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While in recent years, gyrokinetic simulations have become the workhorse for theoret-

ical turbulence and transport studies in the plasma core, their application to the edge

and scrape-off layer (SOL) region presents significant challenges. In particular, steep

density and temperature gradients as well as large fluctuation amplitudes call for a

“full-f” treatment. To specifically study problems in the SOL region, the gyrokinetic

particle-in-cell (PIC) code PICLS has been developed. The code is based on an elec-

trostatic full-f model with linearised field equations and uses kinetic electrons. Here,

the well-studied parallel transport problem during an edge-localized mode (ELM) in

the SOL shall be investigated for one spatial dimension. The results are compared

to previous gyrokinetic continuum and fully kinetic PIC simulations and show good

agreement.
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I. INTRODUCTION

In the plasma core, a region with closed field lines, gyrokinetic simulations have been

carried out for several decades and proven to be able to correctly simulate turbulence.1–8

Despite these promising results, the application of gyrokinetic codes to the plasma edge and

SOL region is hampered by various complications. Steep parallel gradients and wide ranges

of spatial and temporal scales of plasma structures can be challenging for the assumptions

taken in gyrokinetic theory. However, since edge and SOL effects are crucial for magnetic

confinement, extending gyrokinetic simulations towards these regions is essential. In the

present paper, we introduce a new gyrokinetic PIC code called PICLS which addresses the

above challenges. Other gyrokinetic continuum9,10 and PIC11 codes already have been de-

veloped and started to contribute to the theoretical understanding of the SOL region, but

still a lot of research needs to be done. As a first test, PICLS is applied to the well-examined

problem of parallel particle and energy transport caused by a transient Type I ELM in the

SOL.

Type I ELMs (or “giant” ELMs) can be described as MHD instabilities which are triggered

by steep pressure gradients in the plasma edge region (such as the H-mode pedestal) and

lead to a loss of stored energy and a profile relaxation.12 They can cause periodic energy

outbursts into the SOL in the H-mode13 and due to the subsequent power loads on plasma

facing materials are a key issue for high-power tokamaks like ITER. These bursts can carry a

significant portion of the stored energy.14 In ITER the eroded materials potentially require a

higher replacement frequency, and eroded atoms within the plasma chamber deteriorate the

energy gain. Studies showed that hundreds of ELMs are expected to occur in only one single

ITER discharge.15 With such a high number of plasma wall interactions via ELMs, their

suppression is of highest importance to limit the damage on plasma facing components (such

as divertor or main chamber wall). Apart from experimental studies for ELM suppression

an accurate prediction of heat transport in the SOL for future devices via simulation is also

required.

The ELM heat pulse problem was already studied within several simulation efforts, espe-

cially in the 1D1V (one spatial and one velocity domain) case. Initially, parallel propagation

of ELM heat pulses with different temperatures, densities, energies and durations were sim-

ulated via a fully kinetic collisional PIC model.14 The ELM pulses in the mid-plane of the
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SOL were derived from JET experiments and modeled as hot plasma sources in the center

of a 1D simulation domain. By benchmarking their simulation data against the experiment,

the quantity range of the fraction of energy that was deposited before the heat flux peak

in the JET measurement could correctly be predicted. Although the ELM model is quite

reduced, it is viable to simulate divertor heat fluxes and parallel transport in the SOL and is

in good agreement with experiments. In a more recent study, the single central source model

was studied with fully-kinetic PIC, continuum (Vlasov) and fluid simulations and success-

fully benchmarked against the experiment.16 Also between the different codes a consistent

outcome could be achieved.14,16,17

In very recent works the same problem was simulated with gyrokinetic continuum codes and

the results of the previous works could be reproduced.18–20 Additionally, both implemented

logical-sheath boundary conditions21, that are designed to provide the effects of a Debye

sheath, while not actually having to resolve it. Hence, the combination of gyrokinetics and

a logical sheath delivers a significant speed up, compared to kinetic codes, since the restric-

tion towards time steps of ≈ ω−1ce (electron cyclotron frequency) and spatial resolutions of

≈ λDe (Debye length) is lifted. Our implemented model can use time steps and grid cells that

are several orders of magnitude larger than required in kinetic models that need to resolve

the Debye length and the plasma frequency. Compared to fluid models, this approach is

surely computationally heavier, but also ensures that kinetic effects are taken into account.

Unlike the previous gyrokinetic simulations, we apply a PIC model to simulate the same

ELM heat pulse problem. This model is implemented in the newly developed PICLS code,

which is designed to perform gyrokinetic SOL simulations. Its numerical core is heavily

based on numerical techniques implemented in ORB522 and GK-Engine23. Since a typical δf

model for the distribution function (splitting in a constant background part and a perturba-

tion) is not useful in the SOL anymore, a full-f model with a linearisation in the field part is

implemented in PICLS. For the simulations in this paper, we focus on long wavelengths in

the drift-kinetic limit. The electrostatic potential is calculated via the polarization equation,

with the help of B-spline finite-elements for the charge deposition and the field solver. For

the time integrator a fourth-order Runge-Kutta algorithm is used and it is parallelized with

a hybrid OpenMP/MPI setup.

With this simplified problem the implemented sheath physics are tested and its consistency

with previous simulations can be benchmarked. The one dimensional setup is also an im-
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portant step towards studying basic plasma physics phenomena of real linear devices, such

as LAPD24. Studies on this machine were previously performed by the full-f gyrokinetic

continuum codes Gkeyll9 and GENE10.

In section II we describe the general electrostatic gyrokinetic equations implemented in

PICLS and its specific formulations for the 1D heat pulse problem. The numerical imple-

mentation details for our PIC approach and the logical sheath boundaries are introduced

in section III. The heat pulse simulation setup is described in section IV together with the

corresponding results in section V. The conclusions and an outlook on future efforts are

shown in the last section.

II. PHYSICAL MODEL

Throughout this paper we use a low-frequency, electrostatic gyrokinetic model with ki-

netic electrons. Finite-Larmor radius effects are neglected, due to the nature of the single

spatial dimension ELM pulse problem we investigate. However, Larmor-radius effects and

gyroaveraging are already implemented within the code for a future higher dimensional

extension.

A. Basic equations

Here we want to derive the required set of equations in a general three dimensional case

and subsequently reduce these to the specific set required for the applied simulations in one

spatial dimension. The starting point is a total gyrokinetic Lagrangian in CGS units25:

L =
∑
p

∫
dW0dV0fp(Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t) +

∫
dV

E2 −B2
⊥

8π
(1)

where Z ≡ (R, v‖, µ, θ), dW and dV stand for the volume elements in velocity and physical

space, respectively. With the gyrocenter position R and the velocity variables v‖ (velocity

parallel to magnetic field), µ = mpv
2
⊥/(2B) (magnetic moment) and θ (gyroangle). f(Z0) =

fp is the distribution function for the species p at initial time t0.
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With the following definitions:

dW =
2π

mp

B∗‖dv‖dµ (2)

dV = J(X, Y, Z)dXdY dZ (3)

dΛ = dV dW (4)

B∗‖ ≡ B∗ · b = B +
cmp

ep
v‖∇× b · b (5)

B∗ = B +
mpc

ep
v‖∇× b, (6)

where mp is the mass and ep the charge of species p, we can further condense the total

Lagrangian to:

L =
∑
p

∫
dΛLpfp +

∫
dV

E2 −B2
⊥

8π
. (7)

Here, the Lie-transformed low-frequency particle Lagrangian Lp is used26,27:

Lp ≡
(e
c
A +mpv‖b

)
· Ṙ +

mpc

ep
µθ̇ −Hp, (8)

with A the background vector potential.

Components with a perpendicular subscript lie within the plane perpendicular to the mag-

netic background field B. The (electrostatic) Hamiltonian used for the subsequent deriva-

tions in our case is the following (but also other choices would be possible):

Hp = mp

v‖
2

2
+ µB + epJp,0φ−

mpc
2

2B2
|∇⊥φ|2. (9)

Which can also be written as:

Hp ≡ Hp,0 +Hp,1 +Hp,2 (10)

Hp,0 =
mpv‖

2

2
+ µB (11)

Hp,1 = epJp,0φ (12)

Hp,2 = −mpc
2

2B2
|∇⊥φ|2. (13)

In Hp,1 the gyroaveraging operator Jp,0 is applied to the potential φ. The operator Jp,0

applied to an arbitrary function ψ in configuration space is defined by

(J0ψ)(R, µ) =
1

2π

∫ 2π

0

ψ(R + ρ(θ)) dθ, (14)
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with ρ the vector from the guiding center position to the particle position.

Now by entering eq. (8) into eq. (7), the required total gyrokinetic particle Lagrangian can

be achieved:

L =
∑
p

∫
dΛ

((ep
c

A +mpv‖b
)
· Ṙ +

mpc

ep
µθ̇ −Hp

)
fp +

∫
dV

E2 −B2
⊥

8π
. (15)

According to GK theory the resulting Lagrangian (15) can be further approximated without

losing energetic consistency and self-consistency of the final equations.25 In this work, the

widely-used quasi-neutrality approximation and linearised polarization approximation are

applied.

For the quasi-neutrality approximation the E2 term in the free-field term is ordered small

compared to the so-called E×B term, which corresponds to the second order φ term in the

Hamiltonian. To see this, the Debye length squared λ2De ≡ kBTe
4πnpe2

and the squared ion sound

Larmor radius ρ2s ≡ kBTemic
2

e2B2 are introduced.

In fusion plasmas normally the ion Larmor radius in general is much larger than the Debye

length and one obtains:

ρ2s
λ2De

=
4πnpmpc

2

B2
=
c2

v2a
� 1 (16)

with va the Alfvén velocity. This relationship is now used in the sum of the E2 term in the

free fields and the second order φ term in the Hamiltonian:∫
dV

E2

8π
+

∫
dΩf

m

2

c2

B2
|∇⊥φ|2 =

1

8π

∫
dV

[
E2
‖ +

(
1 +

ρ2s
λ2De

)
|∇⊥φ|2

]
. (17)

The E2
‖ term is even smaller than the perpendicular part and hence the whole E2 term can

be neglected.

In a second step, the Lagrangian is further approximated, by assuming, that only the

(Hp,0 + Hp,1) part of the Hamiltonian multiplies with the full distribution function f and

Hp,2 is linearised by multiplying with a time-independent equilibrium distribution function

fM,p:

L =
∑
p

∫
dΛ

((ep
c

A +mpv‖b
)
· Ṙ +

mpc

ep
µθ̇ −Hp,0 −Hp,1

)
fp

+
∑
p

∫
dΛ

mpc
2

2B2
|∇⊥φ|2fM,p −

∫
dV

B2
⊥

8π
. (18)
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The linearised field part is known as the linearised polarisation approximation. Thus, the

Hp,2 term only acts on the field equations and does not contribute to the drift motion. For

a detailed overview of both applied Lagrangian approximations we refer to Bottino et al.26

Since all our simulations are performed in the electrostatic limit, also electromagnetic pertur-

bations are neglected, by setting A‖ = 0, which implies B2
⊥ = 0 and therewith the

∫
dV

B2
⊥

8π

term in the field part is neglected. Our final electrostatic total Lagrangian is thus:

L =
∑
p

∫
dΛ

((ep
c

A +mpv‖b
)
· Ṙ +

mpc

ep
µθ̇ −Hp,0 −Hp,1

)
fp

+
∑
p

∫
dΛ

mpc
2

2B2
|∇⊥φ|2fM,p. (19)

The particle equations of motion can be obtained by taking the functional derivative of Lp

with respect to Z and from this the Euler-Lagrange equations for Lp can be derived.25,26

These describe the drift motion of the gyrocenters and can be written as:

d

dt

δLp

δŻ
=
δLp
δZ

. (20)

Following Bottino et al.26, one can now calculate all required derivatives of Lp. For the θ

derivatives ∂Lp

∂θ̇
= µ, ∂Lp

∂θ
= 0 can be calculated. Thus, the Euler-Lagrange equation for θ

delivers dµ
dt

= 0 and shows that µ is an exact invariant. An evolution equation for θ is not

needed, since the dependence on θ has been removed from the Lagrangian. For R and v‖

the Euler-Lagrange equations yield:

Ṙ = v‖
B∗

B∗‖
+

c

epBB∗‖
B× [µ∇B + ep∇Jp,0φ]

v̇‖ = −B∗

B∗‖

1

mp

· [µ∇B + ep∇Jp,0φ] . (21)

To derive the polarization equation, or GK Poisson equation, the functional derivative of L

needs to be calculated with respect to the electrostatic potential φ and set to 0. The only

dependence on φ in the first term of equation (19) is in the Hp,1 part. The gyroaverage

operator Jp,0 is a linear operator of φ and thus we get:

δL

δφ
δφ = −

∑
p

(∫
dΛepJp,0(δφ)f +

∫
dV

mpc
2

B2
∇⊥φ · ∇⊥δφfM,p

)
= 0. (22)

This form is also called the weak form of the polarisation equation, which is solved in the

code.
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The strong form results from using a Hermitian Jp,0:∫
φJp,0(f)dW =

∫
fJp,0(φ)dW (23)

and from applying the Green’s formula on the second integral of (22). It is also assumed

that φ vanishes at the boundary and B∗‖ is taken out of dW = 2π
mp
B∗‖dv‖dµ. With this, eq.

(22) becomes:

−
∑
p

∫
dV δφ

∫
dW

(
epJp,0f +

1

B∗‖
∇⊥(

mpc
2

B2
B∗‖fM,p∇⊥φ)

)
= 0 (24)

Now, by noting that in the second term the spatial gradient and the integral with respect to

dW commute, we can perform the velocity integral over the Maxwellian distribution. Since

the choice of δφ is arbitrary, we get:

−
∑
p

∇⊥
np,0mpc

2

B2
∇⊥φ =

∑
p

∫
dWepJp,0f. (25)

With the definition np,0 for the density of the equilibrium Maxwellian fM:

np,0 =

∫
dWfM,p (26)

Note that Jp,0 = 1 for electrons, which means that electron FLR effects are neglected, due

to their small Larmor radius. The resulting equation is linear and has the form
∑

p enp = 0

with the particle charge density enp, which is a quasi-neutrality condition.

As shown in Shi et al.19, a simplified polarization equation can be obtained. This is

derived from a dispersion relation resulting from linearising eq. (25) and the Vlasov equation

∂Fp

∂t
= {Hp, Fp}, Fourier transforming both in time and space and assuming that qe = qi. By

introducing the shielding factor s⊥(z, t) = k2⊥(z)ε⊥(z, t), with ε⊥ =
∑

p
np,0mpc2

B2 , the modified

polarization equation can be written as:

s⊥(z, t)(φ− 〈φ〉) =
∑
p

∫
dWepJp,0f. (27)

Where the flux-surface-averaged, dielectric-weighted potential

〈φ〉 =

∫
dzs⊥φ∫
dzs⊥

(28)

is used. In eq. (27) the flux-surface-averaged potential 〈φ〉 is subtracted off φ to maintain

gauge invariance of the modified polarization equation. This choice is also taken due to
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the applied logical sheath boundary conditions. Specifically in the chosen 1D case, the net

guiding center charge vanishes,
∫
σtotdz =

∫ ∑
p

∫
dWepJp,0fdz = 0, since the net flux is set

to j‖ = 0. Applying the integral over dz on the left-hand-side of equation (27), shows that

also the polarization charge density averages to 0. However, for the calculation of the E−field

this subtraction of 〈φ〉 can be neglected and has no influence on the gyrokinetic equations

of motion. Hence, we achieve the modified polarization equation used in our model as:

s⊥(z)φ(z) = k2⊥(z)
∑
p

np,0mpc
2

B2
φ(z) =

∑
p

∫
dWepJp,0f. (29)

In the PIC algorithm with finite-element discretisation this means that the Poisson matrix

has no longer to be solved, but the mass matrix with an additional factor of k2⊥.

For the calculation of the conserved energy of equation (27), we refer to Shi et al.18 In

this derivation the 〈φ〉 term would actually have to be taken into account. However, in this

work we want to show the conserved energy for the original unmodified polarization equation

(25), which is relevant for future more general studies. Here, by deriving the equations from

the not directly time-dependent Lagrangian density, the energy is automatically a conserved

quantity. Adjustments on the Lagrangian and Hamiltonian level thus conserve the energy,

whereas dropping terms at a later stage can result in a violation of energy conservation26,28.

In our electrostatic case the total conserved energy is29:

Etot =
∑
p

∫
dWdV Hpfp = Ek + Ef. (30)

Where the particle energy (or total kinetic energy) Ek has the definition:

Ek =
∑
p

∫
dWdV Hp,0fp. (31)

The definition for the field energy is:

Ef =
∑
p

∫
dWdV Hp,1fp +

∑
p

∫
dWdV Hp,2fM,p (32)

=
∑
p

∫
dWdV epJp,0φfp −

∑
p

∫
dWdV

mpc
2

2B2
|∇⊥φ|2fM,p. (33)

Considering the polarization equation (25), multiplying by φ and integrating over space

gives:

−
∑
p

∫
dV dW

(
∇⊥

fp,0mpc
2

B2
∇⊥φ

)
φ =

∑
p

∫
dWdV epJp,0fφ. (34)
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Now, we integrate by parts, and use the Hermiticity of Jp,0 and divide by 2, to obtain:∑
p

∫
dV dW

fp,0mpc
2

2B2
|∇⊥φ|2 =

∑
p

1

2

∫
dWdV epJp,0φfp. (35)

Inserting this result in the second term of equation (33) gives:

Ef =
∑
p

1

2

∫
dWdV epJp,0φfp. (36)

Thus, the total conserved energy of the system can be written as:

Etot = Ek + Ef =
∑
p

∫
dWdV Hp,0fp +

∑
p

1

2

∫
dWdV epJp,0φfp (37)

with Hp,0 = 1
2
mpv‖

2 + µB in the kinetic part.

B. Equations in 1D slab geometry

The equations of motion in slab geometry can be derived from equation (21) for the 3D

case straight forward:

Ṙ = v‖b +
c

ep
µ

B×∇B
B2

+ c
B×∇Jp,0φ

B2

v̇‖ = − µ

mp

b · ∇B − ep
mp

b · ∇Jp,0φ, (38)

by using that B∗ = B and B∗‖ ≡ B∗ · b = B in slab geometry. The Hamiltonian of the

system remains remains the full-f gyrokinetic Hamiltonian of equation (9).

Within this work the 1D1V versions of these equations are required to evolve the markers

according to the PIC algorithm applied. The B-field in the 1D case is parallel to the z-

direction of the domain and in the case of the studied 1D1V ELM heat-pulse problem

B = const. Thus, in the Ṙ part of equation (38) the B × ∇B, as well as the B × ∇Jp,0
term cancel out. For the 1V case also µ = 0 applies and thus, also the first term in the v̇‖

equation disappears, and hence further simplifies the equations. In the 1D case equations

(38) can thus be rewritten as:

Ṙ = v‖b

v̇‖ = − ep
mp

b · ∇Jp,0φ. (39)

The modified polarization equation (29) is unchanged in slab geometry, with Jp,0 = 1 in the

1D case.
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C. Normalization scheme

We choose the centimetre-gram-second (or CGS) system of units, because in this case

for electromagnetic studies the E- and the B-field have the same units. To address these

units within the simulations, the equations are normalized before numerical solutions are

calculated. The full set of normalization equations can be written as:

t = τ t̄, R = Lx̄, v‖ = V v̄‖, k⊥ = k̄⊥/ρce,

ep = eZ̄p, mp = Mm̄p, Tp = kBT T̄p,

E ≡ ∇Jp,0φ = EnormĒ = kBT
eL
Ē,

B = BnormcB̄ = c
V
kBT
eL
B̄, µ = µnormµ̄ = eLV 3M

ckBT
µ̄

We normalize B/c rather than B, practically this is similar to re-scaling the field by c/V .

Hence, c disappears from the equations. In the code B and T are initialized by its input

values B0 and T0. Additionally, the spatial scale L is set to the electron gyroradius:

ρce =
√
kBT/me/

c

eB0

. (40)

And hence, τ becomes the inverse electron cyclotron frequency w−1ce = mec
eB0

. The other

reference quantities applied comprise the electron charge e, the electron mass M and the

initial thermal electron velocity V =
√
kBT/me.

k⊥ is normalized to the inverse of the electron cyclotron radius 1/ρce. Since lnorm = ρce is

set in our simulations, the normalized form of the Fourier transformed polarization equation

(29) can be obtained as:∑
p

k̄⊥
2np,0Mm̄p

B̄2B2
norm

φ(z) =
∑
p

∫
dWeZ̄pJp,0f. (41)

Entering the normalization factors into the equations of motion (39) for 1D yields:

∂z̄

∂t̄
= v̄‖

∂v̄‖
∂t̄

= (− eZp
Mm̄p

ĒzEnorm)
τ

V
. (42)

Our choice of the normalization scheme is primarily taken to easily perform a-dimensional

scans in the future (e.g., on ρ∗ or ν∗). However, also other normalization schemes (or no
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normalization, such as SI or CGS) are possible. The choice is not decisive for numeri-

cal calculations, since variations of magnitudes can easily be handled by double precision

numbers.

III. NUMERICAL SETUP

As mentioned in section I, for the simulations within this work, we use the newly de-

veloped PICLS code, which is a PIC code designed to perform gyrokinetic open-field-line

simulations. The numerical function discretisation is performed with a finite-element scheme

and the sheath at the domain boundary is implemented via a logical sheath model.

A. Discretisation of equations

In PIC codes, the particle distribution function f(x) is represented by discrete mark-

ers. For the full-f representation for the 3D space, 1D velocity space — where the whole

distribution is simulated — the particle distribution function thus becomes:

f(R, v‖, t) =
N∑
n=1

wn(t)δ(R−Rn(t))δ(v‖ − v‖n(t)), (43)

with N the number of markers, wn the marker weights, Rn their position and v‖n their

parallel velocity. The magnetic moment µ and the gyroangle θ can be neglected for this

consideration. By defining Nph =
∫
n0(R)dR as the initial number of physical particles the

weights are uniformly initialized with

wn =
Nph

N
(44)

for all markers. The weights for the full-f case are constant and do not evolve in time:

d

dt
wn = 0. (45)

A key task of PIC codes is to solve the potential for a given particle distribution at each

timestep and from this calculate the electrical field. The E-field is required to advance

the particles in the following timestep. For the polarization equation (25) this means that

the discretised form of f(x) from equation (43) needs to be inserted into the polarisation

equation (25):

−
∑
p

∇⊥
np,0mpc

2

B2
∇⊥φ =

∑
p

ep

N∑
n=1

wp,n(t)δ(Rp −Rp,n) (46)
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with p the index for summing over particle species and N the number of markers. Now both

sides are multiplied with a test function ψ and integrated over the whole spatial domain V ,

to get: ∫
V

ψ

(
−
∑
p

∇⊥
np,0mpc

2

B2
∇⊥φ

)
dR =

∑
p

ep

N∑
n=1

wp,n(t)ψ(Rn). (47)

Integrating by parts and applying the divergence theorem, simplifies the left-hand side to:∫
V

ψ(
∑
p

∇⊥(
np,0mpc

2

B2
∇⊥φ))dR =

=

∫
∂V

(
∑
p

ψ
np,0mpc

2

B2
∇⊥φ)dσ︸ ︷︷ ︸

=0

−
∫
V

(
∑
p

np,0mpc
2

B2
∇⊥ψ∇⊥φ)dR. (48)

Here, the fact that the integral over the domain boundary is zero, is used. Inserting this in

equation (47) then yields:

∑
p

∫
V

np,0mpc
2

B2
∇⊥ψ∇⊥φdR =

∑
p

ep

N∑
n=1

wp,n(t)ψ(Rn). (49)

This equation can now be discretised with the help of the finite-element method. Therefore,

to represent the potential φ we use B-spline basis functions and obtain:

φ(R) =
∑
µ

φ̂µΛk
µ(R), (50)

where µ in the 1D case is a single index and goes from µ = 1, ..., Nz the number of grid cells

and Λk
µ(R) is the µth B-spline of degree k. For further and more detailed information on

B-splines, we refer to DeBoor et al.30 By also choosing ψ(R) = Λk
β(R) for the test function,

we can rewrite eq. (49):∑
µ

φ̂µ
∑
p

∫
V

np,0mpc
2

B2
∇⊥Λk

β(R)∇⊥Λk
µ(R)dR =

∑
p

ep

N∑
n=1

wp,n(t)Λk
β(Rn) (51)

The matrix Pµβ and the right-hand-side ρβ can now be defined in the following way:

Pµβ =
∑
p

∫
V

np,0mpc
2

B2
∇⊥Λk

β(R)∇⊥Λk
µ(R)dR (52)

ρβ =
∑
p

ep

N∑
n=1

wp,n(t)Λk
β(Rn), (53)
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and we receive a system of equation of the form:

Pφ̂ = ρ. (54)

The so-called Poisson matrix P does not depend on time and thus only has to be calculated

once at the beginning of the simulation and can be used afterwards for each timestep.

Whereas the right-hand-side ρ can be interpreted as the charge distribution of the particles

and needs to be recalculated at each step according to the particle positions. Once having

calculated ρ, φ̂ can be easily achieved from equation (54).

In case of our modified polarization equation (29) the derivation is very similar. The key

difference is that the spline derivatives of the matrix (52) are replaced by the splines itself

- also called the mass matrix - and the whole term is multiplied by k̄⊥
2
. The potential is

calculated on defined field grid points and then the E-field is projected back to each particle

position via the derivatives of the B-spline functions.

Since our discrete PIC algorithms are derived from the discrete Lagrangian, the PIC scheme

fully conserves energy in the limit of dt = 0.26

B. Sheath model

The scales present within the physical Debye sheath that builds up at the plasma-wall

boundary are quite different from the ones that can be treated in gyrokinetic models. Also,

increasing spatial and temporal resolution solely for the sheath is computationally not viable.

But to be able to simulate open field line plasmas, it is necessary to take heat and particle

fluxes towards the wall into account. To resolve this dilemma, an appropriate sheath model

is required to model the effects of a Debye sheath, without actually resolving it. A suitable

model therefore is the so-called logical sheath boundary conditions.

The setup of the logical sheath used in this work is generally based on the model described in

Parker et al.21 This model was originally developed for fully kinetic 1D2V PIC simulations.

Recent works18,20 also implemented Parker’s logical sheath boundary conditions for parallel

heat flux studies in gyrokinetic 1D1V continuum-code simulations. We will also implement

these boundary conditions for our 1D1V PIC simulations.

In this model, the wall is regarded as insulating and therefore the total parallel current to

the wall is set to zero (j‖ = 0) at every moment in time and on each field line. Due to this,
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these boundary conditions are also called insulating boundary conditions.

Physically, incident ions that flow towards the sheath are accelerated by the dropping sheath

potential. Electrons, however, can only be absorbed if their velocity is high enough to

overcome the sheath potential drop at the wall. Slower electrons will be reflected back into

the domain. By setting j‖ = 0 within the logical sheath model, only the fastest electrons

are allowed to overcome the sheath potential drop to balance the number of ions hitting the

wall. The ions instead can freely exit the system. The sheath potential can be calculated by

the velocity of the slowest electron, the electron cut-off velocity vce, still exiting the domain

according to the formula:

δφ = φsh − φw =
m

2e
v2ce. (55)

with the sheath potential φsh and the wall potential φw (which is set to φw = 0 for a grounded

wall). By using z as spatial coordinate, the j‖ = 0 condition at the sheath position zsh can

be written as:

Σiqi

∫ ∞
0

fi(zsh, v‖, t)v‖dv‖ = e

∫ ∞
vce

fe(zsh, v‖, t)v‖dv‖. (56)

Due to the total absorption of ions and the partial absorption of electrons at zsh, the distri-

bution functions for electrons and ions at the wall become:

fi(zsh,−v‖, t) = 0 v‖ > 0 (57)

fe(zsh,−v‖, t) =

0 v‖ > vce

fe(zsh, v‖, t) vce > v‖ > 0
(58)

with −v‖ describing velocities of particles moving away from the wall, back into the system.

Looking at the boundary condition on the ions in equation (57), it is important to mention,

that the formulation would not be sufficient to treat the cold ion case. Here, no force would

act on the ions to accelerate them towards the wall. From equation (57) the ions will also not

feel the force from the potential drop across the logical sheath and thus the Bohm criterion

will not be satisfied. Future work could consider implementing these effects in the equations.

In the presented 1D1V sheath model, the j‖ = 0 condition is valid on each field line. In

the 3D case however, a current flow into the wall at one point and an outflow at a different

point is allowed. The total integrated flow in and out of the wall, however, still needs to

cancel and for the total parallel current into the wall j‖ = 0 must hold.
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C. Algorithm

In a PIC code the logical sheath model can be numerically implemented according to the

following algorithm (based on Parker et al.21):

1) Advance particle trajectories

2) At each time step count number of electrons ne and ions ni that hit the wall

3) Compare ne and ni

a) If ni ≤ ne (probable condition)

− Order all ne electrons according to velocity

− Let fastest ni electrons and ni ions leave the domain

− Reflect remaining ne − ni slow electrons

b) If ne ≤ ni (very improbable condition)

− Order all ni ions according to velocity

− Let fastest ne ions and ne electrons leave the domain

− Reflect slowest ni − ne ions

Figure 1 shows a graphical representation of how the algorithm works. The sheath potential

can then be calculated from the electron cut-off velocity vce according to eq. (55). The

ne ≤ ni case is very improbable and does in principle not appear, thus the b) part is rather

for completeness. Nevertheless, it is important to remark that writing the algorithm in the

current form meets the j‖ = 0 condition.

IV. SIMULATION SETUP

A. Initial conditions

Electrons and ions are initially set to a fixed spatial and velocity distribution, to achieve

comparability with previous studies. However, the simulation results are mostly insensitive

to the initial background. Pitts et al.14 for example ran their fully kinetic PIC simulations

initially with a weaker pre-ELM source to achieve a quasi-steady state.

16



PICLS

Electron initial conditions

The initial electron distribution function is determined by

fe0(z, v‖, Te0) = ne0(z)FM(v‖, Te0) (59)

with FM(v, Tp0) = 1√
2πTp0/mp

exp
(
−mpv‖

2

2Tp0

)
, the Maxwellian distribution in 1D for species p

(in this case p stands for electrons). The initial temperature is set to Te0 = 75eV and the

electron density profile (in 1013cm−3) has the form:

ne0(z) = 0.7 + 0.3
(

1−
∣∣∣ z
L

∣∣∣)+ 0.5 cos

(
πz

Ls

)
H

(
Ls

2
− |z|

)
(60)

with L half the size of the simulation domain [−L;L], the size of the source Ls and the

Heaviside step function H(.).

Ion initial conditions

In the ion case, the initial distribution function is modeled as a combination of left and right

half-Maxwellian distribution functions:

FL(z, v‖, Ti0) = 2ni0(z)FM(v‖, Ti0)H(−v‖)

FR(z, v‖, Ti0) = 2ni0(z)FM(v‖, Ti0)H(v‖) (61)

Figure 1: Schematic representation of number of outgoing ions and electrons at the sheath

position as a function of v‖ (with different schales). As described in the algorithm in

section III C, all ni ions are absorbed by the wall, whereas only the fastest ni electrons are

absorbed. The ne − ni slower electrons are reflected back into the plasma.
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where the initial ion density ni0 is set equal to the initial electron density ne0. Depending

on the position of the particle, the ion distribution function is defined as:

fi0(z, v‖, Ti0) =


FL z < −Ls

2
,(

1
2
− z

Ls

)
FL +

(
1
2

+ z
Ls

)
FR −Ls

2
< z < Ls

2
,

FR
Ls

2
< z.

(62)

The ion temperature profile is determined as (in eV):

Ti0(z) = 100 + 45
(

1−
∣∣∣ z
L

∣∣∣)+ 30 cos

(
πz

Ls

)
H

(
Ls

2
− |z|

)
. (63)

The initial conditions for electrons and ions are equal to the set-up in Pan et al.20, which in

general is equal to the set-up chosen in Shi et al.18, except for the ion particle distribution.

Here, initially the ion density profile is defined in a way that electrons are distributed

according to the Boltzmann relation, to minimize the excitation of high-frequency shear

Alfvén waves in the electrostatic limit. But similar to Pan et al.20, also in our simulations

by setting the initial ion density equal to the initial electron density no numerical problems

occur. As stated in Pan et al.20, the cos(πz/Ls) combined with the Heaviside function

H(Ls/2− |z|) used in the initial and source term profiles can be replaced by an exponential

function
√

2/π exp(−(πz/Ls)
2/2), which changes the simulation results only marginally.

B. ELM and inter-ELM phase

The set-up and parameters of the ELM and subsequent inter-ELM phase are based on

a simplified experimental case from the JET Tokamak.16 The model in general represents a

plasma blob exhausted in an ELM crash and is modeled via a hot electron-deuterium source

at the SOL midplane. In a 1D setup this source is positioned at the center of the domain

[−L,L] with two divertor plates at each end as boundaries. After the 200µs long ELM

phase, an inter-ELM phase follows with a colder and weaker source. The source function

SELM depends on position z, time t and velocity v‖ and can be written as:

SELM(z, v‖, t) = g(t)S(z)FM(v‖, Ts(t)) (64)
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with

S(z) = S0 cos

(
πz

Ls

)
H

(
Ls

2
− |z|

)
, (65)

g(t) =

1 0 ≤ t ≤ 200µs

1/9 200µs < t,
(66)

Te =

1500eV 0 ≤ t ≤ 200µs

210eV 200µs < t,
(67)

Ti =

1500eV 0 ≤ t ≤ 200µs

260eV 200µs < t.
(68)

The particle source intensity is set to S0 = Anpedcs,ped/Ls = 9.066× 1017cm−3s−1 and scales

with the pedestal density and temperature. Where the proportionality constant A is set

to 1.2
√

2 ≈ 1.7. Within the code, the particle source is implemented via a Monte-Carlo

generation of particles, according to the described source function.

Relevant parameters

The most relevant simulation parameters are displayed in table I.16

Parameter Value Description

2L 80m Length of simulation domain

Ls 25m Length of source region

tELM 200µs Duration of ELM phase

τi 149µs Ion transit time (L/cs,ped)

τe 2.5µs Electron transit time (L/vte,ped)

Tped 1500eV Ion and electron temperature at ELM pulse

S0 9.066× 1017cm−3s−1 Particle source intensity

k⊥ρ 0.2 Perpendicular wave number

B 2T B-field strength in parallel direction

Table I: Simulation parameters used for 1D1V ELM heat pulse simulations.

We performed simulations with varying numbers of field grid cells, particles per cell and

perpendicular wave numbers to test convergence. To achieve a high enough resolution for
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the relevant sheath parameters (sheath potential, heat flux, etc.) we chose a minimum of

∼ 10, 000 particles per cell. The physical results are still achievable for a lower number of

particles per cell, however the signal to noise ratio is affected. Since we did not want to

discuss numerical convergence in detail, we chose a rather high number of markers to ensure

good resolution. For a high enough spatial resolution of the fields in z-direction, nz ≥ 16

grid cells should be set. In the following we will show results for a run with ∼ 100, 000

particles per cell, nz = 32 and k⊥ρ = 0.2. We will also show what effect varying k⊥ρ

(0.05 − 1.0) has on the simulation results. The high number of particles per cell of this

simulation is excessive, but since it can be run within hours, we did not see the necessity

go to lower resolution. In general, one has to keep in mind that for full-f codes a higher

number of particles per cell (> 1, 000) is required than for delta-f. Once going to 3D2V, we

plan to reduce the number of particles per cell and apply noise-reduction techniques to save

computational time, if necessary.

V. SIMULATION RESULTS

To extensively study the plasma behaviour during the ELM phase and beyond, the spatial

profiles at the end of the ELM phase, as well as the time-dependent heat flux towards the

divertor plates are investigated. Additionally, the sheath potential φsh development over

time will be studied. Since the problem is symmetric, φsh can be measured arbitrarily at

the right or left boundary.

A. ELM phase spatial profiles

The spatial profiles of interest for the heat flux problem for species p are density np,

parallel particle flux Γp, parallel temperature T‖,p and parallel heat flux Qp and are defined
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as:

np =

∫ ∞
−∞

fpdv‖, (69)

Γp =

∫ ∞
−∞

fpv‖dv‖, (70)

Qp =
1

2
mp

∫ ∞
−∞

fpv‖
3dv‖ + T⊥

∫ ∞
−∞

fpv‖dv‖, (71)

T‖,p =
1

np
mp

∫ ∞
−∞

fp(v‖ − 〈v‖〉p)2dv‖. (72)

with fp the particle distribution function and the perpendicular temperature set to the

pedestal temperature T⊥ = Tped = 1500eV (equal to previous studies).

For all figures within this section, we calculated the values for the nz grid cells and per-

formed a cubic spline interpolation on 128 diagnostics cells, to achieve a smooth shape of

the profiles. In figure 2 these profiles are plotted for k⊥ρ = 0.2 right before the source is

switched off and the system comes into the post-ELM phase (at 200µs).

It is important to mention that in the upper left plot in figure 2 the gyrocenter density

is plotted, which means that in case of the electrons the polarization term of equation (29)

is added. The overlap of the ion and electron gyrocenter density is a good indicator for

the accuracy of the simulation and shows that the electrons are mostly bound to the ions

and are transported towards the boundary with the same flux rate. This is in very good

agreement with the results seen in Pan et al.20 The slight excess of electrons directly at the

boundaries is due to the logical sheath boundaries, that lead to an absorption (reflection)

of ions (electrons) by the wall.

Also the other spatial profiles are in good agreement with Pan et al.’s results.20 In case of

the temperature, the electron temperature is slightly higher than in the Pan result, but still

the overall lower value for electrons compared to ions has the same origin of selective loss of

high-energy electrons to the wall. This slightly higher value is an indicator that in our PIC

algorithm we allow higher energy electrons in our particle sources. Using a lower limit for

the electron velocity in the source distribution function also decreases the electron temper-

ature. In case of the parallel particle and heat flux the electron fluxes oscillate around the

ion profiles, due to PIC-inherent noise effects, but still a good overlap could be achieved.

Increasing the number of particles further, or averaging over the diagnostics cells can further

flatten the profiles and leads to a good overlap between both species.

In both cases, the drop of the fluxes towards the domain boundary is a clear indicator that
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Figure 2: Spatial profiles of electrons (black) and ions (red) of gyrocenter density ngc,

parallel particle flux Γ, parallel heat flux Q and parallel temperature T‖ within 1D

simulation domain for k⊥ρ = 0.2. The snapshot of the profiles is taken shortly before the

end of the ELM phase at 200µs.

after 200µs the system has not yet reached an equilibrium between the introduced particles

from the source and the lost particles at the walls. In an equilibrated state, the flux profiles

outside the source region are flat towards the domain boundary.

To show the effects of varying k⊥ρ, the densities for ions and electrons (without the polariza-

tion term) together with the polarization s⊥(z)φ(z), divided by e to achieve comparability,

are plotted in figure 3 for values of k⊥ρ = 0.05 − 1.0. With decreasing k⊥ρ, the ion (elec-

tron) density is decreasing (increasing). Since the electrons are the lighter and more mobile

species, their density profile is affected more extensively. This in turn has the effect that

the difference between the ion and electron densities becomes smaller, which can be directly

seen in the decreasing polarization, where s⊥(z)φ(z)/e is equal to the density difference. Or
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Figure 3: Spatial density profiles for electrons (without the polarization term) and ions

and the polarization s⊥(z)φ(z) divided by e for varying k⊥ρ = 0.05− 1.0.

in other words the electrons are strongly bound to the ions. This could also be seen by the

increasing the electric field that evolves to maintain quasi-neutrality of the system, which

we want to neglect here. The other profiles: temperature, particle and heat flux, are hardly

affected by changing k⊥ρ.
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B. Divertor heat flux and sheath potential

The calculation of the parallel heat flux on the divertor targets in gyrokinetic simulations

is similar to the calculation of the heat flux spatial profile (see eq. (71)), but additional

sheath effects have to be taken into account to obtain:

Qp =
1

2
mp

∫ ∞
vc,p

fpv‖
3dv‖ + (T⊥ + qpφsh)

∫ ∞
vc,p

fpv‖dv‖. (73)

Since the electrons that are reflected back into the plasma are not taken into account, the

lower boundary of the integrals is vc,p =
√

max(−2qpφsh/mp, 0), which is based on the def-

inition of the cut-off velocity defined in eq. (55). In the less probable case that more ions

than electrons hit the divertor, the same would hold for the reflected ions. The additional

φsh term is added to account for the acceleration (deceleration) of outgoing ions (electrons)

by the sheath.

For all graphs within this section, a moving average of about 50 time steps (∼ 0.1µs) was

chosen, to decrease the number of required particles per cell to achieve fast simulations and

results with low enough noise. In figure 4 the heat flux on the right sheath boundary, as well

as the number of particles that are hitting this boundary is shown for the same k⊥ρ = 0.2

run as in the previous section. Since logical sheath boundary conditions are applied, most

of the electrons are reflected and only as many electrons as ions are eventually leaving the

domain. In the shown simulation, at each point in time more electrons than ions are hitting

the wall and thus the number of electrons and ions that are absorbed by the wall has to be

equal to the number of ions that hit the wall.

The parallel electron heat flux rises quickly for values smaller than 0.5τe = 0.5L/
√
Tped/me,

which results from the first fast electrons of the hot ELM source hitting the wall. In the fol-

lowing, the electron heat flux slightly decreases before staying constant at ∼ 0.4×109W/m2

until ∼ 0.5τi. At the same time, the ion heat flux initially rises very slightly and remains

at a rather low value of ∼ 0.1 × 109W/m2, which leads to a constant total heat flux of

∼ 0.5× 109W/m2 until shortly before 0.5τi. The slight increase (decrease) of the ion (elec-

tron) heat flux at ∼ 0.5τe is due to the sheath potential that builds up at that time (see

figure 5). Previous studies with continuum codes (Fig. 2 in Pan et al.20 and Fig. 3 in Shi et

al.19) show a similar increase of the total heat flux to ∼ 0.5× 109W/m2 in this time period,

however the ion heat flux increases as much as the electron flux drops at 0.5τe and remains

higher for the rest of their simulations. In case of simulations with a fully-kinetic PIC code
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Figure 4: Evolution of ion (red), electron (black) and total (blue) heat flux, according to

eq. (73), and number of hitting particles on right sheath boundary. The (half of the)

thermal ion and electron transit times τe and τi are indicated by (grey) black vertical lines.

(Fig. 2 in Havĺıčková et al.16), the electron flux stays above the ion flux for this period,

similar to our case.

At about half of the ion transit time, when the first fast ions from the ELM arrive, both elec-

tron and ion heat fluxes increase steeply until the ELM crash at 200µs, where a peak total

heat flux of ∼ 5.1× 109W/m2 is reached. At this point the electron flux drops immediately,

whereas the ion response is significantly slower and leads to a deferred drop. Comparing this

period again to the previous simulations with continuum codes, shows a good qualitative

agreement. The peak total heat flux for electrons and ions and thus the total heat flux
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however is slightly higher (∼ 5.1× 109W/m2 compared to ∼ 4.1× 109W/m2).

This difference is mainly caused by the differing source implementation of our PIC versus the

continuum codes of previous studies. By cutting-off the electron velocities at lower values

or narrowing the velocity distributions of the particle sources, the same maximum values of

the heat fluxes can be constructed. In case of the fully-kinetic PIC code the peak total flux

is very similar to our result, but the peak ion (electron) flux is significantly higher (lower)

than in our case, which can be due to the different physics solved.

Integrating the fluxes over time delivers the total ELM energy transported to the divertor

for each species. In case of the ions (electrons), this is 66.6% (33.4%) of the total ELM

energy and again is very similar to the values achieved with the previous continuum code

simulations.

The heat fluxes on the domain wall include deceleration (acceleration) of electrons (ions),

which the SOL heat fluxes in section V A do not include. The reason for the strong increase

of the heat flux at ∼ 0.5τi can be understood by looking at the number of hitting particles in

figure 4. This clearly shows the steep increase of incoming ions at the sheath boundary. The

still rising number of incident ions after 200µs, also is a good indicator for the deferred ion

heat flux drop. Though, in case of the electrons the increase of hitting particles as expected

starts already at ∼ 0.5τe and immediately decreases after switching off the ELM source.

To get an even more complete physical picture, in figure 5 the time-dependent evolution

of the sheath potential φsh is shown. At the beginning, φsh is only determined by the cold

initial distribution. Around ∼ 0.5τe the potential rapidly rises to ∼ 3keV, due to the arriving

suprathermal electrons from the ELM source. Until the arrival of the suprathermal ions at

∼ 0.5τi, the potential stays mainly constant. The large sheath potential leads to a decel-

eration and reflection of electrons at the divertor. The majority of electrons are prevented

from hitting the divertor and thus the increase of the electron flux is stopped at ∼ 0.5τe

and slightly inverted. After the arrival of the suprathermal ions, the sheath potential drops

steadily and allows an increase of both the ion and electron flux. Compared to Pan et

al.20, the qualitative behaviour is very similar, with the difference, that the increase in the

previous study is even steeper and the absolute value slightly lower (< 3keV). This again is

an indicator that the ELM source in our PIC approach introduces faster electrons into the

system.

As mentioned before already, the quantitative differences of our results compared to the
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Figure 5: Time-dependent evolution of the potential at the right sheath boundary. The

(half of the) thermal ion and electron transit times τe and τi are indicated by (grey) black

vertical lines.

previous continuum code results from Pan et al.20 and Shi et al.19 are mainly based on

our PIC-specific implementation of the velocity distribution functions. We assume that the

sources we implemented allow faster particles than the sources used in the mentioned stud-

ies. In figure 6, we therefore plotted the heat flux on the divertor for a simulation with a

lower maximal limit for the velocity distribution of the particle sources. Compared to our

previous simulation runs we thus initialize electrons and ions with a lower maximum velocity

of v‖ ≤ 2.2vth = 2.2
√
kBTp/mp (vs. v‖ ≤ 3.7vth), or with fp(v‖)/fp,max = 10% (vs. 0.1%).

The qualitative behaviour of the heat flux compared to the previous run is still maintained,

however the peak values are decreased, since the velocity of the fastest particles is limited.

A very similar picture can be achieved by narrowing the distribution function and thus also

limiting the very high velocity particles. In a similar way the sheath potential φsh reaches

lower peak values by setting a lower velocity limit. Compared to the sheath parameters, the

spatial profiles however are only slightly affected, since the majority of particles are below

the velocity limit and the effects of the fastest particles are less crucial.

27



PICLS

Figure 6: Comparison of the heat flux on the divertor for the originally implemented

source (transparent, as already shown in the upper plot of figure 4) and for a source with a

decreased limit for the maximum of the velocity distribution (opaque), where v‖ ≤ 2.2vth is

set. Similar to figure 4, the evolution of ion (red), electron (black) and total (blue) heat

flux are shown for both source types.

VI. CONCLUSIONS

We introduced the equations and numerical techniques used in PICLS, a gyrokinetic PIC

code specifically designed for open-field line simulations in the SOL. To take into account

the large amplitude fluctuations, which are present in edge and SOL plasma, an electrostatic

full-f model with a linearised polarization equation was studied. Additionally, logical sheath

boundary conditions were implemented to simulate particle loss to and reflection from the

domain walls and the emerging sheath potential without having to resolve down to the elec-

tron Debye length.

To test the implementation, we implemented the well-studied 1D ELM heat pulse problem,

with a central heat pulse that propagates along the field line towards the divertor target.

The results for the heat flux on the divertor targets are consistent with previous fully kinetic

continuum, PIC, fluid and gyrokinetic continuum simulations. Our results are in-line with

previous findings: the ELM heat flux loading on the divertor occurs mainly on the ion tran-

sit time scale; a strong negative potential builds on the electron transit time and confines
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the majority of electrons; the asymmetric heat flux on the divertor of electrons and ions

is caused by deceleration (acceleration) of electrons (ions) by the sheath. The differences

in the peak values compared to previous gyrokinetic continuum simulations are due to the

code specific particle source implementation. Additionally to previous findings, we showed

that varying k⊥ρ mainly affects the potential and therewith the ion polarization. The heat

flux on the divertor and the sheath potential however are hardly affected (at least for values

of 1.0 ≥ k⊥ρ ≥ 0.05).

By implementing the non-linear Poisson equation (29) in our model, we assumed only a sin-

gle k⊥ mode. A more accurate calculation of the potential and accounting for the coupling

of several k⊥ modes could be achieved by using eq. (25) in the future instead. Coupling of

different k⊥ modes is decisive, when going towards more realistic edge plasma systems or

real experimental machines like LAPD. For this, we already started the extension of PICLS

towards a 3D gyrokinetic model.

As suggested in previous fully kinetic PIC simulations14,31, for the SOL transport also col-

lisions can be important. Thus, the implementation of a collision operator into PICLS is

required for the extension towards higher dimensions.
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