω
)(∂p
∂ψ

+Zen∂Φ
∂ψ
)

, (7.3) 

where near omnigeneity is used to write W as   

 
 
W ≡ 2B2 dB'

B'3B

⌢
B

∫ ∂F0
'

∂α
. (7.4) 

with the upper limit of  
⌢
B=Bmax  to integrate over all B'. Moreover, (6.34) yields 

 
 
Mi d3∫ vv||Hpi = 〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉
Bfcni
B0Ω0

∂Ti
∂ψ

, (7.5) 

where fc  is the usual effective passing fraction defined by 

 
 
fc =

3
4

dλλ
〈 1−λB/B0 〉0

B0 /
⌢
B

∫ →
QS
1−1.46 δ . (7.6) 

The preceding evaluation makes use of 
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dλ
0

B0 /
⌢
B

∫ dλ '
〈 1−λ 'B / B0 〉λ

B0 /
⌢
B

∫ =
dλ '

〈 1−λ 'B / B0 〉0

B0 /
⌢
B

∫ dλ
0

λ '

∫ =
dλ 'λ '

〈 1−λ 'B / B0 〉0

B0 /
⌢
B

∫ =
4
3
fc , (7.7) 

and 

 
 
d3∫ vv||σvf0i(

Miv
2

2Ti
−1.33)= 2πB

B0
dλ

0

B0 /
⌢
B

∫ dvf0iv
4

0

∞

∫ (Miv
2

2Ti
−1.33)=1.17 3piB

2MiB0
. (7.8) 

 Combining these results, the parallel ion velocity, V||i , for a non-optimized stellarator is 

 
 
niV||i= d3∫ vv||f1i=

−c
ZeB

[(〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉+W)(∂pi
∂ψ

+Zeni
∂Φ
∂ψ
)−1.17〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉
B2fcni
〈B2 〉

∂Ti
∂ψ
] , (7.9) 

where 〈∂F0 /∂α〉  is neglected as the departure from omnigeneity is weak. This result agrees 
Helander et al. (2017), but expresses the geometrical factors in a more compact way thanks to 
the assumption of near-omnigeniety. It thus also reduces to the omnigenous limit found by 
Landreman and Catto (2012) (within minor notational differences).  
 Checking  ∇⋅

!
V = 0  by recalling (4.6), and using 

 
 

!
B⋅∇( d3v v||

B∫ ∂"J
∂α
∂f0
∂ψ
)=
!
B⋅∇B ∂

∂α
d3v v||

B∫ ∂f0
∂ψ

∂"J
∂B

=
Mic
Ze
!
b ⋅∇B ∂

∂α
( 1!
b ⋅∇B

) d3vv||
2∫ ∂f0
∂ψ

, (7.10) 

gives the required result 

 
 
ni
!
B⋅∇(V||i /B)= −

c
Ze
(∂pi
∂ψ

+Zeni
∂Φ
∂ψ
)
!
B⋅∇(U/B)= − c

Ze
(∂pi
∂ψ

+Zeni
∂Φ
∂ψ
)∇⋅ (B−2 !B×∇ψ) . (7.11) 

 Writing 
 V||i =V||i

PS +B〈BV||i 〉/〈B
2 〉  , (7.12) 

and using lowest order omnigeneity gives 

 
 
ni 〈BV||i 〉=−

c
Ze

〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉(∂pi
∂ψ

+Zeni
∂Φ
∂ψ

−1.17fcni
∂Ti
∂ψ
) , (7.13) 

so that the Pfirsch-Schlüter flow is 

 
 
niV||i

PS= −
c
ZeB

(∂pi
∂ψ

+Zeni
∂Φ
∂ψ
)[(1− B2

〈B2 〉
)〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉+W] . (7.14) 

Nearly all the complicated geometric behavior is in the Pfirsch-Schlüter flow.  
 The treatment for the electrons is similar, but it must keep unlike electron-ion collisions 
as well as like collisions. The procedure is the same as for a tokamak, as summarized in 
Helander & Sigmar (2002), and an omnigenous stellarator, as employed in Landreman & Catto 
(2012). The results are consistent with the more geometrically involved general stellarator results 
of Helander et al. (2011 & 2017). 
 The bootstrap current for weakly non-optimized stellarators is most easily found from the 
Landreman & Catto (2012) form by recalling the replacement (3.13). Within minor notational 
differences the result is  

 
 
〈BJ||〉 =

c(Z2+2.2Z+0.75)(1− fc )
Z(Z+ 2)

〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉[∂pi
∂ψ

+
∂pe
∂ψ

−
(2.1Z+0.88)ne
(Z2+2.2Z+0.75)

∂Te
∂ψ

−
1.17ne
Z

∂Ti
∂ψ
] . 

 (7.15)  
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Only the geometrical coefficients of the bootstrap current differ from the forms of Landreman & 
Catto (2012) and Helander et al. (2017). When normalized to the axisymmetric tokamak result 
(N = 0 in the quasisymetric limit) a geometric ratio is obtained,  

 
 

〈BJ||〉
〈BJ||〉tok

=
(1− fc )
(1− fc )tok I

〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 "
δ

ε I
〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 ~ 1
I(ψ)

〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉 , (7.16) 

where the last two forms assume a dominant N and M of amplitude δ ~ r / R = ε . For a quasi-
poloidally symmetric or, more generally, a quasi-isodynamic omnigeous, surface 〈BJ||〉 = 0 . 
 The Pfirsch-Schlüter current must be consistent with  ∇⋅

!
J = 0  and  

 J|| = J||
PS +B〈BJ||〉/〈B

2 〉 ,  (7.17) 
giving  

 
 
J||
PS = −

c
B
(∂pi
∂ψ

+
∂pe
∂ψ
)[(1− B2

〈B2 〉
)〈
!
B⋅∇ψ×∇B!
B⋅∇B

〉+W] ,  (7.18) 

where integrating by parts gives 

 
 
〈W〉∝ Σ dB!∫

dαW"
B⋅∇B!∫ ∝ Σ dB!∫ B dα ∂

∂α
( 1
|
"
b ⋅∇B|

) dB'
B'3B

B

∫!∫ F0
' , (7.19) 

which indeed vanishes for an omnigenous device as required by Eqs. (7.15), (7.17) and (7.18). In 
addition, J||

PS  satisfies 

 
 

!
B⋅∇( J||

PS

B
)= −c(∂pi

∂ψ
+
∂pe
∂ψ
)
!
B⋅∇( 1

B2
〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉+
W
B2
)= −∇⋅[ c

B2
!
B×∇(pi +pe )] ,  (7.20) 

since using (4.5) and (4.6) leads to 

 
 

!
B⋅∇( 1

B2
〈

!
B⋅∇ψ×∇B!
B⋅∇B

〉+
W
B2
)=
!
B⋅∇(U

B
)=∇⋅ ( 1

B2
!
B×∇ψ) . (7.21) 

 So far no collisionality dependence enters the parallel current, unlike the simulations 
(Beidler et al. 2011; Kernbichler et al. 2016) which typically exhibit dependence on ν  and ω  as 
ν→ 0  for the bootstrap current. The geometric ratio obtained here, using momentum 
conserving like particle collision operators, is the same as that of the simulations which retain 
only pitch angle scattering (see Appendix). For more details on differences in coefficients of 
〈BJ||〉  and V||i  see the results of Helander et al. (2017) and Landreman et al. (2014). The second 
reference also shows that at about ωR /vi ~ 0.3  strong electric field effects begin to modify the 
trapped region of phase space as found by Kagan & Catto (2010). 
 The preceding expressions extend the quasisymmetric results of Helander et al. (2017) by 
having more compact and explicit (though less general) geometric coefficients while retaining 
tangential drift. They are obtained by a somewhat more general treatment of the ν  regime than 
Helander et al. (2017) which only considers the bootstrap current in the Lorentz collision 
operator limit. In adddition to the ν  regime, the results presented here are valid for 
superbanana plateau regime transport as only the portion of the perturbed distribution function 
that is even in v||  is altered for it. They reduce to the omnigenous limit (Landreman & Catto 
2012) which is consistent with other earlier results (Shaing et al. 1989; Helander et al. 2011).  
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 Collisional modifications in the presence of only a tangential  
!
E×
!
B  drift as employed in 

most simulations are evaluated in the next section. This spurious drive is implied by the right 
side shown in (6.8). In the next section it will be shown to modify the ion flow and bootstrap 
current at weak collisionality. At finite  

!
E×
!
B  tangential drift, it offers a possible explanation for 

some of the discrepancy between simulations and the bootstrap result of (7.15). 
 
8.  A spurious non-omnigenous collisional tangential drift modification 
 At small collisionality and finite tangential  

!
E×
!
B  drift, when the approximate drive term 

on the right side of (6.8) is retained as in most simulations, a specious ion flow and bootstrap 
current is generated as will be shown in this section. In this limit an additional contribution to 
hp , defined as hp

ω/ν , is found by solving the equation suggested by (6.8), namely 

 
 
ω
∂f0
∂ψ

〈
B
v||

∂Δp
∂α

〉 =ω
∂f0
∂ψ
(〈B
v||
∂
∂α
(v||
Ω
∂F0
∂α

−
∂!J
∂α
)〉 =〈B

v||
C{hp

ω/ν}〉  , (8.1) 

with hp
ω/ν=Hp

ω/ν . Inserting  !J  

 

2νQB0
v2

∂
∂λ
[λ〈v||

∂
∂λ
(hp

ω/ν−
Mi

T
uv||f0)〉]=

ωB0
Ω0

∂f0
∂ψ
{〈∂

2F0
∂α2

〉− 〈
∂2

∂α2
[ B
1−λB/B0

dB'
B

B

∫
1−λB'/ B0!
b'⋅∇B'

]〉} .(8.2) 

The right side can be written as a λ  derivative by using Gradshteyn & Ryzhik (2007):  

 

 

1−λb'
1−λb

=
1−λb'

1−λ(b+b')+λ2bb '
=

∂
∂λ
{( b−b'
2b bb'

)ℓn[2 bb'(1−λb)(1−λb') +2bb'λ − (b+b')]− (1−λb)(1−λb')
b

}

 (8.3) 

where b =B/B0  and b' =B'/ B0 . Integrating once from λ = 0  gives 

 

λ(〈v||〉
∂hp

ω/ν

∂λ
+
Miv

2f0
2TB0

〈Bu〉)= ωB0v
2

2Ω0νQ
∂f0
∂ψ
{ λ
B0
〈
∂2F0
∂α2

〉 − 〈
∂2

∂α2
dB'!
b'⋅∇B'

{
B

B

∫ 1− B−B'
2 BB'

ℓn[2 BB'−B−B'
B0

]}〉

+〈
∂2

∂α2
dB'!
b'⋅∇B'

{ (1−λb)(1−λb') − ( B−B'
2 BB'

)ℓn{2 bb'(1−λb)(1−λb') +2bb'λ − (b+b')}
B

B

∫ 〉}
 

  (8.4) 
Neglecting B−B'  terms as small in δ  to simplify the analysis, for the moment, gives 

 
 

〈v||〉p
f0

∂hp
ω/ν

∂λ
+
Miv

2f0
2TB0

〈Bu〉! ωv2

2Ω0νQ
∂f0
∂ψ
{〈 ∂

2

∂α2
[F0 −

B0
λ

dB'"
b'⋅∇B'

(1− v||v||
'

v2B

B

∫ )]〉}  (8.5) 

where now 

 u = (3T d3∫ vQv||hp
ω/ν )/ (Mj d3∫ vQv2f0 )= −(3T d3∫ vQv||λ∂hp

ω/ν /∂λ) / (Mj d3∫ vQv2f0 ) . (8.6) 

A second integration (making hp
ω/ν  vanish at the trapped-passing boundary) is not needed. Notice 

that  hp
ω/ν

!
< δnoωρpif0 /νia  exhibits ω/ν  behavior when ω>>νi , but no ν  dependence. For the 

estimates of this section  Ω
−1v||∂F0 /∂α ~ ∂!J/∂α  and  F0 !

<RB  are allowed. 
 To determine the hp

ω/ν  modification in the bootstrap current requires evaluating new 
parallel ion flow velocity contribution V||i

ω/ν  defined by 
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ni 〈BV||i
ω/ν 〉 ≡ 〈B d3vv||∫ hp

ω/ν〉p= −〈
B0
2

B
d3vv||∫ λ

∂hp
ω/ν

∂λ
〉p=
Mi 〈Bu〉
2T

〈
B0
B

d3vv||λv
2

〈v||〉p
f0∫ 〉p

−
ωB0

2

2νΩ0

〈 d3v v||λv
2

〈v||〉pQ
∂f0
∂ψ

∫ { ∂
2

∂α2
[F0 −

B0
λ

dB'!
b'⋅∇B'

(1− v||v||
'

v2
)

B

B

∫ ]}p

.  (8.7) 

Using d3v→ 2π(Bv3/B0|v|||)dvdλ , recalling (7.6), and defining the velocity space average 

 {Qk} ≡ (Mj /3p j) d3vv2Qkf0∫ = ( dxQkx4e−x
2

) /(
0

∞

∫ dxx4e−x
2

0

∞

∫ ) , (8.8) 

with k = -1, 0, and +1, gives  

 
 
〈
B0
B

d3vv||λv
2f0

〈v||〉p
∫ 〉p = 2π dvv4f0

0

∞

∫ dλλ
〈 1−λB/B0 〉p0

B0 /
⌢
B

∫ =
2
3
fc d3vv2f0∫ =

2fcp j
Mj

, (8.9) 

and 

 

 

〈
B0
B

d3v v||λv
2

〈v||〉pQ
∫ ∂f0

∂ψ
〉p = 2π dv v

4

Q
∂f0
∂ψ0

∞

∫ dλλ
〈 1−λB/B0 〉p0

B0 /
⌢
B

∫ =
2
3
fc d3v v

2

Q∫ ∂f0
∂ψ

=
2fc
Mj

[{ 1
Q
}(
∂p j
∂ψ

+Zen∂Φ
∂ψ
)+{

Mjv
2 −5T
2TQ

}n∂T
∂ψ
]

. (8.10) 

 To obtain an analytically tractable estimate the last term in (8.7) is simplified further by 
using the freely passing expansion  λ

−1B0(1−v
−2v||v||

' ) ! (B+B') / 2  for now. Then the resulting 
approximation can be added to F0  and treated in the same way by using 

 
 
G0 ≡ F0 −λ

−1B0
dB'!
b'⋅∇B'

(1−
B

B

∫ v||v||
'

v2
) " F0 −

1
2

dB'(B'+B)!
b'⋅∇B'B

B

∫ , (8.11) 

where the fact that lower limit of the F0  integral is B0  , and not  B=
⌢
B , is unimportant since only 

α  derivatives of G0  enter. 
  Also needed is (8.6) which gives 

 〈Bu〉[ d3∫ vQv2f0 −
3
2
〈
B0
B

d3∫ vv||λv
2

〈v||〉p
Qf0 〉p ]= −

3B0ωT
2Miν

〈 d3∫ v λv
2

〈v||〉p
∂f0
∂ψ

∂Δp
∂α

〉p , (8.12) 

where 

 
 
〈
B0
B

d3vv||λv
2Qf0

〈v||〉p
∫ 〉p = 2π dvv4Qf0

0

∞

∫ dλλ
〈 1−λB/B0 〉p0

B0 /
⌢
B

∫ =
2
3
fc d3vv2Qf0∫ ≡

2fcp j
Mj

{Q} . (8.13) 

Also, noticing that 

 
〈
B0
B

d3vv||λv
2

〈v||〉p
∫ ∂f0

∂ψ
〉p= 2π dvv4∂f0

∂ψ0

∞

∫ dλλ
〈 1−λB/B0 〉p0

B0 /
⌢
B

∫ =
2
3
fc d3vv2∂f0

∂ψ
=
2fc
Mi

∫ (∂p
∂ψ

+Zen∂Φ
∂ψ
) .(8.14) 

gives upon using (8.12) 

 
 
〈
B0
B

d3vv||λv
2

〈v||〉p
∫ ∂f0

∂ψ
∂2G0

∂α2
〉p!

2fc
Mi

〈
∂2G0

∂α2
〉(∂p
∂ψ

+Zen∂Φ
∂ψ
) , (8.15) 

Substituting in yields 
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〈Bu〉 = −fccω

Ze(1− fc )νn{Q}
〈
∂2F0
∂α2

〉(∂p
∂ψ

+Zen∂Φ
∂ψ
)
!
<B

δnoωρpiv
νia

. (8.16) 

 The collisional bootstrap modification 〈BJ||
ω/ν 〉  to be added to (7.15) is then 

〈BJ||
ω/ν〉≡Zeni 〈BV||i

ω/ν〉=
cfcω

(1− fc )νi
〈
∂2G0

∂α2
〉[({1− fc

Q
}− fc
{Q}

)(∂pi
∂ψ

+Zeni
∂Φ
∂ψ
)+(1− fc ){

Miv
2−5Ti
2TiQ

}ni
∂Ti
∂ψ
] , 

  (8.17) 
where 〈∂2G0 /∂α

2 〉  as given by (8.12) only vanishes for an omnigenous flux surface, and 
{Q} = 0.4  and {Q−1} = 5.4  (Catto et al. 2001). Upon dividing by Ze , ni 〈BV||i

ω〉  is to be added to 
the parallel ion velocity expression (7.13). Forming the ratio of (8.17) divided by (7.15) gives 

 〈BJ||
ω/ν〉

〈BJ||〉
~ δnoω
δνi

, (8.18) 

and therefore a specious modification of the bootstrap current. This modification should be  
present in simulations that use the radially local form of the drift kinetic equation and does not, 
in general, vanish on imperfectly quasi-poloidally symmetric or quasi-isodynamic surfaces. 
 To remove the approximation (8.11)-(8.12) in (8.17) the substitution 

 
 
G0 ⇒ F0 −〈 d3vv||v

2

〈v||〉p
∫ ∂f0

∂ψ
dB'!
b'⋅∇B'

(1−
B

B

∫ v||v||
'

v2
)〉p / 〈 d3v v||λv

2

B〈v||〉p
∫ ∂f0

∂ψ
〉p , (8.19) 

is required. A full generalization can be made similarly by retaining the B−B'  terms of (8.4). 
 The spurious collisional, non-omnigenous, tangential  

!
E×
!
B  drift modification is more 

important for the ions than the electrons, and dominates for  ωδno /νi >> δ . It introduces 
unphysical radial electric field dependence through both the tangential drift frequency ω  and a 
new ∂Φ/∂ψ  force term in (8.17) so that both ω  and ω2  terms enter. It is perhaps responsible for 
some of the ∂Φ/∂ψ  dependence observed in simulations at small collisionalities (Beidler et al. 
2011). However, it does not explain the descrepancy between analytical and numerical results as 
ω = c∂Φ/∂ψ→ 0 . This behavior must be due to the transitional particles that spend time in 
multiple wells and are present, at least to some degree, in all the configurations considered in 
Beidler et al. (2011). The evaluation of the transport and parallel flow associated with these 
transitional particles are beyond the scope of the treatment presented here. 
 The new term considered in this section results in no fluxes from 

 
〈 d3∫ vhp

ω/ν!vd ⋅∇ψ〉  and 

 
〈 d3∫ vhp

ω/ν(Miv
2 /2)!vd ⋅∇ψ〉 , and no frictional particle flux as d3vv||∫ C{hp

ω/ν} = 0  for ion-ion 

collisions; however, it will give rise to a tangential  
!
E×
!
B  drift dependent, but collision frequency 

independent heat flux, 
 
〈 d3∫ vhp

ω/ν(Mv2/2)!v ⋅∇ψ〉 = (Mc/Ze)〈U d3∫ v(Mv2/2)v||C{hp
ω/ν}〉 . To see 

there is such a flux, the solenoidal vector   
!
h =B−2 !B×∇ψ+U

!
b  is introduced (Simakov & 

Helander 2009) and the  
!
h ⋅!vv2/2  moment of the Fokker-Planck equation formed. The absence of 

an impact on the radial particle flux is consistent with the Beidler et al. (2011) simulations.   
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9. Discussion 
 The streamlined derivation of the bootstrap current and the parallel ion velocity presented 
here is possible because the problem is formulated in a way that allows all of the odd terms in v||  
to be obtained by evaluating them as part of the leading order corrections to the Maxwellian. As 
a result, the only other terms that enter in lowest order are trapped terms and they are all even in 
v|| .  The procedure results in a parallel ion flow velocity (7.9) consistent with force balance and 
continuity, and leads to convenient expressions for the Pfirsch-Schlüter parallel ion velocity 
(7.14) and parallel current density (7.18). The bootstrap current (7.15) and bootstrap contribution 
to the parallel ion velocity (7.13) have compact and explicit geometric coefficients that agree 
with the previous collisionless forms of Helander et al. (2017 & 2011) and Landreman & Catto 
(2012), which are both consistent with Shaing et al. (1989). As the Helander et al. (2017) 
bootstrap current expression is derived in the Lorentz collision operator limit for the ν  regime, 
the result presented here, (7.15), is the most general expression derived to date as it is valid in the 
1/ν , ν , and superbanana plateau regimes. 
 Perhaps more importantly, a new, but spurious, collisional modification to the ion parallel 
flow velocity and bootstrap current given by (8.17) and (8.19) (or its further generalization) is 
found that can become substantial at low collisionalities whenever there is a tangential  

!
E×
!
B  

drift and the magnetic field is not perfectly omnigenous. In addition to the dependence of (8.17) 
on the tangential drift frequency, ω = c∂Φ/∂ψ , there is a new force term depending on ∂Φ/∂ψ , 
so terms both linear and quadratic in ω  occur so exhibits a sensitivity to ∂Φ/∂ψ  as observed in 
the simulations. This new ω /νi  contribution should be present in numerical solutions of the drift 
kinetic equation and may be a part of the reason these sometimes do not agree with previous 
analytical expressions. Unfortunately, it does not explain the descrepancy between analytical and 
numerical results as ω = c∂Φ/∂ψ→ 0 . The disagreement in this limit is presumably due to 
transitional particles that de-trap and re-trap in multiple wells and act to widen the boundary 
layer width between at the trapped-passing boundary. These transitional particles are expected to 
arise when the departure from omnigeneity becomes significant. However, the spurious ω /νi  
contribution is an artifact of the radially local approximation of the drift kinetic equation that is 
usually employed in analytical theory as well as in neoclassical codes. It disappears when the 
effect of the full drift velocity on the perturbed distribution function is retained in the kinetic 
equation. This result is yet another indication that it is not always logically consistent to treat 
neoclassical transport in stellarators as a radially local process.  
 At low collisionalities, estimates indicate that the transitional ions widen the trapped-
passing boundary layer to introduce a regime linear in ν∗  (Beidler et al. 2011; Catto 2019) that 
cannot be treated by the procedures herein. 
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The Lorentz operator form of the results for (8.17) and (7.15) are 

 
〈BJ||

ω/ν〉L ≡ Zeni 〈BV||i
ω/ν〉L =

cfcω
νi
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∂α2
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Q
}(∂pi
∂ψ

+Zeni
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2−5Ti
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}ni
∂Ti
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and 
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