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The chalcogen elements oxygen, sulfur, and selenium are essential constituents of

side chain functions of natural amino acids. Conversely, no structural and biological

function has been discovered so far for the heavier and more metallic tellurium ele-

ment. In the methionine series, only the sulfur‐containing methionine is a

proteinogenic amino acid, while selenomethionine and telluromethionine are natural

amino acids that are incorporated into proteins most probably because of the toler-

ance of the methionyl‐tRNA synthetase; so far, methoxinine the oxygen analogue

has not been discovered in natural compounds. Similarly, the chalcogen analogues

of tryptophan and phenylalanine in which the benzene ring has been replaced by

the largely isosteric thiophene, selenophene, and more recently, even tellurophene

are fully synthetic mimics that are incorporated with more or less efficiency into pro-

teins via the related tryptophanyl‐ and phenylalanyl‐tRNA synthetases, respectively.

In the serine/cysteine series, also selenocysteine is a proteinogenic amino acid that

is inserted into proteins by a special translation mechanism, while the tellurocysteine

is again most probably incorporated into proteins by the tolerance of the cysteinyl‐

tRNA synthetase. For research purposes, all of these natural and synthetic chalcogen

amino acids have been extensively applied in peptide and protein research to exploit

their different physicochemical properties for modulating structural and functional

properties in synthetic peptides and rDNA expressed proteins as discussed in the fol-

lowing review.
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1 | INTRODUCTION

In early days of X‐ray crystallography of proteins, one of the main dif-

ficulties was the trial and error soaking procedure for the production

of heavy atom derivatives. It was with the fast and efficient advances

in rDNA technology that using methionine‐auxotrophic Escherichia coli

strains quantitative biosynthetic replacement of methionine by

selenomethionine was used by Hendrickson et al1 to generate atomic

mutants of proteins as a new approach to solve the phase problem in

protein crystallography with the multiwavelength anomalous disper-

sion method.2 This new procedure led to increasing interest in chalco-

gen analogues of amino acids in the methionine and serine/cysteine

series as reviewed in previous literature.3,4 These analogues are

shown in Figure 1 and differ in their physicochemical properties such

as electronegativity, atom volume, and carbon‐metal bond length

depending upon the chalcogen atoms in their side chains.

Additional fully synthetic chalcogen amino acids have been synthe-

sized as isosteric tryptophan (1‐4)5,6 and phenylalanine (5‐8)7-9 ana-

logues, respectively, and were used for in vivo protein synthesis of

chalcogen analogues of proteins for X‐ray analysis and other purposes

(Figure 2).
FIGURE 2 Isosteric synthetic chalcogen analogues of tryptophan and phe
2 | CHALCOGEN ANALOGUES OF
METHIONINE

In the methionine series, only methionine is a proteinogenic amino

acid, whereas selenomethionine and telluromethionine are natural

amino acids that are inserted into natural proteins because of the tol-

erance of the methionyl‐tRNA synthetase.10-12
2.1 | Selenomethionine and telluromethionine
protein variants for X‐ray crystallography

Intensive optimization of the expression conditions in Escherichia coli

was required for quantitative replacement of methionine in proteins

with the related chalcogen analogues to produce the highly isomor-

phous protein variants. Moreover, it was noticed that the proteins

have to be biosynthesized in the folded form since oxidation of the

selenium and even more of the tellurium occurs in the unfolded states

as exists in inclusion bodies.3,13-16 The chalcogen protein analogues

are isomorphous and can be considered as atomic mutants of the

native methionine proteins. Therefore, no significant changes in the

overall shape, steric complementarity, and occupation volume are gen-
FIGURE 1 Chalcogen amino acids
discovered in natural compounds except
methoxinine

nylalanine



FIGURE 3 Crystallographic mapping of selenomethionine and telluromethionine residues in the spatial structure of recombinant human annexin
V by the difference electron density maps (Fo‐Fc) for (A) Met259 → Sem259 (contouring level 3.0 σ) and for (B) Met273 → Tem273 (contouring
level 5.0 σ) replacement16

FIGURE 4 Spatial structure of rhPrPc‐[125‐231] (PDB accession no.
1QM0). Except for Met‐205/Met‐206, all other methionine residues
of this protein are surface exposed. In the bioexpressed Mox‐hrPrPc‐
[125‐231] protein, all nine Met residues were replaced by
methoxinine19
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erated. Minor steric effects cannot be excluded as shown by the elec-

tron difference maps (Figure 3), but the protein folds show generally

sufficient plasticity to accommodate such minor differences even in

the case of tellurium. On the other hand, the telluro‐analogues provide

directly heavy atom derivatives for the classical multiple isomorphous

replacement method, but the production is more difficult. Conversely,

the seleno‐mutants in most cases are not suitable for this method and

are more appropriate for multiwavelength anomalous dispersion

experiments that require, however, synchrotron radiation with precise

beam wavelength control.

2.2 | Methoxinine as methionine‐oxide mimic

This additional chalcogen analogue of methionine with sulfur replaced

by oxygen differs from methionine particularly because of its strong

hydrophilicity compared with methionine, selenomethionine, and

telluromethionine. With this hydrophilic property, it resembles the

methionine‐oxide. Because of this particular property, it was reason-

able to expect that a related prion protein (hrPrP‐[125‐231]) Mox‐

analogue could be useful for analysis of the proposed but still not

clearly documented hypothetical role of Met oxidation as the main

cause of the prion protein conversion to its scrapie form.17,18 Indeed

particularly Met‐205 and Met‐206 oxidation was suggested to be

responsible for the conformational transition of the α‐helix into β‐

sheet and thus for the aggregation and the neurotoxic amyloid forma-

tion (see Figure 4).20 The in vitro aggregation propensity of the

Mox‐hrPrPc‐[125‐231] analogue was found to be significantly

increased compared with that of the native Met‐protein (Figure 5).19

Even the content of α‐helix as derived from the circular dichroism

(CD) spectrum was visibly decreased with concomitant shift to β‐

sheet. With the large number of methionine residues in the

PrP‐[125‐231] protein, it is difficult to confirm that the oxidation of

a few selected methionine residues initiates the conformational transi-

tion. However, this is not only supported by the results obtained with

the Mox‐rhPrPc‐[125‐231] analogue but also by experimental results

obtained with model peptide of Dado and Gellman22 where a
significant conformational shift from α‐helix to β‐sheet could be

observed by replacing the hydrophobic norleucine residues as methio-

nine analogues with the hydrophilic Mox residues.19
3 | SULFUR‐ AND SELENIUM‐CONTAINING
TRYPTOPHAN ANALOGUES

The β‐(thienopyrrolyl)‐ and β‐(selenolopyrrolyl)‐L‐alanine (compounds

1‐4 in Figure 2) are synthetic mutually isosteric amino acids that mimic

tryptophan with the benzene ring in the indole moiety replaced by

thiophene and selenophene, respectively. These tryptophan mimics

are prepared enzymatically from the [3,2‐b]‐ and [2,3‐b]‐fused



FIGURE 5 Comparative in vitro aggregation
properties of Met‐hrPrPc‐[125‐231] and Mox‐
hrPrPc‐[125‐231] (A) as determined by
confocal single molecule analysis with
fluorescence cross‐correlation
spectroscopy21; CD spectra of Met‐hrPrPc‐
[125‐231] and Mox‐hrPrPc‐[125‐231] (B)
recorded in 10mM 2‐(N‐morpholino)
ethanesulfonic acid buffer at pH 6.0 and in the
presence of 0.2% SDS to prevent aggregation
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selenolopyrroles and thienopyrroles23 with the Salmonella typhimurium

tryptophan synthase5,6 as shown in Figure 6.

Tryptophan represents a suitable target for its replacement in pro-

teins with synthetic isosteric analogues of near‐equal volumes and

approximately identical electron densities. Moreover, Trp is known

to occur rather rarely in proteins as it represents only about 1% of

all residues of globular proteins.24 Correspondingly, chalcogen‐

containing Trp analogues provide quasi‐site–specific probes for study-

ing protein structure, dynamics, and function via their incorporation

into recombinant proteins in response to the Trp UGG codons by fer-

mentation inTrp‐auxotrophic E coli host strains and applying the selec-

tive pressure incorporation (SPI) method.25-27 Under routine

bioexpression protocols, an almost quantitative incorporation of both

β‐(thienopyrrolyl)alanines in annexin V that contains only one Trp res-

idue and in the pseudo‐wild–type barstar mutant C40A/C82A/P27A/

W38F (b*) with two Trp residues was achieved.28 The barstar mutant

is obtained in inclusion bodies and is refolded into the native form dur-

ing the purification procedure. Both the annexin V and barstar Trp

analogues proved to be stable, and despite exposure to air and light

for days, a degradation of the thienopyrrolyl moieties was not

observed. Both proteins were found to exhibit reduced thermal stabil-

ity but full retention of the biological activities. Although these protein

mutants retain the secondary structure of the native proteins, they

were found to differ significantly in optical and thermodynamic

properties.

In view of these positive results, the β‐selenolo[3,2‐b]pyrrolyl‐L‐

alanine was incorporated into human annexin V and barstar mutant
FIGURE 6 Enzymatic synthesis of β‐(thienopyrrolyl)‐ (1,2) and β‐(selenolopyrrolyl)‐L‐alanine (3,4)5,6
b* C40A/C82A/P27A as model proteins in Trp‐auxotrophic E coli

using the SPI method. The seleno‐proteins were obtained in yields

comparable with those of the wild‐type proteins and the

β‐(thienopyrrolyl)‐L‐alanine mutants.29 Both selenium‐containing

mutants were found to exhibit crystallographic isomorphism with the

parent proteins. Although the selenium‐containing Trp analogue

replaces in annexin V the fully exposed Trp‐187 and in the barstar

mutant the two Trp residues 44 and 38 partially or fully exposed to

solvent, their exceptional stability can be regarded as a considerable

advantage over selenomethionine in replacement experiments for

crystallographic phasing. The most probable explanation for this

observed high stability is a resonance stabilization of the Se atoms in

aromatic rings where the chalcogen atom is less prone to oxidation

than in dialkylselenides, such as selenomethionine. Moreover, in cases

where Sem is less suitable for diffraction analysis because of the

atomic mobility factors, the use of the selenotryptophan analogue

could be an alternative.
4 | SULFUR‐ , SELENIUM‐ , AND
TELLURIUM‐CONTAINING PHENYLALANINE
ANALOGUES

On the basis of early reports of du Vigneaud et al30 on the incorpora-

tion of β‐2‐thienylalanine (5 in Figure 2) into proteins, already in the

early 1960s, it could be demonstrated that this phenylalanine ana-

logue is inserted into the enzyme β‐galactosidase in a Phe‐requiring
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auxotroph of E coli.31 This result confirms the largely isosteric charac-

ter of the thiophene ring with the benzene ring although of less aro-

matic character, having a resonance energy of 25 kcal/mol as

compared with 36 kcal/mol for benzene. The catalytic properties of

the enzyme with about 95% of the phenylalanine residues replaced

by the analogue were retained; however, the enzyme was found to

be significantly less stable to heat, urea, and enzymatic degradation.

Later in the 1970s, the β‐2‐thienylalanine has also been incorporated

synthetically in various peptide hormones such as vasopressin and

bradykinin leading to full retention or even increased bioactivities.32,33

Conversely, the β‐2‐ and β‐3‐selenienyl‐L‐alanines (6 and 8 in

Figure 2) have been synthesized as potential diagnostic agents for dis-

orders in the pancreas8 but so far did not find any application in

replacement experiments for crystallographic phasing. However, very

recently, a detailed study on the stability of various organotellurium

compounds revealed for 2‐alkyl‐tellurophenes high stability to aerobic

oxidation in both organic and aqueous solutions and a limited toxicity

in cell‐based assays (IC50 ≥ 200μM)34 making such tellurophenes ideal

probes for mass cytometry. Correspondingly, β‐2‐tellurienyl‐L‐alanine

was synthesized knowing that the related sulfur‐ and selenium‐

containing phenylalanine mimics are efficiently incorporated into pro-

teins because of the tolerance of the phenylalanine‐tRNA synthetase.9

The telluro‐phenylalanine analogue was found to behave as an

excellent phenylalanine isostere since it is incorporated into proteins

via the native translation machinery without phenylalanine starvation

in vitro and in vivo allowing its measurements by mass cytometry

techniques. It looks also as a promising probe in X‐ray crystallography

as the electron density of tellurium is known to generate isomorphous

and anomalous difference Patterson maps. In this context, its proper-

ties should be superior to those of telluromethionine that suffers from

a more facile oxidation when exposed on the protein surface (see Sec-

tion 2.1) but with the drawback of a generally higher number of Phe

residues in proteins compared with Met.
5 | SERINE AND CYSTEINE CHALCOGEN
ANALOGUES

In the serine/cysteine series, also selenocysteine is a proteinogenic

amino acid that is inserted into proteins by a special translation mech-

anism,35,36 while the tellurocysteine is again only tolerated by the

cysteinyl‐tRNA synthetase.11

In this series of chalcogen amino acids, the related hydroxyl, thiol,

and selenol side chain groups of serine (pKa 13), cysteine (pKa 8.25),

and selenocysteine (pKa 5.24‐5.63) differ significantly in the nucleo-

philicity leading to different structural and functional properties.37-39

While the cysteine residues form the known important structural

disulfide crosslinks for stabilization of tertiary structures in peptides

and proteins,40,41 the peroxides of serine would be biologically too

dangerous because of their oxidation power. Although serine and cys-

teine differ considerably in the nucleophilicity, both residues play a

central role in proteases. In the catalytic triad of serine proteases, an

aspartyl residue is required to increase via hydrogen bonding the
nucleophilicity of the serine hydroxyl group, while such a helping res-

idue is not required in the cysteine proteases.

Besides the established role of disulfides crosslinks in cysteine‐

rich peptides and proteins for stabilizing related tertiary structures,

vicinal disulfides in specific sequence motifs such as the Cys‐Xaa‐

Yaa‐Cys act as highly efficient active sites of thiol‐protein oxidore-

ductases.42,43 This active‐site motif of thioredoxins and

glutaredoxins is involved in the reduction of intermolecular and

intramolecular disulfide bonds and other forms of oxidized cysteines,

and in protein disulfide isomerases, this bis‐cysteinyl motif catalyzes

the oxidative folding of secretory proteins into their native struc-

tures.44 This has, therefore, been called a “rheostat at the active

center.” Indeed, changes of the residues that separate the two cyste-

ines affect the redox potentials, thus structuring the proteins for a

particular redox function.45,46 Besides the effect of the dipeptide

intervening sequence,47 which is also well supported by the redox

potentials of synthetic fragments related to their active sites48 (

Table 1), the redox properties of these active sites are strongly

governed by the conformational restrictions imparted by the overall

almost identical thioredoxin‐like structure of the oxidoreduc-

tases.42,47 These structural effects were further evidenced by the

redox potentials of conformationally restricted cyclic active‐site

(bis‐cysteinyl)hexapeptides related to oxidoreductases,56 when com-

pared with those of the linear unconstrained peptides (Table 1).
5.1 | Selenocysteine as isosteric replacement of
cysteine

Selenium and sulfur possess very similar atomic sizes, bond lengths to

carbon, homodimeric bond lengths, and electronegativity. Correspond-

ingly, selenocysteine represents an isosteric analogue of cyste-

ine.3,4,57,58 This was already demonstrated with early synthetic

selenocysteine/selenocystine analogues of bioactive peptides such as

oxytocin, somatostatin, and rat α‐natriuretic peptide, which retained

the bioactivities of the parent Cys‐peptides.58 The isosteric character

was then fully confirmed by comparing the NMR structures of

[Sec3,11,Nle7]‐endothelin,59 [Sec7]‐ and [Sec34]‐IL‐8,60 [Sec1,11]‐

apamin,61 and Sec‐analogues of the α‐conotoxins ImI62 andAuIB63with

those of the parent Cys‐peptides but even more accurately by the

superposition of the X‐ray structures of α‐PnIA and α‐[Sec3,16,Leu10]‐

PnIA63 and X‐ray diffraction analysis of selenocysteine‐mutant

proteins.64,65
5.2 | Synthesis of selenocysteine/selenocystine
peptides and proteins

The most efficient strategies for the synthesis of

selenocysteine/selenocystine peptides have been comprehensively

reviewed.4,57,66 From the large experimental work performed so far,

mainly two synthetic strategies have emerged on the basis of the

Fmoc/tBu and Boc/Bzl protection schemes, respectively.



TABLE 1 Apparent redox potentials (E′0, mV) of thiol/disulfide oxidoreductases, their linear active‐site fragments, and related cyclic
hexapeptides as extracted by the Nernst equation from the equilibrium constants of exchange reactions with the reference redox systems

Enzyme/Active‐Site Fragment E′0 Ref

Thioredoxin (Trx) −270 49

Ac‐Trp‐Cys‐Gly‐Pro‐Cys‐Lys‐His‐Ile‐NH2 [His37]‐trx‐32-38 −190 48a

c[Trp‐Cys‐Gly‐Pro‐Cys‐Lys] c[Trx‐31‐36] −152 49b

Glutaredoxin‐1 (Grx1) −233 50

Ac‐Gly‐Cys‐Pro‐Tyr‐Cys‐Val‐Arg‐Ala‐NH2 Grx1‐10-17 −215 48a

c[Gly‐Cys‐Pro‐Tyr‐Cys‐Val] c[Grx1‐10‐15] −178 49b

Protein disulfide isomerase (PDI) −110/145 51/52

Ac‐Trp‐Cys‐Gly‐His‐Cys‐Lys‐Ala‐Leu‐NH2 PDI‐35-45 −205 48a

c[Trp‐Cys‐Gly‐His‐Cys‐Lys]> c[PDI‐35‐40] −130 49b

Thioredoxin reductase (Trr) −254/271 53

Ac‐Ala‐Cys‐Ala‐Thr‐Cys‐Asp‐Gly‐Phe‐NH2 Trr‐[134‐141] −210 48a

c[Ala‐Cys‐Ala‐Thr‐Cys‐Asp] c[Trr‐134‐139] −204 49b

aGSH/GSSG (E′0 = −240).54

bCysteine/cystine (E′0 = −223).55
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For the Fmoc strategy, the selenol function is protected by the

methoxybenzyl (Mob) group that is removed by treatment with TFA

containing 10% DMSO yielding directly the oxidized selenocystine

peptides.67,68 Alternatively, the Sec (Mob) is deprotected with TFA

containing thioanisole and 2,2′‐dithiobis(5‐nitropyridine) (DTNP) lead-

ing to the adduct of Sec with thio‐5‐nitropyridine. The Sec(5‐Npys)

adduct can be cleaved by thiolysis,69 but it can also be reduced with

ascorbate.70 An even more gentle and facile method for deprotection

of Sec (Mob) was recently proposed and is based on the reductive

cleavage of the protecting group with a combination of TFA/TIS/

thioanisole (96:2:2) that provides complete removal yielding the pep-

tide mainly in the diselenide form.71

With the Boc strategy where the selenol function is protected by

the methylbenzyl group, the facile deselenization of the Sec (Mob) in

the iterative piperidine‐mediated Fmoc‐deprotection steps is

avoided.68 Moreover, the facile racemization of Sec residues can read-

ily be suppressed by the in situ neutralization protocol of solid‐phase

peptide synthesis.66 The final HF deprotection step at 0°C for all

protecting groups leads to the Sec residues already oxidized to the

expected diselenide or mixed selenosulfide bonds even under the very

strong acid conditions.63,72

Alternatively, a cost‐efficient approach can be applied for the syn-

thesis of short selenocystine peptides by reacting the related

β‐chloroalanyl‐peptides with Na2Se2
73 in protic solvents such as

methanol avoiding by this way protection and deprotection of the

selenocysteine residues.74

Using prokaryotes incorporation of selenocysteine into recombi-

nant natural Sec‐proteins is rather inefficient75 and requires the Sec‐

expression machinery.76 Therefore, recombinant expression of natural

and designed seleno‐proteins is not yet a routinely applied method for

the production of seleno‐peptides and ‐proteins.77 Conversely, recom-

binant expression of selenocysteine variants of Cys‐containing

proteins in Cys‐auxotrophic E coli was found to proceed more
successful as exemplarily shown for (Se)2‐thioredoxin
78 and subse-

quently also for various other Sec‐mutants of proteins.

However, a very efficient alternative to this recombinant technol-

ogy proved to be the synthetic approach to natural Sec‐proteins or

Sec‐mutants of Cys‐proteins as comprehensively reviewed more

recently.77,79 This synthetic strategy relies mainly on the assembly of

suitable fragments by the native chemical ligation (NCL) and expressed

protein ligation (EPL) where because of the similar nucleophilic prop-

erties of Sec to those of Cys, the reaction of N‐Sec‐peptide segments

with synthetic or expressed peptide thioester is exploited to produce

seleno‐proteins.80-83
5.3 | Redox potential of selenocysteine

While the highly isomorphous character of disulfides and diselenides is

perfectly suited for atomic mutants in X‐ray crystallography, the sele-

nium and sulfur chemistry diverges most prominently in the redox

properties.

Using cyclic voltammography with a dropping mercury working

electrode, a redox potential of selenocystine of E′0 = −488 mV vs

NHE was determined.84 This very negative value differs significantly

from that of selenocysteamine (E′0 = −352/−368 mV)85,86 deter-

mined by exchange reaction with DTT (E′0 = −323/327 mV).87,88

This difference may likely derive from absorption of the selenol on

the dropping mercury electrode. Therefore, alternatively, the redox

potentials of diselenide and mixed selenide/sulfide were determined

for the Sec11,14‐ and Sec11,Cys14‐Grx1‐10-17 octapeptides related to

the active site of glutaredoxin‐1 (Grx1) (Table 2).92 This choice was

based on the observation that this short active‐site fragment shows

only minimal effects imparted by the 3D fold of the protein on the

apparent redox potential of the bis (cysteinyl)‐octapeptide Cys11,14‐

Grx1‐10-17 (E′0 = −215 mV).48 Moreover, it was only minimally



TABLE 2 Redox potentials of disulfide‐, diselenide‐, and selenosulfide amino acids, peptide, and proteins

Compounds Reference Redox System E′0, mV, (Ref)

GSH/GSSG Lipoamide (−288 mV) −24054

GSeH/GSeSeG DTT (−327 mV) −40789

Arg‐vasopressin GSH/GSSG (−262 mV) −22890

Oxytocin GSH/GSSG (−262 mV) −21690

Somatostatin GSH/GSSG (−262 mV) −22891

Glutaredoxin‐1 (Grx1) Trx (−270 mV) −23350

Ac‐Gly‐Cys‐Pro‐Tyr‐Cys‐Val‐Arg‐Ala‐NH2 Grx1‐10-17 GSH/GSSG (−240 mV) −21548

Ac‐Gly‐Sec‐Pro‐Tyr‐Sec‐Val‐Arg‐Ala‐NH2 Sec11,Sec14‐Grx1‐10-17 DTT (−323 mV) −38186

Ac‐Gly‐Sec‐Pro‐Tyr‐Cys‐Val‐Arg‐Ala‐NH2 Sec11,Cys14‐Grx1‐10-17 DTT (−323 mV) −32692

Glutaredoxin‐3 (Grx3) Trx (−270 mV) −19850

[Sec11,Cys14]‐Grx3 Trx (−270 mV) −26072

[Cys11,Sec14]‐Grx3 Trx (−270 mV) −27572

[Sec11,Sec14]‐Grx3 Trx (−270 mV) −30972

Cys/Cys2 GSH/GSSG (−240 mV) −22393

Sec/Sec2 DTT (−332 mV) −38694
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affected by the neighbouring amino acid residues compared with the

redox potential of cysteine as amino acid (E′0 = −223 mV).93 It also

was found to be similar to the values previously determined for

other unconstrained linear bis (cysteinyl)‐peptides such as Arg‐

vasopressin and oxytocin90 as well as somatostatin.91

As shown in Table 2, the redox potential of the bis

(selenocysteinyl)‐peptide (E′0 = −381 mV)92 was found to be remark-

ably lower than that of DTT (E′0 = −323/327 mV)87,88 but very similar

to the electrode potential of selenocysteine determined by using a

graphite electrode (E′0 = −386 mV).94 Conversely, the redox potential

of the mixed Sec,Cys‐peptide (E′0 = −326 mV) was similar to that of

DTT but still significantly more reducing than that of the parent bis

(cysteinyl)‐peptide.

By comparing the redox potentials of the bis (cysteinyl)‐peptides

related to the active sites of various thiol‐protein oxidoreductases, sig-

nificant effects of the structural constraints of the intact enzymes

were clearly observed. Very similar structural effects were imparted

even on the redox potentials of the diselenide and sulfenylselenide

groups in the Sec‐analogues of Grx3 (Table 2).72

5.4 | Synthesis of cysteine‐rich peptides by the
selenocysteine strategy

The strong differences of more than 100 mV between the redox

potentials of disulfides and diselenides and to lesser extents between

disulfides and selenosulfide groups make formation of a diselenide and

even mixed selenosulfide highly favored over that of a disulfide bond.

It was known that oxidative folding of cystine‐rich peptides already

with two disulfide bonds rarely produces quantitatively the native

disulfide isomer like in apamin95 but more often mixtures of the native

disulfide isomer contaminated at differing extents by the nonnative

isomer like in endothelin‐1.96
The ability of selenocysteine to act as an internal “chaperone” and

thus to dictate the folding pathway of cysteine‐rich peptides was first

confirmed by the synthesis of seleno‐endothelin‐1.59 Indeed, air oxi-

dation of its fully reduced Sec3,11,Cys1,15,Nle7‐analogue produced

quantitatively the native diselenide3‐11,disulfide1‐15 ribbon isomer.

Conversely, in the case of apamin, not only the tetrathiol‐precursor

folds quantitatively into the native [Cys1‐11,Cys3‐15]‐globule struc-

ture95 but even the nonnative [Cys1‐15,Cys3‐11]‐ribbon and [Cys1‐3,

Cys11‐15]‐beads isomer, prepared as des‐(16‐18)‐apamin analogues

by regioselective disulfide pairing procedures, were shown to convert

quantitatively into the native fold when equilibrated in the GSH/GSSG

(15.0/2.3mM) redox buffer at pH 7.4.97 As expected from the redox

potential of the selenocysteine, air oxidation of the fully reduced

[Sec1‐11,Cys3‐15]‐, [Cys1‐15, Sec3‐11]‐, and [Sec1‐3, Cys11‐15]‐apamin

analogues was found to generate exclusively the wt and the two non-

native ribbon and beads diselenide/disulfide isomers, respectively (

Figure 7).98

Despite the different disulfide/diselenide crossbridging in the

three isomers, the NMR derived structures revealed a surprising per-

sistence of the main structural elements: These are the C‐terminal α‐

helix and the N‐terminal β‐bend as shown in Figure 7.61 This would

suggest a rather low difference in free energy of folding of the three

isomers (for the native isomer, a value of −4.5 kcal/mol at pH 7.0

and 20°C was reported99) and thus also explain why equilibration of

the two nonnative diselenide‐quenched isomers with GSH/GSSG mix-

tures at different ratios under exclusion of air did not result in a

reshuffling even at minor extents into the native isomer with genera-

tion of mixed selenosulfide bonds. Because of this modest stability of

apamin in its native fold, the intrinsically higher stability of a nonnative

diselenide bond is sufficient to offset the preferential conformational

stabilization of the native crossbridging, thus allowing formation of

the nonnative isomers. This, however, may not be the case in peptides



FIGURE 7 Solution structure of [Sec1‐11,Cys3‐15]‐apamin (wt globular fold), [Cys1‐15,Sec3‐11]‐apamin (ribbon isomer), and [Sec1‐3,Cys11‐15]‐
apamin (beads isomer) as determined by NMR61

FIGURE 8 Anaerobic oxidation of linear diselenide [Sec5‐Sec14)‐
BPTI with the four residual Cys residues as free thiols with a fivefold
excess of GSSG leads to the native intramolecular [Cys30‐Cys51]‐
disulfide (yellow) and the two [Sec5‐Cys55]‐ and [Sec14‐Cys38]‐
selenosulfide bonds (pink‐yellow) in the native tertiary structure and in
more than 70% yield after 30 h.101,102 A similar behavior was
observed at neutral pH; air oxidation in the absence of GSSG leads to
70% to 80% seleno‐BPTI, while native reduced BPTI folds extremely
slowly and inefficiently (12% after 28 h) under such conditions
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and proteins where structural disulfides can be exceptionally stable

with redox potentials ranging from −350 to −470 mV,100 thus compet-

ing or even offsetting that of a diselenide as in the case of bovine

pancreatic trypsin inhibitor (BPTI) with a nonnative diselenide bridge

(vide infra).101,102

This latter problem should not be encountered when diselenides

are used to replace native disulfides. In such cases, even the redox

potential of the diselenide should become more negative and, corre-

spondingly, further stabilize the native side chain bridging framework

even in reducing environments such as GSH/GSSG. Indeed, this was

fully confirmed by the very high yields of correct folds obtained in a

large series of conotoxins with two disulfide bonds by replacing one

with a diselenide.62,63

The selenocysteine approach proved to be of great help also in the

synthesis of cysteine‐rich peptides containing more than two disulfide

groups such as the inhibitory cystine knot (ICK) with one disulfide

threaded through the other two. This structural motif is found in large

classes of peptides from various natural sources including conus

peptide families. Among these toxins, the μO‐conotoxin MrVIB was

considered unfoldable. But applying the selenocysteine strategy, the

folding of the related [Sec9‐25]‐, [Sec2‐20]‐, and [Sec19‐30]‐MrVIB

diselenide precursors was found to generate the correctly folded

Sec‐analogues in rather high yields of 61%, 42%, and 47%, respec-

tively.103 Since enhanced kinetics of disulfide formation was observed

in selenopeptides, the rate increase has been in first instance attrib-

uted to conformational effects. However, diselenides as additives

were known to efficiently catalyze oxidative protein folding.104,105

Correspondingly, the kinetics of oxidative folding of the μ‐conotoxin

SIIIA and ω‐conotoxin GVIA, both containing the cystine knot ICK,

were compared with the kinetics of formation of the correctly folded

[Sec4‐19]‐SIIIA and [Sec8‐19]‐GVIA. The results clearly revealed an effi-

cient catalytic effect of even intramolecular diselenides in the forma-

tion of the correct disulfides.106

This can be explained by the fact that the diselenide bond is

weaker than the corresponding disulfide bond and thus is easier to

break and to be cleaved by thiols. The way that selenium accelerates

in the case of a thiol/diselenide exchange reaction is that the electro-

philic selenium atom being attacked is a much better electrophile than

sulfur and accelerates the reaction rate 100‐fold more in comparison

with sulfur.107 Correspondingly, diselenides can catalyze thiol‐
disulfide exchange reactions required to reach the thermodynamic

most favored framework.101,102

Another interesting application was reported by Metanis and

Hilvert who used a nonnative diselenide to catalyze the correct oxida-

tive folding of BPTI.101,102 Very intensive studies on the oxidative

folding pathway of BPTI had disclosed the formation of a significant

amount of a kinetically trapped intermediate (N*) containing the two

native disulfide bonds [Cys5‐Cys55] and [Cys14‐Cys38].108 As men-

tioned above, because of the higher polarizability of selenium than

of sulfur, even nonnative diselenides could catalyze correct folding if

sufficient conformational energy is available to neutralize the thermo-

dynamic benefit of a diselenide bond. With this hypothesis in mind,

two selenocysteines were placed in the positions 5 and 14 of BPTI

to induce in first instance formation of the nonnative Sec5‐Sec14

diselenide bond, which then was found to undergo thiol diselenide

exchange reactions bypassing the kinetic trapped intermediate N*

and generating in high yields correctly folded BPTI with two
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selenosulfide bridges [Sec5‐Cys55] and [Sec14‐Cys38] in addition to the

disulfide [Cys30‐Cys51] (Figure 8).101,102

This surprising strong effect of intramolecular catalysis of

diselenide groups on the folding of cysteine‐rich peptides was compel-

ling to apply the selenocysteine strategy in the attempt to advance in

the still existing problem of efficient insulin syntheses as recently

reviewed.109 Indeed, acceptable yields in the correct assembly of the

A‐ and B‐chain into native insulin with the intramolecular A6‐A11 and

the two intermolecular A7‐B7 and A20‐B19 disulfides could mainly be

achieved applying the most advanced regioselective Cys‐protection

schemes to guarantee in optimal yields the correct native disulfide

pairing. While these synthetic approaches imply extensive experimen-

tal work, the direct oxidative assembly of the A‐ and B‐chain failed in

terms of yields unless very optimized conditions (A‐chain: B‐chain 2:1;

GSSG/GSH and catalytic amounts of PDI) were applied.110 Alterna-

tively, yields similar to those of the oxidative folding of native proinsu-

lin (70%‐80%) could be achieved with various biomimetic single‐chain

proinsulin constructs in which the natural 35‐residue C‐peptide that

connects the C‐terminus of the B‐chain with the N‐terminus of the

A‐chain was replaced by peptidic and even nonpeptidic tethers of

varying sizes and chemical structure. Among these artificial single‐

chain insulin precursors, the most appealing in terms of atom economy

was the “Ester‐Insulin” of Kent and associates in which the
FIGURE 10 Possible placement of the two
selenocysteines in synthetic linear A‐ and B‐
chains for induction of diselenide‐
crossbridged heterodimeric insulin‐folding
precursors

FIGURE 9 Conversion of ester‐insulin to LysB28,ProB29‐insulin
variant via oxidative folding and saponification according to Kent
and associates111,112
crosslinking of the A‐ and B‐chain is achieved by esterification of the

β‐hydroxyl group of ThrB30 with the γ‐carboxyl group of GluA4 yield-

ing an insulin precursor of a foldability similar to that of natural proin-

sulin; a simple saponification of the ester group produces the insulin in

correctly folded structure and yields similar to those obtained with

optimized single‐chain proinsulins (Figure 9).111-113

This experimental evidence clearly confirms that a simple

crosslinking of the A‐ and B‐chain to the heterodimer via an ester link-

age would suffice for reducing the entropic penalty in the oxidative

folding of the two chains in a manner similar to the proinsulin precur-

sor. These findings were strongly suggesting an application of the

selenocystine strategy to produce an A7‐B7 or A20‐B19 diselenide

as interchain crosslink with similar atom economy as the ester‐insulin

but with the advantage of the intramolecular folding catalysis by the

diselenide (Figure 10).

With this working hypothesis in mind and knowing about the facile

deselenization of the protected Sec (Mob) residues during the multi-

step synthesis of larger peptide chains with the Fmoc/tBu strategy,68

the laboratories of Hojo and Iwaoka combined their efforts in the syn-

thesis of the A‐ and B‐chains containing the Sec (Mob) residues in

position A7 and B7 of bovine insulin, respectively.114 For the required

handling of the peptides in the purification step, both the Cys and Sec

residues were kept in the cysteine(S‐pyridylsulfanyl) and selenosulfide

forms, which were then reduced with DTT (4 equivalents for the total

number of Cys and Sec residues) prior to folding in a 1:1 mixture of

the A‐ and B‐chain at 200μM concentration under thermodynamic

control by air oxygen in a buffer at pH 10 (4°C) in the presence of

0.5M urea to solubilize the A‐chain (Figure 11). The oxidative assem-

bly was monitored by high‐performance liquid chromatography

(HPLC) and was found to be finished after 24 hours yielding upon

HPLC purification 27% insulin. Slightly higher yields were obtained

with TCEP as reducing agent. Compared with the assembly of the A‐

and B‐chain under similar conditions with about 3% yield after 4 days,

the selenocysteine strategy proved to be very successful in terms of

reaction rates and yields by largely preventing the entropic penalty

in the chain crosslinking at those low micromolar concentrations.

The synthetic bovine seleno‐insulin was found to exhibit the identical

tertiary structure as the wt insulin, practically the identical bioactivities

in terms of phosphorylation levels of Akt and GSK3β in Hela cells, but

significantly increased resistance to the insulin degrading enzyme, a

very positive property for a fully active insulin analogue.114 The highly

beneficial effect of the catalysis by the intermolecular diselenide and

the significant reduction of the entropic penalty by the highly favored

interchain‐diselenide crosslink was fully confirmed.



FIGURE 12 Oxidative assembly of the human [SecA6,SecA11]‐insulin
from the two chains into the native insulin tertiary structure117-119

FIGURE 11 Oxidative assembly of the bovine [SecA7,SecB7]‐insulin
from the two chains into the native insulin tertiary structure114
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FIGURE 13 Synthesis of [Tec1,Tec6]‐oxytocin on MBHA‐
polystyrene resin129
From extensive studies on folding of insulin and proinsulin, it was

known that the intrachain disulfide CysA6‐CysA11 is important for

induction of the overall insulin structure, even if not essential.115

However, this disulfide if preferentially installed leads to conforma-

tional constraints that structurally preorganize the A‐chain facilitating

the correct formation of the remaining interchain disulfides.116 On

the basis of this information, Metanis and associates approached the

synthesis of human seleno‐insulin by placing the diselenide in the A‐

chain as intramolecular crossbridge to restrict the conformational

space of the A‐chain and thus to possibly improve a correct A‐ and

B‐chain oxidative assembly.117-119 Unexpectedly, the synthetic linear

[SecA6‐SecA11]‐A‐chain proved to be highly soluble similarly to the

sulfitolized A‐ and B‐chains and thus with no expressed tendency to

aggregation.120 This beneficial solubility property allowed its use in

the oxidative assembly reaction together with the sulfitolized B‐chain

readily prepared by oxidative sulfitolysis of commercial human insulin.

The air oxidation was performed at significantly higher concentrations

than in the preceding procedure with the SecA7‐ and SecB7‐chains. As

shown in Figure 12, upon reduction of the B‐chain sulfonate with DTT

in stoichiometric equivalents to the concentration of the sulfonate

groups, but with the SecA6‐SecA11‐A‐chain as a mixture of oxidized

products (selenylsulfides or disulfide/diselenide), the two chains at a

1:1 molar ratio and 1.2mM concentration were exposed to air oxida-

tion. After 8 hours, the product was isolated by HPLC in about 30%

yield confirming the strong catalytic effect of the intrachain diselenide

in both the recombination rates and final yields. This human seleno‐
insulin variant was found to exhibit the identical tertiary structure as

the native insulin. Identical bioactivities as the wt human insulin and

resistance to both reductive and enzymatic degradation were real-

ized.117-119

Both examples of using selenocystine as catalysts in the oxidative

assembly of bovine and human seleno‐insulin from designed Sec‐

variants of the A‐ and B‐chain clearly revealed significantly increased

rates of oxidative folding and yields of the desired products with

native‐like structures and activities. These data provide new

approaches for the efficient generation of insulin analogues containing

even unnatural amino acid residues in view of developing of new‐

insulin variants with improved therapeutic values.
5.5 | Tellurocysteine as isosteric replacement of
cysteine

Unlike the chalcogens oxygen, sulfur, and selenium that find biological

use, for tellurium, no biological function is known so far. However, in

rare cases, bacteria and fungi grown in the presence of sodium tellu-

rite and in the absence of sulfur were found to produce tellurium‐

containing amino acids (tellurocysteine, tellurocystine, and

telluromethionine) and to bioincorporate these into proteins,11,121 a

process that has to occur by the tolerance of the methionyl‐ and

cysteinyl‐tRNA synthetases. On the basis of experience with the accu-

mulation of selenium in proteins of Spirulina platensis, a blue‐green



TABLE 3 A comparison of bioactivities and resistance to digestion of seleno‐ and telluro‐oxytocin with the wild‐type hormone131

Oxytocin (OT) Human OT Receptor Human Serum

binding Ki (nM) functional EC50 (nM) half‐life (h)

wt‐OT 0.79 + 0.16 15.0 + 2.5 11.6 + 1.9

[Se‐Se]‐OT 11.8 + 4.1 18.0 + 12 25.3 + 5.9

[Te‐Te]‐OT 7.6 + 2.7 27.3 + 7.4 24.2 + 2.2
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algae, in the form of selenomethionine and selenocysteine,122,123

accumulation of tellurium into the phycobiliproteins phycocyanin and

allophycocyanin of S platensis was found to proceed successfully lead-

ing to enhanced antioxidant activities of both proteins.124 These

results strongly support such novel organic tellurium species for appli-

cation in antioxidation for the treatment of diseases related to oxida-

tive stress.

On the basis of these results, even recombinant expression of

the tellurocysteine‐containing glutathione‐S‐transferase from Lucilia

cuprina (LuGST‐1) was found to occur in good yields with a Cys‐

auxotrophic expression system in the presence of synthetic

tellurocysteine,125 although tellurocysteine is apparently on the border-

line in terms of the substrate tolerance of cysteinyl‐tRNA from E coli.126

Alternatively, the Tec amino acid was inserted into subtilisin to form

semisynthetic tellurosubtilisin127,128; however, this chemical modifica-

tion has the disadvantage that it can be applied only at active‐site serine

residues like Ser221 in subtilisin. Thus, the development of a general

strategy for the incorporation of Tec into proteins so far remains a chal-

lenging task.

On the other side, the redox potential of tellurocysteine/

tellurocystine determined by cyclic voltammography usingmercury film

coated glass carbon electrode is characterized by an intrinsically lower

redox potential (−850 mV versus Ag/AgCl) than that of

selenocysteine/selenocystine (−640 mV versus Ag/AgCl) making it an

interesting mutant of Cys‐ and Sec‐containing proteins because of its

considerably more reducing properties.126

The synthesis of tellurocysteine has been reported125,129 as well as

the synthesis of (Boc‐Tec‐OH)2
130 and H‐Tec (Meb)‐OH129 as

potential intermediates for the synthesis of Tec‐peptides. However,

oxytocin as the only reported synthetic Tec‐containing peptide so

far was prepared according to the synthetic route shown in

Figure 13.129

A comparison of the oxytocin ditelluride with its wild‐type and

diselenide variant clearly revealed a visibly reduced receptor affinity

and functional property (Table 3).131 However, it was found to be

surprisingly stable in view of general observations with

organotellurium compounds where the ditelluride group was found

to be light‐sensitive with tendency to hydrolyze and to decompose

forming telluroxides, tellurite, tellurate, and even elemental tellu-

rium.132 In addition, also the carbon‐Te bond (around 200 kJ

mol−1) is less stable than the carbon‐Se bond (234 kJ mol−1) and

the carbon‐S bond (272 kJ mol−1) with the carbon‐O bond being

the most stable (358 kJ mol−1). In this context, the Te‐alkyl com-

pounds were found to be generally less stable than the Te‐aryl or

Te‐alkylaryl compounds, a fact that was confirmed in the case of
telluromethionine‐protein analogues (see Section 2.1 and Besse

et al3) in comparison with the stability of simple organotellurium

compounds.132 The higher stability of the alkylaryl tellurides could

well be exploited for the synthesis of Tec‐peptides with Tec (Mob)

or Tec (Meb) protected tellurocysteine.

The promising therapeutic properties already reported for simple

organotellurium derivatives with antimicrobial, antioxidant, immuno-

modulatory, and anticancer activities should foster intense research

also with small purposely designed Tec‐containing low‐mass peptides

and related derivatives.
6 | CONCLUSION AND REMARKS

As among the members of the chalcogen elements, oxygen, sulfur, and

selenium play vital roles in the chemistry of life, the apparent lack of

any biochemical function for tellurium is rather surprising also in view

of its properties that are similar to that of sulfur and selenium. While

oxygen is essential for life on Earth, sulfur exerts crucial roles in cellu-

lar processes, biocatalysis, and protein structures. This may well be the

reason why great attention was paid to study and exploit the

biochemistry and properties of sulfur as well as more recently of

selenium, the latter because of its two faces as it is both toxic to all

organisms, but also essential to many bacteria and animal spe-

cies.133,134 Thereby, the redox chemistry was found to represent the

largest difference between the two chalcogens, a fact that has been

exploited in nature to enhance and adjust redox properties of

selenium‐containing enzymes and proteins, but also in the laboratory

to direct oxidative folding of cysteine‐rich peptides and enhance their

thermodynamic stability in view of potential therapeutic applications

(see Section 5). On the basis of the superb results obtained by replac-

ing sulfur with selenium particularly in methionine, but also in cysteine

for producing heavy atom analogues with considerable advantages in

protein and peptide X‐ray crystallography, a similar approach has been

proposed also for bioincorporation of telluromethionine (see Section

2.1). This approach has not found the due attention particularly

because of the facile oxidation and decomposition of the

telluromethionine. Such drawback can, however, be overcome by

using the Te‐containing phenylalanine and tryptophan analogues.

Indeed, on the basis of optimized synthesis of β‐selenolo[3‐2b]

pyrrolyl‐L‐alanine and β‐selenolo[2‐3b]pyrrolyl‐L‐alanine compared

with the previously known methods (see Section 3 and Phillips et al5

and Welch and Phillips6) to generate enzymatically [4,5]Se‐Trp and

[6,7]Se‐Trp for their incorporation into dihydropholate reduc-

tase,135,136 the synthesis of 6H‐telluro[2‐3b]pyrrolo for its enzymatic
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conversion to the Te‐Trp analogue has been reported.137 Such a

tellurium‐containing Trp analogue as well as the β‐2‐tellurienyl‐L‐ala-

nine as Phe analogue9 where in both cases the tellurium is incorpo-

rated into the aromatic ring system should be significantly more

stable to oxidation and decomposition than the alky‐Te‐alkyl com-

pounds like telluromethionine.34,130 This observation may well help

raising the pharmacological perspective of tellurium compounds even

at the level of peptides and proteins from a forgotten to an emerging

new chalcogen‐containing class of compounds with promising

bioactivities.
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