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Abstract

Bose-Einstein correlations of same-sign charged pions, produced in proton-proton
collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected
by the LHCb experiment. The signature for Bose-Einstein correlations is observed
in the form of an enhancement of pairs of like-sign charged pions with small four-
momentum difference squared. The charged-particle multiplicity dependence of the
Bose-Einstein correlation parameters describing the correlation strength and the size
of the emitting source is investigated, determining both the correlation radius and
the chaoticity parameter. The measured correlation radius is found to increase as a
function of increasing charged-particle multiplicity, while the chaoticity parameter
is seen to decrease.
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1 Introduction

Multiparticle production within the process of hadronisation can be investigated by
measuring Bose-Einstein correlations (BEC) between indistinguishable bosons [1, 2]. The
technique to study the BEC effect in particle physics is the analogue of the Hanbury-
Brown-Twiss (HBT) intensity interferometry [3–5]. The production of identical bosons
that are close in phase space is enhanced by the presence of BEC. The measurements of
the quantum interference effect between indistinguishable particles emitted by a finite-size
source are useful to understand the space-time properties of the hadron emission volume.

Since the first observation of BEC in identically charged pions produced in pp̄ colli-
sions [6], the effect has been studied for multiboson systems produced in leptonic, hadronic
and nuclear collisions [7–32]. At the LHC, the BEC effect has been studied by the
ALICE, ATLAS and CMS collaborations in proton-proton [26–30], proton-lead [31] and
lead-lead [31,32] collisions.

Dependences of the BEC effect upon various observables have been studied, including
charged-particle multiplicity, average transverse momentum of the particle pair and boson
mass. The latter has been reported by the LEP experiments [7–21], and can be interpreted
within some theoretical models [33–36].

In this paper, the first study of the BEC effect in pp collisions in the forward region is
presented. The BEC parameters characterising the correlation radius and the chaoticity
of the correlation source are measured.

2 BEC measurement

Quantum interference effects are probed by studying the Lorentz invariant
quantity Q [2, 37] of two indistinguishable particles of rest mass m and four-momenta q1
and q2

Q =
√
−(q1 − q2)2 =

√
M2 − 4m2, (1)

which gives a measure of the phase-space separation of the two-particle system of invariant
mass M .

2.1 Two-particle correlation function

The BEC effect is expected to manifest itself as an enhancement in the two-particle
correlation function in the low-Q region below ∼0.5 GeV/c2, expressed as [38]

C2(Q) =
ρ2(Q)

ρ02(Q)
, (2)

where ρ2(Q) is the two-particle density function for like-sign pairs of indistinguishable
particles, as defined in Ref. [38], and ρ02(Q) is the corresponding density function without
the BEC effect, which is constructed as described in Sec. 2.2. The densities ρ2(Q) and ρ02(Q)
are normalised to unity, such that they can be interpreted as probability density functions.
The correlation function C2(Q) is commonly parameterised as a Fourier transform of the
source density distribution, C2(Q) = N(1 + λe−|RQ|

αL ) [39], where the parameter R, the
correlation radius, can be interpreted as the radius of the spherically symmetric source
of the emission volume, N accounts for the overall normalisation and λ is the chaoticity
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parameter, which accounts for the partial incoherence of the source [40]. The chaoticity
parameter can vary from zero, in the case of a completely coherent source, to unity for an
entirely chaotic source. The Levy index of stability [39], αL, accounts for the assumed
density distribution. The radial distribution of the static source corresponding to the case
of αL = 1 is used in the present analysis

C2(Q) = N(1 + λe−RQ)× (1 + δ ·Q), (3)

where the δ parameter accounts for long-range correlations, e.g. related to the transverse
momentum conservation. This extended parameterisation follows better the Q distribution
in data, including in the low-Q region below ∼0.5 GeV/c2 [41].

The correlation function is, to first order, independent of the single-particle acceptance
and efficiency. By construction of the correlation function, the effects due to the detector
occupancy, acceptance and material budget are accounted for by dividing the Q distribution
for like-sign pion pairs by a reference distribution.

2.2 Reference sample

The reference sample used to construct the ρ02(Q) density function, present in the denomi-
nator of Eq. (2), should reflect the distribution without the BEC effect while maintaining
all other correlations. A number of reference samples can be constructed but none fully sat-
isfies the above conditions. The reference sample may be constructed using experimental
data, or with simulated events incorporating the detector interactions.

A data-driven “event-mixed” reference sample [42] is used in the present analysis.
This approach is based on the choice of two identical bosons, each originating from
different events, which naturally do not contain the BEC effect. However, this method
of constructing boson pairs may not contain other correlations present in the same-sign
boson data sample, such as correlations due to Coulomb interactions or long-range effects.

Alternative methods have been considered for constructing the reference sample. For
example, the reference sample could consist of opposite-sign charged bosons originating
from the same pp interaction. As in the event-mixed reference sample, the main advantage
of the opposite-sign approach is that the reference distribution is derived directly from
data. However, the opposite-sign charge pairs may also originate from resonances which
result in local enhancements in the Q spectrum. Furthermore, correlations arising from the
attraction of opposite charges are present in such a sample. Another method is to employ
the simulated Q distribution without the BEC effect. In this case, the crucial requirement
is a good level of agreement between data and simulated samples in the distributions
of crucial variables, e.g. the particle momenta. The absence of the Coulomb and spin
effects in generators based on the Lund Model [43] may impinge on the correctness of this
method.

2.3 Double ratio

To account for imperfections in the reference distribution derived from the data a “double
ratio” rd is commonly used in BEC studies

rd(Q) ≡ C2(Q)data

C2(Q)simulation
, (4)
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where C2(Q)data denotes the correlation function in the data constructed using the event-
mixed reference sample, while C2(Q)simulation indicates the correlation function in the
simulation without the BEC effect, using an event-mixed sample built with simulated
events in the same way as for data. The correlation function in the simulation without
the BEC effect includes the simulated long-range correlations that are also present in
data. Therefore, if the long-range correlations are correctly modelled, a constant rd(Q)
distribution is expected in the high-Q region up to ∼2.0 GeV/c2. In the present analysis
the BEC effect is measured by fitting the rd(Q) distribution with the event-mixed reference
sample, using the parameterisation given in Eq. (3).

2.4 Coulomb correction

Final-state interactions involving both electromagnetic (Coulomb) and strong forces are
present in the low-Q region below ∼0.5 GeV/c2, and may potentially affect the distributions
of the analysed observables. In the low-Q region, the Coulomb repulsion between two
identically charged hadrons alters the correlation function C2(Q) by decreasing the BEC
effect. This effect is corrected for with the Gamov penetration factor [44,45], G2(Q), by
applying a weight per particle pair 1/G2(Q), where G2(Q) = 2πζ

e2πζ−1 , ζ = ±αm
Q

, and m
and α denote the particle rest mass and the fine-structure constant, respectively. The
sign of ζ is positive for same-charge and negative for opposite-charge pairs of hadrons.

The Coulomb interactions are not present in the simulated samples used in the analysis.
This effect therefore has to be corrected for in the data.

3 Detector and dataset

The LHCb detector [46] is a single-arm forward spectrometer designed for the study of
particles containing b or c quarks. The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector (VELO) [47] surrounding the pp interaction
region and covering the pseudorapidity range 2 < η < 5, a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power of about 4 Tm, and three
stations of silicon-strip detectors and straw drift tubes [48] placed downstream of the
magnet. The tracking system provides a measurement of momentum, p, with a relative
uncertainty that varies from 0.5% at low momentum to 1% at 200 GeV/c. The minimum
distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with
a resolution of (15 + 29/pT)µm, where pT is the component of p transverse to the beam,
in GeV/c. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors [49]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers [50].
The trigger [51] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.

In the present analysis, a dataset of no-bias and minimum-bias triggered events
collected in 2011 at a centre-of-mass energy of

√
s = 7 TeV is used. The no-bias trigger

selects events randomly, while the minimum-bias trigger requires at least one reconstructed
VELO track. The data were collected with an average number of visible interactions per
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bunch crossing1 (pile-up) of 1.4 [52]. In order to eliminate biases related to the trigger
requirements, a sample of “independent pp interactions” is constructed as described in
Sec. 4.

In the simulation, pp collisions are generated using Pythia 8 [53] with a specific
LHCb configuration [54] and without including the BEC effect. Decays of hadronic
particles are described by EvtGen [55], in which final-state radiation is generated using
Photos [56]. The interaction of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [57], as described in Ref. [58]. To study
systematic effects, an additional sample is simulated using Pythia 6.4 [59] with the
Perugia0 [60] tune.

4 Selection and model fitting

The analysis uses a sample of events that may contain multiple pp collisions. In the
absence of trigger requirements each pp interaction in the event can be analysed separately.
Therefore, if the event is selected by the no-bias trigger, all PVs are accepted. In the case
of events with multiple pp collisions selected by the minimum-bias trigger, the related
biases are suppressed by randomly removing one of the PVs containing the track(s) on
which the trigger is fired.

The correlation function is constructed using pairs of same-sign pions. The particle
identification (PID) is based on the output of a neural network employing subdetector
information that quantifies the probability for a particle to be of a certain kind [61]. Such
probabilities are calibrated to account for differences between data and the simulation
that is used to train the neural network. The corrected values are derived from the data
distributions using dedicated PID calibration samples [49]. A high purity of the pion
sample has to be ensured, but without suppressing low-momentum pions which mostly
contribute to the signal region at low Q. The optimal limit on the pion identification
probability is applied at the point where the signal enhancement in the low-Q region below
∼0.5 GeV/c2 for data begins to saturate. The pion purity with this selection remains high
(∼98%). Additional vetoes on the kaon and proton identification probabilities are also
imposed.

The following single particle requirements are applied. The selection requires that all
pion candidates must have reconstructed track segments in the VELO, with 2 < η < 5,
and tracking stations downstream of the magnet. Each track must have a good-quality
track fit, pT > 0.1 GeV/c, and no associated signal in the muon stations. Both pion
candidates must be assigned to the same PV. Particles are assigned to the PV for which
the χ2 value of the impact parameter, χ2

IP, is the smallest, where χ2
IP is defined as the

difference in the vertex-fit χ2 of a given PV reconstructed with and without the track under
consideration. A loose requirement on the track IP, IP < 0.4 mm, is applied to retain
most of the particles originating from a given PV. In order to reduce the contamination
from fake and clone tracks,2 in the case where the tracks have all the same hits deposited
in the VELO subdetector, only the track with the best χ2 is retained. In addition, fake

1A visible interaction corresponds to the PV reconstructed with at least five VELO tracks.
2Fake tracks are wrongly reconstructed tracks which combine the hits deposited by multiple particles

in the tracking detectors. Clone tracks are two or more tracks reconstructed by mistake from the hits
deposited in detectors by a single particle.
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tracks are removed using the requirements on the track χ2 and the output of a dedicated
neural network [61].

In the region Q < 0.05 GeV/c2, the separation in momentum between two particles is
degraded and is not well simulated. The discrepancy between data and simulated track
pairs tends to increase as Q approaches zero. Investigations using simulation indicate that
there is a significant fraction of pion pairs containing fake and clone tracks in the region
Q < 0.05 GeV/c2 for all activity classes. The double ratio is approximately constant and
close to unity in the high-Q region up to Q ∼ 2.0 GeV/c2 (see Fig. 2), which indicates that
the long-range correlations are modelled accurately in this region. Consequently, the fits
to the rd distributions are restricted to the range 0.05 < Q < 2.0 GeV/c2.

The BEC effect is expected to be largest in the low-Q region below ∼0.5 GeV/c2, where
it may be affected by same-sign clone tracks. Such clone pion pairs should manifest
themselves as an enhancement in the distribution of the differences of the tangents of the
track momenta of the two particles, where the tangents are measured in the xz and yz
planes before the magnet, with the z axis defined along the beam direction. The tangents
are used to estimate the number of clone tracks remaining after the final selection, and
the clone tracks can be suppressed with a requirement on the difference between the
tangents of the two particles in a pair. Pion pairs are removed from the analysis if both
|∆tx| and |∆ty| are less than 0.3 mrad, where ∆tx and ∆ty are the differences of the
tangents of the track momenta of the two particles in the xz and yz planes. After applying
these requirements, the effect of the clone particles is found to be negligible in the region
Q > 0.05 GeV/c2.

The BEC parameters are studied as a function of the charged-particle multiplicity.
However, the measured charged-particle multiplicities cannot be directly used to compare
results among different experiments, mainly because the detector acceptances may not
overlap and the reconstruction efficiencies may differ. This is why activity classes are
introduced, reflecting the total multiplicity in the full solid angle. Three activity classes
are defined in the range 2 < η < 5 according to the multiplicity of reconstructed VELO
tracks assigned to a PV, which is a good probe of the total multiplicity. These activity
classes are illustrated in Fig. 1. The low activity class corresponds to a fraction of 48% of
PVs with lowest multiplicities (from 5 to 10 tracks). The medium activity class contains
the 37% of PVs with higher multiplicities (from 11 to 20 tracks). Finally, the high activity
class contains 15% of the highest multiplicity PVs (≥ 21 tracks). Using this classification,
the comparison among different experiments is largely independent from specific features
of the detectors.

Although the activity classes have advantages in comparing results among various
experiments characterised by different rapidity ranges, an unfolding procedure is performed
to relate the reconstructed charged-particle multiplicities to those predicted by Pythia 8
with a specific LHCb configuration [54]. The multiplicity distributions are corrected
using a Bayesian unfolding technique [62]. An unfolding matrix reflecting the probability
of reconstructing a certain number of charged particles from a single PV in the range
2 < η < 5 with generated charged-particle multiplicity Nch is populated using simulation
and applied to the data. It is found that the corrected multiplicities agree well with the
unfolded multiplicities previously determined by LHCb in Ref. [63]. The activity classes
correspond to the following generated charged-particle multiplicitiy intervals: Nch ∈ [8, 18]
(low activity), Nch ∈ [19, 35] (medium activity) and Nch ∈ [36, 96] (high activity).

The distributions of the double ratio of correlation functions in data and simulation
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Figure 1: Multiplicity of reconstructed VELO tracks assigned to a PV for the 2011 no-bias
sample. Different colours indicate three activity classes defined as fractions of the full distribution.
The minimum value of the track multiplicity to accept reconstructed PV is five.

for like-sign pion pairs, determined using the event-mixed reference sample, are fitted
in the range 0.05 < Q < 2.0 GeV/c2 for the three different activity classes using the
parameterisation of Eq. (3). The results of the binned maximum likelihood fit to the
double ratio are summarised in Sec. 6.

5 Systematic uncertainties

The properties of the correlation function and the construction of the double ratio make
the fitted BEC parameters insensitive to the choice of the selection requirements to
a large extent. However, due to imperfections in the reference sample and possible
differences between data and simulation related to the generation model, as well as subtle
reconstruction effects (like the reconstruction of close tracks sharing the same VELO hits
or the track reconstruction in the high-occupancy detector regions), some second-order
distortions in the double ratio may appear. The systematic uncertainties on the fit
parameters, R and λ, of the exponential model are determined by performing the analysis
with modifications designed to estimate the systematic effects on individual contributions
to the rd(Q) distribution.

The leading source of systematic uncertainty is due to differences in the event generators
used to determine the correlation function for the simulation. To study this effect, a
sample of minimum-bias events produced using the Pythia 6.4 generator with Perugia0
tuning is used to construct the double ratio. The corresponding contribution to the
systematic uncertainty is taken as the difference between the central values of the results
obtained using the Pythia 8 and Pythia 6.4 datasets.

Another important source of systematic uncertainty is related to the PV multiplicity
in the event. The constructed double ratio may be distorted in events containing multiple
PVs, due to imperfections in the construction of the reference sample. To estimate the
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associated systematic uncertainty, the sample is divided into three subsamples containing
events with one, two, and three or more PVs. For each subsample, the fit is performed
and the maximum difference for each measured parameter is taken as a systematic
uncertainty. The systematic uncertainty resulting from the PV reconstruction efficiency
is also considered. To account for the effect of pile-up in the data and inefficiencies in
the PV reconstruction, a systematic uncertainty is estimated as the difference between
the nominal fit results and the results obtained from a fit to the data in which the PV
reconstruction has been repeated after removing randomly a subset of the tracks from the
event.

After applying the track quality requirements, the fraction of remaining fake tracks
is determined from simulation to be at the level of 1%. To determine the systematic
uncertainty due to the presence of such fake tracks, the double ratio is refitted with looser
track quality requirements. A similar uncertainty is obtained from a second method in
which sets of randomly selected uncorrelated tracks are added. The observed change in
BEC parameters is negligible with respect to the statistical uncertainty.

The fraction of like-sign pion pairs containing a clone track after the selection is
determined to be below 1%. The systematic uncertainty due to the presence of clone
tracks is estimated by fitting the double ratio rd(Q), after applying a tight requirement
on the Kullback-Leibler distance [64] such that the clone contribution is fully removed in
simulation. The effect is found to be negligible for all activity classes.

The systematic uncertainty due to the calibration of the particle identification in
the simulation is estimated by comparing several variants of the calibration procedure
with the acceptance evaluated in different binning schemes for the particle momentum,
pseudorapidity and track multiplicity. The largest difference after refitting the double
ratios is taken as a systematic uncertainty.

As the requirement on the pion identification probability alters the contamination
of pions due to misidentification, it can influence the values of the R and λ parameters.
The contribution of this effect to the systematic uncertainty is estimated by refitting
rd(Q) with the requirement on the pion identification probability changed to increase the
fraction of misidentified pions by 50%.

The systematic uncertainty derived from the fit range in the low-Q (high-Q) region
is determined by changing the lower (upper) limit of the Q value by ±0.01 GeV/c2

(±0.2 GeV/c2). The fits to the double ratio with two different lower (upper) limits of Q are
performed for the three activity classes and the largest difference is taken as a systematic
uncertainty.

The systematic uncertainty due to Coulomb corrections is estimated by varying the
corrections by ±20%. The variation in the fit parameters is found to be less than 0.1%,
and is therefore neglected. It is also found that imposing different requirements on the
particle IPs has no significant influence on the measured correlation radius or chaoticity
parameter. The fractions of kaon-kaon and proton-proton like-sign pairs misidentified as
a pion pair in the pion sample in the BEC signal region of Q < 1.0 GeV/c2 are found to
be negligible. Pairings of different particle types have a negligible effect.

Other effects like the fit binning, the resolution of the Q variable, different magnet
polarities, beam-gas interactions and residual acceptance effects related to possible dif-
ferences between data and simulation in the low-Q region below ∼0.2 GeV/c2, are also
studied and found to be negligible.

The contributions to the systematic uncertainty are listed in Table 1. Correlations of

7



Table 1: Fractional systematic uncertainties on the R and λ parameters for the three activity
classes, as described in the text. The total uncertainty is the sum in quadrature of the individual
contributions.

Source Low activity Medium activity High activity
∆R [%] ∆λ [%] ∆R [%] ∆λ [%] ∆R [%] ∆λ [%]

Generator tunings 6.6 4.3 8.9 3.5 6.5 1.5
PV multiplicity 5.9 5.8 6.1 4.5 3.9 4.3
PV reconstruction 1.8 0.1 1.4 1.2 0.1 <0.1
Fake tracks 0.4 1.1 1.7 3.9 1.1 0.8
PID calibration 1.3 0.3 0.8 0.6 2.7 0.9
Requirement on pion PID 2.9 1.8 1.6 0.1 1.3 0.1
Fit range at low-Q 1.2 1.0 1.2 1.5 1.8 2.7
Fit range at high-Q 1.8 0.1 2.1 0.8 2.4 1.4
Total 9.8 7.6 11.4 7.3 8.8 5.6

the systematic uncertainties between different activity classes are negligible.

6 Results

The results of fits to the double ratios for the correlation radius, chaoticity parameter and
δ parameter for the three different activity classes are summarised in Table 2, including
statistical and systematic uncertainties, and are presented in Fig. 2.

The dependences of the correlation radius and the chaoticity parameter on the activity
class are shown in Figs. 3 and 4, respectively. As the activity class increases, the
R parameter also increases, while the λ parameter decreases. This confirms previous
observations at LEP [19] and in the other LHC experiments [26, 28–30]. There are no
theoretical predictions for the BEC effect in pp interactions, however the observed trends
are qualitatively predicted within some theoretical models [41,65–67].

Due to the different pseudorapidity coverage of LHCb with respect to other LHC
experiments, the comparison of the measured BEC parameters for a given multiplicity
out of a pp interaction is not straightforward. In the case of unfolded multiplicities in
different pseudorapidity ranges quoted by experiments, the correspondence can be found
using relations obtained from simulated events. The results for pp collisions at 7 TeV
published by the ATLAS experiment [30] are quoted for unfolded multiplicities in the
pseudorapidity range |η| < 2.5 and pT > 0.1 GeV/c. Pythia 8 is used to determine
the relation for the multiplicity bins defined in the LHCb (2 < η < 5) and ATLAS
(|η| < 2.5 and pT > 0.1 GeV/c) acceptances. The data indicate that the LHCb results for
both R and λ are slightly below the ATLAS ones at 7 TeV. In order to perform a more
detailed comparison it would be necessary to measure the BEC parameters using a full
three-dimensional analysis [68].

It should be noted that the fit quality using the parameterisation, Eq. (3), is poor (see
Fig. 2). The χ2 values are equal to 591, 623 and 621 for 386 degrees of freedom for low,
medium and high activity classes, respectively. The difference between the fitted function
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Table 2: Results of fits to the double ratio rd(Q) for the three different activity classes and
corresponding Nch bins, using the parameterisation of Eq. (3). Statistical and systematic
uncertainties are given separately.

Activity Nch R [fm] λ δ [GeV−1]
Low [8,18] 1.01 ± 0.01 ± 0.10 0.72 ± 0.01 ± 0.05 0.089 ± 0.002 ± 0.044
Medium [19,35] 1.48 ± 0.02 ± 0.17 0.63 ± 0.01 ± 0.05 0.049 ± 0.001 ± 0.009
High [36,96] 1.80 ± 0.03 ± 0.16 0.57 ± 0.01 ± 0.03 0.026 ± 0.001 ± 0.010

and the data points, visible in the whole Q range, is particularly large in the low-Q BEC
signal region below 0.2 GeV/c2. This indicates that the approximate parameterisation
of Eq. (3) does not reproduce the measured distribution properly. Such an effect is
observed also by other experiments [29, 30]. This may introduce an additional systematic
uncertainty in the theoretical interpretation of the fit results.

7 Summary and conclusions

Using a data sample collected by the LHCb experiment in proton-proton collisions at a
centre-of-mass energy of 7 TeV, the Bose-Einstein correlations between two indistinguish-
able pions are studied in the forward acceptance region of 2 < η < 5 for single pions with
transverse momentum pT > 0.1 GeV/c. An enhancement of pairs of same-sign charged
pions with small relative momentum related to the BEC effect is observed. An event-mixed
reference sample is used to determine the signal and the double ratio distributions are
fitted using an exponential parameterisation. The results confirm that the effective size of
the emission region increases as a function of increasing charged-particle multiplicity, while
the chaoticity parameter decreases, as previously observed at LEP and at the other LHC
experiments. The R and λ parameters measured in the forward region in three different
charged-particle multiplicity bins are slightly lower with respect to those measured by
ATLAS for corresponding pp interaction multiplicities.

9



]2cQ [GeV/
0 0.5 1 1.5 2

)2 c
(Q

) 
/ (

0.
00

5 
G

eV
/

d
 r

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

LHCb
 = 7 TeVs

Data
Fit (a)

low activity

]2cQ [GeV/
0 0.5 1 1.5 2

)2 c
(Q

) 
/ (

0.
00

5 
G

eV
/

d
 r

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

LHCb
 = 7 TeVs

Data
Fit (b)

medium activity

]2cQ [GeV/
0 0.5 1 1.5 2

)2 c
(Q

) 
/ (

0.
00

5 
G

eV
/

d
 r

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

LHCb
 = 7 TeVs

Data
Fit (c)

high activity

Figure 2: Results of the fit to the double ratio for like-sign pion pairs with event-mixed reference
samples and the Coulomb effect subtracted for the three activity classes: (a) low, (b) medium
and (c) high activity. The blue solid line denotes the fit result using the parameterisation of
Eq. (3). Only statistical uncertainties are shown.
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sUniversità della Basilicata, Potenza, Italy
tScuola Normale Superiore, Pisa, Italy
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