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SUMMARY

The inner nuclear membrane (INM) is continuous with
the endoplasmic reticulum (ER) but harbors a distinc-
tive proteome essential for nuclear functions. In
yeast, the Asi1/Asi2/Asi3 ubiquitin ligase complex
safeguards the INM proteome through the clearance
of mislocalized ER membrane proteins. How the Asi
complex selectively targets mislocalized proteins
and coordinates its activity with other ER functions,
such as protein biogenesis, is unclear. Here, we un-
cover a link between INM proteome identity and
membrane protein complex assembly in the remain-
ing ER.We show that lone proteins and complex sub-
units failing to assemble in the ER access the INM for
Asi-mediated degradation. Substrates are recog-
nized by direct binding of Asi2 to their transmem-
brane domains for subsequent ubiquitination by
Asi1/Asi3 and membrane extraction. Our data sug-
gest a model in which spatial segregation of mem-
brane protein complex assembly and quality control
improves assembly efficiency and reduces the levels
of orphan subunits.

INTRODUCTION

The inner nuclear membrane (INM), which, together with

the outer nuclear membrane, forms the nuclear envelope, is

a specialized domain of the endoplasmic reticulum (ER). In

contrast to bulk ER membranes that face the cytoplasm, the

INM controls chromosome positioning within the nucleus,

thereby influencing numerous processes from gene expression

to DNA replication and repair (Hetzer, 2010; DeMagistris and An-

tonin, 2018). These INM functions require a unique proteome that

is distinct from that of the remaining ER membranes (Ungricht

and Kutay, 2015). Mutations in INM proteins are frequently asso-

ciated with diseases such as muscular dystrophies, progeroid

syndromes, and cancer, underscoring the importance of main-

taining protein homeostasis in this ER domain (Worman and

Schirmer, 2015).
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The INM is continuous with the remaining ER membrane, and

its unique identity requires correct protein targeting. Upon syn-

thesis and membrane insertion in the bulk ER, INM proteins

diffuse in the membrane until they reach the INM, where they

are retained through interactions with nuclear factors such as

chromatin (Boni et al., 2015; Ungricht et al., 2015). Besides

this diffusion-retention model, other mechanisms have been

proposed for the targeting of proteins to the INM (Katta

et al., 2014).

In yeast, the establishment of INM proteome identity is also

achieved through the elimination of mislocalized proteins by

ER-associated degradation (ERAD), a quality control process

that includes multiple branches. Mislocalized proteins are tar-

geted by an INM-specific ERAD branch defined by the Asi ubiq-

uitin ligase complex (Foresti et al., 2014; Khmelinskii et al.,

2014). Other ERAD branches encompass distinct ubiquitin

ligase complexes, the Hrd1 and Doa10 complexes, which

have major roles in the quality control of misfolded proteins in

bulk ER membranes (Mehrtash and Hochstrasser, 2019; Rug-

giano et al., 2014).

The Asi complex is composed of Asi1, Asi2, and Asi3; Asi1

and Asi3 contain RING domains, conferring ubiquitin ligase ac-

tivity, while Asi2 does not have known functional domains.

Mislocalized proteins ubiquitinated by the Asi complex are

subsequently extracted from the INM by the soluble ATPase

Cdc48 (p97 in mammals) in complex with its cofactors Npl4

and Ufd1 and handed to the proteasome for degradation

(Bays et al., 2001; Foresti et al., 2014; Jarosch et al., 2002;

Khmelinskii et al., 2014; Rabinovich et al., 2002; Ye et al.,

2001). How the Asi complex specifically recognizes ‘‘mislocal-

ized’’ proteins at the INM remains unclear. It is also unknown

how the degradation of mislocalized proteins at the INM con-

tributes to protein homeostasis in the bulk ER, as shown by

previous genetic studies (Foresti et al., 2014; Khmelinskii

et al., 2014).

Here, we uncover a link between INM proteome identity and

quality control of the membrane protein complex assembly.

Unassembled subunits of protein complexes constitute a

significant burden to cells, as shown by recent proteomics ex-

periments (McShane et al., 2016). However, quality control pro-

cesses involved in their degradation have remained elusive

(Juszkiewicz and Hegde, 2018). We show that folded unassem-

bled subunits of protein complexes are not detected by ERAD
s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).

mailto:pedro.carvalho@path.ox.ac.uk
https://doi.org/10.1016/j.molcel.2019.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molcel.2019.10.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A

C D E

B

GF

Figure 1. Orphan Subunits of ER Protein Complexes Are Degraded by the Asi Complex

(A) Scheme of the OST complex. Different shades of blue indicate the three subcomplexes that form OST.

(B) The degradation of the OST complex mutant subunit wbp1-2 was followed after inhibition of protein synthesis by cycloheximide (CHX) in cells with the

indicated genotype upon a 45-min shift to 30�C.Wbp1 was detected with a-Wbp1 antibody. Dolichol phosphate mannose synthase (Dpm1) was used as loading

control and detected with a-Dpm1 antibody. The graph (right) shows the quantification of at least three independent experiments; error bars represent the

standard deviation.

(C) The degradation of endogenous Wbp1 in WT and asi1D cells was analyzed as in (B).

(D) The degradation of endogenous Wbp1 in cells with the indicated genotype was analyzed upon a 60-min shift to 37�C and samples processed as in (B). In

ost2-ts cells, Wbp1 is hypoglycosylated and runs as a doublet (arrowheads). The graph (right) shows the quantification of at least three independent experiments;

error bars represent the standard deviation.

(E) The degradation of endogenous Wbp1 in cells with the indicated genotype was analyzed as in (D). In stt3-7 cells, Wbp1 is hypoglycosylated and runs as a

doublet (arrowheads). The graph (right) shows the quantification of at least three independent experiments; error bars represent the standard deviation.

(F) The degradation of endogenous Wbp1 was followed after the inhibition of protein synthesis by CHX upon acute depletion of its binding partner Swp1-AID-

FLAG (bottom). Dpm1 was used as loading control and detected with a-Dpm1 antibody. The graph (right) shows the quantification of at least three independent

experiments; error bars represent the standard deviation. Auxin-induced Swp1-AID-FLAG depletion inWT and asi1D cells was confirmed by blotting with a-FLAG

antibody (top). Pgk1 was used as loading control and detected with a-Pgk1 antibody.

(G) Serial dilutions of cells with the indicated genotype were spotted on YPD and incubated for 2 days at 25�C and 33�C.
in bulk ER membranes. Instead, these orphan subunits diffuse

easily to the INM, where they are recognized by the Asi complex.

Using in vivo crosslinking and in vitro reconstitution experiments,

we show that recognition is mediated by the direct binding of

Asi2 to substrate transmembrane domains (TMDs). Asi2 binding

facilitates substrate ubiquitination and subsequent Cdc48-medi-

ated extraction. We propose that restricting the quality control of

unassembled proteins to the INM, a relatively small region of the

ER that is not involved in protein biogenesis, spares subunits

from premature degradation and offers them more time to find

their partners. Thus, spatial segregation of the two processes,

protein assembly (in the bulk ER) and quality control (at the

INM), may facilitate efficient complex assembly.
RESULTS

Asi Degrades Unassembled Complex Subunits
We previously showed that degradation of the Asi complex

substrate Nsg1 was strongly accelerated in cells lacking its

binding partner Hmg2 (Foresti et al., 2014). We also showed

that Erg11, a p450 protein family member that noticeably

does not assemble into stable complexes (Debose-Boyd,

2007; Hughes et al., 2007), was constitutively degraded in

an Asi-dependent manner. These observations raise the pos-

sibility that by targeting lone or unassembled subunits, the

Asi complex is involved in the quality control of protein com-

plex assembly.
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To test this hypothesis, we analyzed the oligosaccharyl trans-

ferase (OST; Figure 1A) and the glycosylphosphatidylinositol

transamidase (GPI-T; Figure S1A) complexes, which are ER

membrane protein complexes that are required for N-linked pro-

tein glycosylation and protein GPI anchor attachment, respec-

tively (Benghezal et al., 1996; Fraering et al., 2001; te Heesen

et al., 1993; Kelleher and Gilmore, 1994). Both OST and GPI-T

complexes are essential for cell viability, and to conditionally per-

turb their assembly we took advantage of temperature-sensitive

(ts) alleles of Wbp1, an OST subunit, and Gpi8, a GPI-T subunit.

Mutant proteins encoded by ts alleles are commonly degraded

at the restrictive temperature. We tested whether previously

described ts alleles of Wbp1 and Gpi8 would result in unstable

proteins (Ben-Aroya et al., 2008; te Heesen et al., 1993; Li

et al., 2011). While both endogenous Wbp1 and Gpi8 are rela-

tively long-lived proteins, their ts allele-encoded counterparts

Wbp1-2 and Gpi8-ts were quickly degraded. In contrast, both

were strongly stabilized in Asi mutants (Figures 1B, 1C, S1B,

and S1C).

The assembly of the OST complex is well characterized (Kel-

leher and Gilmore, 1994), and its structure was recently solved

(Bai et al., 2018; Wild et al., 2018). Moreover, the stability of

the various subunits and their interdependencies are known (Mu-

eller et al., 2015). Therefore, we considered it a good model to

further study the role of the Asi complex in quality control of

the protein complex assembly. The OST complex is composed

of three subcomplexes (Figure 1A). One of these is formed by

Wbp1, Ost2, and Swp1, with the stability of each subunit de-

pending on the presence of the other two (Mueller et al., 2015).

In cells expressing the ost2-ts allele, we observed rapid degra-

dation of Wbp1. In contrast, the half-life of Wbp1 was extended

in ost2-ts cells lacking Asi components (Figure 1D). Destabiliza-

tion of the OST complex in the ost2-tsmutant was confirmed by

immunoprecipitation experiments in cells expressing a func-

tional tagged version of Ost4, another OST subunit (Figure S1E).

In contrast, destabilization of Stt3, which belongs to a distinct

OST subcomplex (Figure 1A) and does not interfere with the

Wbp1-Swp1-Ost2 assembly (Mueller et al., 2015), did not affect

Wbp1 levels and turnover (Figure 1E).

Furthermore, acute depletion of Swp1, also a binding partner

of Wbp1, using an auxin-based degradation system (Morawska

and Ulrich, 2013; Nishimura et al., 2009), resulted in the reduc-

tion of the half-life of the wild-type (WT) Wbp1 protein. Again,

Wbp1 degradation was inhibited in Asi mutant cells (Figure 1F).

These data indicate that unassembled subunits of protein

complexes are targeted for degradation by the Asi complex at

the INM.

We showed that under conditions of compromised assembly,

Asi complex mutations lead to higher steady-state levels of pro-

tein complex subunits. However, whether these subunits would

be competent for assembly and give rise to functional com-

plexes was not clear. Thus, we tested whether Asi mutations

could rescue the growth of ts alleles in OST and GPI-T com-

plexes. The deletion of Asi components rescued the growth of

both OST (wbp1-1, wbp1-2) and GPI-T (gpi8-ts and gpi16-ts)

mutant alleles at the restrictive temperature, indicating that

they gave rise to functional complexes (Figures 1G and S1D).

The growth improvements were specific for the Asi complex
110 Molecular Cell 77, 108–119, January 2, 2020
mutations and were not observed in the mutants of other

ERAD branches, including Hrd1 and Doa10. Thus, orphan sub-

units targeted by the Asi complex at the INM are folded and

competent to assemble functional complexes. Furthermore,

our data suggest that complex assembly in bulk ER membranes

is facilitated by restricting quality control of the unassembled

subunits to the INM.

Erg11 TMD Is Sufficient for Its Degradation by Asi
To further investigate the mechanisms by which the Asi com-

plex recognizes its substrates, we focused on the lone protein

Erg11, a constitutive and robust Asi substrate (Foresti et al.,

2014; Khmelinskii et al., 2014). Erg11 is anchored at the ER

through a single N-terminal TMD, while the extended cyto-

plasmic C terminus consists of a cytochrome p450 domain

that is essential for ergosterol biosynthesis (Figure 2A) (Monk

et al., 2014).

To identify the minimal region of Erg11 involved in Asi-depen-

dent degradation, we used truncation analysis. A small N-termi-

nal region encompassing an ER luminal amphipathic helix

(residues 6–23) followed by the TMD ahelix (27–51) was suffi-

cient for Asi-dependent degradation. Like full-length Erg11

(Foresti et al., 2014), derivatives including only the first 56

or 68 amino acids followed by a hemagglutinin (HA) epitope,

hereafter called TM56 and TM68 (Figure S2A), still associate

with the ER membrane (Figure S2B). TM56 and TM68 were

quickly degraded in WT cells as well as in hrd1D and doa10D

ERAD mutants. In contrast, degradation of TM56 and TM68

was severely delayed in cells lacking any of the Asi complex

components Asi1, Asi2, or Asi3 (Figures 2B and S2C). We

previously showed that the ubiquitin-conjugating enzymes

Ubc4 and Ubc7 assist the Asi complex in substrate degrada-

tion (Foresti et al., 2014). Similarly, we found that while individ-

ual mutations in Ubc4 and Ubc7 delayed the turnover of

truncated Erg11 derivatives, their simultaneous deletion pre-

vented the degradation of both TM56 and TM68 (Figures 2C

and S2D).

Degradation of Asi substrates is restricted to the INM (Foresti

et al., 2014). However, given the extremely short half-lives of

TM56 and TM68 compared to full-length Erg11, we wanted to

confirm that INM localization was a prerequisite for their degra-

dation. To this end, we manipulated TM68 distribution within

the ER by exploiting the conditional dimerization of FRB and

FK506-binding protein (FKBP) domains induced by the small

molecule rapamycin (Haruki et al., 2008; Spencer et al.,

1993). TM68 was fused to the GFP and FRB domain (TM68-

GFP-FRB), a construct that was still degraded in an Asi-depen-

dent manner (Figure S2E). We coexpressed TM68-GFP-FRB

with fusions of FKBP and monomeric cherry fluorescent protein

to either Pil1 (Pil1-FKBP-mCherry), a protein stably associated

with the cell cortex (Gallego et al., 2013; Zió1kowska et al.,

2011), or Esc1 (Esc1-FKBP-mCherry), a protein stably associ-

ated with the INM (Andrulis et al., 2002). In the absence of

the dimerization-inducing agent rapamycin, TM68-GFP-FRB

was quickly degraded, irrespective of the coexpressed FKBP

fusion. Likewise, in cells expressing the INM localized Esc1-

FKBP-mCherry, the addition of rapamycin did not affect

the turnover of TM68-GFP-FRB (Figure 2E). In contrast, the
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Figure 2. Erg11 TMD Is Sufficient for Its Asi-Mediated ERAD

(A) Structure of full-length Erg11 according to Monk et al. (2014) and predicted orientation in the ER bilayer. Arrowheads indicate residues 56 and 68.

(B) The degradation of plasmid-derived TM68-HA was followed after the inhibition of protein synthesis by CHX in cells with the indicated genotype. Whole-cell

extracts were analyzed by immunoblotting. TM68 was detected with a-HA antibody. Pgk1 was used as loading control and detected with a-Pgk1 antibody.

(C) The degradation of TM68-HA was analyzed as in (B) in cells with the indicated genotype.

(D) Localization of TM68-sfGFP-FRB-HA in the absence or presence of the dimerization agent rapamycin in cells expressing the cortical (Pil1-FKBP-mCherry, left

panel) or INM (Esc1-FKBP-mCherry, right panel) anchors. Scale bar, 2 mm.

(E) The degradation TM68-sfGFP-FRB-HA was analyzed as in (B) in cells expressing cortical (Pil1-FKBP-mCherry) or INM (Esc1-FKBP-mCherry) anchors in the

absence or presence of the dimerization agent rapamycin.
addition of rapamycin to cells expressing cortically associated

Pil1-FKBP-mCherry induced the trapping of TM68-GFP-FRB in

the peripheral ER (Figure 2D), resulting in its complete stabiliza-

tion (Figure 2E). Thus, like other Asi substrates, degradation of

TM68-GFP-FRB requires its diffusion to the INM. The fact that

TM68-GFP-FRB was quick and efficiently trapped at the INM or

peripheral ER indicates that it rapidly explores the entire ER

membrane. These data show that the degradation of TM56

and TM68 has the same genetic and spatial requirements of

their full-length counterpart Erg11.

TMDs Act as Asi-Dependent Degrons
To test whether other TMDs also function as Asi degradation sig-

nals, we generated constructs with the TMDs of the ER proteins

Wbp1 and Gpi8 and Gpi16 belonging, respectively, to the OST

and GPI-T complexes described earlier. These constructs also

included anN-terminal signal sequence for ER targeting followed

by a HA epitope tag. In WT cells, these TMDs were unstable and

degraded with varying half-lives (Figures 3A–3C). However, TMD

degradation was strongly delayed by Asi complex mutations,

while mutations in other ERAD complexes had a much weaker

effect (Figures S3A–S3C). These data show that distinct TMDs

encompassing a range of biophysical properties (Figure S3D)

are degraded in an Asi-dependent manner. Thus, it seems that

TMD a helices define a degradation signal for the Asi complex

at the INM.
Asi Components Crosslink to TMD Substrates
To investigate interactions of TMDdegronswith the Asi complex,

we used a sensitive in vivo site-specific photocrosslinking

approach (Chin et al., 2003). Using a similar strategy, we previ-

ously characterized the interactions between ERAD luminal sub-

strates and components of the Hrd1 complex (Carvalho et al.,

2010; Stanley et al., 2011). This system exploits an amber codon

suppressor tRNA and amodified tRNA synthetase to introduce a

photoreactive amino acid derivative (benzoyl-phenylalanine

[Bpa]) at sites specified by an amber stop codon. In cells ex-

pressing this system and grown in the presence of Bpa, UV irra-

diation triggers crosslinks of the Bpa-labeled probes to proteins

in close proximity (Chin et al., 2003).

Wegenerated TM56derivativeswith a single photoreactive Bpa

label at various positions (four to five residues apart) throughout

the TMD (Figure 4A). Given the low steady-state levels and short

half-life of TM56 in WT cells (Figure S2C), crosslinking experi-

ments were performed in ubc7D mutants in which TM56 levels

are higher (Figure S2D). Cells expressing the various Bpa-labeled

TM56 derivatives were UV irradiated, crude membrane extracts

were prepared, and TM56 derivatives were immunoisolated and

analyzed by SDS-PAGE followed by immunoblotting (Figure 4A).

Cells expressing unlabeled TM56 or non-irradiated cells showed

only minor unspecific bands. In contrast, UV-dependent cross-

links were observed for several Bpa positions. The pattern of

crosslinks was similar for various positions (for example, 27, 31,
Molecular Cell 77, 108–119, January 2, 2020 111
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Figure 3. TMDs Act as Asi-Dependent Degrons

(A) The degradation of HA-Gpi8 TM was analyzed as in Figure 2B. Schematic representation of HA-Gpi8TM is shown (top) with the various modules of the

construct: a signal sequence (SS) followed by a 3xHA tag and the TM domain. The graph (bottom) shows the quantification of at least three independent ex-

periments; error bars represent the standard deviation.

(B) The degradation of HA-Gpi16 TM domain was analyzed as in (A) in WT and asi1D cells.

(C) The degradation of HA-Wbp1 TM domain was analyzed as in (A) in WT and asi1D cells.
36, 39) (Figure 4A). The identity of the most prominent UV-depen-

dent crosslinks remains unknown, but these crosslinkswere inde-

pendent of a functional Asi complex (Figure 4B).

To test whether Asi complex components were among the

TM56 crosslinking partners, we used immunoblotting. We found

that both FLAG-Asi1 and Asi2 crosslinked robustly with Bpa

probes at positions 36 and 39 (Figure 4A). Crosslinks were also

observed at neighboring positions (27 and 47) but became

weaker as the Bpa probe was moved away from membrane

equatorial positions. Crosslinks between TM56 and Asi2

required a full Asi complex and were lost in cells lacking Asi1

or Asi3 (Figure 4B). The loss of Asi2 interactions was not due

to changes in its expression level, which in the mutants was

similar to WT cells (Figure S4A). Finally, similar crosslinks be-

tween Asi2 and TM56were observed inWT cells; however, these

were much weaker due to the lower TM56 levels (Figure S4B).

These data show that Asi complex components directly interact

with a substrate’s TMD.

In Vitro Reconstitution of Asi-Mediated ERAD
Previous studies implicated the ERAD complexes in the recogni-

tion, ubiquitination, and retrotranslocation of substrates (Bal-

dridge and Rapoport, 2016; Carvalho et al., 2010; Christianson

et al., 2011; Denic et al., 2006; Gauss et al., 2006; Stein et al.,

2014). To test whether the Asi complex defined the minimal

unit necessary for the recognition, ubiquitination, and retrotrans-

location of its membrane-bound substrates, we developed an

in vitro system recapitulating these ERAD steps. Asi1, Asi2,

and Asi3 were purified as a complex from Saccharomyces

cerevisiae either through a streptavidin-binding peptide tag

fused to Asi2 (SBP-Asi2) or through FLAG tag on Asi3 (FLAG-

Asi3) (Figure S5A). Both fusion proteins were functional (Fig-

ure S5B) (Foresti et al., 2014). In parallel, we recombinantly

expressed and purified the ubiquitin-activating enzyme Uba1,
112 Molecular Cell 77, 108–119, January 2, 2020
the ubiquitin-conjugating enzymes Ubc4 and Ubc7, and its

activator Cue1, all required for the ubiquitination reaction

(Figure S5C). Recombinantly expressed TM68 fused to the

maltose-binding protein (TM68-MBP) was used as the substrate.

TM68-MBP also included a sortase recognition peptide, which

allowed its fluorescent labeling for easy detection (Figure S5C).

Ubiquitination experiments in the mild detergent decyl maltose

neopentyl glycol (DMNG), which preserved Asi complex integ-

rity, led to very minor TM68-MBP modification, which could be

detected only after the enrichment of ubiquitin conjugates (Fig-

ure S5D). The very low modification of TM68-MBP was not due

to the decreased activity of the purified Asi complex in detergent,

as prominent ubiquitination of Asi components was detected in

the same reactions (data not shown).

We hypothesized that the detergent micelle did not

adequately recapitulate the environment of a phospholipid

bilayer, considering that Asi-substrate interaction occurs within

the membrane. We therefore co-reconstituted the Asi complex

and TM68-MBP into liposomes. Floatation and pull-down ex-

periments confirmed co-reconstitution of the various mem-

brane components (Figures S5E and S6A). In proteoliposomes,

the majority of both TM68-MBP substrate and the Asi complex

adopted a topology with their cytoplasmic domains facing the

outside, as assayed by protease protection (Figure S5F). Pro-

teoliposomes containing Asi complex and TM68-MBP were

incubated with the soluble ubiquitination machinery (Ubi Mix:

Uba1, Ubc4, Ubc7, Cue1, ubiquitin) in either the presence or

the absence of ATP. Reactions were analyzed by SDS-PAGE

and TM68-MBP visualized by fluorescence. TM68-MBP was

readily detected in high-molecular-weight bands strongly sug-

gestive of ubiquitination (Figure 5A). Consistently, the presence

of slow migrating TM68-MBP species required the presence of

ATP and the Asi complex. To confirm that the high-molecular-

weight bands correspond to ubiquitinated TM68-MBP,
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Figure 4. Asi Complex Crosslinks to Transmembrane Substrates

(A) ubc7D cells with chromosomally tagged FLAG-Asi1 expressed from the

ADH1 promoter and plasmid-borne TM56 with the photoreactive amino acid

analog benzoyl-phenylalanine (Bpa) at the indicated positions were subjected

to UV irradiation. Non-irradiated cells were used as controls. Solubilized

membranes were subjected to immunoprecipitation with anti-HA antibodies,

and bound proteins were analyzed by immunoblotting with HA, FLAG, and

Asi2 antibodies.

(B) Cells of the indicated genotype and expressing TM56 derivatives with Bpa

at selected positions were analyzed as in (A).
ubiquitin conjugates were precipitated under denaturing condi-

tions and eluted material was analyzed as above. Over time, a

fraction of TM68-MBP was ubiquitinated (Figure 5B). TM68-

MBP ubiquitination was dependent on Asi complex ubiquitin

ligase activity, as TM68-MBP was not modified in experiments

carried out with ubiquitination-deficient Asi complex (Fig-

ure 5C). In vitro, the specificity of ubiquitin ligases is often

reduced, resulting in the ubiquitination of any protein in close

proximity. To assess the specificity of the Asi complex

in vitro, we performed ubiquitination reactions with TMDs of

two INM resident proteins that are not degraded by Asi in vivo,

Mps3 and Ubc6. Mps3 was recently shown to be degraded by

the soluble E3 ubiquitin ligase anaphase-promoting complex

(APC)/Cdh1 (Koch et al., 2019), while Ubc6 is a well-estab-

lished substrate of the E3 ligase Doa10 (Swanson et al.,

2001). The TMDs of Mps3 and Ubc6 are much less efficiently

ubiquitinated by the Asi complex than TM68-MBP (Figure S5G).

In the case of Ubc6, Asi-dependent ubiquitination increases at

higher substrate concentrations, while Mps3 modification

remains low, even when it is present at high concentrations

in the proteoliposomes (Figure S5G). Liposome floatation
assays show that the differences in ubiquitination do not

result from diminished protein reconstitution efficiency (Fig-

ure S5H). Thus, the Asi complex is necessary and sufficient

for the recognition and ubiquitination of integral membrane

substrates.

In cells, the Asi-mediated ERAD branch depends on the ubiq-

uitin-conjugating enzymes Ubc4 and Ubc7 (Foresti et al., 2014).

To test whether there was a similar dependence in vitro and the

individual contribution of the conjugating enzymes, we per-

formed reactions with only Ubc4 or Ubc7. With only Ubc4,

TM68-MBP was still ubiquitinated, but the conjugates had a

distinct profile, with an increase in monoubiquitinated species

and a reduction in high-molecular-weight conjugates, when

compared to reactions with both Ubc4 and Ubc7 (Figure 5D).

Asi3 was also ubiquitinated in vitro, amodificationmostly depen-

dent on Ubc4 (Figure 5D). Substrate ubiquitination was absent in

reactions containing exclusively Ubc7 (Figure 5D), even if this

enzyme was active, as confirmed by in vitro reactions with the

ubiquitin ligase Hrd1 (data not shown). These results suggest

that Ubc4 initiates the ubiquitination of Asi substrates. In con-

strast, Ubc7 appears unable to initiate substrate ubiquitination

but efficiently extends ubiquitin chains.

Finally, we tested whether ubiquitinated TM68-MBP could be

retrotranslocated and extracted from the proteoliposomes. To

this end, ubiquitination was performed in proteoliposomes im-

mobilized onto streptavidin beads using SBP-Asi2 and substrate

extraction was initiated by the addition of the Cdc48/Npl4/Ufd1

ATPase complex. Extraction of TM68-MBP required its ubiquiti-

nation, the presence of a complete Cdc48 ATPase complex, and

ATP (Figure 5E). Cdc48-dependent extraction appears substrate

specific, as we could not detect the extraction of polyubiquiti-

nated Asi3 molecules (Figure 5E). Only substrate carrying more

than three to four ubiquitin molecules was efficiently extracted

from proteoliposomes, suggesting a ubiquitin-chain size depen-

dence for Cdc48 activity. Considering the effects of Ubc4 and

Ubc7 in Asi-dependent substrate ubiquitination, we tested

whether their concerted activity was necessary for substrate

extraction. Cdc48 was unable to extract substrate molecules

ubiquitinated in the presence of Ubc4 alone, in contrast to reac-

tions containing both Ubc4 and Ubc7 (Figure 5F). These data

suggest that Ubc4 is competent for monoubiquitination of multi-

ple lysine residues but unable to generate polyubiquitin chains,

shown to preferentially bind to the Cdc48 ATPase complex (Bod-

nar and Rapoport, 2017). Our data show that the Asi complex de-

fines the minimal unit required for ERAD of INM substrates.

Asi2 Is a Transmembrane Recognition Factor
Our in vivo crosslinking experiments suggest that the Asi ubiq-

uitin-ligase complex is involved in recognizing its substrates

within the membrane. To directly test whether interactions

with the TMD are a prerequisite for substrate recognition and

ubiquitination, we took advantage of the described in vitro

system. TM68-MBP and the Asi complex were either reconsti-

tuted together in the same proteoliposomes or individually

into different proteoliposomes (Figure 6A). Ubiquitination reac-

tions were performed as before using the individual proteolipo-

somes or by mixing proteoliposomes containing either the Asi

complex or TM68-MBP. Substrate ubiquitination was detected
Molecular Cell 77, 108–119, January 2, 2020 113
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Figure 5. In Vitro Reconstitution of Asi-Mediated ERAD

(A) Proteoliposomes containing fluorescently labeled TM68-MBP alone or together with the Asi complex were incubated with soluble ubiquitination machinery

(Ubi Mix) during the indicated time in the presence or absence of ATP. Samples were resolved by SDS-PAGE and analyzed by fluorescence scanning.

(B) Proteoliposomes containing Asi complex were incubated with Ubi Mix and ATP for the indicated times. Reactions were divided in two, with one part analyzed

by fluorescence scanning (bottom panel; TM68-MBP) and the other subjected to His-ubiquitin affinity purification. Eluted proteins were analyzed by fluorescence

scanning (top panel; UbTM68).

(C) Proteoliposomes containing either WT or RING-deficient Asi complex were incubated with Ubi Mix for 60 min in the presence or absence of ATP. Proteo-

liposomes lacking Asi complex were used as control. Reactions were either analyzed directly by immunoblotting with a-SBP and a-Asi3 antibodies or fluo-

rescence scanning (TM68-MBP) (bottom panels) or subjected to His-ubiquitin affinity purification. Eluted proteins were analyzed by fluorescence scanning (top

panel; UbTM68).

(D) Proteoliposomes containing the Asi complex were incubated with ubiquitin-activating enzyme, ubiquitin, the indicated ubiquitin-conjugating enzymes, and

ATP for 60min. Reactions were analyzed directly by SDS-PAGE (center panels) or subjected to His-ubiquitin affinity purification. Eluted proteins were analyzed by

fluorescence scanning (top panel) or immunoblotting (bottom panel). Line scan fluorescence intensity profiles are graphed at right.

(E) Proteoliposomes containing fluorescently labeled TM68 and the Asi complex were immobilized on streptavidin magnetic beads and subjected to ubiquiti-

nation reactions for 60min. Substrate extraction was initiated by the addition of the indicated Cdc48 ATPase complex components in the presence or absence of

hexokinase/glucose for ATP depletion and incubated for 30 min. Extracted material was recovered by His-ubiquitin affinity purification. Eluted proteins were

analyzed by fluorescence scanning (TM68-MBP) or immunoblotting (FLAG-Asi3).

(F) Proteoliposomes containing fluorescently labeled TM68-MBP and the Asi complex were immobilized on streptavidin magnetic beads and subjected to

ubiquitination with the indicated ubiquitin conjugating enzymes. Substrate extraction reactions were performed as in (E).
only if the substrate and the Asi complex were in the same pro-

teoliposome (Figures 6B and S6A), further indicating that sub-

strate recognition, preceding ubiquitination, occurs through

the TMD.

To gain more insight into the mechanism of substrate recogni-

tion, we set out to identify its main interactor(s) within the

Asi complex. To this end, a version of TM68-MBP containing

a single cysteine within its TMD (at position 36) was recombi-

nantly expressed, purified, and co-reconstituted with the Asi

complex into proteoliposomes. Single cysteine TM68(I36C)-

MBP behaved indistinguishably from TM68-MBP (Figure S6B).

To identify TM68(I36C)-MBP binding partners within the mem-

brane, proteoliposomes were treated with the bifunctional
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sulfhydryl crosslinker 1,4-bismaleimidobutane (BMB). Proteoli-

posomes containing either only TM68-MBP or lacking the Asi

complex were used as controls. After quenching, crosslinking

reactionswere analyzed by SDS-PAGE and immunoblotting. Be-

sides a TM68(I36C)-MBP dimer, we detected a crosslinked

product of �75 kDa. This crosslink was observed exclusively in

samples treated with BMB and only if TM68(I36C)-MBP and

the Asi complex were included (Figure 6C). Considering the mo-

lecular weight of Asi complex components, the 75-kDa band

could correspond to a crosslink between TM68(I36C)-MBP

and SBP-Asi2, which is �37 kDa. This was confirmed by

analyzing the crosslinking reactions with an anti-Asi2 antibody

(Figure 6C). Within the Asi complex, Asi2 has the smallest
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C Figure 6. Asi2 Is a Transmembrane Recogni-

tion Factor

(A) Schematic representation of the proteolipo-

somes used in (B).

(B) The indicated proteoliposomes were incubated

with Ubi Mix for 60 min in the presence or absence

of ATP. Reactions were either analyzed directly by

immunoblotting (bottom panels) or subjected to

His-ubiquitin affinity purification. Eluted proteins

were analyzed by fluorescence scanning (TM68).

(C) Proteoliposomes containing Asi complex either

with TM68-MBP or a derivative with a cysteine

residue at position 36 (I36C-MBP) were incubated

with the bifunctional cysteine-reactive crosslinker

BMB, as indicated. Reactions were analyzed by

immunoblotting with antibodies against MBP (left

panel) and Asi2 (right panel).

(D) The degradation of Erg11-HA was analyzed as in

Figure 2B. Erg11 and Asi2 were detected with a-HA

and a-Asi2 antibodies, respectively. The graph

shows the quantification of at least three indepen-

dent experiments; error bars represent the standard

deviation.

(E) Proteoliposomes containing either the Asi1/Asi2/

Asi3 complex or the Asi1/Asi3 subcomplex were

incubated with Ubi Mix for 60 min in the presence

or absence of ATP. Proteoliposomes lacking the

Asi complex were used as controls. Reactions

were analyzed directly by immunoblotting (bottom

panels) or subjected to His-ubiquitin affinity

purification. Eluted proteins were analyzed by fluo-

rescence scanning (TM68-MBP). Line scan fluo-

rescence intensity profiles are graphed on the right.

(F) Quantification of TM68 ubiquitination from re-

actions performed as in (E). Three ubiquitination

reactions from independent reconstitutions experi-

ments were quantified; error bars represent the

standard deviation.
number of cysteines (only 1 versus 19 in Asi1 and 15 in Asi3),

further supporting the specificity of the crosslink. Moreover,

these data are consistent with the in vivo site-specific photocros-

slinking experiments in which prominent crosslinks between

TM56 and Asi2 were detected (Figure 4). Thus, among Asi com-

plex components, Asi2 is the main interactor with a TMD

substrate.

The single cysteine in Asi2 lies on a predicted TMD proximal to

its C terminus. Our crosslinking data show that this TMD is in

close proximity to substrates, andwewondered whether it would

be necessary for substrate recognition and degradation. To test

this hypothesis, we deleted four amino acids (residues 261–

264, corresponding to Leu, Cys, Leu, and Leu, respectively) to

generate a mutant Asi2 protein, Asi2D4, with a shortened TMD.

In cells, Asi2D4 assembled into the Asi complex (Figure S6C)

and was expressed at near-normal levels (Figures 6D and S6C);

however, Asi2D4was unable to promote the efficient degradation
Mole
of Asi substrate Erg11, even if overex-

pressed (Figure 6D). This indicates that

Asi2-substrate interactions within the

membrane are required for substrate

recognition and efficient degradation.

Finally, we tested the role of Asi2 in sub-

strate recognition using the in vitro assay
described above. Proteoliposomes containing TM68-MBP and

the entire Asi complex or only the Asi1/Asi3 subcomplex were

used in the ubiquitination reactions. In the absence of Asi2, sub-

strate ubiquitination was reduced to 28% (±8%) (Figure 6E). This

was not a consequence of a general decrease in Asi1/Asi3 ubiq-

uitin ligase activity, as Asi3 was comparably ubiquitinated irre-

spective of the presence of Asi2 (Figure 6E; data not shown).

Thus, Asi2-mediated recognition facilitates substrate ubiquitina-

tion and degradation both in vitro and in vivo.

DISCUSSION

Here, we used genetic, biochemical, and in vitro reconstitution

approaches to characterize the mechanism of INM quality con-

trol by the Asi complex. We found an unexpected link between

the INMproteome identity and quality control of the protein com-

plex assembly.
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Figure 7. Working Model for Asi-Mediated

Quality Control of the Protein Complex

Assembly

Schematic representation of biogenesis and quality

control of membrane protein complexes in the ER.

Complex subunits that misfold are degraded by the

Hrd1 or Doa10 ERAD branches in bulk ER mem-

branes (gray). Subunits that fold but fail to assemble

eventually diffuse into the INM (brown), where they

are degraded in Asi-dependent ERAD.
Based on our findings, we propose the following stepwise

model for the quality control of the protein complex assembly

(Figure 7). Newly synthesized subunits that misfold are quickly

targeted for degradation by ERAD complexes in the bulk ER,

such as Hrd1 and Doa10 (1). Subunits that fold but do not

assemble immediately can diffuse through the ER membrane.

This provides an opportunity to bind to their partners and for

successful complex assembly (2). Compared to unassembled

subunits, assembled complexes have an increased number of

TMDs and often larger cytoplasmic domains, factors that

hinder their passage through the pore membrane to the INM

(Ungricht and Kutay, 2015). Moreover, assembled complexes

likely interact with cytosolic components, which also

contribute to their retention in the ER membranes exposed

to the cytosol. Subunits that fail to find their partners or are

present in over-stoichiometric amounts will persistently diffuse

through the ER and eventually reach the INM (3), where the

Asi complex promotes their degradation (4). Thus, we postu-

late that in yeast, bulk ER membranes and INM define areas

favoring the assembly and degradation of folded, unassem-

bled complex subunits, respectively. Whether a similar spatial

segregation between complex assembly and quality control

also occurs in mammalian cells should be investigated. In

mammalian cells, the degradation of proteins directly from

the INM by an ERAD-like process was described for a mutant

version of the lamin-B receptor (Tsai et al., 2016), but the

components involved in the degradation have not been

identified.

Our findings are in agreement with earlier studies on the OST

complex assembly in yeast that showed a very minor contribu-

tion of Hrd1 and Doa10 ERAD branches in the degradation of

unassembled subunits and only if these were overexpressed,

a condition that likely favors protein misfolding (Mueller

et al., 2015).

The model proposed here is also consistent with recent pro-

teomics studies on age-dependent protein degradation. These

showed that many subunits of protein complexes display a

biphasic degradation kinetics, being short-lived immediately

after synthesis and prior to assembly, but becoming more sta-

ble as they age and after successful assembly with their part-

ners (McShane et al., 2016).
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Genetic suppression of ts alleles in Asi

complex mutants argues for a major role

of this ERAD branch in the degradation

of orphan subunits at the INM. While the

analysis focused on a limited number of
complexes, our conclusions are further supported by unbiased

large-scale genetic interaction studies (Van Leeuwen et al.,

2016), in which Asi mutants suppress conditional alleles on

the subunits of additional complexes. However, we cannot

exclude that other ERAD branches may contribute to quality

control of the complex assembly. The Doa10 complex also lo-

calizes to the INM and has nuclear substrates such as the sol-

uble transcriptional repressor Mat2a (Deng and Hochstrasser,

2006; Swanson et al., 2001) and the membrane proteins Asi2

(Boban et al., 2014) and Ubc6 (Walter et al., 2001). However,

it is unclear whether the degradation of these substrates de-

pends on their assembly state; in its orphan state, the translo-

con subunit Sbh2 is degraded in a Doa10-dependent manner

(Boban et al., 2014; Habeck et al., 2015). Curiously, Sbh2, but

not its paralog Sbh1, was detected at the INM (Smoyer et al.,

2016), but whether the INM pool of Sbh2 is the one targeted

by Doa10 is unknown.

We showed that Asi2 directly recognizes lone and orphan

proteins. Recognition requires substrate INM localization and

is mediated by Asi2 binding to TMDs. While all of the substrates

analyzed here contain a single TMD, other Asi2 substrates are

multispanning membrane proteins (Foresti et al., 2014; Khmelin-

skii et al., 2014). Thus, Asi2 likely also recognizes TMDs within

multipass proteins. The recognition of substrates based on their

orphan state is common to other factors involved in the quality

control of mislocalized membrane proteins. This is the case for

the outer mitochondrial ATPase Msp1 (Weir et al., 2017),

involved in quality control of mislocalized tail-anchored proteins

(Chen et al., 2014; Okreglak and Walter, 2014), and the retrieval

factor Rer1, which transports unassembled membrane proteins

from the Golgi back to the ER (Sato et al., 2001, 2003). Thus, the

absence of a binding partner may be a general feature used in

the quality control of mislocalized membrane proteins.

The identification of structural features recognized by Asi2 on

TMDswill require analysis of a larger number of substrates. How-

ever, the diverse properties of TMDs tested here (Figure S3) sug-

gest that Asi2 has broad specificity. Nevertheless, among the Asi

substrates identified so far there are no INM resident proteins,

suggesting that additional regulation spares these proteins

from Asi-dependent degradation (Foresti et al., 2014; Khmelin-

skii et al., 2014; Smoyer et al., 2019).



The degradation of certain Asi substrates does not require

Asi2 (Foresti et al., 2014; Khmelinskii et al., 2014). Whether

Asi2-independent substrates are directly recognized by Asi1

and Asi3 or involve additional unknown factors is not clear

yet. However, the existence of multiple substrate recognition

modules within the same ERAD complex is common (Christian-

son et al., 2011; Kanehara et al., 2010).

We showed that degradation of Asi substrates involved the

ubiquitin conjugating enzymes Ubc7 and Ubc4 (Foresti et al.,

2014). In vitroUbc4 and Ubc7 conjugating enzymes are required

for distinct, non-redundant functions in substrate ubiquitination.

Ubc4 is required to conjugate initial ubiquitin molecules on the

substrate, which are subsequently extended into polyubiquitin

chains by Ubc7. A similar priming followed by Ubc7-dependent

extension was observed for Doa10-dependent ubiquitination. In

this case, priming was mediated by the conjugating enzyme

Ubc6 and was particularly important for the ubiquitination of

lysine-poor substrates, as Ubc6 facilitates ubiquitin conjugation

to lysine and hydroxylated residues (Weber et al., 2016).

Our in vitro system faithfully recapitulated Cdc48-dependent

membrane extraction of ubiquitinated substrates. Only sub-

strates ubiquitinated in the presence of Ubc4 and Ubc7 conju-

gating enzymes and having four or more ubiquitins were

extracted by Cdc48. This is in agreement with Cdc48 ubiquitin-

binding preferences (Bodnar and Rapoport, 2017). Asi3 was

also prominently ubiquitinated in vitro, but whether this is

physiological, as in the case of Hrd1 (Baldridge and Rapoport,

2016), or a side reaction of the system is unclear. Ubiquitinated

Asi3 did not appear to be extracted from proteoliposomes.

Whether Cdc48 discriminates substrate and Asi3 based on

different ubiquitin linkages or by some other mechanism should

be clarified. It has been shown that Hrd1 ubiquitin ligase facili-

tates the retrotranslocation and membrane extraction of its sub-

strates (Baldridge and Rapoport, 2016; Carvalho et al., 2010;

Schoebel et al., 2017), but whether other ERAD ligases, such

as Asi, work in a similar fashion should also be the focus of future

studies.
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Zió1kowska, N.E., Karotki, L., Rehman, M., Huiskonen, J.T., and Walther, T.C.

(2011). Eisosome-driven plasma membrane organization is mediated by BAR

domains. Nat. Struct. Mol. Biol. 18, 854–856.
Molecular Cell 77, 108–119, January 2, 2020 119

http://refhub.elsevier.com/S1097-2765(19)30763-4/sref49
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref49
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref49
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref50
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref50
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref50
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref51
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref51
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref51
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref52
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref52
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref52
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref53
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref53
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref53
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref54
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref54
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref54
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref54
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref55
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref55
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref55
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref55
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref56
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref56
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref56
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref56
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref57
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref57
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref57
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref58
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref58
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref58
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref59
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref59
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref59
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref60
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref60
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref60
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref60
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref61
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref61
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref61
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref62
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref62
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref62
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref63
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref63
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref63
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref63
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref64
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref64
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref64
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref65
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref65
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref65
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref66
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref67
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref67
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref67
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref68
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref68
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref68
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref68
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref69
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref69
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref69
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref70
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref70
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref70
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref71
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref71
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref72
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref72
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref72
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref73
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref74
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref74
http://refhub.elsevier.com/S1097-2765(19)30763-4/sref74


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-HA Roche 11867431001

Mouse monoclonal anti-Pgk1 Invitrogen 459250

Mouse monoclonal anti-Dpm1 Invitrogen A-6429

Mouse monoclonal anti-FLAG M2-Peroxidase (HRP) Sigma-Aldrich A8592

Mouse monoclonal anti-FLAG M2 Sigma-Aldrich F1804

Mouse monoclonal anti-SBP tag, clone 20 Merck MAB10764

Mouse monoclonal anti-MBP New England BioLabs E8032S

Rabbit polyclonal anti-Wbp1 H. Riezman lab N/A

Rabbit polyclonal anti-Gpi8 A. Conzelmann lab N/A

Rabbit polyclonal anti-Asi1 This study N/A

Rabbit polyclonal anti-Asi2 This study N/A

Rabbit polyclonal anti-Asi3 This study N/A

Bacterial and Virus Strains

BL21-CodonPlus (DE3)-RIPL cells 230280 Agilent Technologies

Chemicals, Peptides, and Recombinant Proteins

Cycloheximide C7698 Sigma

3-Indolacetic acid (Auxin) I2886 Sigma

Rapamycin 37094 Sigma

H-p-Bz-Phe-OH (BPA) F2800.0005 Bachem

Cholesterol 700000 Avanti

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 850457 Avanti

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) 850725 Avanti

1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) 840035 Avanti

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B

sulfonyl) ammonium salt (18:1 Liss Rhod PE)

810150 Avanti

Decyl Maltose Neopentyl Glycol (DMNG) NG322 Anatrace

Glyco-diosgenin (GDN) GDN101 Anatrace

n-Dodecyl-b-D-Maltopyranoside (DDM) D310 Anatrace

IGEPAL CA-630 (NP40) I8896 Sigma

3x FLAG peptide F4799 Sigma

His-ubiquitin U530 Boston Biochem

DyLight 800 Maleimide 46621 Thermo Scientific

Peptide: Gly-Gly-Gly-Cys, counter ion -chloride This study Thermo Scientific

anti-HA magnetic beads 88837 Thermo Scientific

anti-FLAG M2 affinity gel A2220 Sigma

anti-FLAG M2 magnetic beads M8823 Sigma

Dynabeads Protein A 10002D Thermo Fisher

High capacity streptavidin agarose resin 20361 Thermo Scientific

Streptavidin magnetic beads 88817 Thermo Scientific

NiNTA Agarose Beads 88222 Thermo Scientific

Detergent removal spin columns 87777 Thermo Scientific
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Deposited Data

Original gel images and western blots This study; Mendeley Dataset https://data.mendeley.com/

datasets/37g4k2zvt9/draft?

a=a91d9772-651b-4684-

9d08-b7dab6849ecb

Experimental Models: Organisms/Strains

S. cerevisiae: Strain background: BY4741 Research Genetics S288C

S. cerevisiae: Strain background: BY4742 Research Genetics S288C

Mat a ura3-52 his3D200 leu2D1 trp1D63 FY251 yPC1507

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR Foresti et al., 2014 yPC2008

Mat a ura3D0 his3D1 leu2D0 met15D0 asi2::KANR Foresti et al., 2014 yPC2009

Mat a ura3D0 his3D1 leu2D0 met15D0 asi3::KANR Foresti et al., 2014 yPC2010

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1230 > This study yPC11635

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1230 > This study yPC11650

Mat a ura3D0 his3D1 leu2D0 met15D0 asi2::KANR < pPC1230 > This study yPC11636

Mat a ura3D0 his3D1 leu2D0 met15D0 asi3::KANR < pPC1230 > This study yPC11651

Mat a his3D1 leu2D0 lys2D0 ura3D0 doa10::His5 < pPC1230 > This study yPC11652

Mat a ura3-52 his3D200 leu2D1 trp1D63 lys2D0 hrd1::HYGB < pPC1230 > This study yPC11653

Mat a his3D1 leu2D0 lys2D0 ura3D0 ubc7::HYGB < pPC1230 > This study yPC11712

Mat a his3D1 leu2D0 lys2D0 ura3D0 ubc4::KANR < pPC1230 > This study yPC11713

Mat ? his3D1 leu2D0 lys2D0 ura3D0 ubc7::HYGB ubc4::KANR < pPC1230 > This study yPC11714

Can1::Ste2pr-Leu2 Fpr1::Ura tor1-1 LYS+ Lyp1:: leu2D0 his3D1 ura3D0 Pil1-(6)-

RFP-(24)-FKBP::NatR < pPC1356 >

This study yPC9650

Can1::Ste2pr-Leu2 Fpr1::Ura tor1-1 LYS+ Lyp1:: leu2D0 his3D1 ura3D0 Esc1-

RFP-(24)-FKBP::NatR < pPC1356 >

This study yPC9651

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1302 > This study yPC11667

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1302 > This study yPC11668

Mat a his3D1 leu2D0 met15D0 ura3D0 doa10::KANR < pPC1302 > This study yPC11669

Mat a ura3-52 his3D200 leu2D1 trp1D63 lys2D0 hrd1::HYGB < pPC1302 > This study yPC11670

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1313 > This study yPC11671

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1313 > This study yPC11672

Mat a his3D1 leu2D0 met15D0 ura3D0 doa10::KANR < pPC1313 > This study yPC11673

Mat a ura3-52 his3D200 leu2D1 trp1D63 lys2D0 hrd1::HYGB < pPC1313 > This study yPC11674

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1301 > This study yPC11663

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1301 > This study yPC11664

Mat a his3D1 leu2D0 met15D0 ura3D0 doa10::KANR < pPC1301 > This study yPC11665

Mat a ura3-52 his3D200 leu2D1 trp1D63 lys2D0 hrd1::HYGB < pPC1301 > This study yPC11666

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1229+ pPC557 >

This study yPC10511

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1450+ pPC557 >

This study yPC10512

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1451+ pPC557 >

This study yPC10513

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1452+ pPC557 >

This study yPC10514

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1453+ pPC557 >

This study yPC10515

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1454+ pPC557 >

This study yPC10516

(Continued on next page)
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Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1455+ pPC557 >

This study yPC10517

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1456+ pPC557 >

This study yPC10518

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::HYGB NATR-ADHp-3xFlag-

Asi1 < pPC1457+ pPC557 >

This study yPC10519

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR < pPC1229+ pPC557 > This study yPC10502

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR < pPC1451+ pPC557 > This study yPC10504

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR < pPC1453+ pPC557 > This study yPC10506

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR < pPC1454+ pPC557 > This study yPC10507

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR < pPC1456+ pPC557 > This study yPC10509

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi1::HYGB < pPC1229+

pPC557 >

This study yPC10520

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi1::HYGB < pPC1451+

pPC557 >

This study yPC10521

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi1::HYGB < pPC1453+

pPC557 >

This study yPC10522

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi1::HYGB < pPC1454+

pPC557 >

This study yPC10523

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi1::HYGB < pPC1456+

pPC557 >

This study yPC10524

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi3::HYGB < pPC1229+

pPC557 >

This study yPC10525

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi3::HYGB < pPC1451+

pPC557 >

This study yPC10526

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi3::HYGB < pPC1453+

pPC557 >

This study yPC10527

Mat a ura3-52 his3D200 leu2D1 trp1D63 ubc7::KANR asi3::HYGB < pPC1454+

pPC557 >

This study yPC10528

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1229+ pPC557 > This study yPC10493

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1450+ pPC557 > This study yPC10494

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1451+ pPC557 > This study yPC10495

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1452+ pPC557 > This study yPC10496

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1453+ pPC557 > This study yPC10497

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1454+ pPC557 > This study yPC10498

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1455+ pPC557 > This study yPC10499

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1456+ pPC557 > This study yPC10500

Mat a ura3-52 his3D200 leu2D1 trp1D63 < pPC1457+ pPC557 > This study yPC10501

Mat ? ura3D0 his3D1 leu2D0 asi1::NATR asi2::HYGB asi3::KANR doa10::crispr

hrd1::crispr < pPC1585 + pPC1583 + pPC1586 >

This study yPC11563

Mat ? ura3D0 his3D1 leu2D0 asi1::NATR asi2::HYGB asi3::KANR doa10::crispr

hrd1::crispr < pPC1417 + pPC1587

This study yPC11565

Mat ? ura3D0 his3D1 leu2D0 asi1::NATR asi2::HYGB asi3::KANR doa10::crispr

hrd1::crispr < pPC1417 + pPC1583 + pPC1587 >

This study yPC11566

Mat ? ura3D0 his3D1 leu2D0 asi1::NATR asi2::HYGB asi3::KANR doa10::crispr

hrd1::crispr < pPC1417 + pPC1583 + pPC1581 >

This study yPC11567

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1082 > Foresti et al., 2014 yPC8632

Mat a ura3D0 his3D1 leu2D0 met15D0 asi2::KANR < pPC1082 > Foresti et al., 2014 yPC8634

Mat a ura3-52 his3D200 leu2D1 trp1D63 Asi2(261-264D)::crispr < pPC1082 > This study yPC11654

Mat a ura3D0 his3D1 leu2D0 met15D0 NATR-ADHp-3xFlag-Asi2 < pPC1082 > This study yPC11655

(Continued on next page)
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Mat a ura3D0 his3D1 leu2D0 met15D0 NATR-ADHp-3xFlag-Asi2 (261-

264D)::crispr < pPC1082 >

This study yPC11656

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR Li et al., 2011 yPC8032

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR asi1::NATR This study yPC8169

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR asi2::NATR This study yPC8370

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR asi3::NATR This study yPC8372

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR doa10::HIS This study yPC8230

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR hrd1::HygB This study yPC8233

Mat ? ura3D0 his3D1 leu2D0 met15D0 wbp1-2::KANR ubc7::HYGB This study yPC8227

Mat a ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR Li et al., 2011 yPC8028

Mat ? ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR asi1::NATR This study yPC11719

Mat ? ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR asi2::NATR This study yPC8671

Mat ? ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR asi3::NATR This study yPC8677

Mat ? ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR doa10::HIS This study yPC8674

Mat a ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR hrd1::HYGB This study yPC8655

Mat a ura3D0 his3D1 leu2D0 met15D0 gpi8-ts::KANR ubc7::HYGB This study yPC8657

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR Li et al., 2011 yPC8027

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR asi1::NATR This study yPC8605

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR asi2::NATR This study yPC8664

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR asi3::NATR This study yPC8666

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR doa10::HIS This study yPC8668

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR hrd1::HYGB This study yPC8652

Mat a ura3D0 his3D1 leu2D0 met15D0 wbp1-1::KANR ubc7::HYGB This study yPC8654

Mat a ura3D0 his3D1 leu2D0 met15D0 lys2D0 can1D::LEU2-MFA1pr::His3

gpi16-ts::URA3

Ben-Aroya et al., 2008 yPC9389

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 asi1::NATR This study yPC9618

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 asi2::NATR This study yPC9598

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 asi3::KANR This study yPC9600

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 doa10::KANR This study yPC9630

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 hrd1::KANR This study yPC9632

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 gpi16-ts::URA3 ubc7::HYGB This study yPC9622

Mat a ura3-52 his3D200 leu2D1 trp1D63 URA3-GPDp-AtTIR1-9Myc Swp1-

4AID-3xFlag-HYGB

This study yPC11735

Mat a ura3-52 his3D200 leu2D1 trp1D63 URA3-GPDp-AtTIR1-9Myc Swp1-

4AID-3xFlag-HYGB asi1::NATR

This study yPC11736

Mat a ura3D0 his3D1 leu2D0 met15D0 lys2D0 can1D::LEU2-MFA1pr::His3 ost2-

ts::URA3

This study yPC9391

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 ost2-ts::URA3 asi1::NATR This study yPC11309

Mat a ura3D0 his3D1 leu2D0 met15D0 stt3-7::KANR Li et al., 2011 yPC11259

Mat ? ura3D0 his3D1 leu2D0 met15D0 stt3-7::KANR asi1::NATR This study yPC11645

Mat a ura3D0 his3D1 leu2D0 met15D0 lys2D0 can1D::LEU2-MFA1pr::His3 ost2-

ts::URA3 OST4-3xFlag-HYGB

This study yPC11308

Mat ? ura3D0 his3D1 leu2D0 met15D0 lys2D0 ost2-ts::URA3 asi1::NATR OST4-

3xFlag-HYGB

This study yPC11310

Mat a ura3D0 his3D1 leu2D0 met15D0 OST4-3xFlag-HYGB This study yPC11661

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR OST4-3xFlag-HYGB This study yPC11662

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1229 > This study yPC11630

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1229 > This study yPC11646

Mat a ura3D0 his3D1 leu2D0 met15D0 asi2::KANR < pPC1229 > This study yPC11631

(Continued on next page)
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Mat a ura3D0 his3D1 leu2D0 met15D0 asi3::KANR < pPC1229 > This study yPC11647

Mat a his3D1 leu2D0 lys2D0 ura3D0 doa10::His5 < pPC1229 > This study yPC11648

Mat a ura3-52 his3D200 leu2D1 trp1D63 lys2D0 hrd1::HYGB < pPC1229 > This study yPC11649

Mat a his3D1 leu2D0 lys2D0 ura3D0 ubc7::HYGB < pPC1229 > This study yPC11715

Mat a his3D1 leu2D0 lys2D0 ura3D0 ubc4::KANR < pPC1229 > This study yPC11716

Mat ? his3D1 leu2D0 lys2D0 ura3D0 ubc7::HYGB ubc4::KANR < pPC1229 > This study yPC11717

Mat a ura3D0 his3D1 leu2D0 met15D0 < pPC1356 > This study yPC9635

Mat a ura3D0 his3D1 leu2D0 met15D0 asi1::KANR < pPC1356 > This study yPC9637

Mat a ura3D0 his3D1 leu2D0 met15D0 SBP-TEV-ASI2:Crispr < pPC1229 > This study yPC11756

Oligonucleotides

Information on oligonucleotides is available upon request

Recombinant DNA

pRS316 - Erg11p-ERG11TM(D70-521)-3xHA This study pPC1230

pRS413-Erg11p-ERG11TM(D68-521)-sfGFP-FRB-HA This study pPC1356

pRS415-Voa1p-SP-3xHA-GPI8TM (376-411) This study pPC1302

pRS415-Voa1p-SP-3xHA-GPI16TM (542-610) This study pPC1313

pRS415-Voa1p-SP-3xHA-WBP1TM(387-430) This study pPC1301

pRS316 - Erg11p-TM(D58-521)-3xHA This study pPC 1229

TyrRS-tRNACUA Chin et al., 2003 pESC-Bpa

pRS316 - Erg11p-ERG11TM F22 amber(TAG)(D58-521)-3xHA This study pPC1450

pRS316 - Erg11p-ERG11TM L27 amber(TAG)(D58-521)-3xHA This study pPC1451

pRS316 - Erg11p-ERG11TM I31 amber(TAG)(D58-521)-3xHA This study pPC1452

pRS316 - Erg11p-ERG11TM I36 amber(TAG)(D58-521)-3xHA This study pPC1453

pRS316 - Erg11p-ERG11TM F39 amber(TAG)(D58-521)-3xHA This study pPC1454

pRS316 - Erg11p-ERG11TM I43 amber(TAG)(D58-521)-3xHA This study pPC1455

pRS316 - Erg11p-ERG11TM L47 amber(TAG)(D58-521)-3xHA This study pPC1456

pRS316 - Erg11p-ERG11TM L51 amber(TAG)(D58-521)-3xHA This study pPC1457

pRS316 - Erg11p-ERG11-3xHA Foresti et al., 2014 pPC1082

pRS423 - GAL1p-ASI1 This study pPC1417

pRS425 -GAL1p-ASI3 This study pPC1581

pRS423 - GAL1p-ASI1 (D562-624) This study pPC1585

pRS425 -GAL1p-ASI3 (D618-676) This study pPC1586

pRS426-GAL1p-SBP-TEV-ASI2 This study pPC1583

pRS425 -GAL1p-3xFLAG-ASI3 This study pPC1587

K27-T5p-HIS14-sumo-ERG11TM(D70-521)-MBP-LPTEGG This study pPC1822

K27-T5p-HIS14-sumo-ERG11TM(D70-521)(I36C)-MBP-LPTEGG This study pPC1823

K27-T5p-HIS14-sumo-MBP-UBC6TM (225-250)-HA-LPTEGG This study pPC1555

K27-T5p-HIS14-sumo-MPS3TM(149-182)-MBP-LPTEGG This study pPC1556

pET30-b-T7p-ASI1(424-616)-6xHIS This study pPC 1260

pET30-b-T7p-ASI2(153-271)-6xHIS This study pPC1234

pET30-b-T7p-ASI3(484-676)-6xHIS This study pPC 1262

K27-T5p-6xHIS-Sumo-UBC4 pPC 1878

pML107-GAPp-ASI2-gRNA1 This study pPC1661

pML107-GAPp-HRD1-gRNA1 This study pPC1695

pML107-GAPp-DOA10-gRNA1 This study pPC1705

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

ImageJ NIH https://imagej.net/welcome

Image studio software Li-Cor Li-Cor https://www.licor.com/bio/

image-studio-lite/

GraphPad Prism N/A https://www.graphpad.com/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Pedro Carvalho (pedro.

carvalho@path.ox.ac.uk). All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains used in this study were S. cerevisiae derivatives of BY4741 or FY251. The genotypes of the strains and their mutant

derivatives are listed in the Key Resources Table.

METHOD DETAILS

Yeast strains and Plasmids
The strains used are isogenic either to BY4741 (Mata ura3D0 his3D1 leu2D0met15D0), BY4742 (Mata his3D1 leu2D0 lys2D0 ura3D0)

or FY251 (Mata ura3-52 his3D200 leu2D1 trp1D63) and are listed in the Table S1. Tagging of proteins and individual gene deletions

were performed by standard PCR-based homologous recombination (Longtine et al., 1998) or CRISPR (Laughery et al., 2015). The

Asi2D4 allele lacking residues (261-264) corresponding to amino acids Leucine, Cysteine, Leucine and Leucine, respectively, was

generated by CRISPR-based gene editing as described (Laughery et al., 2015). In brief, a single guide RNA sequence targeting

the desired region of Asi2 was designed using online software (http://wyrickbioinfo2.smb.wsu.edu) and cloned into a pML vector

(Addgene) containing the Cas9 endonuclease from Streptococcus pyogenes using annealed oligos 3323, 3324. Cas9 plasmid along

with a PCR amplified template containing the deletion of AA (261-264) were transformed using standard transformation protocol.

Colonies were screened by PCR and sequencing of genomic DNA. Positive clones were grown in rich media (YPD) for 2-3 days

to allow the loss of Cas9 plasmid. Guide RNAs are listed in the key resource table.

Strains with multiple gene deletions and temperature sensitive alleles were made by crossing haploid cells of opposite mating

types, followed by sporulation and tetrad dissection using standard protocols (Guthrie and Fink, 1991).

Sanger sequencing was used to determine the sequence of the wbp1-2 temperature sensitive allele. Analysis of several reactions

consistently identified mutations leading to two amino acid changes- F249S and S297L- corresponding to residues in the ER luminal

domain.

Plasmids used in this study are listed in the Key Resources Table and Table S1.

ERAD substrate degradation experiments
Cycloheximide (CHX) shutoff chases were essentially performed as described in Foresti et al. (2014). Briefly, yeast cells were grown

either in richmedia or synthetic media with 2%glucose. CHXwas used at 250ug/ml from a stock of 12.5mg/ml. It was added to expo-

nentially growing culture and 1 OD of cells was collected at the indicated time points. For anchor away technique, 10mM rapamycin

was added 1 hour before the addition of CHX. Temperature sensitive mutants were grown at 25�C and shifted to the restrictive tem-

perature as indicated in the corresponding figure legend. For auxin-dependent degradation, 0.8mM auxin was added 1 hour before

the addition of CHX. 1 OD of cells were collected at the specified time points and whole cell lysates were prepared as described

(Kushnirov, 2000) and analyzed by immunoblotting. Antibodies used in this study are listed in the key resource table.

Data quantification was performed using Image Studio software (Li-Cor) or ImageJ and graphs were plotted in Prism. Represen-

tative images of three independent experiment are shown.

In vivo site-specific crosslinking
Cells with various genotypes were transformed with two plasmids. One encoding both for a modified tRNA synthetase capable of

charging the unnatural amino acid benzoyl phenylalanine (BPA) on a tRNA as well as amber stop codon suppressor tRNA. The sec-

ond plasmid encoded for TM56-HA with individual amber codons. Cells carrying both plasmids were grown in synthetic minimal me-

dia and diluted overnight into 100ml of the same media. At 0.3-0.4 OD600, BPA was added to a final concentration of 0.3mM (from a

0.2M in 1M NaOH freshly prepared stock). For BPA incorporation, cells were grown for additional 5-6 hours at 25�C. Cells were har-

vested by a centrifuge spin for 2 min at 3000 g and resuspended in 1ml of cold water. Half of cells were transferred to a 12 well plate
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and subjected to UV irradiation for 1 hour at 4�C using a B-100AP lamp (UVP, CA). The other half of the cells was incubated on ice and

served as non-irradiated control. After UV irradiation, cells were harvested by centrifuge spin for 2 min at 3000 g. Both irradiated and

control cells were lysed in LB buffer (50mM Tris/HCl [pH7.4], 200mM NaCl, 1mM EDTA, 2mM phenylmethylsulfonyl fluoride(PMSF)

and protease inhibitor cocktail) by 5-6 3 1 min cycles of bead beating. Lysates were cleared by a 10 min centrifugation at 600 g.

Cleared lysates were centrifuged at 100000 g (25 min at 4�C) to obtain crude membrane fractions. The membrane pellet was resus-

pended in denaturing buffer (50mM Tris/HCl [pH7.4], 1mM EDTA, 1% SDS, 2M urea) and solubilized at 65�C for 30-40 min. Unsolu-

bilized material was pelleted by centrifugation (15 min spin at 13000 g). The solubilized material was diluted with LB supplemented

with 1% Nonidet P-40 and incubated overnight with anti-HA beads (Pierce TM). Beads were washed 3 times with LB/1% Nonidet

P-40 and bound proteins eluted with SDS buffer and analyzed by immunoblotting.

Native Immunoprecipitation
Approximately 100OD of cells grown in YPD were harvested by centrifugation at 3000 g and washed with LB buffer (50mM Tris/HCl

[pH7.4], 200mM NaCl, 1mM EDTA, 2mM phenylmethylsulfonyl fluoride(PMSF) and protease inhibitor cocktail). Lysates and crude

membrane fractions were prepared as described above. Detergent extracts were prepared by solubilizing crudemembrane fractions

in LB/1% glyco-diosgenin (GDN) (Generon) or 1% decyl maltose neopentyl glycol (DMNG). Unsolubilized material was cleared by a

15 min spin at 13000 g. The cleared detergent extracts were incubated overnight at 4�C with FLAG M2 magnetic beads (Sigma-Al-

drich) or Protein A beads (Thermo) coupled to anti-Asi1 and Anti-Asi2 antibodies. Beads were washed 3 times with LB/1% GDN or

1% DMNG, eluted with SDS buffer and analyzed by immunoblotting. The input corresponds to 10% of the total extract used for IP.

Growth assays
Cells with the relevant genotypes growing on YPDplates were inoculated in 5mL of YPD and grown overnight at 25C to anOD600�3.

Six 10-fold serial dilutions were performed in YPD. 3 ml of the dilutions were spotted on YPD agar plates and incubated at the respec-

tive restrictive temperature for 2-3 days.

Expression and purification of the Asi complex from S. cerevisiae

All three Asi proteins were co-expressed and purified essentially as described (Stein et al., 2014). Briefly, cells lacking ASI1, ASI2,

ASI3, HRD1 and DOA10 were transformed with high copy plasmids from the pRS42X series (Mumberg et al., 1994) encoding un-

tagged Asi1 and Asi3 as well as Asi2 fused to a N-terminal SBP (Streptavidin binding peptide) (Keefe et al., 2001) followed by a

TEV protease cleavage site. A codon optimized version of ASI3 was used. In some cases, an N-terminal FLAG-tagged Asi3 version

was used. Cells were inoculated in Synthetic Drop-out media with 2% (w/v) glucose and grown for 24 hr at 30�C. Cells were diluted

1:40 in fresh medium and incubated for additional 24 hr. Protein expression was induced by addition of 8% (w/v) galactose in 4x YEP

broth and incubated for 12 hr. Cell pellets (�90 g) were harvested by centrifugation and washed with water and buffer A (20mM

HEPES, 2mM magnesium acetate, 150mM potassium chloride). Cells were resuspended in 140ml of buffer A with 1mM PMSF

and 1.5mM of pepstatin A and transferred to a bead beater chamber (BioSpec) containing �150 g glass beads (0.5mM diameter

from BioSpec). Bead beater chamber was assembled with an ice water jacket. Lysis was induced by 40 cycles of 30’’ on/off. Glass

beadswere removed by filtration and lysates cleared by low-speed spinning at 2000xg for 18min. The supernatant was transferred to

Ti45 tubes and crude membranes were prepared by centrifugation (40,000 rpm for 45 min). Membranes were washed twice with

buffer B (20mMHEPES, 2mMMagnesium acetate, 300mM sodium chloride, 200mM sucrose). The membrane pellet was solubilized

for 90 min in 180ml of buffer B supplemented with 1%(w/v) of DMNG, 1mM PMSF, 1.5mMPepstatin A, 200ul 14,3M of b-mercaptoe-

thanol. Non-solubilized material was removed by centrifugation in Ti45 tubes for 30 min at 40000 rpm. 3 mL of High Capacity Strep-

tavidin Agarose resin (Pierce) or FLAG M2 agarose beads (Sigma) was added to detergent solubilized extract and incubated

overnight. After incubation, the material was transferred to 20 mL gravity columns and beads were washed with 25 column volumes

of buffer C (20mM HEPES, 2mMMagnesium acetate, 300mM sodium chloride, 0.3mM DMNG) by gravity flow. Bound proteins were

eluted with buffer C containing 2mMBiotin (or with 0.15 mg/ml 3xFlag-peptide). Elutedmaterial was concentrated using 50kDa cut off

centrifugal filters (Amicon Ultra, Merck) and snap frozen in liquid nitrogen until use.

Preparation of Liposomes
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-

sn-glycero-3-phospho-L-serine (DOPS), cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine

B sulfonyl) ammonium salt (18:1 Liss Rhod PE) were obtained from Avanti lipids and dissolved in chloroform. Lipids were mixed

at a percentage of (64.5:20:10:5:0.5). The chloroform was evaporated in a Rotavap until a lipid film was obtained. Lipids were resus-

pended in 1ml of diethylether and 300ul of an aqueous buffer containing 20mM HEPES/KOH (pH 7.4), 50mM potassium chloride,

5mMmagnesium acetate, sonicated for 1 min and the volume adjusted to 2ml with the aqueous buffer. Diethylether was evaporated

for 3-4 hr using a Rotavap. Liposomes were extruded through 400nm size filters (11x) and 100 nm filters (21x).

Reconstitution into proteoliposomes
Freshly prepared liposomes were partially solubilized using 2mM of DMNG for 30 min on ice. Subsequently 2.3mMof the purified ASI

complex, 0.5mMof TM68 or 0.5 mMMps3TM or 0.5 mMUbc6TMwere added and incubated for 1hr on ice. Themixture was applied to
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detergent removal spin columns (Pierce). This step was repeated 2 times and the final proteoliposomes were used for the in vitro

assays.

Ubiquitination Assay
Proteoliposomes were added to the ubiquitination reaction mix containing buffer U (20mM HEPES (pH 7.4), 2mM magnesium ace-

tate, 150mM sodium chloride, 0.5mMTCEP), 0.2mg/ml BSA 0.23 mMUba1p, 2.1 mMUbc4p, 2.3 mMUbc7p, 2.2 mMCue1p, 122.5 mM

His-ubiquitin (Boston Biochem, from yeast), 2.5mM ATP. Reactions were incubated at 30�C for 1 hr. Samples were either analyzed

directly by SDS-PAGE and fluorescence scanning using Li-Cor image or subjected to His-Ub pull down to enrich for ubiquitin con-

jugates. In the latter, reactions were solubilized in buffer D (20mM HEPES (pH 7.4), 2mM magnesium acetate, 150mM sodium chlo-

ride, 6M urea, 10mM imidazole, 1%Triton X-100) for 15min at 4�C followed by incubation with Ni-NTA agarose beads (Pierce) for 3 hr

at 4�C. Beads were washed five times with buffer E (20mM HEPES (pH 7.4), 2mMmagnesium acetate, 150mM sodium chloride, 6M

urea, 20mM imidazole, 1% Triton X-100). Bound ubiquitin conjugates were eluted using SDS buffer supplemented with 500mM Imid-

azole at 65�C for 10 min. Samples were analyzed by SDS-PAGE and fluorescence scanning using Li-Cor imager.

Membrane extraction assay
Freshly prepared proteoliposomes containing TM68 and Asi complex were immobilized via SBP-Asi2 using streptavidin magnetic

beads (Pierce) in buffer U (20mM HEPES (pH 7.4), 2mM magnesium acetate, 150mM sodium chloride, 0.5mM TCEP). Bound pro-

teoliposomes were ubiquitinated as described for the ubiquitination assay. The ubiquitination mix was removed and the beads con-

taining ubiquitinated species were incubated for 30 min at 30�C with buffer U supplemented with 500mM Cdc48, 500mMUfd1/Npl4

and 2.5mM ATP. The supernatant containing the extracted proteins was collected and subjected to a His-Ub pulldown, elution, and

analysis were performed as described above for the ubiquitination assay.

Nycodenz floatation assay
Proteoliposomes (25ml) were mixed with 25ml of 80% of nycodenz solution in buffer U and overlayed with 50ml of 30% nycodenz, 50ml

of 15% nycodenz and 50ml of buffer U. It was subjected to centrifugation in TLS55 rotor at 55000 rpm for 1 hr at 4�C. Fractions were

collected from the top layer, mixed with SDS buffer and analyzed by SDS-PAGE followed by immunoblotting and fluorescence

scanning.

In vitro crosslinking
Reconstituted proteoliposomes were incubated with 6mM of 1,4-bismaleimidobutane (BMB) for 1 hr at RT. Reactions were stopped

by the addition of SDS buffer and analyzed by SDS-PAGE and immunoblotting.

Recombinant protein expression and purification
TM68-MBP was expressed and purified from E. Coli. Plasmids containing N-terminal His14-Sumo-tag followed by TM68, the

maltose binding peptide (MBP) and a sortase recognition sequence (LPTEGG) were transformed into BL21-CodonPlus (DE3)-

RIPL (Agilent Technologies) cells. Cells were grown overnight in LB media containing Kanamycin. Next morning, cells were diluted

into terrific broth with Kanamycin and protein expression was induced by the addition of 0.5mM of IPTG and grown for additional 3 hr

at 30�C. Cells were harvested, washed with water and resuspended in buffer 20mM Tris-HCl (pH 8), 500mM NaCl, 20mM imidazole,

pH 8.0, 1mM PMSF. Cells were lysed by passing through the microfluidizer (5x, 10000 psi). The lysate was cleared by centrifugation

at 4000 rpm for 10 min. Cleared lysates were subjected to ultracentrifugation in Ti45 tubes for 45 min at 40,000 rpm to isolate a crude

membrane fraction.Membranes were resuspended in bufferW (50mMTris-HCl (pH 8.0), 500mMNaCl, 30mM imidazole,1mMPMSF)

supplemented with 1% DDM and solubilized for 90 min. Non solubilized material was removed by centrifugation in Ti45 tubes for

30 min at 40000 rpm. 3 mL of Ni-NTA Agarose beads (Thermo) was added to detergent solubilized extract and incubated for 3hr

at 4�C. After incubation, thematerial was transferred to a 20ml gravity column and beads werewashed by gravity flowwith 20 column

volumes of buffer W with 1% DDM and 20 column volumes of cleavage buffer (20mM Tris-HCl (pH 8.0), 200mM NaCl, 10mM imid-

azole,) supplemented with 1% DDM.Washed agarose beads were resuspended in 10ml of the cleavage buffer, transferred to a tube

containing 1mM of sumo protease Ulp1 (Frey and Görlich, 2014) and incubated overnight at 4�C. Beads were pelleted by centrifuga-

tion at 2000 rpm for 3 min and TM68-MBPwas collected in the supernatant. This step was repeated twice with fresh cleavage buffer.

Supernatant from all the three centrifuge spins were pooled, concentrated using 30kDa cut off centrifugal filters (Amicon Ultra,

Merck). Concentrated protein was loaded on to a Superdex 200 column (GE) equilibrated with buffer (20mM HEPES (pH 7.4),

200mM NaCl, 0.3mM DMNG). Peak fractions were collected and concentrated again. TM68 was labeled with Dy800 dye using sor-

tase as described in Stein et al. (2014). Labeled TM68 was repurified on a Superdex 200 column (GE) equilibrated with buffer (20mM

HEPES (pH 7.4), 200mM NaCl, 0.3mM DMNG), peak fractions were collected and snap frozen until use.

TM68(I36C) was purified as above except that 0.4mM TCEP was added to all the buffers and it was not labeled.

For Mps3TM purification, plasmid containing N-terminal His14-Sumo-tag followed by Mps3TM (residues 149-182), the maltose

binding peptide (MBP) and a sortase recognition sequence (LPTEGG) were transformed into BL21-CodonPlus (DE3)-RIPL (Agilent

Technologies) cells. Purification procedure was same as TM68-MBP.
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For Ubc6TMpurification, plasmid containing N-terminal His14-Sumo-tag followed by themaltose binding peptide (MBP)- Ubc6TM

(residues 225-250) and a sortase recognition sequence (LPTEGG) were transformed into BL21-CodonPlus (DE3)-RIPL (Agilent Tech-

nologies) cells. It was purified as TM68 except that after cell lysis and ultracentrifugation step to isolate a crude membrane fraction,

soluble supernatant fraction was used to purify Ubc6TM with the same buffers without detergent.

Uba1, Ubc7, Cue1, Cdc48, Npl4-Ufd1 were purified as described (Stein et al., 2014). For Ubc4 purification, a plasmid containing

N-terminal His14-Sumo-tag followed by coding sequence of Ubc4 was transformed into BL21-CodonPlus (DE3)-RIPL (Agilent Tech-

nologies) cells. Cells were grown and protein expression induced by IPTG as described above. Cells were harvested, washed with

water and resuspended in buffer 20mM Tris-HCl (pH 8), 500mM NaCl, 30mM imidazole, pH 8.0, 1mM PMSF. Cells were lysed by

passing through themicrofluidizer (2x, 18000 psi). Lysate was cleared by a centrifugation spin at 4000 rpm for 10min. Cleared lysates

were subjected to ultracentrifugation in Ti45 tube for 30 min at 40,000 rpm. 3ml of Ni-NTA Agarose beads (Thermo) was added to the

soluble fraction and incubated for 3 hr at 4�C. After incubation, the material was transferred to a 50ml gravity column and beads were

washed with 4 column volumes of buffer W and 4 column volumes of cleavage buffer supplemented with 200mM sucrose by gravity

flow. Sumo protease treatment was carried on as described above for TM68-MBP. Concentrated protein was subjected to dialysis

with buffer (20mM Tris-HCl (pH 8), 100mM NaCl, 1mM EDTA, 1mM DTT, 200mM sucrose) to remove imidazole and snap frozen

until use.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data quantification was performed using Image Studio software (Li-Cor) or ImageJ and graphs were plotted in Prism. Representative

images of at least three independent experiments are shown.

DATA AND CODE AVAILABILITY

Raw data generated in this study and used in the preparation of the figures has been deposited as Mendeley Dataset and is available

at https://data.mendeley.com/datasets/37g4k2zvt9/draft?a=a91d9772-651b-4684-9d08-b7dab6849ecb.
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