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1 Introduction and summary

Our goal is to study the quantum physics of two-dimensional SQCD with N = (0, 2) super-

symmetry, i.e. a gauge theory with U(Nc) or SU(Nc) gauge group and matter fields (quarks

and squarks) in the fundamental representation. Following the standard terminology of the

four-dimensional QCD, we shall refer to Nc as the number of colors and the number of

matter fields as the number of flavors.

In two-dimensional theories with N = (0, 2) supersymmetry, however, there are two

types of matter multiplets, namely the Fermi multiplets and (0, 2) chiral multiplets whose

lowest components are fermionic and bosonic, respectively. Therefore, allowing both types

of multiplets, we define (0, 2) SQCD as a gauge theory with Nf Fermi quark multiplets

and Nb chiral multiplets, plus the minimal completion of the theory that cancels gauge

anomaly and yields a normalizable vacuum for generic values of Nf and Nb. The resulting

field content is shown in figure 1.

It turns out that such theories enjoy a very non-trivial triality symmetry [1], which

can be best described by introducing

N1 = 2Nc +Nf −Nb , N2 = Nb , N3 = Nf (1.1)
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Figure 1. The field content of (0, 2) SQCD with SU(Nc) gauge group, Nf (resp. Nb) Fermi (resp.

chiral) multiplets in the fundamental representation, and 2Nc − Nb + Nf chiral multiplets in the

anti-fundamental representation. A similar theory with U(Nc) gauge group requires two extra Fermi

multiplets in the determinant representation to cancel the abelian gauge anomaly.

and which, among other things, acts by a cyclic permutation of these numbers N1 → N2 →
N3 → N1. In the present paper, however, the triality will play a secondary role and our

aim will be to understand the physics of (0, 2) SQCD in a fixed duality frame, without

relying on the triality.

The low energy behavior of (0, 2) SQCD is summarized in the “phase diagram” in

figure 2. The supersymmetry is dynamically broken except in the shaded region [1]. On

the other hand, ’t Hooft anomaly matching condition suggests that the theory is gapless at

all the points in the phase diagram. Together these statements imply that the low energy

physics is described by an N = (0, 2) superconformal field theory in the shaded region and

by a (non-supersymmetric) conformal field theory everywhere else. The flavor symmetries

of the theory are promoted to affine Kac-Moody symmetries (to put this principle in a

broader context, see e.g. [2–5]).

When the supersymmetry is not dynamically broken, the affine Kac-Moody symmetries

are purely left-moving. The physical Hilbert space H consists of states |ψ〉 := |ψL〉 ⊗
|ψR〉 with |ψL〉 ∈ HL and |ψR〉 ∈ HR furnishing a representation (or module) of the left-

moving, i.e. holomorphic, affine algebra and right-moving, i.e. anti-holomorphic, N = 2

superconformal algebra respectively. The physical pairing of left-moving and right-moving

modules is dictated by modular invariance. We propose a novel modular invariant pairing

between the modules of affine symmetry and modules of N = 2 symmetry, thus solving for

the complete spectrum of the low-energy SQCD.

Below we present a brief summary of this result, along with several other salient

features of (0, 2) SQCD that we find:

• In many two-dimensional models with SU(Nc) gauge group and massless matter

(in fundamental or adjoint representation) there is strong numerical evidence that

spectrum of the quantum theory contains no massless states, see [6–9] (and [10–12]

for further discussion). On the contrary, we find that the spectrum of (0, 2) SQCD

exhibits accumulation of light states and, in particular, has many massless states

(that flow to an interacting CFT).

• The infra-red CFT has an affine symmetry on the left-moving side and the N = 2

superconformal symmetry on the right-moving side. The gauge theories have a crucial
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Figure 2. The phase diagram of U(Nc) (0, 2) SQCD as a function of Nc and Nf (with Nb kept

fixed).

property that their left-moving central charge matches with the Sugawara central

charge of the affine symmetry. This determines the holomorphic stress tensor of the

fixed point to be the Sugawara stress tensor and leads to a rational CFT.

• The modular invariant pairing of modules of affine symmetry and N = 2 symmetry

that solves the gauge theory may be of merit on its own. For example, these models

could be relevant in the context of heterotic string phenomenology. In spirit, they

are similar to Gepner points in Calabi-Yau moduli space [13] and, in addition, do

not have any exactly marginal deformations.1 This could be an attractive aspect for

developing “exactly solvable string phenomenology”.

• In many two-dimensional models, it was found that low-lying states are surprisingly

pure in a sense that mass eigenstates are almost exactly eigenstates of string length [6,

8, 14]. We find that (0, 2) SQCD has qualitatively different distribution of mass

eigenstates versus parton number, illustrated in figure 17.

• We find continuous massive spectrum which is expected to be a general feature of

2d gauge theories with adjoint scalars [12, 14]. An interesting feature of the massive

spectrum in N = (0, 2) SQCD is that it is nearly flat.

1Much like Gepner models “solve” the GLSM description of Calabi-Yau sigma-models at special points

on the conformal manifold, the conformal theories discussed here solve (0, 2) gauge theories. There are

several crucial differences, however. First, unlike gauged linear sigma-models, the (0, 2) gauge theories

discussed here are non-abelian. The second crucial difference is that abelian N = (2, 2) gauge theories often

have exactly marginal deformations that lead to unwanted moduli in four-dimensional physics.
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The paper is organized as follows. In section 2 we review (0, 2) SQCD and discuss

a variety of its aspects such as RG flow to non-linear sigma-model and, further, to a

CFT where one sometimes finds a flavor symmetry enhancement. In section 3, we focus

our attention on theories that do preserve supersymmetry in the infra-red and propose a

solution to the complete low-energy spectrum of (0, 2) SQCD. The general case is illustrated

in great detail with the simplest non-trivial example of the N1 = N1 = N3 = 2 theory,

which also happens to exhibit a peculiar enhancement of the flavor symmetry in the infra-

red to the exceptional group E6, and whose modular invariant partition function can be

conveniently expressed in terms of affine E6 characters. In section 4 we study massive states

of the quantum theory, not limiting ourselves to theories which preserve SUSY in the infra-

red. We employ discrete light cone quantization to determine the spectrum of “η′ mesons”

and similar color-flavor singlets that dominate in the Veneziano limit. Appendices contain

relevant supplementary material and further details. In particular, appendix A compiles a

number of useful facts about affine characters and level-rank duality.

2 Aspects of (0,2) SQCD

As we already mentioned earlier, sometimes it will be convenient to go from the data

(Nc, Nf , Nb) that specifies the field content of the basic N = (0, 2) SQCD to a more

symmetric set of labels (N1, N2, N3) related to the former via (1.1). In particular, the rank

of the gauge group is Nc = (N1 + N2 − N3)/2. The representation of matter multiplets

under the gauge and flavor symmetry group is,

Φ Ψ P Γ labels

SU(Nc) � � � 1 α, β, γ

SU(N1) 1 1 � � a, b, c

SU(N2) � 1 1 � r, s, t

SU(N3) 1 � 1 1 i, j, k

(2.1)

Note, in particular, that the combination Tr ΓΦP is a singlet under all of these symmetries;

it will play an important role as the superpotential in our models. Specifically, we have

LJ =

∫
dθ+ ΓsaJ

a
s (Φ, P )|

θ
+

=0
(2.2)

where

Jas (Φ, P ) = mΦα
sP

a
α . (2.3)

Note, in 2d the canonical (mass) dimensions of various fields are

[φ] = 0 , [ψ±] =
1

2
, [Aµ] = [g] = 1 , [λ−] =

3

2
, [D] = 2 . (2.4)

In particular, it follows that the coefficient of the N = (0, 2) superpotential (2.3) has mass

dimension 1, which explains why we denote it by m. Moreover, since the gauge coupling

g also has mass dimension 1, the theory has only one continuous dimensionless parameter

– 4 –
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Figure 3. The quiver diagram of N = (0, 2) SQCD with U(Nc) gauge group. The solid lines denote

bi-fundamental chiral multiplets and dotted lines denote bi-fundamental Fermi multiplets. We have

explicitly depicted the two Fermi multiplets in the determinant representation of the gauge group

with wiggly lines.

y := m
g , such that y → ∞ is the “weak coupling” limit, while y → 0 corresponds to the

“strong coupling”.

When the gauge group of the theory is U(Nc) instead of SU(Nc), two extra Fermi

multiplets in the determinant representation of the gauge group are required to cancel the

anomaly of the abelian part of the gauge group. We denote them as Ω1 and Ω2. The

field content of this theory is shown in figure 3. The U(Nc) theories, henceforth denoted

TN1,N2,N3 , will feature prominently in section 3.

The charge conjugation operator acts on the theory by conjugating all the global

symmetry representations. It maps the theory TN1,N2,N3 to TN2,N1,N3 . In what follows, it

will convenient to define

N :=
N1 +N2 +N3

2
, ni := N −Ni. (2.5)

In this notation, the rank of the gauge group is Nc = n3.

In general, the trace anomaly kF for flavor symmetry F is given by

kF = Tr γ3 JF · JF . (2.6)

We can easily calculate

kSU(N1) = −n1

2
, kSU(N2) = −n2

2
, kSU(N3) = −n3

2
. (2.7)

In addition to the non-abelian flavor symmetries, the Fermi multiplets Ω1 and Ω2 have an

SU(2)Ω symmetry rotating them. For our purposes, it is convenient to look at its U(1)

subgroup. Including this U(1), the classical theory has a total of four abelian symmetries

U(1)(i) i = 1, . . . , 4. Unlike SU(N) symmetries, the U(1) symmetries can have mixed

anomalies. We choose them so that their mixed anomalies vanish. The charges of the

matter fields under U(1)(i) are listed below:

Φ Ψ P Γ Ω1 Ω2

U(1)(1) 0 0 1 −1 −N1 0

U(1)(2) −1 0 0 1 −N2 0

U(1)(3) 0 1 0 0 0 N3

U(1)(4) 1 1 −1 0 n3 −n3

– 5 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
4

They have

kU(1)(1) = −NN1

2
, kU(1)(2) = −NN2

2
, kU(1)(3) = −NN3

2
, kU(1)(4) = 0. (2.8)

The symmetries U(1)(i) for i = 1, 2, 3 are non-anomalous, i.e. they have vanishing mixed

anomaly with the gauge symmetry but U(1)(4) is anomalous. The mixed anomaly between

the gauge symmetry and U(1)(4) is 2N . It breaks the symmetry to Z2N ⊂ U(1)(4). In fact,

as we can see from the table, the Z2 ⊂ Z2N is a subgroup of the abelian part of the gauge

group and the remaining ZN is a subgroup of U(1)(1)×U(1)(2)×U(1)(3). This means that

the classical U(1)(4) symmetry is completely destroyed by quantum anomaly.

The superconformal symmetry relates the right-moving central charge cR to the R-

symmetry anomaly and the left-moving central charge cL is computed from cR via gravita-

tional anomaly k,

cR = 3Tr γ3R2, cR − cL = k = Tr γ3. (2.9)

Here R is the exact superconformal R-symmetry of the theory that extremizes cR. Tr γ3 is

simply the difference between the number of chiral multiplets and Fermi multiplets. For

TN1,N2,N3 we get,

cR =
3

4

(N1 +N2 −N3)(N1 −N2 +N3)(−N1 +N2 +N3)

N1 +N2 +N3
,

cL = cR −
1

4
(N2

1 +N2
2 +N2

3 − 2N1N2 − 2N2N3 − 2N3N1) + 2. (2.10)

The central charges cR and cL as well as flavor symmetry anomalies are invariant under

cyclic permutation of Ni’s, as expected from triality.

2.1 RG flow

The first hints about the balance between massive and massless states as well as the role

of interactions in our N = (0, 2) SQCD can be obtained by comparing the central charge

of free constituents in figure 1 to that of an IR fixed point found in [1]. Specifically, in the

triality frame (1.1) we have

c
(IR)
R − c(UV)

R = −
3(N1 +N2 −N3)

(
N2

1 +N2
2 +N1N3 +N2N3

)
2(N1 +N2 +N3)

. (2.11)

First, note that, in accordance with the Zamolodchikov’s c-theorem [15], we always have

c
(IR)
R − c

(UV)
R < 0. For the theories that preserve supersymmetry in the infra-red, the

plot of 1
12N2 (c

(IR)
R − c(UV)

R ) is presented in figure 4. In this plot, νi are the “homogeneous

coordinates” on the parameter space

νi :=
Ni

N1 +N2 +N3
, i = 1, 2, 3 (2.12)

that are also convenient for studying the large-Nc limit and will play role later. As a

– 6 –
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Figure 4. The plot of c
(IR)
R −c(UV)

R as a function

of ν1 and ν2.

function of ν1 and ν2, the difference (2.11)

attains a maximum value of c
(IR)
R − c(UV)

R = 0

at ν1 + ν2 = 1
2 , i.e. at N1 +N2 −N3 = 0. At

these values of Ni (or, equivalently, νi) the

right-moving central charge cR does not flow

too much, indicating that the spectrum of

the quantum theory is mostly massless and is

not too much “distorted” by the interactions.

This happens for a good (physical) reason be-

cause N1+N2−N3
2 is precisely the rank of the

gauge group in the duality frame at hand.

For larger values of Nc the RG flow of cR is

more significant.

The other “triangle inequalities”, N2 + N3 ≥ N1 and N1 + N3 ≥ N2, in the triality

frame (1.1) read Nc ≤ Nb and Nc +Nf ≥ Nb, respectively. In particular, their boundaries

— shown in figure 2 — correspond to the regimes where cIR
R is well approximated by the

central charge of free ΦΨ and ΨP mesons, respectively (with P , Γ or Φ, Γ integrated out

in each case).

The most convenient description of (0, 2) SQCD depends on the energy scale at which it

is studied. At ultra-low energies it is best to use the language of CFT while at intermediate

energies, it is most convenient to use the description in terms of non-linear sigma-models

that we present next. As the gauge theory flows to a non-linear sigma-model, the gauge

coupling and the J-term coupling m are washed out, i.e. they correspond to irrelevant

deformations of the sigma-model, cf. (2.4). The FI parameter t becomes the Kahler modulus

of the target space. Even though it is a marginal modulus, it can have a non-vanishing

beta function. When the theory flows to the infra-red fixed point, the RG flow can be

seen as,

Tgauge(g,m, t)
RG flow−−−−−−−−→ TNLSM(t)

RG flow−−−−−−−−→ TCFT.

The target of a (0, 2) non-linear sigma-model is a holomorphic vector bundle E →M

over a Kähler manifold M . The anomaly cancellation requires ch2(E) = ch2(TM). In

our case, the target space is the vacuum moduli space of the gauge theory. It is obtained

by solving the D-term and “J-term” constraints modulo the gauge symmetry action. Let

us analyze the sigma model description of the theory TN1,N2,N3 as a function of the FI

parameter t := ζ + iθ. As the theory has an anomalous U(1)(4) symmetry, the θ-angle is

unphysical. The D-term and J-term equations are

P aαP
β
a − Φβ

sΦ
s
α − ζδβα = 0 (2.13)

P aαΦα
s = 0 . (2.14)

They imply Φ = 0 (resp. P=0) for ζ > 0 (resp. ζ < 0). Dividing by the U(n3) gauge group,

we get the space Gr(n3, N1). The Fermi fields engineer fibers of the holomorphic vector

bundle. As the field Ψ transforms in the fundamental representation of the gauge group,

– 7 –
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it forms a fiber of the universal subbundle (tautological bundle) S. The field Γ is neutral

but it satisfies the J-term relation

ΓsaP
a
α = 0. (2.15)

Therefore, Γ furnish a fiber of the universal quotient bundle (orthogonal bundle) Q, which

is defined through the short exact sequence:

0 −→ S −→ ON1 −→ Q −→ 0. (2.16)

All in all, for ζ > 0, the theory TN1,N2,N3 flows to the nonlinear sigma model with the

target space,

S⊕N3 ⊕Q⊕N2 −→ Gr(n3, N1). (2.17)

For ζ < 0, the D-term equation gives vev only to Φ. Similar arguments lead to the target

space2 S∗⊕N3 ⊕ Q∗⊕N1 −→ Gr(n3, N2). This space is isomorphic to S⊕N1 ⊕ Q⊕N3 −→
Gr(n1, N2) thanks to the equivalence relations

S → Gr(k, n) ∼= Q∗ → Gr(n− k, n), (2.18)

Q→ Gr(k, n) ∼= S∗ → Gr(n− k, n). (2.19)

By cyclically permuting Ni’s we know that the theory TN2,N3,N1 also flows to the same

target space but for ζ ′ > 0, where ζ ′ is its own FI parameter. This suggests that the

parameter spaces of the theories related by triality are glued to each other as shown in

figure 5. The RG flow is such that they flow to the same fixed point, as expected. In fact,

the figure demonstrates a stronger version of triality that is valid even away from the fixed

point.

The target space of SQCD and its behavior under triality was also discussed in the

recent paper [16].

2.2 “Gluing” via level-rank duality

The triality implies that infra-red CFT is labeled by the triple (N1, N2, N3) modulo cyclic

permutations. As pointed out earlier, the Z2 permutation of only two Ni’s is charge

conjugation. At the fixed point, the simple global symmetry F of the theory is enhanced

to the affine3 symmetry F2|kF |. The chirality of the current algebra is determined by the

sign of kF . As all trace anomalies are negative, all the affine current algebras are left-

moving. It is instructive to represent the IR fixed point as a directed triangle inscribed in

a circle of circumference N , shown in figure 6. Each side of the triangle represents a simple

flavor symmetry factor. The arc length on the left is the rank and arc length on the right

is the level. The supersymmetry preserving condition ni ≥ 0 is manifest in this picture.

Similar graphical structure has appeared in [17], and for a good reason, see section 3.

The picture generalizes to quiver gauge theories as well. Consider the theory with two

gauge nodes described in figure 7. It can be thought of as “gluing” two SQCD building

2We have also conjugated the Fermi multiplets Γ using equivalence between J-term and E-term inter-

actions.
3To avoid excessive notation, we use the same symbol for the affine algebra and its finite Lie subalgebra.

The meaning in each case should be clear from the context.

– 8 –
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Figure 5. Phases of gauge theories related by triality. Their parameter spaces can be glued to

each other as shown.

Figure 6. The oriented triangle represents the N = (0, 2) SCFT labeled by (N1, N2, N3) modulo

cyclic permutations.

blocks. This is schematically shown in the figure. The condition for anomaly cancellation

requires that the gauge group rank of one theory is the flavor symmetry rank of the other.

At low energies, this means that the two CFTs corresponding to component SQCDs can

be glued to each other if they have level-rank dual affine symmetries.

The resulting CFT is elegantly understood as an inscribed quadrilateral obtained by

gluing two triangles. Just like the SQCD TN1,N2,N3 , the symmetries of the quiver theory

are labeled by the edges of the quadrilateral. The rank is the arc length on the left and

the level is the arc length on the right. A dual description of the same theory is shown in

figure 8. It corresponds to the other triangulation of the quadrilateral. The equivalence of

different triangulations follows from [1]. This procedure can be repeated multiple times to

obtain a quiver with any number of gauge nodes. Although the gluing can be performed in

any triality frame, in order to repeat the process outlined in figure 7, we need to perform a

triality operation on the “boundary” gauge node so that the glued flavor symmetry is the

one realized by Ψ type Fermi fields.

– 9 –
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Figure 7. A two-node quiver (a) describes a (0, 2) theory obtained by “gluing” two copies of the

elementary SQCD (b). In the low-energy SCFT this gluing process is nicely represented by gluing

inscribed triangles (c).

Figure 8. The dual gauge theory that flows to the same fixed point as the one in the previous

figure.

2.3 Symmetry enhancement in the Infra-Red

For certain special values of Ni’s, the theory TN1,N2,N3 has an enhanced global symmetry

at low energy. This is a consequence of the triality and the following simple fact: the

fundamental representation of U(1) is the same as the determinant representation.

The most basic enhancement occurs for N2 = N3 − N1 + 2, which implies n3 = 1.

The fundamental fermions Ψ and determinant fermions Ω transform in the same way. The

SU(2)Ω flavor symmetry acting on Ω and SU(N3) flavor symmetry acting on Ψ (and a

U(1)) combine to SU(N3 + 2) that rotates Ψ and Ω into each other.

When we further specialize to N1 = 2, we get N2 = N3 and n2 = 1. This means the

gauge group in the frame TN3,N1,N2 is also U(1). Similar to the above, in this frame SU(N2)

and SU(2)Ω combine to form SU(N2 +2). Together, these two enhancements imply a much

larger symmetry at the IR fixed point, namely SU(2) × SU(2N3 + 2).

– 10 –
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Figure 9. Extended Dynkin diagram of E6, viewed from three triality frames.

Now we see how to push this even further. We take Ni = 2 for all i = 1, 2, 3. The

gauge group in all three triality frames is U(1). Each of the three SU(2) factors combines

with SU(2)Ω to form SU(4). This implies that the flavor symmetry is enhanced to E6 in

the infra-red. This is explained in figure 9. It would be interesting to study symmetry

enhancement for special cases of multi-node quiver theories.

3 Exact solution of the IR physics

The SQCD that preserves supersymmetry in the infra-red generically flows to an interacting

superconformal fixed point. In this section we will study the SCFT at the fixed point in

great detail. We identify the symmetry algebra in left-moving and right-moving sectors and

use modular invariance of the partition function to pair their representations and derive

the physical spectrum at the fixed point. The partition function can be used to identify

the cohomology and to obtain the superconformal index (a.k.a. flavored elliptic genus in

the NS-NS sector).

From our analysis in section 2, we know that the left-moving affine current algebra is

H :=
3∏
i=1

SU(Ni)ni ×U(1)NNi (3.1)

and the Sugawara central charge for H is

cH =
3∑
i=1

(
ni(N

2
i − 1)

ni +Ni
+ 1

)
. (3.2)

Here we used the formula cg = k dim g/(k + h∨g ) for an affine symmetry g at level k, with

the dual Coxeter number h∨g . Remarkably, the central charge in (3.2) is exactly equal to

the left-moving central charge cL of the gauge theory, see eq. (2.10). This implies that

holomorphic stress tensor is equal to the Sugawara stress tensor of the current algebra

and hence the low-energy spectrum of TN1,N2,N3 consists of states of the type |ψ〉L ⊗ |ψ〉R

– 11 –
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where |ψ〉L belongs to a module of the corresponding chiral WZW model. The spectrum

simplifies immensely as there are only finitely many such modules labeled by the integrable

representations λ of the current algebra:

H =
⊕
λ

HλLWZW ⊗HλR . (3.3)

Here HλLWZW is the module of left-moving H WZW model labeled by λ. In addition to

constraining the left-moving spectrum, this decomposition also defines the right-moving

subspace HλR that forms a (not necessarily irreducible) representation of N = 2 supercon-

formal algebra.

The partition function of the CFT in the NS-NS sector is defined as

Z(τ, ξi; τ , η) := TrH e
2πi(τL0+

∑
i ξiH

i
0−τL0−η J0) q = e2πiτ , y = e2πiη, zi = e2πiξi .

Here, τ is the complex structure of the torus, the chemical potential η couples to the

R-symmetry in the right-moving sector and the chemical potentials ξi couple to Cartan

generators H i
0 of the global symmetries H in the left-moving sector. We will sometimes use

the ‘exponentiated’ variables q, y and zi as defined above. Quantizing the theory in the

NS-NS sector means we have to impose anti-periodic boundary conditions for the fermions

along the spatial circle, and the absence of (−1)F insertion means that anti-periodic bound-

ary conditions along the temporal circle are used. This implies that the partition function is

invariant only under the subgroup of the modular group, Γ̃ ⊂ SL(2,Z), generated by the el-

ements S and T 2, cf. figure 10. Although the classical argument suggests that the partition

function should be strictly invariant under this modular subgroup, quantum mechanically

this is not true. The theory has a modular anomaly which spoils the S-invariance. Instead

we expect

Z

(
−1

τ
,
ξi
τ

;−1

τ
,
η

τ

)
= φ(τ, ξi)φ(τ , η)Z(τ, ξi; τ , η)

φ(τ, ξi) = exp

(
iπ
cL
12

(
τ +

1

τ

)
− iπ

∑
ij 2kijξiξj

τ

)
φ(τ , η) = exp

(
−iπ cR

12

(
τ +

1

τ

)
− iπ cR

3

η2

τ

)
, (3.4)

where kij is the mixed anomaly for symmetries H i
0 and Hj

0 . The modular anomaly factors

φ and φ come from holomorphic and anti-holomorphic sectors respectively.

From the structure of the Hilbert space (3.3), the partition function of the gauge theory

fixed point has the form

Z(τ, ξi; τ , η) =
∑
λ

χλ(τ, ξi)Kλ(τ , η), (3.5)

where χλ(τ, ξi) is the character of a module λ of the affine algebra H and Kλ(τ , η) is defined

abstractly as the N = 2 character over the right-moving module HλR . The affine characters

are reviewed in appendix A. They transform under the modular S-transformation as,

χλ(−1/τ, ξi/τ) = φ(τ, ξi)Sλµ χµ(τ, ξi) (3.6)
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Figure 10. The fermion boundary conditions used to define the partition function. They are invari-

ant under the S-transformation. However, the T -transformation changes the temporal boundary

conditions and hence the partition function. It also destroys the S-invariance as the spatial and

temporal boundary conditions no longer match.

where φ(τ, ξi) is precisely the holomorphic modular anomaly defined in (3.4) and Sλµ is

a constant matrix known as the modular S-matrix. Because (τ, ξi) → (τ,−ξi) under S2,

it obeys S2 = C, where C is the charge conjugation operator. The charge conjugated S-

matrix CS is simply the complex conjugate S, so we have SS = 1. The S-invariance of the

partition function (3.5) implies that the right-moving characters should transform as

Kλ(−1/τ , η/τ) = φ(τ , η)SλµKµ(τ , η) . (3.7)

The presence of anti-holomorphic modular anomaly φ(τ , η) simply means that Kλ should

be a character of the anti-holomorphic N = 2 algebra with central charge cR. The S-matrix

is identical to the one for the anti-holomorphic copy of H. More importantly, it is also the

one that transforms the level-rank dual characters. To be more explicit, let Ht be the

level-rank dual of H, or

Ht =

3∏
i=1

SU(ni)Ni ×U(1)Nni . (3.8)

Under level-rank duality, the equivalence classes of λ modules of H are mapped to equiv-

alence classes of λt modules of Ht. The map is nicely encoded in the level-rank duality

matrix Lλλt . This is reviewed in appendix A. Then, the S-matrix for dual characters obeys∑
µµt

SλµLµµtSµt λt = Lλλt . (3.9)

To summarize, we have deduced the following properties of Kλ(τ , η) so far:

• It is a character of anti-holomorphic N = 2 algebra with the central charge cR.

• It transforms as a character of holomorphic Ht symmetry under modular S-transfor-

mation.

• It is a singlet under all affine symmetries (except, of course, the U(1) R-symmetry of

the N = 2 algebra).
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Searching for an object with these properties, a careful reader will notice that characters

of the supersymmetric Kazama-Suzuki coset [G]/[Ht] fit the bill perfectly (we use square

brackets to denote supersymmetry). Before committing to a specific numerator [G] let us

briefly review supersymmetric current algebras.

The supersymmetric extension [g]k of the current algebra g at level k is obtained by

adding free adjoint fermions ψa to the WZW model realizing g at level kbos. The current

Ja of the supersymmetric theory gets a contribution from the fermions too,

Ja = Jabos −
i

k
fabcψ

bψc . (3.10)

Here Jabos is the current of the bosonic WZW model. Its level is determined from the OPE

of free fermions, kbos = k− h∨g . The Sugawara stress tensor is constructed out of the total

currents Ja, and its central charge is

c[g]k =

(
kbos

k
+

1

2

)
dim g . (3.11)

The first term here is the contribution from the bosonic WZW model and the second

term is the fermion contribution. The supersymmetric WZW model can be gauged in a

supersymmetric way to produce the supercoset [g]/[h]. For generic supercosets, the theory

has N = 1 supersymmetry, but it can be enhanced to N = 2 supersymmetry if the ordinary

Lie coset g/h is Kähler. This is known as the Kazama-Suzuki construction [18] of the N = 2

supercoset (or, the KS supercoset for short).

In our theory, the denominator of the KS supercoset [G]/[Ht] is the supersymmetric

affine algebra,

[Ht] =

3∏
i=1

[U(ni)]N . (3.12)

The central charge is simply the difference c[G]/[Ht] = c[G] − c[Ht]. Comparing it to the

right-moving central charge (2.10) of the gauge theory, we get a remarkably simple result:

c[G] = N2 . (3.13)

When combined with the most obvious condition Ht ⊂ G, this suggests

[G] = [U(N)]N = [U(1)]N2 × [SU(N)]N . (3.14)

Then, the ordinary Lie coset G/Ht is Kähler and the supersymmetry is indeed enhanced

to N = 2, as desired. The bosonic level of [SU(N)]N is 0; it admits only the trivial

representation. So, effectively, the bosonic part of [G] is simply U(1)N2 . This Kazama-

Suzuki coset also appeared in [17].

The characters of the supercoset CΛ,υ
λt are labeled by a representation Λ of the (bosonic

part of [G]) ∼ U(1)N2 , a representation υ of the coset fermions under SO(dimG/Ht) at

level 1, and a representation λt of the bosonic part of [H]. For brevity, let us introduce

D := dimG/Ht. The supercoset characters are defined by the branching rule [18],

χ
U(1)N2

Λ (τ , 0)χSO(D)1
υ (τ , ξl = η) =

∑
λt

CΛ,υ
λt (τ , η)χHt

λt

(
τ , ξk =

∑
α∈∆+

αk

h∨G
η

)
. (3.15)
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Here, ξl and ξk are the chemical potentials for the Cartan generators of SO(D) and Ht,

respectively, while ∆+ is the set of positive roots in G/Ht. Positive roots are the holo-

morphic directions in the coset. The choice of ∆+ is equivalent to a choice of complex

structure, and the coset characters do depend on this choice. In our case, there are only

two choices of complex structure and they are related to each other by charge conjugation.

In section 3.3 we will see how to deal with multiple complex structures. For now, we can

ignore this issue.

The label Λ takes values in {1, . . . , N2} corresponding to U(1)N2 representations. The

group SO(D)1 admits four representations: singlet (0), vector (v), spinor (s) and conjugate

spinor (s). It is easy to see that the characters of the representations

Λ0 :=

N⊕
r=1

rN, υ0 := 0⊕ v (3.16)

are invariant under modular S-transformations modulo modular anomaly. In fact, they are

partition functions of free fermions with anti-periodic boundary conditions along spatial

and temporal directions, best expressed in terms of q-theta functions4

χ
U(1)N2

Λ0
(τ , 0) = θ

(
−q

1
2 ; q
)

χSO(D)1
υ0 (τ , ξl = η) = θ

(
−q

1
2 y; q

)D
. (3.17)

Now we are ready to make a proposal for the character of the right-moving sector of the

low-energy theory:

Kλ(τ , η) =
∑
[λt]

LλλtC
Λ0,υ0
λt (τ , η) . (3.18)

Both the coset characters CΛ0,υ0
λt and the level-rank duality matrix Lλλt are identical for the

representations λt that belong to the same equivalence class [λt], see appendix A. The sum

has been performed only over the equivalence classes to avoid over-counting. Thanks to the

S-invariance of the left-hand side of (3.15), this choice of Kλ(τ , η) has all the properties

listed above. Substituting it into (3.5) gives us the partition function of the gauge theory

fixed point.5 More generally, we propose:6

H =
⊕
λ [λt]

Lλλt HλLWZW ⊗Hλ
t

RKS (3.19)

where the right-moving module HλtRKS is the module of the Kazama-Suzuki coset [G]/[Ht]

labeled by Λ0, υ0 and λt and the left-moving HλLWZW is the module of H WZW model

labeled by λ. This is the complete Hilbert space of the low-energy sector of the N = (0, 2)

SQCD in the NS-NS sector.

4Defined as θ(a; q) =
∏∞
i=0(1− aqi)(1− qi+1/a).

5Instead of υ = υ0, we could also choose another S-invariant combination υ = s ⊕ s. This choice

corresponds to periodic boundary conditions for the right-moving fermions along the spatial circle and

destroys Γ̃ invariance of the partition function.
6Instead of summing over the equivalence class [λt] if we sum over all the representations λt, we simply

get n1n2n3 copies of the same Hilbert space.
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In the special case when all Ni’s are equal, the triality implies a Z3 symmetry that cycli-

cally permutes flavor symmetry factors SU(Ni)ni × U(1)NNi . In this case, the theory also

has a Z2 symmetry that is a combination of charge conjugation and the odd permutation.

In section 3.2 we demonstrate both of these symmetries in a concrete example.

3.1 Q-cohomology and the index

Among the two supercharges Q
+

and Q
−

of the (0, 2) gauge theory, we can pick either

one to define cohomology. Here the superscripts ± stand for the R-symmetry charge. Let

us pick Q = Q
+

. By definition, the cohomology consists of states that are annihilated by

Q modulo those of the form Q|ψ〉 for some |ψ〉. Important property of the Q-cohomology

is that it remains invariant under the RG-flow and, therefore, can be computed using the

low-energy solution of the gauge theory. At low energies, we have Q = G
+
− 1

2
, where G

+
(z) is

one of the anti-holomorphic supercurrents in the NS sector. It obeys the anti-commutation

relation

{Q,Q†} = 2L0 − J0 (3.20)

where hermitian conjugate operator Q† is simply the conformal supercharge G
−
1
2
. The

harmonic representatives of the cohomology (i.e. the states for which {Q,Q†} = 0) can

only appear as primaries of the right-moving modules. Denoting such modules by λ̂t and

their primaries by |ψ〉λ̂tR , the Q-cohomology of the theory is given by

H∗(Q) =
∑
λ [λ̂t]

L
λ λ̂t
HλLWZW ⊗ |ψ〉λ̂

t

R . (3.21)

The “cohomological partition function” (= the Poincaré series of H∗(Q)) can be obtained

from the full partition function (3.5) by setting y → y q−
1
2 and taking the limit q → 0

(while keeping q fixed). Indeed, only the states with 2L0 − J0 = 0 contribute in this limit.

It would be interesting to compute the cohomology or the Poincaré polynomial directly

in the gauge theory, i.e. in the UV, and to compare with the result obtained from the

IR SCFT.

The superconformal index in the NS-NS sector is defined as

I = Tr(−1)F qL0z
Hi

0
i e−β(L0− 1

2
J0). (3.22)

The factor (−1)F ensures cancellation between bosonic and fermionic states with L0−1
2J0 6=

0 and makes the index independent of β. This factor can be engineered in the partition

function Z(q, zi; q, y) by the modular T -transformation τ → τ + 1: the multiplicative shift

in q gives the extra factor (−1)2(L0−L0) which is same as (−1)F . Alternatively, we can

also understand this factor as a result of changing the temporal boundary condition from

anti-periodic to periodic via a T -transformation. This is illustrated in figure 10.

Finally, in order to obtain the index from the partition function we need to set y = q−
1
2 .

This limit gets rid of the fugacity y that couples to a non Q-commuting charge. Moreover,

q now couples to L0 − 1
2J0, just like e−β . As expected, this limit is independent of q. It

should be noted that the partition function ceases to have any modular properties after
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(·,−2) (·, 0) (·, 2) (�, 1) (�, 3) (�,−1)

−1 1 1

0 1 1

1 1 1

Table 1. Paring of level-rank dual modules for H = SU(2)1 × U(1)6 and Ht = U(1)3. The entries

not shown are zero.

taking this limit. This is expected because the superconformal index in the NS-NS sector

does not have any modular properties. It is defined with anti-periodic boundary condition

for fermions along the spatial circle and periodic boundary conditions along temporal circle.

In the next subsection we will study the case of theory T222. We will compute its

spectrum, partition function, and the superconformal index. We will also match the index

with the one computed in the UV gauge theory.

3.2 A case study: T222

The theory T222 is the gauge theory in figure 3 with all Ni = 2. The left-moving affine

symmetry H and its level-rank dual Ht are

H =
(

SU(2)1 ×U(1)6

)3
Ht =

(
U(1)3

)3
. (3.23)

It is convenient to split their representation labels λ and λt into the triples (λ1, λ2, λ3)

and (λt1, λ
t
2, λ

t
3) respectively. The label λi denotes representation with respect to the i-th

copy of SU(2)1 ×U(1)6 and takes the values in λi ∈ {·,�} ⊗ {−2,−1, 0, 1, 2, 3}. Similarly,

the label λti denotes a representation of the i-th copy of U(1)3 and takes the values in

λti ∈ {−1, 0, 1}. The level-rank duality matrix Lλλt is given in table 1.

Earlier in this section, we described how to reduce the problem of finding the spectrum

of this gauge theory to the problem of finding the spectrum of the Kazama-Suzuki coset

[G]/[Ht] = [U(3)]3/[U(1)3]3. The central charge of this coset is 1, which should ring a bell.

Indeed, the coset at hand is the familiar N = 2 minimal model with c = 1. It has three

primaries labeled by (h,Q) ∈
{

(0, 0) ,
(

1
6 ,

1
3

)
,
(

1
6 ,−

1
3

)}
where h and Q are eigenvalues of L0

and J0 respectively. The character of N = 2 algebra at c = 1 can be written explicitly:7

χN=2
(h,Q)(q, y) = (q; q)−1

∞
∑
n∈Z

q
3
2

(n+Q)2yn+Q . (3.24)

It takes the form of an affine U(1)3 character. This is because the U(1) R-symmetry is an

affine symmetry at level 3 and the stress tensor is just the Sugawara stress tensor for this

symmetry.

The right-moving characters Kλ(τ , η) are found using (3.15) and (3.18). Specializing

to the present case,

θ(−q1/2)θ(−yq1/2)3 =
∑
λt

CΛ0,υ0
λt1,λ

t
2,λ

t
3
(q, y)χ

U(1)3
λt1

(q, y
2
3 )χ

U(1)3
λt2

(q, 1)χ
U(1)3
λt3

(
q, y−

2
3

)
. (3.25)

7The Pochhammer symbol (x, q)∞ is defined as follows, (x, q)∞ =
∏∞
i=1(1− xqi).
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Solving this equation we get,

λt1 λt2 λt3 CΛ0,υ0
λt1,λ

t
2,λ

t
3

0 0 0

χN=2
(0,0)1 1 1

−1 −1 −1

1 0 −1
χN=2

( 1
6
, 1
3)−1 1 0

0 −1 −1

−1 0 1
χN=2

( 1
6
,− 1

3)1 −1 0

0 1 −1

All other CΛ0,υ0
λt are zero. The characters Kλ are determined using level-rank duality

matrix. This gives the complete low-energy spectrum as a specific pairing of modules of

the left-moving algebra H and modules of the right-moving N = 2 algebra. The partition

function is computed using (3.5):

ZT222 = χN=2
(0,0) (τ , η)

(
Ξ0,0,0(τ) + Ξ1,1,1(τ) + Ξ−1,−1,−1(τ)

)
(3.26)

+χN=2
( 1
6
, 1
3)(τ , η)

(
Ξ1,0,−1(τ) + Ξ−1,1,0(τ) + Ξ0,−1,1(τ)

)
+χN=2

( 1
6
,− 1

3)(τ , η)
(

Ξ−1,0,1(τ) + Ξ1,−1,0(τ) + Ξ0,1,−1(τ)
)
.

The shorthand notation Ξa,b,c(τ) stands for Ξa,b,c(τ, ξ1, ξ2, ξ3), defined as

Ξa,b,c(τ, ξ1, ξ2, ξ3) := Ξa(τ, ξ1)Ξb(τ, ξ2)Ξc(τ, ξ3) (3.27)

Ξ−1(τ, ξ) := χ
SU(2)1×U(1)6
(�,−1) (τ, ξ) + χ

SU(2)1×U(1)6
(·,2) (τ, ξ)

Ξ0(τ, ξ) := χ
SU(2)1×U(1)6
(·,0) (τ, ξ) + χ

SU(2)1×U(1)6
(�,3) (τ, ξ)

Ξ1(τ, ξ) := χ
SU(2)1×U(1)6
(�,1) (τ, ξ) + χ

SU(2)1×U(1)6
(·,−2) (τ, ξ).

The left-moving characters in (3.26) are obviously invariant under the Z3 symmetry, i.e.

the cyclic permutation of the three SU(2)1 × U(1)6 factors. This is consistent with the

triality of the UV gauge theory description. They also have manifest Z2 symmetry which

is a combination of charge conjugation and odd permutation.

Remarkably, the left-moving characters combine to form E6 characters at level 1. The

(E6)1 admits only three modules, the vacuum module •, the fundamental module � and

the anti-fundamental module �. In terms of their characters, the partition function takes

a much more compact form,

ZT222 = χN=2
(0,0) (τ , η)χ

(E6)1
• (τ, ξi) + χN=2

( 1
6
, 1
3)(τ , η)χ

(E6)1
� (τ, ξi) + χN=2

( 1
6
,− 1

3)(τ , η)χ
(E6)1
�

(τ, ξi),

(3.28)
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where the variables ξi stand for collective E6 fugacities. Correspondingly, the three holo-

morphic modules of (E6)1 elegantly pair up with three anti-holomorphic modules of N = 2

c = 1 algebra to form the complete low-energy spectrum of the T222 gauge theory. In

section 2.3, we advocated the enhancement of the global symmetry to (E6)1 using triality,

and the partition function provides us with a concrete evidence of this fact. The first few

terms in the expansion of ZT222 are

ZT222 = 1 +
(
27 y

1
3 + 27 y−

1
3

)
q

2
3 q

1
6 + q + 78 q +

(
27 y

2
3 + 27 y−

2
3

)
q

2
3 q

2
3 + 78 qq + . . . .

They are contributions of the light states in the spectrum, i.e. states with L0, L0 ≤ 1.

The N = 2 primaries (0, 0) and
(

1
6 ,

1
3

)
obey the BPS condition L0 − 1

2J0 = 0. They

form the Q-cohomology of the theory,

H∗(Q) = H•L,(E6)1
⊗ |ψ(0,0)

N=2〉R ⊕ H
�
L,(E6)1

⊗ |ψ( 1
6
, 1
3)

N=2 〉R , (3.29)

where |ψ(h,Q)
N=2 〉 is the primary of the (h,Q) module of the N = 2 algebra. The supercon-

formal index is computed from the partition function using a T -transformation and then

setting y = q−
1
2 . Only the BPS modules (0, 0) and

(
1
6 ,

1
3

)
contribute in this limit. Their

characters reduce to +1 and −1, respectively, so that

IT222 = χ
(E6)1
• − χ(E6)1

� . (3.30)

If our proposal for the low-energy physics of N = (0, 2) SQCD is true, this index has to

agree with the gauge theory computation in [1], which indeed is the case to first ten orders

in the q-expansion.

The modular invariant pairing between the characters of holomorphic (E6)1 Affine

algebra and antiholomorphic N = 2 superconformal algebra is less mysterious if we think

of the N = 2 superconformal algebra at c = 1 as U(1)3 affine algebra. It has a canonical

pairing with SU(3)1 which follows from the conformal embedding

U(3)1 ⊃ U(1)3 × SU(3)1. (3.31)

In turn, the SU(3)1 characters can be canonically paired with (E6)1 into (E8)1 characters,

(E8)1 ⊃ SU(3)1 × (E6)1. (3.32)

As this is a maximal rank embedding at level 1, this is also a conformal embedding. The

affine group (E8)1 admits only one integrable representation, naturally, its character is

invariant under modular S-transformation.

3.3 Generalization to quiver theories

As explained in section 2, the infra-red fixed points of a multi-node quiver theory can be

described by a polygon inscribed in a circle. A quiver theory associated to an m-gon has

the flavor symmetry
∏m
i=1 SU(Ni)×U(1)(i). From the anomalies we see that at low energies

this symmetry is promoted to the left-moving affine symmetry

H =
m∏
i=1

SU(Ni)ni ×U(1)NNi , (3.33)
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Figure 11. The embedding of Ht into G determines the set of positive roots in the coset. The

positive roots are the holomorphic directions. Two such embeddings shown here lead to different

sets of positive roots and, therefore, to different complex structures.

where N =
∑

iNi/(m−1). Following our conventions so far, let us also define ni = N−Ni.

The Sugawara central charge of this affine symmetry agrees with the left-moving central

charge cL of the quiver theory. In this sense, H is a natural generalization of the affine

symmetry of the “elementary” theory TN1,N2,N3 . The left-moving states are modules of H.

Motivated by the analysis of the TN1,N2,N3 , we guess that the right-moving sector is the

Kazama-Suzuki coset [G]/[Ht] where [G] = [U(N)]N and Ht is the level-rank dual of H,

Ht =
m∏
i=1

SU(ni)Ni ×U(1)Nni . (3.34)

Happily, the central charge of this coset matches the right-moving central charge cR of the

quiver theory. As before, the left-moving WZW modules and the right-moving KS coset

modules have the same canonical paring which results in Γ̃-invariant partition function

modulo modular anomaly. We propose that the formula (3.19) describes the spectrum of

the low-energy quiver gauge theory as well but with H given in (3.33).

Generalized triality implies that the IR fixed point is labeled by the ordered m-tuple

{Ni}i=1,...,m modulo cyclic permutations. In other words, for a given set {Ni}, the IR fixed

point is labeled by elements of Sm/Zm. This choice is in one-to-one correspondence with

the choice of complex structure on the coset G/Ht. This is described in figure 11.

As a quick check of our proposal, consider a special case when all Ni’s are equal. We

expect that the fixed point has Zm symmetry that cyclically permutes flavor nodes. The

proposal for the fixed point indeed has this property. Moreover, we also get a Z2 symmetry

that is a combination of charge conjugation and reflection among the flavor nodes. Together

they generate the dihedral group D2m.

As further evidence, the superconformal index computed from the SCFT description

can be checked against the UV computation. For simplicity, consider m = 4. In this case,

the coset [G]/[Ht] can be schematically written as

[U(N)]N∏4
i=1[U(ni)]N

=
[U(N)]N∏2

i=1[U(ni)]N × [U(n3 + n4)]N
×
(

[U(N)]N
[U(n3 + n4)]N × [U(n1 + n2)]N

)−1

× [U(N)]N

[U(n1 + n2)]N
∏4
i=3[U(ni)]N

. (3.35)
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We have used the shorthand notation [U(ni)]N for [SU(ni)]N×U(1)Nni . From this equation

we can write the right-moving character of the m = 4 theory in terms of the right-moving

characters of two elementary “component” theories:

Kλ1,λ2,λ3,λ4(τ , η) =
∑
λλt

Kλ1,λ2,λ(τ , η)L̃λλtKλt,λ3,λ4(τ , η) (3.36)

where λ is a module of SU(n3 + n4)(n1+n2) ×U(1)N(n3+n4) and λt its level-rank dual. The

matrix L̃ is the generalized inverse of the level-rank duality matrix L, see appendix A. As

outlined in section 3.1, after performing a T -transformation and taking the limit y = q−
1
2 ,

the right-moving characters become the “structure constants” for the superconformal index

expanded in terms of left-moving affine characters. One can verify that the same gluing

equation is obeyed by the structure constants computed in the UV N = (0, 2) gauge

theory. We demonstrate this explicitly in appendix B. This implies that the agreement of

the superconformal index for the quiver theories follows from that for the SQCD.

4 Meson spectroscopy

It is believed that large Nc limit of four-dimensional quantum chromodynamics (QCD4) is

a weakly coupled theory of neutral massive particles, the mesons and “glueballs”. If we

denote by σ ∼
√
Nc
g2

ψΓψ and S ∼ 1
g2

TrF 2
µν the corresponding irreducible gauge invariant

operators,8 then mesons and glueball interactions to leading order are given by the tree

graphs of an effective Lagrangian

Leff(σ, S) (4.1)

where all interaction terms scale as positive powers of 1/Nc. As a result, the n-point

function of meson fields at large Nc behaves as

〈T σ · · · σ︸ ︷︷ ︸
n

〉conn ∼ N
1−n

2
c . (4.2)

The glueballs interact more weakly than mesons:

〈T S · · · S︸ ︷︷ ︸
n

〉conn ∼ N2−n
c (4.3)

and the meson-glueball mixing is suppressed (because it requires quark/antiquark in meson

to annihilate into gluons),

〈T σ · · · σ︸ ︷︷ ︸
n

S · · · S︸ ︷︷ ︸
m

〉conn ∼
1

N
m+n

2
−1

c

. (4.4)

Also, because the interactions of mesons are too weak to cause bound states, mesons with

“exotic” quantum numbers (like ψψψψ) do not occur in the leading 1/Nc expansion.

Motivated by these phenomenological facts, here wish to study the spectrum of mesons

and glueballs in two-dimensional QCD with N = (0, 2) supersymmetry at large as well

8That have probability of order 1 to create meson and glueball states.
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as finite Nc. Since confinement in 2d is generic, we are going to find that the effective

N = (0, 2) theory is described by a Lagrangian of the form (4.1) with multiple copies of

the (0, 2) chiral superfields σ and S that describe colorless states. (Even though 2d gauge

field has no physical degrees of freedom, its superpartner λ− does. For this reason we shall

refer to the gaugino bilinear Tr λβ−αλ
α
−β as the glueball (0, 2) chiral superfield S.)

As usual, the large Nc limit simplifies the dynamics by removing the interaction be-

tween confined states. In this limit the closed stings are free since

gs ∼
1

Nc
(4.5)

while the ’t Hooft coupling9 g2Nc sets the “string tension”

1

α′
= g2Nc . (4.6)

However, the number of colorless states also grows rapidly with Nc. The reason is clear

from the relations (1.1) which, among other things, imply that one can not take the limit

Nc → ∞ without letting the ranks of at least two flavor symmetries scale with Nc. This

is where our definition (2.12) of the ratios νi becomes very handy, which can be kept fixed

along with the ’t Hooft coupling (4.6) and the parameter m2Nc (whose role will become

clear momentarily). In other words, when taking Nc →∞ we shall consider the Veneziano

limit a la [19]:

Nc →∞ , g2Nc = fixed , m2Nc = fixed , νi = fixed . (4.7)

We also use the light-cone quantization, which makes all unphysical degrees of freedom

manifestly non-dynamical. In particular, there is no gluon self-interaction in light-cone

gauge in 1+1 dimensions:

A− = A+ = 0 (4.8)

where the theory reduces to quantum mechanics with x+ as the “time” direction,10

x± =
1√
2

(x0 ± x1) . (4.9)

Similarly, we can choose x− to be the time variable with the gauge condition A+ = 0.

With either of these two choices, summarized in table 2, there are no dynamical gluons

and, therefore, no need to introduce Fadeev-Popov ghosts. This simplifies the analysis

dramatically. Quantization on constant x+ surfaces gives the momentum operators P+ =

T++ and P− = T+−. The main goal then is to solve the eigenvalue problem

M2|ϕ〉 = 2P+P−|ϕ〉 (4.10)

9We do not use the standard notation λ to avoid confusion with the gluino fields.
10Other light-cone conventions include:

g+− = g−+ = 1 ∂± =
∂

∂x±
γ0 = σ2 γ1 = iσ1 .
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Option a): x+ = “time” Option b): x− = “time”

integrate out A+, ψ+, ρ+ integrate out A−, ψ−, λ−, γ−

adjoint λ−
(anti-)fundamental: (anti-)fundamental:

φ, p, ψ− φ, ψ+ p, ρ+

neutral γ−

Table 2. SU(Nc) representations of SQCD partons with different choices of the light-cone time.

in the basis of colorless states. We are going to find masses of states in the form

M2 = g2NcF
(
νi,

m2

g2

)
. (4.11)

It would be interesting to perform a more systematic study of the dependence on the dimen-

sionless parameters m2

g2
and νi, and, in particular, to see if there are any phase transitions

similar to the Berezinskii-Kosterlitz-Thouless (BKT) type conformal phase transition in

QCD4 at a critical value of
Nf
Nc
≈ 4 found via holographic dual [20, 21]. In fact, it would

be interesting to approach our (0, 2) SQCD via gauge/gravity duality as well.

In general, the light-cone quantization describes the Hilbert space seen by an observer

moving with the speed of light to the right, which can see only massive particles and

right-moving massless particles, but misses left-moving massless particles [3]. (One does

not miss, though, any massive bound states of these massless constituents.) This is not a

problem for us since, first of all, here we are interested in massive states and, moreover,

because we already gave a detailed account of all massless states in section 3.

In our (0, 2) SQCD the spectrum of left-moving and right-moving fields is rather dif-

ferent, cf. figure 1. Therefore, the theory will look differently depending on the choice of

the light-cone time and it is rather non-trivial that both choices must lead to the same

massive spectrum:

a) In one option, we see the modes of φ, p, λ−, ψ−, γ− (and integrate out A+, ψ+, ρ+).

All fields except λ− are in the fundamental representation of SU(Nc), so we get closed

strings from λ− bits and other partons in bifundamental representations (Nc,Ni) or

(Ni,Nj) for which Ni,j ∼ Nc. The remaining partons whose color-flavor content does

not scale as N2
c become open string bits. Note, γ− does not couple directly to the

gauge field A, while ψ− couples to the gauge field only.

b) In the other option, we see the modes of φ, ψ+, p, ρ+ (and integrate out A−, ψ−, λ−,

γ−). All of these fields are in the fundamental representation of SU(Nc), so we get

lots of mesons, which become closed string states if the color-flavor content scales as

N2
c and open string states otherwise.

We summarize these two choices in table 2 and also in a graphical form in figure 12;

the latter is obtained from figure 1 by omitting non-propagating degrees of freedom and

writing N = (0, 2) supermultiplets in components.
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Figure 12. Propagating fields in the light-cone approach (a) with x+ as “time” and (b) with x−

as “time”.

In order to carry this out in practice, we write the Lagrangian of N = (0, 2) SQCD.

After integrating out the auxiliary fields, it takes the form

L = Lkin +A+J
+ +A−J

− + Lint (4.12)

where Lkin contains the standard kinetic terms of all the component fields,

J+α
β =

1

g2
λ
α
−γλ

γ
−β +

1

g2
λα−γλ

γ
−β + ψ

α
−iψ

i
−β − iφ

s
β∂−φ

α
s + ipαa∂−p

a
β (4.13)

J−αβ = −ψs+βψα+s + ρα+aρ
a
+β − iφ

s
β∂+φ

α
s + ipαa∂+p

a
β (4.14)

are the left-moving and right-moving SU(Nc) gauge currents, and

Lint =
g2

2

(
φ†φ− pp†

)2
+m2|φp|2

−
√

2iφλ−ψ+ +
√

2ipλ−ρ+ +mγ−φρ+ +mγ−ψ+p (4.15)

+
√

2iφψ+λ− −
√

2ipρ+λ− +mρ+φγ− +mψ+γ−p

contains the remaining interaction terms (with color and flavor indices suppressed).

Starting with the Lagrangian (4.12)–(4.15) and integrating out A+, ψ+ and ρ+ — as

in the scenario a) — we get:

L(a)
int =

g2

2

(
φ†φ− pp†

)2
+m2|φp|2 + i

(√
2φλ− + impγ−

) 1

∂−

(√
2λ−φ− imγ−p

)
(4.16)

+g2J+ 1

∂2
−
J+ + i

(√
2ipλ− +mγ−φ

) 1

∂−

(
−
√

2iλ−p+mφγ−

)
.

On the other hand, integrating out A−, λ−, γ−, and ψ− — as in the scenario b) — we

would find:

L(b)
int =

g2

2

(
φ†φ− pp†

)2
+m2|φp|2 +2ig2

(
φψ+ − pρ+

) 1

∂+

(
φψ+ − pρ+

)
(4.17)

+g2J−
1

∂2
+

J− +m2 (φρ+ + ψ+p)
1

∂+

(
ρ+φ+ pψ+

)
.
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In what follows we make a more traditional choice of the light-cone gauge (4.8), i.e. option

a) in table 2. Since only left-moving fermions remain after integrating out ψ+ and ρ+,

in the rest of our discussion we shall omit the label “−” to avoid clutter. It would be

interesting to repeat similar analysis with the other choice, i.e. option b) in table 2, that, of

course, should lead to the same massive spectrum, but not necessarily the same massless

spectrum.

Note, if we choose a gauge fixing condition we need to shift the supercharge Q by a

certain gauge transformation δΛ with the generator Λ:

Q = Q+ δΛ (4.18)

δΛA = dΛ− i[Λ, A] . (4.19)

In particular, for the condition (4.8) we have

Λ =
2ig

∂−
λ . (4.20)

One can show that the corresponding Noether charge is given by

Q = 2g

∫
J+β

α

1

∂−
λ
α
β +
√

2

∫
γasJ

s
a(φ, p) (4.21)

where J+
αβ is the longitudinal momentum current (4.13) and Jas (Φ, P ) is the N = (0, 2)

superpotential (2.3).

Next, we need to consider quantization of scalar and spinor fields at fixed light-cone

time x+ = 0. Thus, for a complex scalar (such as φ or p) we have:

φ =
1√
2π

∫ +∞

0

dk+

√
2k+

(
φ(k+)e−ik

+x− + φ
†
(k+)eik

+x−
)

(4.22)

φ =
1√
2π

∫ +∞

0

dk+

√
2k+

(
φ(k+)e−ik

+x− + φ†(k+)eik
+x−

)
where the creation and annihilation operators obey the standard commutation relations:

[φ(k+), φ†(k̃+)] = δ(k+ − k̃+) = [φ(k+), φ
†
(k̃+)]. (4.23)

Note, the modes φ(k+) and φ
†
(k+) transform in the same representation of the gauge and

global symmetry groups, whereas φ†(k+) and φ(k+) transform in the conjugate represen-

tation. For instance, for the field φ in our N = (0, 2) SQCD it means that the modes

φ(k+) and φ
†
(k+) transform in the bifundamental representation (Nc,Nb) of the symme-

try group SU(Nc) × SU(Nb), cf. (2.1), whereas φ†(k+) and φ(k+) transform as (Nc,Nb).

Paying attention to such facts will be important in constructing color (and flavor) singlets

in what follows.

Similarly, for a complex spinor field (such as ψ, γ, or λ) we have:

ψ =
1

2
√
π

∫ +∞

0
dk+

(
ψ(k+)e−ik

+x− + ψ
†
(k+)eik

+x−
)

(4.24)

ψ =
1

2
√
π

∫ +∞

0
dk+

(
ψ(k+)e−ik

+x− + ψ†(k+)eik
+x−

)
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where ψ(k+) and ψ
†
(k+) transform in the same representation, while ψ†(k+) and ψ(k+)

transform in the conjugate representation, and obey

{ψ(k+), ψ†(k̃+)} = δ(k+ − k̃+) = {ψ(k+), ψ
†
(k̃+)} . (4.25)

Let us remind that when writing explicitly the quantum operator Q in terms of these modes

one needs to do normal ordering.

Once we introduced the mode expansion of all the fields, the physical states can be

constructed as SU(Nc) singlets of the form

|ϕ〉 ∼ 1

N
r/2
c
√
s
O(k+

1 ) . . .O(k+
r )|0〉 (4.26)

where |0〉 is the Fock vacuum and each “string bit” O(k+
i ) stands for creation operator

of a boson or fermion carrying longitudinal momentum k+
i . In addition to the standard

normalization of the r-parton state, we have a symmetry factor 1/
√
s, where s is the number

of cyclic permutations that give the same state. Some states vanish due to fermionic

statistics, e.g.

Tr [λ†(k+)λ†(k+)]|0〉 = 0 . (4.27)

Since all physical states (4.26) are already eigenstates of the operator P+:

P+ =

r∑
i=1

k+
i (4.28)

the problem of computing the mass spectrum (4.10) boils down to diagonalizing the oper-

ator P−, which is our next and final step. Namely, the standard practice in analyzing the

mass spectrum of 2d gauge theories is to discretize the values of k+ by compactifying the

“space” direction x−. Indeed, with the periodic boundary conditions for both bosons and

fermions

φ(x−) = φ

(
x− + 2π

K

P+

)
, ψ(x−) = ψ

(
x− + 2π

K

P+

)
(4.29)

the partons in (4.26) carry integer quanta of the longitudinal momentum

k+
i =

niP
+

K
, ni = 1, . . . ,K (4.30)

so that (4.28) becomes
r∑
i=1

ni = K . (4.31)

The positive integer K is called the harmonic resolution, and taking K →∞ while keeping

P+ fixed corresponds to the continuum limit. For finite value of the harmonic resolution

K, the physical states are labeled by partition of K into integers 1 ≤ ni ≤ K and all

integrals
∫
dk+ are replaced by the corresponding sums

∑
n.

As a useful warm-up and to illustrate how this works, let us consider a free fermion

ψ in a bifundamental representation of SU(Nc) × SU(Nf ), which is basically one of our
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ingredients in figure 12a. As we explained around (4.24), quantization of ψ leads to creation

and annihilation operators ψ(n), ψ
†
(n), ψ†(n) and ψ(n) that in the present DLCQ approach

are labeled by an integer 1 ≤ n ≤ K. Moreover, ψ(n) and ψ
†
(n) transform as (Nc,Nf ),

whereas ψ†(n) and ψ(n) transform as (Nc,Nf ). Relevant to the construction of physical

states (4.26) are the creation operators ψ
†
(n) and ψ†(n) that we can summarize in a quiver

diagram

Nc •
ψ
†

,,
• Nf

ψ†
ll . (4.32)

Acting with these creation operations on the Fock vacuum |0〉 gives a basis of physical

states (4.26) labeled by partitions of K. For example, for K = 1 we have only two states,

(ψ†)αi (1) |0〉 and (ψ
†
)iα(1) |0〉, etc.

To make our exercise a little more interesting and to anticipate what is going to come

next, let us consider a subset of states that are complete singlets under the symmetry

group SU(Nc) × SU(Nf ). Clearly, there are no such states for K = 1 and only one state

for K = 2:

(ψ†)αi (1) (ψ
†
)iα(1) |0〉 . (4.33)

In general, such states correspond to closed loops in the quiver diagram, in the present

case (4.32). Indeed, for K = 3 we find two singlets labeled by partitions (n1, n2) = (1, 2)

and (2, 1),

(ψ†)αi (1) (ψ
†
)iα(2) |0〉 , (ψ†)αi (2) (ψ

†
)iα(1) |0〉 (4.34)

whereas for K = 4 there are four possible ways to make complete SU(Nc)×SU(Nf ) singlets:

(ψ†)αi (1) (ψ
†
)iα(3) |0〉

(ψ†)αi (2) (ψ
†
)iα(2) |0〉

(ψ†)αi (3) (ψ
†
)iα(1) |0〉

(ψ†)αi (1) (ψ
†
)iβ(1) (ψ†)βj (1) (ψ

†
)jα(1) |0〉 .

(4.35)

Note, not included here is (ψ†)αi (1) (ψ
†
)iα(1) (ψ†)βj (1) (ψ

†
)jβ(1) |0〉 since it is not a single-

trace state. Continuing in this fashion we find a total of six singlet single-trace states at

K = 5 and so on:

K # of singlet states

1 0

2 1

3 2

4 4

5 6

6 12

7 18

8 34

(4.36)
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Figure 13. DLCQ spectrum of light (M2 < 1.5 in units of 2g2Nc) flavor-singlet mesons and

glueballs in N = (0, 2) SQCD with N1 = N2 = N3 and g = m.

Now we have all the necessary tools to study the spectrum of massive states in N =

(0, 2) SQCD for various values of the harmonic resolution K and in the continuum limit

K →∞. For each value of K, the problem is to diagonalize the (mass)2 operator (4.10) or,

equivalently, P− on the states (4.26) labeled by partitions of K. In the past, this was done

for 2d gauge theories with N = (1, 1) supersymmetry in [11, 12, 22, 23], for N = (2, 2)

supersymmetry in [24], and even for N = (8, 8) supersymmetry in [9], but never in enough

details for models with N = (0, 2) supersymmetry.

In N = (0, 2) SQCD, the (mass)2 operator has the following general structure:

2P+P− =
K

α′

(
Fcurrent-current +

m2

g2
FJ-interaction

)
. (4.37)

Moreover, it is easy to see from (4.16) that, besides a diagonal quadratic term in

Fcurrent-current, all terms in Fcurrent-current and FJ-interaction are quartic in the oscillator modes.

The mass spectrum is expected to converge for increasing values of K. The first appearance

of a state at a given resolution K is called the trail head [14]. The procedure of finding

trail heads is usually easy if one plots the eigenvalues of M2 (or P−) as a function of 1/K,

e.g. one can spot a few trail heads in figure 13.

Equivalently, since11

2P− = {Q,Q†} (4.38)

one can study the action of the supersymmetry generator Q on the states (4.26). In

particular, the massless spectrum can be computed as:

kerP− = kerQ∩ kerQ† . (4.39)

However for discrete light-cone quantization one needs to be more careful with the use

of (4.38). Indeed, as pointed out in [24], for finite values of K one can not preserve all

11The supercharges Q and Q
†

are the two supercharges of the N = (0, 2) super-Poincaré algebra. In

particular Q
†

does not stand for the conformal supercharge. To avoid the confusion with the ± notation

used here, we do not use supercharge notation of section 3.1.
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supersymmetry commutation relations. As a result, there are several candidates for the

light-cone Hamiltonian, related by different choice of normal ordering and converging to

the same operator P− in the continuum limit, i.e. in the limit K →∞:

1

2
(Q+Q†)2 ,

1

2
{Q,Q†} , −1

2
(Q−Q†)2 . (4.40)

Although for finite K details may be slightly different, generally this choice does not affect

qualitative features of the massive spectrum, as we illustrate below by following [24] and

choosing the first expression in (4.40) for our analysis in the rest of this section. Then,

for balance we will choose the second expression in (4.40) for the analysis in appendix C.

(Another important distinction between the results of this section and appendix C is that

here we deal with SU(Nc) gauge theory, while there we consider U(Nc) gauge group.) The

first and the last choice (4.40) lead to the same massive spectrum.

Also note that supercharge does not preserve the number of partons because all of the

terms in (4.21) contain three creation or annihilation operators. One of the implications

is that all of 5 singlets listed in (4.42) turn out to be massless for K = 2. Indeed, since

the single-trace flavor singlet sector of SU(Nc) SQCD with K = 2 does not have 1-parton

states12 the action of Q is automatically trivial.

The explicit computation of the DLCQ spectrum for K = 2 and K = 3 is summarized

in appendix C. Namely, we go through the entire process is great detail, first by listing

the physical states (4.26) and then analyzing the action of Q and P−. Aside from the

calculation of the mass spectrum, it also gives us valuable information about mixing of

different states that transform in the same representation of the flavor symmetry.

One such sector, namely the states in the trivial (singlet) representation of the flavor

symmetry plays a very important role in our 2d theory here and in the real QCD4 [25,

26]. Indeed, these are the states that dominate in the Veneziano limit (4.7) which, as we

explained earlier, is the only sensible way to take Nc → ∞ (since at least two of the Ni,

i = 1, 2, 3 must become large in this limit in order to avoid dynamical SUSY breaking).

Therefore, in the rest of this section we present detailed results for the flavor-singlet states

in N = (0, 2) SQCD with SU(Nc) gauge group and the light-cone Hamiltonian given by

the first expression in (4.40).

Moreover in the limit (4.7) of large Nc, Nf and Nb, we only need to focus on singlet

“single-trace” states with all gauge and flavor indices contracted in a way that corresponds

to a single closed path in the quiver diagram in figure 12a. The reason for this is exactly

the same as in the standard ’t Hooft limit of SU(Nc) gauge theory [27], where single-trace

operators correspond to closed string states and provide a good description of the physics

as Nc →∞.

Similarly, the limit (4.7) of large Nc, Nf and Nb in our model is described by closed

string states that are “single-trace” in the generalized sense of [28] where a similar limit

of the 4d supersymmetric gauge theory was studied. Our first task is to do the taxonomy

of such single-trace states that are complete singlets under gauge and flavor symmetries.

12Something that we saw earlier in (4.36).
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Here the experience with a free fermion (4.32) comes in handy and the result is, cf. (4.36):

K # of flavor singlets # of massless singlets

1 0 0

2 5 5

3 24 2

4 78 14

5 266 6

6 947 47

7 3374 16

8 12476 152

(4.41)

For example, at K = 2 we find a total of five flavor-singlet mesons and glueballs:

(φ†)sα(1) (φ
†
)αs (1) |0〉

(p†)βa(1) (p†)aβ(1) |0〉
(ψ†)αi (1) (ψ

†
)iα(1) |0〉

(γ†)as(1) (γ†)sa(1) |0〉
(λ†)αβ(1) (λ

†
)βα(1) |0〉

(4.42)

all of which turn out to be massless for reasons explained earlier. In a similar way, one

can explicitly write down physical states for other values of the harmonic resolution K =

3, 4, . . . , in fact, not only in the singlet sector of the theory (as demonstrated in appendix C).

Next, we study the action of Q and P− on these states which, in turn, determines the

mass spectrum and the number of massless states for each value of K. For generic values

of the parameters g2Nc, m
2Nc and νi the results are summarized in (4.41) and in figure 14.

(See also figure 13 for a different presentation of light states.)

All the plots in figures 13 and 14 show a clear convergence with increasing values of

K. Moreover, it is easy to see — especially from the normalized plot in figure 15 — that

eigenvalues of the (mass)2 operator (4.37) at finite values of K often give a very good

approximation to masses of states in the continuum limit (K →∞).

Moreover, as we can see from figures 14 and 15, the density of states approximately

remains constant in a wide range of energies that extends all the way from E = 0 to the

upper limit of the discrete light-cone approximation:

ρ(E) ' const. (4.43)

This behavior is typical for theories with finitely many Regge trajectories13 (as in figure 16a)

and has to be contrasted with large Nc limit of non-supersymmetric (N = 0) QCD with one

adjoint matter multiplet or Nf = Nc massive quarks in the fundamental representation.

The latter theory has infinitely many asymptotically linear Regge trajectories illustrated

in figure 16b and an exponentially growing density of single particle states. In the limit

13There is almost no distinction between Regge trajectories for bosonic and fermionic fundamental fla-

vors [10].
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Figure 14. DLCQ spectrum of N = (0, 2) SQCD with N1 = N2 = N3 and g = m. Each plot

shows the ordered eigenvalues of P+ in units of 2g2Nc. (The energy density of states ρ(E) is minus

the inverse derivative).
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Figure 15. Normalized distribution F
(

M2

M2
max

)
= number of states with mass less than M

total number of states for N1 = N2 =

N3, g = m, and the harmonic resolution K = 3, 4, 5, . . . , 8. A similar distribution was obtained

in [29].
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Figure 16. In the large Nc limit the spectrum of non-supersymmetric (N = 0) QCD2 with Nf = 1

has one asymptotically linear Regge trajectory (a), and infinitely many Regge trajectories (with

integer slopes) for Nf = Nc or one massive matter multiplet in the adjoint representation (b).

when Nf = Nc quarks become massless or when the mass of the adjoint matter multiplet

is turned off, the non-supersymmetric QCD2 exhibits a transition from confinement to

screening [14, 30]. In particular, QCD string made out of the adjoint bits dissociates in

this limit into stable constituent “particles” which become free in the massless limit and

form a single Regge trajectory. Therefore, we conclude that, even though our N = (0, 2)

SQCD has superpotential (2.3) with a mass parameter m, it nevertheless is much closer

to the screening phase of QCD2 with massless adjoint multiplet or Nf = Nc quarks.14

This, perhaps is not too surprising since after integrating out massive multiplets (in the

limit m2

g2
� 1) we end up with N = (0, 2) gauge theory coupled to massless matter. In

particular, this explains why our N = (0, 2) SQCD does not have an exponentially growing

density of states.

Note, nothing prevents mixing of states within the sector of color and flavor singlets.

And such states do indeed mix, cf. figure 17. This graph also shows that spectrum is

dominated by string-like states made of many partons. It would be interesting to identify

the closed string which describes the Veneziano limit (4.7) of 2d N = (0, 2) SQCD.
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A Characters of affine Lie algebras

In our paper we define a character of level-k integrable representation Vλ of affine Lie

algebra A

χAk
λ (τ, ξ) = Tr Vλe

2πiτL0+
∑
i ξiH

i
0 (A.1)

where H i
0 are Cartan elements of the ordinary Lie algebra inside A. Alternatively one

can use C∗ variables q = e2πiτ and xi = e2πiξi . Note that we do not include the usual

qc/24 factor, that the q-expansion of the character starts with qh where h is the conformal

dimension of the primary.15 For simplicity let us restrict ourselves to simply-laced Lie

algebras A of ADE type. The characters can be explicitly expressed through level-k theta

functions of the root lattice M = ⊕iZαi of the ordinary Lie algebra which are defined as

follows

ΘA
λ,k(τ, ξ) :=

∑
µ∈M

eπikτ(µ+λ/k)2+
∑
i 2πi(kµ+λ,ξ) (A.2)

where λ is an element of the weight lattice and ξ =
∑

i ξiαi. Then [33]

χAk
λ (τ, ξ) =

∑
w∈W ε(w)ΘA

w(λ+ρ),k+g(τ, ξ)∑
w∈W ε(w)ΘA

w(λ),g(τ, ξ)
(A.3)

where W is the Weyl group of the ordinary Lie algebra, ε(w) denotes parity of its element

w, g is the dual coxeter number and ρ is the sum of all fundamental weights. Weight λ

effectively takes values in M∗/kM . This is known as the Weyl-Kac character formula.

15This quantity is unambiguously determined if we consider L0 as an element of the universal envelopping

algebra via Sugawara construction.
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Under T and S transformation characters transform as follows:

χAk
λ (τ + 1, ξ) = e2πihλχAk

λ (τ, ξ) , (A.4)

χAk
λ

(
−1

τ
,
ξ

τ

)
= e−πi

c
12

(τ+1/τ)+πi(ξ,ξ)/τ
∑
ρ

Sλ,νχ
Ak
ρ (τ, ξ) (A.5)

where hλ is the conformal dimension of the primary and S is a constant matrix given by

Sλ,ν =
i|∆+|

|M∗/M |1/2(k + g)rankA/2

∑
w∈W

ε(w)e−2πi(w(λ+ρ),ν+ρ)/(k+g) (A.6)

where |∆+| is the number of positive roots of the ordinary Lie algebra A. Matrix S satisfies

the following properties:

S2 = C, ST = S, SC = CS = S (A.7)

where C is the charge conjugation matrix.

For level 1 one can use simpler formulas:

χA1
λ (τ, ξ) =

ΘA
λ,1(τ, ξ)

(q; q)rankA
∞

, (A.8)

Sλ,ν =
1

|M∗/M |1/2
e−2πi(λ,ν). (A.9)

Affine U(1) characters have the following explicit expressions:

χU(1)k
r (τ, ξ) = (q; q)−1

∞
∑
n∈Z

eπiτk(n+r/k)2+2πi(kn+r)ξ. (A.10)

where r ∈ Z/kZ. In the simplest case

χ
U(1)1
0 (τ, ξ) =

θ3(ξ; τ)

(q; q)∞
= θ(−xq1/2; q) . (A.11)

The modular transformation properties are given by

χU(1)k
r (τ + 1, ξ) = e2πihr χ̃U(1)k

r (τ, ξ), (A.12)

χU(1)k
r

(
−1

τ
,
ξ

τ

)
= e−πi

1
12

(τ+1/τ)+πikξ2/τ
∑
s

Sr,sχ
U(1)k
s (τ, ξ) (A.13)

where hr denotes the conformal dimension of the primary and χ̃
U(1)k
r denote “twisted”

affine U(1) characters defined by the formula (A.12).16

Level rank duality between integrable representations of SU(n)k × U(1)(n+k)n and

SU(k)n × U(1)(n+k)k that we use in this paper can be defined by the following confor-

mal embedding17 [34, 35]:

U(1)1 ×U(nk)1 ⊃
(
SU(n)k ×U(1)(n+k)n

)
×
(
SU(k)n ×U(1)(n+k)k

)
. (A.14)

16The “twist” can be interpreted as insertion of (−1)F into the trace (A.1). The characters for simply-

laced algebras as well as U(1)k characters for even level k are not affected by this twist.
17Which differs from the common one by extra U(1) factors.
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Given explicitly by the following character decomposition formula [36]

θ

− n∏
i=1

xi

k∏
j=1

yjq
1/2

 n∏
i=1

k∏
j=1

θ
(
−xi/yjq1/2

)
=

∑
λ,r;λt,rt

L(λ,r),(λt,rt)χ
SU(n)k
λ (q, x̃)χ

U(1)(n+k)n
r (q,X)χ

SU(k)n
λt (q, ỹ)χ

U(1)(n+k)k
rt (q, Y ) (A.15)

where L(λ,r),(λt,rt) is the level-rank matrix defined by this formula. Rectangular ma-

trix L(λ,r),(λt,rt) is a constant with elements equal to 1 for level-rank dual pairs (λ, r)

and (λt, rt). It defines one-to-one map between equivalence classes of representations

SU(n)k × U(1)(n+k)n and SU(k)n × U(1)(n+k)k appearing in the decomposition (A.15).

The equivalence between representations of SU(n)k × U(1)(n+k)n is given by the action

of Zn group. It acts as the outer automorphism group on the representations of SU(n)k
and shifts U(1)(n+k)n representations by a multiple of (n + k). Similarly, the equivalence

between representations of SU(k)n×U(1)(n+k)k is given by the action of the analagous Zk
group. It follows that the generalized inverse L̃ of L is proporsional to the transposed of

L. Namely,

L̃ =
1

nk
LT (A.16)

LL̃L = L (A.17)

L̃LL̃ = L̃ . (A.18)

Since the l.h.s. of (A.15) is modular invariant (up to a modular anomaly) it follows that

SLSt = L (A.19)

where S is the S-matrix for representations of SU(n)k×U(1)(n+k)n and St is the S-matrix

for its level-rank dual SU(k)n ×U(1)(n+k)k.

B Gluing index in the UV

Consider basic theory TN1N2N ′c associated to the left triangle in figure 7 inscribed into the

circle of circumference N . The flavor symmetries of the theory are SU(N1) × U(1)(1),

SU(N2) × U(1)(2), SU(N ′c) × U(1)(3). Let us denote the fugacities corresponding to

U(N1), U(N2), U(N ′c) flavor and U(Nc) gauge group by x, y, z and ξ respectively.

They can be decomposed into SU×U(1) fugacities as x =
(
x̃, X = (

∏
a xa)

1/N1

)
, y =(

ỹ, Y = (
∏
r yr)

1/N2

)
, etc. The index of TN1N2N ′c is given by

ITN1N2N
′
c
(x, y, z) =

∫ ∏
α

dξα
ξα
ĨTN1N2N

′
c
(x, y, ξ)K(ξ, z) (B.1)

where

ĨTN1N2N
′
c
(x, y, ξ) =

∏
α 6=β

θ(ξα/ξβ)
∏
a,r
θ
(
q

1+R3
2 yr/xa

)
θ
(
q

1
2 ΞNcX−N1Y −N2

)
∏
a,α
θ
(
q
R1
2 xa/ξα

)∏
r,α
θ
(
q
R2
2 ξα/yr

) (B.2)
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and

K(ξ, z) =
∏
α,i

θ
(
q

1
2 zi/ξα

)
θ
(
q

1
2 ΞN

′
cZNc

)
. (B.3)

The index have the following decmposition into characters:

ITN1N2N
′
c
(x, y, z) =

∑
λ,µ,ν,α,β,γ

C
(λ,α),(µ,β),(ν,γ)
TN1N2N

′
c

χ
SU(N1)n1
λ (x)χ

SU(N2)n2
µ (y)χ

SU(N ′c)Nc
λ (z)×

χ̃
U(1)NN1
α (X)χ̃

U(1)NN2
β (Y )χ̃

U(1)NN′c
γ (Z) (B.4)

where the coefficients C
(λ,α),(µ,α),(ν,γ)
TN1N2N

′
c

are integer numbers and as usual ni = N −Ni.

The function (B.3) has decomposition into characters of the following form:

K(ξ, z) =
∑
ρ,ν,δ,γ

K(ρ,δ),(ν,γ)χ
SU(Nc)N′c
ρ (ξ)χ

SU(N ′c)Nc
ν (z)χ̃

U(1)NNc
δ (Ξ)χ̃

U(1)NN′c
γ (Z). (B.5)

From (A.15) it follows that the matrix K is simply related to the level-rank duality matrix:

K(ρ,δ),(ν,γ) = (−1)2(hρ+hδ+hν+hγ)L(ρ,δ),(ν,γ) (B.6)

where 2(hρ + hδ + hν + hγ) is an integer.

From (B.1), (B.4) and (B.5) it follows that (using uniqueness of character decomposi-

tion):

∑
λ,µ,α,β

C
(λ,α),(µ,β),(ν,γ)
TN1N2N

′
c

χ
SU(N1)n1
λ (x)χ

SU(N2)n2
µ (y)χ̃

U(1)NN1
α (X)χ̃

U(1)NN2
β (Y ) =

∫ ∏
α

dξα
ξα
ĨTN1N2N

′
c
(x, y, ξ)

∑
ρ,δ

K(ρ,δ),(ν,γ)χ
SU(Nc)N′c
ρ (ξ)χ̃

U(1)NNc
δ (Ξ) . (B.7)

Now consider theory TN3N4Nc associated to the right triangle in figure 7. Let us de-

note fugacities corresponding to its flavor symmetries U(N3), U(N4) and U(Nc) by u, v

and ξ respectively. Consider the frame where the gauge group is U(N ′c) and denote the

corresponding fugacities by z. Similarly to (B.7) one can write:

∑
λ,µ,α,β

C
(ρ,δ),(λ′,α′),(µ′,β′)
TN3N4Nc

χ
SU(N3)n3
λ′ (u)χ

SU(N4)n4
µ′ (v)χ̃

U(1)NN3
α′ (U)χ̃

U(1)NN4
β′ (V ) =

∫ ∏
i

dzi
zi
ĨTN3N4Nc

(u, v, z)
∑
ν,γ

K(ρ,δ),(ν,γ)χ
SU(N ′c)Nc
ν (z)χ̃

U(1)NN′c
δ (Z) . (B.8)

Now let us consider the quiver theory TN1N2N3N4 associated to the quadrilateral in

figure 7 obtained by gluing TN1N2N ′c and TN3N4Nc along the common edge. Its index is

given by:

ITN1N2N3N4
(x, y, u, v) =

∫ ∏
α

dξα
ξα

∏
i

dzi
zi
ĨTN1N2N

′
c
(x, y, ξ)ĨTN3N4Nc

(u, v, z)K(ξ, z) . (B.9)
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Let K̃ be generalized inverse of the matrix K. That is:∑
ν,ρ,γ,δ

K(ρ′,δ′),(ν,γ)K̃(ν,γ),(ρ,δ)K
(ρ,δ),(ν′,γ′) = K(ρ′,δ′),(ν′,γ′) . (B.10)

Similarly to (A.16) K̃ = KT /(NcN
′
c).

From (B.5), (B.7), (B.8) and (B.9) it follows that

ITN1N2N3N4
(x, y, u, v) =

∑
λ,µ,λ′,µ′,α,β,α′,β′

C
(λ,α),(µ,β),(λ′,α′),(µ′,β′)
TN1N2N3N4

×

χ
SU(N1)n1
λ (x)χ

SU(N2)n2
µ (y)χ

SU(N3)n3
λ′ (u)χ

SU(N4)n4
µ′ (v)×

χ̃
U(1)NN1
α (X)χ̃

U(1)NN2
β (Y )χ̃

U(1)NN3
α′ (U)χ̃

U(1)NN4
β′ (V )

(B.11)

where

C
(λ,α),(µ,β),(λ′,α′),(µ′,β′)
TN1N2N3N4

=
∑
ν,ρ,γ,δ

C
(λ,α),(µ,β),(ν,γ)
TN1N2N

′
c

K̃(ν,γ),(ρ,δ)C
(ρ,δ),(λ′,α′),(µ′,β′)
TN3N4Nc

. (B.12)

This is perfectly consistent with the gluing prescription (3.36) that follows from the pro-

posed IR solution.

Decomposition in figure 8 of the same quadrilateral gives a different expression:

C
(λ,α),(µ,β),(λ′,α′),(µ′,β′)
TN1N2N3N4

=
∑

ν′,ρ′,γ′,δ′

C
(µ′,β′),(λ,α),(ν′,γ′)
TN2N3N

′′
c

K̃(ν′,γ′),(ρ′,δ′)C
(ρ′,δ′),(µ,β),(λ′,α′)
TN4N1N

′′
c
′

. (B.13)

Similarly one can obtain coefficients of decomposition into characters for more general

quiver theories associated to inscribed polygons using “three-point functions” C and “prop-

agators” K̃ satisfying crossing symmetry.

C DLCQ spectrum of U(Nc) SQCD at finite Nc

In this appendix we explicitly compute the DLCQ meson spectrum of U(Nc) SQCD at

finite Nc.

DLCQ spectrum for K = 2. In total, we have 19 different types of meson states18

(γ†)ra(2)|0〉
(γ†)ar(2)|0〉

(γ†)ar(1)(γ†)bs(1)|0〉
(γ†)ar(1)(γ†)sb(1)|0〉
(γ†)ra(1)(γ†)sb(1)|0〉

(λ†)αα(2)|0〉

(λ
†
)αα(2)|0〉

(λ†)βα(1)(λ
†
)αβ(1)|0〉

(λ†)αα(1)(λ
†
)ββ(1)|0〉

(φ
†
)αr (1)(p†)aα(1)|0〉

(φ†)rα(1)(p†)αa (1)|0〉
(p†)aα(1)(ψ†)αi (1)|0〉

(p†)αa (1)(ψ
†
)iα(1)|0〉

(φ
†
)αr (1)(φ†)sα(1)|0〉

(p†)bα(1)(p†)αa (1)|0〉

(ψ†)αi (1)(ψ
†
)jα(1)|0〉

(ω†)αA(1)(ω†)Bα (1)|0〉
(φ†)rα(1)(ψ†)αi (1)|0〉

(φ
†
)αr (1)(ψ

†
)iα(1)|0〉 .

(C.1)

18Including the superpartners and meson-like modes of the fermions γ and γ that are gauge singlets.

– 37 –



J
H
E
P
1
1
(
2
0
1
9
)
1
7
4

Where (ω†)1,2
α and (ω†)1,2

α are creation operators for Ω1,2 fermions. Now let us consider

subspaces corresponding to different representations of flavor groups.

Subspace of singlets:

|1〉 =
(
γ†
)s
c

(1)
(
γ†
)c
s

(1)|0〉 |5〉 =
(
λ
†
)β
β

(1)
(
λ†
)α
α

(1)|0〉

|2〉 =
(
λ†
)α
α

(2)|0〉 |6〉 =
(
φ
†
)α
t

(1)
(
φ†
)t
α

(1)|0〉

|3〉 =
(
λ
†
)α
α

(2)|0〉 |7〉 =
(
p†
)b
β

(1)
(
p†
)β
b

(1)|0〉

|4〉 =
(
λ
†
)α
β

(1)
(
λ†
)β
α

(1)|0〉 |8〉 =
(
ψ†
)α
k

(1)
(
ψ
†
)k
α

(1)|0〉

|9〉 =
(
ω†
)0

F
(1)
(
ω†
)F

0
(1)|0〉 .

(C.2)

Reminder: φ, p, ψ transform as N2, N1 and N3 respectively. The action of Q on this

subspace is given by the following matrix:

Q|singlets =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 − igN2√
2

igN1√
2
− igN3√

2
−i
√

2g

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 − ig√
2

0 0 0 0 0 0

0 0 ig√
2

0 0 0 0 0 0

0 0 ig√
2

0 0 0 0 0 0

0 0 igNc√
2

0 0 0 0 0 0



. (C.3)

For Q† we have:

Q†|singlets =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 igN2√
2
− igN1√

2
− igN3√

2
−i
√

2g

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 ig√
2

0 0 0 0 0 0 0

0 − ig√
2

0 0 0 0 0 0 0

0 ig√
2

0 0 0 0 0 0 0

0 igNc√
2

0 0 0 0 0 0 0



. (C.4)

In this appendix we use the following relation between supercharges and the light-cone

hamiltonian:

2P+ = {Q,Q†}. (C.5)
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Therefore,

P+|singlets =



0 0 0 0 0 0 0 0 0

0 1
2g

2(N2+N1) 0 0 0 0 0 0 0

0 0 1
2g

2(N2+N1) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 g2N2

2 −1
2

(
g2N1

)
0 0

0 0 0 0 0 −1
2

(
g2N2

) g2N1

2 0 0

0 0 0 0 0 0 0 g2N3

2 g2

0 0 0 0 0 0 0 1
4g

2(N2+N1−N3)N3
1
2g

2(N2+N1−N3)



.

The eigenvectors of P+ are

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 N1
N2

0 0 0 0 −1 0 0

0 1 0 0 0 0 1 0 0

− 2
N3

0 0 0 0 2
N2+N1−N3

0 0 0

1 0 0 0 0 1 0 0 0



. (C.6)

The corresponding eigenvalues are

0, 0, 0, 0, 0,
g2(N2 +N1)

2
,
g2(N2 +N1)

2
,
g2(N2 +N1)

2
,
g2(N2 +N1)

2
. (C.7)

In particular, the are five massless states given by

kerP+|singlets = Span



|9〉N3 − 2|8〉
|7〉N2 + |6〉N1

|5〉
|4〉
|1〉


. (C.8)

Now let us consider the subspace in the representation N2 ×N1:

|1〉ra =
(
λ
†
)α
α

(1)
(
γ†
)r
a

(1)|0〉

|2〉ra =
(
λ†
)α
α

(1)
(
γ†
)r
a

(1)|0〉

|3〉ra =
(
γ†
)r
a

(2)|0〉

|4〉ra =
(
φ†
)r
α

(1)
(
p†
)α
a

(1)|0〉

(C.9)
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Q|N2×N1
=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 , Q†|N2×N1
=


0 0 0 0

0 0 0 0

0 0 0 N1

0 0 0 0

 , P+|N2×N1
=


0 0 0 0

0 0 0 0

0 0 N1
2 0

0 0 0 N1
2


(C.10)

Expressions for the conjugate representation N2 ×N1 can be obtained in a similar way.

For all other irreps the action of Q and Q† is trivial. For example, in the N1 ×N3 sector

we have only one state:

|1〉ai = (p†)aα(1)(ψ†)αi (1)|0〉 . (C.11)

DLCQ spectrum for K = 3. Singlet states:

|1〉 =
(
λ†
)α
α

(3)|0〉 |23〉 =
(
ψ†
)α
k

(1)
(
ψ
†
)k
α

(2)|0〉

|2〉 =
(
λ
†
)α
α

(3)|0〉 |24〉 =
(
ψ†
)α
k

(2)
(
ψ
†
)k
α

(1)|0〉

|3〉 =
(
λ
†
)α
β

(2)
(
λ†
)β
α

(1)|0〉 |25〉 =
(
ω†
)0

F
(1)
(
ω†
)F

0
(2)|0〉

|4〉 =
(
λ
†
)α
β

(1)
(
λ†
)β
α

(2)|0〉 |26〉 =
(
ω†
)0

F
(2)
(
ω†
)F

0
(1)|0〉

|5〉 =
(
λ
†
)β
β

(2)
(
λ†
)α
α

(1)|0〉 |27〉 =
(
γ†
)b
d

(1)
(
φ†
)d
β

(1)
(
p†
)β
b

(1)|0〉

|6〉 =
(
λ
†
)β
β

(1)
(
λ†
)α
α

(2)|0〉 |28〉 =
(
γ†
)t
l
(1)
(
φ
†
)α
t

(1)
(
p†
)l
α

(1)|0〉

|7〉 =
(
λ†
)β
β

(2)
(
λ†
)α
α

(1)|0〉 |29〉 =
(
λ†
)γ
γ

(1)
(
γ†
)s
c

(1)
(
γ†
)c
s

(1)|0〉

|8〉 =
(
λ
†
)β
β

(2)
(
λ
†
)α
α

(1)|0〉 |30〉 =
(
λ†
)γ
γ

(1)
(
φ
†
)α
t

(1)
(
φ†
)t
α

(1)|0〉

|9〉 =
(
λ†
)α
β

(2)
(
λ†
)β
α

(1)|0〉 |31〉 =
(
λ†
)γ
γ

(1)
(
p†
)b
β

(1)
(
p†
)β
b

(1)|0〉

|10〉 =
(
λ
†
)α
β

(2)
(
λ
†
)β
α

(1)|0〉 |32〉 =
(
ψ†
)β
u

(1)
(
ψ
†
)u
β

(1)
(
λ†
)α
α

(1)|0〉

|11〉 =
(
λ
†
)β
γ

(1)
(
λ†
)γ
β

(1)
(
λ†
)α
α

(1)|0〉 |33〉 =
(
ω†
)0

G
(1)
(
ω†
)G

0
(1)
(
λ†
)α
α

(1)|0〉

|12〉 =
(
λ
†
)α
γ

(1)
(
λ
†
)β
β

(1)
(
λ†
)γ
α

(1)|0〉 |34〉 =
(
λ
†
)γ
γ

(1)
(
γ†
)s
c

(1)
(
γ†
)c
s

(1)|0〉

|13〉 =
(
λ
†
)α
γ

(1)
(
λ†
)γ
β

(1)
(
λ†
)β
α

(1)|0〉 |35〉 =
(
λ
†
)γ
γ

(1)
(
φ
†
)α
t

(1)
(
φ†
)t
α

(1)|0〉

|14〉 =
(
λ
†
)β
γ

(1)
(
λ
†
)α
β

(1)
(
λ†
)γ
α

(1)|0〉 |36〉 =
(
λ
†
)γ
γ

(1)
(
p†
)b
β

(1)
(
p†
)β
b

(1)|0〉

|15〉 =
(
λ†
)β
γ

(1)
(
λ†
)α
β

(1)
(
λ†
)γ
α

(1)|0〉 |37〉 =
(
ψ†
)β
u

(1)
(
ψ
†
)u
β

(1)
(
λ
†
)α
α

(1)|0〉

|16〉 =
(
λ
†
)β
γ

(1)
(
λ
†
)α
β

(1)
(
λ
†
)γ
α

(1)|0〉 |38〉 =
(
ω†
)0

G
(1)
(
ω†
)G

0
(1)
(
λ
†
)α
α

(1)|0〉

|17〉 =
(
γ†
)s
c

(1)
(
γ†
)c
s

(2)|0〉 |39〉 =
(
λ†
)α
γ

(1)
(
φ
†
)γ
t

(1)
(
φ†
)t
α

(1)|0〉
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|18〉 =
(
γ†
)s
c

(2)
(
γ†
)c
s

(1)|0〉 |40〉 =
(
λ†
)β
γ

(1)
(
p†
)b
β

(1)
(
p†
)γ
b

(1)|0〉

|19〉 =
(
φ
†
)α
t

(1)
(
φ†
)t
α

(2)|0〉 |41〉 =
(
ψ†
)α
u

(1)
(
ψ
†
)u
β

(1)
(
λ†
)β
α

(1)|0〉

|20〉 =
(
φ
†
)α
t

(2)
(
φ†
)t
α

(1)|0〉 |42〉 =
(
λ
†
)α
γ

(1)
(
φ
†
)γ
t

(1)
(
φ†
)t
α

(1)|0〉

|21〉 =
(
p†
)b
β

(1)
(
p†
)β
b

(2)|0〉 |43〉 =
(
λ
†
)β
γ

(1)
(
p†
)b
β

(1)
(
p†
)γ
b

(1)|0〉

|22〉 =
(
p†
)b
β

(2)
(
p†
)β
b

(1)|0〉 |44〉 =
(
ψ†
)α
u

(1)
(
ψ
†
)u
β

(1)
(
λ
†
)β
α

(1)|0〉 (C.12)

The massless part is given by

kerP+|singlets = Span



|43〉N2 − |36〉NcN2 + |42〉N1 − |35〉N1Nc

|40〉N2 − |31〉NcN2 + |39〉N1 − |30〉N1Nc

|34〉
|29〉

−2|23〉 − 2|24〉+ |25〉N3 + |26〉N3

|12〉
|11〉


(C.13)

The subspace in the representation N2 ×N1:

|1〉ra =
(
γ†
)r
a

(3)|0〉

|2〉ra =
(
φ†
)r
α

(1)
(
p†
)α
a

(2)|0〉

|3〉ra =
(
φ†
)r
α

(2)
(
p†
)α
a

(1)|0〉

|4〉ra =
(
γ†
)r
a

(1)
(
γ†
)s
c

(1)
(
γ†
)c
s

(1)|0〉

|5〉ra =
(
λ†
)α
α

(2)
(
γ†
)r
a

(1)|0〉

|6〉ra =
(
λ
†
)α
α

(2)
(
γ†
)r
a

(1)|0〉

|7〉ra =
(
λ
†
)α
β

(1)
(
λ†
)β
α

(1)
(
γ†
)r
a

(1)|0〉

|8〉ra =
(
λ
†
)β
β

(1)
(
λ†
)α
α

(1)
(
γ†
)r
a

(1)|0〉

|9〉ra =
(
γ†
)r
a

(1)
(
φ
†
)α
t

(1)
(
φ†
)t
α

(1)|0〉

|10〉ra =
(
γ†
)r
a

(1)
(
p†
)b
β

(1)
(
p†
)β
b

(1)|0〉

|11〉ra =
(
ψ†
)α
k

(1)
(
ψ
†
)k
α

(1)
(
γ†
)r
a

(1)|0〉

|12〉ra =
(
ω†
)0

F
(1)
(
ω†
)F

0
(1)
(
γ†
)r
a

(1)|0〉

|13〉ra =
(
λ†
)α
α

(1)
(
γ†
)r
a

(2)|0〉

|14〉ra =
(
λ†
)β
β

(1)
(
φ†
)r
α

(1)
(
p†
)α
a

(1)|0〉

|15〉ra =
(
λ
†
)α
α

(1)
(
γ†
)r
a

(2)|0〉

|16〉ra =
(
λ
†
)β
β

(1)
(
φ†
)r
α

(1)
(
p†
)α
a

(1)|0〉

|17〉ra =
(
λ†
)α
β

(1)
(
φ†
)r
α

(1)
(
p†
)β
a

(1)|0〉

|18〉ra =
(
λ
†
)α
β

(1)
(
φ†
)r
α

(1)
(
p†
)β
a

(1)|0〉

|19〉ra =
(
γ†
)t
a

(1)
(
φ
†
)α
t

(1)
(
φ†
)r
α

(1)|0〉

|20〉ra =
(
γ†
)r
c

(1)
(
p†
)c
α

(1)
(
p†
)α
a

(1)|0〉

(C.14)
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The massless part is given by

kerP+|N2×N1
= Span



|20〉− |10〉(N2N1−1)
N2−N1

− |1〉(1−N1
2)

N2−N1
− |9〉(N1

2−1)
N2−N1

|19〉− |9〉(1−N2N1)
N2−N1

− |10〉(1−N2
2)

N2−N1
− |1〉(N2

2−1)
N2−N1

− |16〉
Nc

+|18〉+4i|9〉gN1(Nc2−1)
(N2−N1)Nc

+
4i|10〉gN2(Nc2−1)

(N2−N1)Nc
−2i|1〉(gN2Nc

2+gN1Nc
2−gN2−gN1)

(N2−N1)Nc

|12〉−2|11〉
N3

|8〉

|7〉

|4〉


The subspace in the representation N1 ×N3 is

|1〉ai =
(
ψ†
)α
i

(2)
(
p†
)a
α

(1)|0〉

|2〉ai =
(
ψ†
)α
i

(1)
(
p†
)a
α

(2)|0〉

|3〉ai =
(
ψ†
)α
i

(1)
(
γ†
)a
t

(1)
(
φ†
)t
α

(1)|0〉

|4〉ai =
(
ψ†
)α
i

(1)
(
λ†
)β
β

(1)
(
p†
)a
α

(1)|0〉

|5〉ai =
(
ψ†
)α
i

(1)
(
λ
†
)β
β

(1)
(
p†
)a
α

(1)|0〉

|6〉ai =
(
ψ†
)β
i

(1)
(
λ†
)α
β

(1)
(
p†
)a
α

(1)|0〉

|7〉ai =
(
ψ†
)β
i

(1)
(
λ
†
)α
β

(1)
(
p†
)a
α

(1)|0〉

(C.15)

with two massless states

kerP+|N1×N3
= Span

{
|7〉 − |5〉Nc

|6〉 − |4〉Nc

}
. (C.16)
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