In the format provided by the authors and unedited.

MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells

 Jonas Ries ${ }^{()^{2}}$ and Stefan W. Hell ${ }^{\text {(1),3* }}$

[^0]

EODx and EODy: M-311-A (Conoptics Inc., Danbury, CT, USA) + WMA-300 (Falco Systems BV, Amsterdam, The Netherlands),
VFL: KLMS2D0700 -00 KTN varifocal lens module (NTT Advanced Technology Corporation, Omiya-cho Saiwai-ku, Kawasaki-shi, Japan) + AMPS-2B200-03 (Matsusada Precision Inc., Aojicho Kusatsu, Japan),
Tip/tilt piezo: PSH-10/2 + EVD300 (both piezosystem jena GmbH, Jena, Germany),
Piezo stage: P-733.3-DD + E725 (both Physik Instrumente (PI) GmbH \& Co. KG, Karlsruhe, Germany),
Polarization and beam transport:
GT: Glan-Thompson polarizer (B. Halle Nachfl. GmbH, Berlin, Germany),
PBS: polarizing beam splitter cube (B. Halle Nachfl. GmbH, Berlin, Germany),
BS: beam splitter cube 50:50,
FC: fiber collimator 60FC-* (Schäfter+Kirchhoff, Hamburg, Germany),
N/2: half wave plate (B. Halle Nachfl. GmbH, Berlin, Germany or Thorlabs Inc., Newton, NJ, USA),
N/4: achromatic quarter wave plate (Thorlabs Inc., Newton, NJ, USA),
PM-fiber: polarization maintaining single mode fiber (Thorlabs Inc., Newton, NJ, USA or Schäfter+Kirchhoff, Hamburg, Germany),
SM-fiber: single mode fiber (Thorlabs Inc., Newton, NJ, USA or Schäfter+Kirchhoff, Hamburg, Germany),
MM-fiber 1: multimode fiber M31L01 (Thorlabs Inc., Newton, NJ, USA),
MM-fiber 2: multimode fiber M42L02 (Thorlabs Inc., Newton, NJ, USA),
Lenses and mirrors
Objective: HC PL APO 100x/1.40 Oil CS2 (Leica Microsystems GmbH, Wetzlar, Germany),
L1-L14: achromatic lens with VIS or NIR AR coating (Thorlabs Inc., Newton, NJ, USA or Qioptiq Photonics GmbH \& Co. KG,
Göttingen, Germany),
T1-T6: telescope,
ID: iris diaphragm,
FM: mirror on motorized flip mount,
PH: pinhole,
BSPM: back side polished mirror (Thorlabs Inc., Newton, NJ, USA),
Dichroic mirrors and filters
DM1: H 568 LPXR superflat (AHF Analysetechnik GmbH, Tübingen, Germany),
DM2: Z500-RDC-XT (Chroma Technology Corp., Bellows Falls, VT, USA),
DM3: Z620SPRDC (Chroma Technology Corp., Bellows Falls, VT, USA),
DM4: ZT405/488/561/640rpc (AHF Analysetechnik GmbH, Tübingen, Germany),
DM5: FF685-Di02 (Semrock Inc., Rochester, NY, USA),
DM6: FF925-Di01 (Semrock Inc., Rochester, NY, USA),
F1: ZET561/10x (Chroma Technology Corp., Bellows Falls, VT, USA),
F2: 488/6 BrighLine HC (Semrock Inc., Rochester, NY, USA),
F3: FF01-842/SP-25 (Semrock Inc., Rochester, NY, USA) and Quad-Band 446/523/600/677 HC (Semrock Inc., Rochester, NY, USA),
F4: FF01-775/SP-25 (Semrock Inc., Rochester, NY, USA) and Quad-Notch 405/488/560/635 (Semrock Inc., Rochester, NY, USA)
and ET700/75m (Chroma Technology Corp., Bellows Falls, VT, USA) or BLP02-561R-25 (Semrock Inc., Rochester, NY, USA),
F5: FL905/10 (Dynasil, Littleton, MA, USA),
F6: FELH0950 (Thorlabs Inc., Newton, NJ, USA),
F7: FESH1000 (Thorlabs Inc., Newton, NJ, USA),
F8: 66-230 long pass filter 950 (Edmund Optics®, Barrington, NJ ; USA),
Detectors
APD 1: SPCM-AQR-13-FC (Excelitas Technologies, Waltham, MA, USA),
APD 2,3: SPCM-AQRH-13-TR (Excelitas Technologies, Waltham, MA, USA),
Camera 1: Ixon EMCCD DU897-BV, (Andor Technology Ltd., Belfast, UK),
Camera 2: DMK 22BUC03 (The Imaging Source Europe GmbH, Bremen, Germany),
Camera 3: DMK 23UP1300 (The Imaging Source Europe GmbH, Bremen, Germany),
Computer
PC: 3 personal computers running Windows 7 (Microsoft Corp., Redmond, WA, USA) and LabView 2016 (National Instruments, Austin, TX, USA),
DAQ: NI PCle-6353 + NI PCI-6259 (both National Instruments, Austin, TX, USA) + USB-3133 (Measurement Computing Corporation, Norton, MA, USA),
FPGA: NI USB-7856R (National Instruments, Austin, TX, USA)

Supplementary Figure 2

Pseudo code for MINFLUX FPGA core.

a, Flowchart with pseudocode describing the FPGA core that controls the MINFLUX acquisition for imaging. The first part (blue) represents the control of the scanner that allows stitching a large image. The second part (green) represents the sequential MINFLUX iteration scheme. The third part (orange) represents the MINFLUX multiplexing for a given iteration. b, Representation of the scanning scheme. c, Representation of the iterative localizations produced for a single molecule (red star). The iteration scheme is represented at iteration iter_idx = 4. Each localization of the molecule (mol_pos(1), mol_pos(2), etc.) has a different frame of reference (multiplex.beam_offset), where the MINFLUX beam positions (minflux.beam_pos) are centered. Each final localization is obtained with respect to the main scanner frame of reference (scanner_positions(scan_idx)). A detailed reference for all variables and functions is provided in Tab. S1.

Supplementary Figure 3

Stability of the MINFLUX experiment.
a, Schematic of the stability measurement components. For measuring the sample position we used the stage lock system as described before and documented in Fig. S1 while monitoring the stage position using the internal position sensor of the piezo sample stage. We evaluated the beam stability by introducing an additional laser line of 870 nm , passing through a back-side polished mirror before the objective lens. We focused the beam onto a camera to evaluate the beam position using a Gaussian fit. All measurements are in units of displacements in the sample plane. \mathbf{b}, Position of the stage when actively stabilizing the sample position (readout of the internal stage position sensors). c, Beam position (upper panel) and linear cumulative power-spectral density (PSD) (lower panel) taking into account drift of the optical components after the electro-optical parts of the setup. d, Actively stabilized sample position, measured using the position of a total internal reflection beam (z) and the position of fiducial markers on the sample plane (xy). e Linear cumulative PSD of the stabilized sample position

Supplementary Figure 4

Filtering of 2D imaging data.
The histogram of photon number N, the relative photon count number in the central exposure p_{0} and distance of the estimated position relative to the center of the last excitation beam pattern $r_{\text {relative }}$ are displayed for each localization. Before filtering (gray) at a manually defined position (black line, number above), p_{0} and $r_{\text {relative }}$ show two populations. The population that is assigned to background events is discarded, leading to a new filtered distribution (blue). Top row: data displayed in Fig. 2a. Bottom row: data displayed in Fig. 2f.

Supplementary Figure 5

Signal-to-background ratios in MINFLUX nanoscopy.
We estimated the signal-to-background-ratios (SBR) for all events from the switching-off step in the MINFLUX trace. We show an SBR histogram for each of the following datasets: 2D MINFLUX Nup96-SNAP (Fig. 2b), 2D MINFLUX NUP96-mMaple (Fig. 2f), 3D MINFLUX Nup96-SNAP (Fig. 3f), 3D MINFLUX PSD-95 (Fig. 4a), 2D two-color MINFLUX DNA origami (Fig. 5b) and 3D two-color MINFLUX Nup96-SNAP and WGA (Fig. 5c).

Supplementary Figure 6

Expected locations for NUP96.
a, Location of NUP96 subunits C termini, where the SNAP-tag was fused, we display the lateral (colors distinguish axial location) and axial views (dots behind the section line in the lateral view are grayed). \mathbf{b}, Three dimensional view of the same structure. \mathbf{c}, Simulations of the $x y$ projection of the NUP96 C-termini location for different degrees of labeling ($0.4,0.6$ and 1) with random rotations with respect to the x and y axes (uniform distribution, range 20 deg). Each row is the same rotation instance with different degrees of labeling. d, Identical to c , colored according to the axial location, with the intention of guiding the eye. Scale bar: (a) 20 nm , all other images have the same scale.

Supplementary Figure 8

Filtering of 3D imaging data.
The histogram of photon number N, the relative photon count number in the central exposure p_{0} and distance of the estimated position relative to the center of the last excitation beam pattern $r_{\text {relative }}$ are displayed for each localization. Before filtering (gray) at a manually defined position (black line, number above), p_{0} and $r_{\text {relative }}$ show two populations. The population that is assigned to background events is discarded, leading to a new filtered distribution (blue). Top row: data displayed in Fig. 3f. Bottom row: data displayed in Fig. 4a.

Supplementary Figure 9

Filtering of multicolor imaging data.
The histogram of photon number N, the relative photon count number in the central exposure p_{0} and distance of the estimated position relative to the center of the last excitation beam pattern $r_{\text {relative }}$ are displayed for each localization. Before filtering (gray) at a manually defined position (black line, number above), p_{0} and $r_{\text {relative }}$ show two populations. The population that is assigned to background events is discarded, leading to a new filtered distribution for each molecule species (green: Alexa Fluor 647, magenta: CF dye). Top row: data displayed in Fig. 5e. Bottom row: data displayed in Fig. 5c.

Supplementary tables

Tab. S1 | Variables and functions in the MINFLUX FPGA pseudo code. The following variables and functions are present in the pseudo code presented in fig. S2.

External variables

scan_dwell_time	Time to spend at each scan position.
wait_abort	Stop waiting for a molecule to appear.
molec_threshold	Count rate threshold for deciding whether there is a molecule present or not.
act_dwell_time	Time the activation beam is enabled.
N	Vector containing the target number of photons for each iteration.
T	Vector containing the max dwell time of each iteration.
last_iteration	Total number of iterations.

Internal variables

scan_elapsed_time	Elapsed time at the current scan position.
scan_idx	Index for the position of the long range scanner. In this implementation, the tip-tilt mirror.
iter_idx	Current iteration.
multiplex	Object containing the properties and methods for the MINFLUX excitation multiplexing. .beam_offset: offset added to all MINFLUX beam positions. It is meant to account the molecule localization of each intermediate iteration. .waiting_time: time to wait for the MINFLUX scanner to stabilize. .exposure_time: time the excitation beam. .beam_pos: vector with beam positions for all exposures.
count_rate	Low-pass-filtered fluorescence photon count rate. Available to check the presence of a molecule.
mol_pos_abs(iter_idx)	Location of the molecule at iteration iter_idx, with respect to the frame of reference of the beam scanner.
mol_pos(iter_idx)	Location of the molecule at iteration iter_idx, with respect to the reference frame of that iteration (meaning, with the origin at multiplex.beam_offet for that iteration).
photon_count	Accumulated photons in current iteration.
elapsed_time	Elapsed time since the iteration started.

Methods

$\left.\begin{array}{|l|l|}\hline \text { scanner.send(scan_pos) } & \begin{array}{l}\text { Function to retrieve the scanner coordinates from an } \\ \text { internal FPGA memory (scanner_positions) and } \\ \text { output them on the FPGA analog outputs. }\end{array} \\ \hline \text { scanner.send(scan_pos) } \\ \text { scan_pos = scanner_positions(scan_idx) } \\ \text { ao_scanner = scan_pos }\end{array}\right]$

multiplex.start() multiplex.stop()	Start and stop the continuous MINFLUX multiplexing, while accumulating the photon counts $n 0, n 1, \ldots$ and the beam positions r0, $\mathrm{r} 1, \ldots$.
localize(iter_idx, n0, n1, n2,...$)$	Localize the emitting molecule based on the collected photons and the knowledge of the beam distribution at iteration iter_idx.

Tab. S2 | Iterative MINFLUX strategies. Beam shapes as introduced in Fig. 1 and Fig. 3: G - regularly focused beam with 4 TCP positions at $x / y= \pm L / 2$; D - 2D donut with 4 TCP positions in a triangle plus central position; Z - 3D donut with 2 TCP positions at $z= \pm L / 2$; D7: 3D donut with 7 TCP positions at $x / y / z= \pm L / 2$ plus central position.

		Beam shape	L (nm)	N_{k}	Estimator scaling factor	Estimator β_{0}	Estimator β_{1}
2D iterative MINFLUX imaging							
Simulations	Fig. 1	$\begin{gathered} G \\ D \\ D \\ D \end{gathered}$	$\begin{gathered} \hline 300 \\ 150 \\ 90 \\ 40 \end{gathered}$	$\begin{aligned} & 150 \\ & 100 \\ & 120 \\ & 230 \end{aligned}$	0.8	Optimal	
U-2 OS-NUP96-SNAP- AlexaFluor647 (2D)	Fig. 2a	$\begin{gathered} G \\ G \\ D \\ D \\ D \end{gathered}$	$\begin{gathered} 300 \\ 300 \\ 150 \\ 100 \\ 50 \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ 150 \\ 300 \\ 10000 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{gathered} - \\ - \\ 0.89 \\ 0.57 \\ 0.57 \end{gathered}$	$\begin{gathered} - \\ - \\ 7.18 \\ 10.8 \\ 10.8 \end{gathered}$
U-2 OS-NUP96mMaple, live (2D)	Fig. 2 f	$\begin{gathered} \mathrm{G} \\ \mathrm{G} \\ \mathrm{D} \\ \mathrm{D} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \\ & 150 \\ & 100 \\ & 100 \end{aligned}$	$\begin{gathered} \hline 100 \\ 100 \\ 150 \\ 300 \\ 10000 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	0.099 0.77 0.77	$\begin{aligned} & 6.1 \\ & 8.7 \\ & 8.7 \end{aligned}$
3D iterative MINFLUX imaging							
Simulations	Fig 3	$\begin{gathered} \hline G \\ Z \\ D 7 \\ D 7 \\ D 7 \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ 400 \\ 150 \\ 90 \\ 40 \end{gathered}$	$\begin{aligned} & 150 \\ & 100 \\ & 150 \\ & 150 \\ & 450 \end{aligned}$	0.8	Optimal	
U-2 OS-NUP96-SNAP- AlexaFluor647 (3D)	Fig. 3 f	$\begin{gathered} G \\ G \\ Z \\ Z \\ D 7 \\ D 7 \\ D 7 \end{gathered}$	300 300 300 200 150 100 100	$\begin{gathered} \hline 100 \\ 100 \\ 100 \\ 100 \\ 150 \\ 200 \\ 10000 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	- - 0.55 0.55 0.88 0.58 0.58	23.5 31.5 31.3
HPN-PSD95-HaloTagAlexaFluor647 (3D)	Fig. 4a	$\begin{gathered} G \\ G \\ Z \\ Z \\ D 7 \\ D 7 \\ D 7 \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 200 \\ & 150 \\ & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 100 \\ 100 \\ 100 \\ 100 \\ 150 \\ 200 \\ 10000 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	- - 0.55 0.55 0.88 0.58 0.58	$\begin{aligned} & 23.5 \\ & 31.5 \\ & 31.3 \end{aligned}$
Multicolor MINFLUX imaging							
U-2 OS-NUP96-SNAP- AlexaFluor647, WGA CF680 (3D)	Fig. 5e	$\begin{gathered} G \\ G \\ Z \\ Z \\ D 7 \\ D 7 \\ D 7 \end{gathered}$	300 300 300 200 150 100 100	$\begin{gathered} 100 \\ 100 \\ 100 \\ 100 \\ 150 \\ 200 \\ 10000 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	- - 0.55 0.55 0.88 0.58 0.58	23.5 31.5 31.3
DNA origami, AlexaFluor647, CF660C (2D)	Fig. 5c	$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \\ & \mathrm{D} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} \hline 300 \\ 300 \\ 150 \\ 100 \\ 50 \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ 300 \\ 400 \\ 5000 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} - \\ - \\ 1.16 \\ 0.95 \\ 0.58 \end{gathered}$	$\begin{gathered} - \\ - \\ 8 \\ 8.8 \\ 11.6 \end{gathered}$

Tab. S3 | DNA origami strands.

Biotinylated

Biotin conjugated to 5' end, HPLC purified

47	CTTTGAAAAGAACTGGCTCATTATTTAATAAA
54	CCGGAAACACACCACGGAATAAGTAAGACTCC
103	CGAGTAGAACTAATAGTAGTAGCAAACCCTCA
106	GGTATTAAGAACAAGAAAAATAATTAAAGCCA
173	CTTGCATGCATTAATGAATCGGCCCGCCAGGG
180	CGGAATTATTGAAAGGAATTGAGGTGAAAAAT

For Alexa Fluor 647 labeling sites

39	TTATTCCTGTAGTATATGGCAATGAAATTATGCTCCATGAGAGGCTTTGAGGACTAGGGAGTT
41	TTATTCCTGTAGTATATGGCAATGAAATTATGCGAAACATGCCACTACGAAGGCATGCGCCGA
111	TTATTCCTGTAGTATATGGCAATGAAATTATCAAAATTAAAGTACGGTGTCTGGAAGAGGTCA
113	TTATTCCTGTAGTATATGGCAATGAAATTATTCAATTCTTTTAGTTTGACCATTACCAGACCG
130	TTATTCCTGTAGTATATGGCAATGAAATTATGGTAGCTAGGATAAAAATTTTTAGTTAACATC

For CF660C labeling sites

58	ACTAGCGGCAACGGCCCAACTATCCATTTTTTTCAACTATAGGCTGGCTGACCTTGTATCAT
75	ACTAGCGGCAACGGCCCAACTATCCATTTTACTGGATAACGGAACAACATTATTACCTTATG
77	ACTAGCGGCAACGGCCCAACTATCCATTTTCCAAAATATAATGCAGATACATAAACACCAGA
94	ACTAGCGGCAACGGCCCAACTATCCATTTTTACCTTTAAGGTCTTTACCCTGACAAAGAAGT

Marker strands

Dye conjugated to 5' end, PAGE purified

Alexa Fluor 647	TAATTTCATTGCCATATACTACAGGAATAA
CF660C	AAATGGATAGTTGGGCCGTTGCCGCTAGT

Staple strands

2	ACGTTAGTAAATGAATTTTCTGTAAGCGGAGT
3	CGTAACGATCTAAAGTTTTGTCGTGAATTGCG
4	TGTAGCATTCCACAGACAGCCCTCATCTCCAA
5	TGAGTTTCGTCACCAGTACAAACTTAATTGTA
6	CAAGCCCAATAGGAACCCATGTACCGTAACAC
7	CTCAGAGCCACCACCCTCATTTTCCTATTATT
8	CCCTCAGAACCGCCACCCTCAGAACTGAGACT
9	TATCACCGTACTCAGGAGGTTTAGCGGGGTTT
11	GAGAATAGCTTTTGCGGGATCGTCGGGTAGCA
12	AATAATAAGGTCGCTGAGGCTTGCAAAGACTT
13	AAAAAAGGACAACCATCGCCCACGCGGGTAAA
14	TCGGTTTAGCTTGATACCGATAGTCCAACCTA
15	AATGCCCCGTAACAGTGCCCGTATGTGAATTT
16	CTGAAACAGGTAATAAGTTTTAACCCCTCAGA
17	CCTCAAGAATACATGGCTTTTGATAGAACCAC
18	TGCTCAGTCAGTCTCTGAATTTACCAGGAGGT
21	AAAGGCCGAAAGGAACAACTAAAGCTTTCCAG
22	ATATATTCTTTTTTCACGTTGAAAATAGTTAG

23	CAATGACACTCCAAAAGGAGCCTTACAACGCC
24	CTTAAACATCAGCTTGCTTTCGAGAAACAGTT
25	TGCCTTGACTGCCTATTTCGGAACAGGGATAG
26	AGTGTACTTGAAAGTATTAAGAGGCCGCCACC
27	TAAGCGTCGAAGGATTAGGATTAGTACCGCCA
28	GGAAAGCGACCAGGCGGATAAGTGAATAGGTG
29	ACGGCTACTTACTTAGCCGGAACGCTGACCAA
30	TTTCATGAAAATTGTGTCGAAATCTGTACAGA
31	ATACGTAAAAGTACAACGGAGATTTCATCAAG
32	AAACGAAATGACCCCCAGCGATTATTCATTAC
33	GAGCCGCCCCACCACCGGAACCGCCTAAAACA
34	GCCACCACTCTTTTCATAATCAAACCGTCACC
35	CACCAGAGTTCGGTCATAGCCCCCGCCAGCAA
36	TGAGGCAGGCGTCAGACTGTAGCGTAGCAAGG
39	Modified > Alexa Fluor 647
40	CGCCTGATGGAAGTTTCCATTAAACATAACCG
41	Modified > Alexa Fluor 647
42	CTCATCTTGAGGCAAAAGAATACACTCCCTCA

43	AACCAGAGACCCTCAGAACCGCCAGGGGTCAG
44	GTTTGCCACCTCAGAGCCGCCACCGATACAGG
45	TCGGCATTCCGCCGCCAGCATTGACGTTCCAG
46	TGCCTTTAGTCAGACGATTGGCCTGCCAGAAT
47	Modified > Biotin
48	CCAGGCGCTTAATCATTGTGAATTACAGGTAG
49	AGTAATCTTAAATTGGGCTTGAGAGAATACCA
50	CCAAATCACTTGCCCTGACGAGAACGCCAAAA
51	TTATTCATAGGGAAGGTAAATATTCATTCAGT
52	GACTTGAGAGACAAAAGGGCGACAAGTTACCA
53	AATCACCAAATAGAAAATTCATATATAACGGA
54	Modified > Biotin
57	CGATTTTAGAGGACAGATGAACGGCGCGACCT
58	Modified > CF660C
59	ACGAGTAGTGACAAGAACCGGATATACCAAGC
60	GAATAAGGACGTAACAAAGCTGCTGACGGAAA
61	ATTGAGGGTAAAGGTGAATTATCAATCACCGG
62	AGCGCCAACCATTTGGGAATTAGATTATTAGC
63	TCACAATCGTAGCACCATTACCATCGTTTTCA
64	ACGCAAAGGTCACCAATGAAACCAATCAAGTT
65	ACGAACTAGCGTCCAATACTGCGGAATGCTTT
66	AAAGATTCAGGGGGTAATAGTAAACCATAAAT
67	CATTCAACGCGAGAGGCTTTTGCATATTATAG
68	GGAATTACTCGTTTACCAGACGACAAAAGATT
69	AAAAGTAATATCTTACCGAAGCCCAACACTAT
70	GAAGGAAAATAAGAGCAAGAAACAACAGCCAT
71	ATACCCAAGATAACCCACAAGAATAAACGATT
72	TTATTACGGTCAGAGGGTAATTGAATAGCAGC
75	Modified > CF660C
76	TTTGCCAGATCAGTTGAGATTTAGTGGTTTAA
77	Modified > CF660C
78	CATAACCCGAGGCATAGTAAGAGCTTTTTAAG
79	GCAATAGCGCAGATAGCCGAACAATTCAACCG
80	GCCCAATACCGAGGAAACGCAATAGGTTTACC
81	ATCAGAGAAAGAACTGGCATGATTTTATTTTG
82	TGAACAAACAGTATGTTAGCAAACTAAAAGAA
83	AAACAGTTGATGGCTTAGAGCTTATTTAAATA
84	CAAAAATCATTGCTCCTTTTGATAAGTTTCAT
85	TCAGAAGCCTCCAACAGGTCAGGATCTGCGAA
86	AAGAGGAACGAGCTTCAAAGCGAAGATACATT
87	CCTAATTTACGCTAACGAGCGTCTATATCGCG
88	ATTATTTAACCCAGCTACAATTTTCAAGAACG

89	TTTTGTTTAAGCCTTAAATCAAGAATCGAGAA
90	CTTTACAGTTAGCGAACCTCCCGACGTAGGAA
93	TTTTTGCGCAGAAAACGAGAATGAATGTTTAG
94	Modified > CF660C
95	GAAGCAAAAAAGCGGATTGCATCAGATAAAAA
96	TTTTAATTGCCCGAAAGACTTCAATTCCAGAG
97	TCTTACCAGCCAGTTACAAAATAAATGAAATA
98	TATTTTGCTCCCAATCCAAATAAGTGAGTTAA
99	AGGTTTTGAACGTCAAAAATGAAAGCGCTAAT
100	GAGGCGTTAGAGAATAACATAAAAGAACACCC
101	TGCAACTAAGCAATAAAGCCTCAGTTATGACC
102	TCCATATACATACAGGCAAGGCAACTTTATTT
103	Modified > Biotin
104	TCGCAAATGGGGCGCGAGCTGAAATAATGTGT
105	ATCGGCTGCGAGCATGTAGAAACCAGCTATAT
106	Modified > Biotin
107	CAAGCAAGACGCGCCTGTTTATCAAGAATCGC
108	TCATTACCCGACAATAAACAACATATTTAGGC
109	TATAGAAGCGACAAAAGGTAAAGTAGAGAATA
110	GCTAAATCCTGTAGCTCAACATGTATTGCTGA
111	Modified > Alexa Fluor 647
112	CAATAAATACAGTTGATTCCCAATTTAGAGAG
113	Modified > Alexa Fluor 647
114	TTTCATTTGGTCAATAACCTGTTTAATCAATA
115	CTAATTTATCTTTCCTTATCATTCATCCTGAA
116	TAAGTCCTACCAAGTACCGCACTCTTAGTTGC
117	AATGCAGACCGTTTTTATTTTCATCTTGCGGG
118	CCAGACGAGCGCCCAATAGCAAGCAAGAACGC
119	CTGTAATATTGCCTGAGAGTCTGGAAAACTAG
120	CAACGCAATTTTTGAGAGATCTACTGATAATC
121	TATATTTTAGCTGATAAATTAATGTTGTATAA
122	AGGTAAAGAAATCACCATCAATATAATATTTT
123	GCGTTATAGAAAAAGCCTGTTTAGAAGGCCGG
124	ACGCTCAAAATAAGAATAAACACCGTGAATTT
125	CATATTTAGAAATACCGACCGTGTTACCTTTT
126	AGAGGCATAATTTCATCTTCTGACTATAACTA
129	TCAGGTCACTTTTGCGGGAGAAGCAGAATTAG
130	Modified > Alexa Fluor 647
131	ACCGTTCTAAATGCAATGCCTGAGAGGTGGCA
132	AGACAGTCATTCAAAAGGGTGAGATATCATAT
133	AATTACTACAAATTCTTACCAGTAATCCCATC
134	AGGCGTTACAGTAGGGCTTAATTGACAATAGA

135	A
1	TTTTAGTTTTTCGAGCCAGTAATAAATTCTGT
1	C
138	
139	
14	
1	
1	A
1	
1	TATGTAAACCTTTTTTAATGGAAAAATTACCT
147	ACCCGTCGTCATATGTACCCCGGTAAAGGCTA
148	CTTTCATCCCCAAAAACAGGAAGACCGGAGAG
149	AAATAATTTTAAATTGTAAACGTTGATATTCA
150	GCTCATTTTCGCATTAAATTTTTGAGCTTAGA
151	TAGAATCCCTGAGAAGAGTCAATAGGAATCAT
15	C
15	AAATCAATGGCTTAGGTTGGGTTACTAAATTT
15	
15	T
156	
157	
158	GCTTCTGGTCAGGCTGCGCAACTGTGTTATCC
159	CTTTTACACAGATGAATATACAGTAAGCGCCA
160	CCTGATTGAAAGAAATTGCGTAGACCCGAACG
161	GCGCAGAGATATCAAAATTATTTGACATTATC
162	GAGCAAAAACTTCTGAATAATGGAAGAAGGAG
165	A
166	CAGCTGGCGGACGACGACAGTATCGTAGCCAG
167	G
168	TTС
169	TT
170	ACAGA
171	AACCTACCGCGAATTATTCATTTCCAGTACAT
172	TGGATTATGAAGATGATG
173	Modified > Biotin
174	CCCGGGTACTTTCCAGTCGGGAAACGGGCAAC
175	TCATAGCTACTCACATTAATTGCGCCCTGAGA
176	GCTCACAATGTAAAGCCTGGGGTGGGTTTGCC

177	CGACAACTAAGTATTAGACTTTACAGCCGGAA
178	TTATTAATGCCGTCAATAGATAATCAGAGGTG
179	ATTTTGCGTCTTTAGGAGCACTAAGCAACAGT
180	Modified > Biotin
183	GCCAGCTGCCTGCAGGTCGACTCTGCAAGGCG
184	ACTGCCCGCCGAGCTCGAATTCGTTATTACGC
185	GTGAGCTAGTTTCCTGTGTGAAATTGGGAAG
186	GCATAAAGTTCCACACAACATACGAAACAATT
187	GGATTTAGCGTATTAAATCCTTTGTTTTCAGG
188	AGATTAGATTTAAAAGTTTGAGTACACGTAAA
189	CTAAAATAGAACAAAGAAACCACCAGGGTTAG
190	ATCAACAGTCATCATATTCCTGATTGATTGTT
191	TGGTTTTTAACGTCAAAGGGCGAAGAACCATC
192	AGCTGATTACAAGAGTCCACTATTGAGGTGCC
193	GAGTTGCACGAGATAGGGTTGAGTAAGGGAGC
194	CCAGCAGGGGCAAAATCCCTTATAAAGCCGGC
195	ACGAACCAAAACATCGCCATTAAATGGTGGTT
196	AGGCGGTCATTAGTCTTTAATGCGCAATATTA
197	GCCACGCTATACGTGGCACAGACAACGCTCAT
198	CTAAAGCAAGATAGAACCCTTCTGAATCGTCT
201	TGGACTCCCTTTTCACCAGTGAGACCTGTCGT
202	AGTTTGGAGCCCTTCACCGCCTGGTTGCGCTC
203	GAATAGCCGCAAGCGGTCCACGCTCCTAATGA
204	CCGAAATCCGAAAATCCTGTTTGAAATACCGA
205	TAGCCCTACCAGCAGAAGATAAAAACATTTGA
206	GAATGGCTAGTATTAACACCGCCTCAACTAAT
207	GCGTAAGAGAGAGCCAGCAGCAAAAAGGTTAT
208	GCCAACAGTCACCTTGCTGAACCTGTTGGCAA
210	ACCCAAATCAAGTTTTTTGGGGTCAAAGAACG
211	GTAAAGCACTAAATCGGAACCCTAGTTGTTCC
212	CCCCGATTTAGAGCTTGACGGGGAAATCAAAA
213	GAACGTGGCGAGAAAGGAAGGGAACAAACTAT
214	CGGCCTTGCTGGTAATATCCAGAACGAACTGA
215	CCGCCAGCCATTGCAACAGGAAAAATATTTTT
216	GGAAATACCTACATTTTGACGCTCACCTGAAA
217	GAAATGGATTATTTACATTGGCAGACATTCTG

Supplementary notes

Wavelength dependence in MINFLUX
Localization by MINFLUX operates by placing the zero of an excitation intensity distribution proximal to the fluorophore to be localized. The curvature of the intensity profile depends on the intensity magnitude I_{0} and the wavelength λ of the excitation light, which is why one may be induced to believe that these parameters significantly affect the MINFLUX localization precision. However, this is not the case, because this dependence vanishes under ideal conditions, and for realistic scenarios, the dependence has a high order. In this section, we will analyze several MINFLUX localization scenarios and their relation to the excitation wavelength.

(i) Quadratic beams with no background

The spatial dependence of the fluorescence emission around the intensity zero of a donut or a sineshaped excitation beam, and hence also the mean of the detected photon number, can be approximated by: $n_{i}(x)=a\left(x-x_{i}\right)^{2}$. The curvature parameter a contains the intensity magnitude and the wavelength generally as $a=\alpha I_{0} / \lambda^{2}$, with α denoting a constant containing collection efficiency c_{e}, quantum efficiency q_{e}, absorption cross-section σ_{A}, dipole orientation κ and exposure time Δt.

As described before ${ }^{1}$, the parameter vector \vec{p} (equation S4) describing the success probabilities of a multinomial distribution for K exposures (equation $S 3$) is given by

$$
p_{i}=\frac{I_{i}}{\sum_{j=0}^{K-1} I_{j}}=\frac{a\left(x-x_{i}\right)^{2}}{\sum_{j=0}^{K-1} a\left(x-x_{j}\right)^{2}}
$$

Any forthcoming statistical calculation will depend on \vec{p}, which has no dependence on the curvature, and therefore neither on the wavelength nor on the magnitude.

(ii) 1D MINFLUX with quadratic beams and background

When there is background or an imperfect zero of intensity, the detected fluorescence photon distribution is modified with a constant c added: $n_{i}(x)=a\left(x-x_{i}\right)^{2}+c=a\left[\left(x-x_{i}\right)^{2}+\right.$ $\left.c \lambda^{2} /\left(\alpha I_{0}\right)\right]$. In this case, the parameter vector \vec{p} keeps the wavelength dependence, and the Cramér-Rao bound at the origin for the 1D MINFLUX localization with two exposures (zeros separated a distance L) is

$$
\sigma_{C R B}(x=0)=\frac{1}{4} \frac{L}{\sqrt{N}}\left[1+\frac{c \lambda^{2} / \alpha I_{0}}{\left(\frac{L}{2}\right)^{2}}\right]
$$

The effect of the wavelength can be neglected as long as $c \lambda^{2} / \alpha I_{0} \ll(L / 2)^{2}$. When this is not possible, it gives rise to an optimal zero separation L, which was studied in ${ }^{2}$.

In contrast to standard camera-based localization, where the CRB is directly proportional to the emission wavelength, the excitation wavelength dependence in MINFLUX is due to a non-vanishing (background and/or zero imperfection) signal contribution and scales with ($1+$ const λ^{2}).
(iii) 2D MINFLUX with realistic beams and no background

If the realistic excitation beam shape is taken under consideration (instead of a quadratic approximation), a wavelength dependence appears within the shape of the beam. This is the case
for 2D MINFLUX with four exposures, as deduced before ${ }^{1}$ (equation S30, background neglected), where for a beam defined as

$$
I_{\text {donut }}(\bar{r})=A_{0} 4 \mathrm{e} \ln 2 \frac{r^{2}}{\mathrm{FWHM}^{2}} \mathrm{e}^{-4 \ln 2 \frac{r^{2}}{\mathrm{FWHM}^{2}}}
$$

the CRB for MINFLUX is

$$
\sigma_{\mathrm{CRB}}(x=y=0)=\frac{L}{2 \sqrt{2 N}}\left(1-\frac{L^{2} \ln (2)}{\mathrm{FWHM}^{2}}\right)^{-1}
$$

The beam parameter FWHM is proportional to the wavelength, and for $L<$ FWHM the CRB can be approximated to $\sigma_{\mathrm{CRB}}(x=y=0) \approx\left(1+L^{2} \ln 2 / \mathrm{FWHM}^{2}\right) L /(2 \sqrt{2 N})$.

Due to the realistic shape of the beam, the wavelength dependence is of the form $\left(1+\right.$ const $\left.\lambda^{-2}\right)$. Hence, the longer the wavelength is, the better the precision will be, because the quadratic approximation is better fulfilled.

(iv) 2D MINFLUX with realistic beams and background

The case where all elements are joined (realistic beam shape and imperfect zero/background) was also studied in ${ }^{1}$ including a signal-to-background parameter $S B R$. For that case, the dependence of the CRB is

$$
\tilde{\sigma}_{C R B}(\bar{r}=\overline{0})=\frac{L}{2 \sqrt{2 N}}\left(1-\frac{L^{2} \ln (2)}{F W H M^{2}}\right)^{-1} \sqrt{\left(1+\frac{1}{\operatorname{SBR}(\overline{0})}\right)\left(1+\frac{3}{4 \operatorname{SBR}(\overline{0})}\right)}
$$

where the $S B R$ parameter is

$$
\operatorname{SBR}\left(\bar{r}_{m}\right)=\frac{\sum_{j=0}^{K-1} \lambda_{j}}{\sum_{j=0}^{K-1} \lambda_{b j}} \approx \frac{\mathrm{c}_{\mathrm{e}} q_{e} \sigma_{a} \sum_{j=0}^{K-1} I_{j}\left(\bar{r}_{m}\right)}{\sum_{j=0}^{K-1} \lambda_{b j}}
$$

In simple terms, the $S B R$ is proportional to the curvature a, therefore $S B R \propto \lambda^{-2}$. The $S B R$ dependence in the CRB can be approximated to $\approx 1+7 /(8 S B R)$.

As deduced for the 1D case, the 2D MINFLUX localization with realistic beams also holds a second order wavelength dependence $\propto 1+\operatorname{const} \lambda^{2}$, due to background and zero imperfection.

In conclusion, under ideal conditions MINFLUX localization holds no wavelength dependence. However, realistic experimental scenarios do hold a higher order dependence. Nevertheless, we stress that the real limitations are not coming from this spurious wavelength dependence, but from background and beam imperfections, most notably non-zero intensity minima, which may themselves be wavelength dependent.

References

1. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606-612 (2017).
2. Eilers, Y., Ta, H., Gwosch, K.C., Balzarotti, F. \& Hell, S.W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl. Acad. Sci. U.S.A. 115, 6117-6122 (2018).

[^0]: ${ }^{1}$ Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. ${ }^{2}$ Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. ${ }^{3}$ Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. ${ }^{4}$ These authors contributed equally: Klaus C. Gwosch, Jasmin K. Pape, Francisco Balzarotti. *e-mail: stefan.hell@mpibpc.mpg.de

