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Abstract

The recursive calculation of Selberg integrals by Aomoto and Terasoma using
the Knizhnik—Zamolodchikov equation and the Drinfeld associator makes use of
an auxiliary point and facilitates the recursive evaluation of string amplitudes
at genus zero: open-string N-point amplitudes can be obtained from those at
N — 1 points.

We establish a similar formalism at genus one, which allows the recursive calcu-
lation of genus-one Selberg integrals using an extra marked point in a differential
equation of Knizhnik—Zamolodchikov—Bernard type. Hereby genus-one Selberg
integrals are related to genus-zero Selberg integrals. Accordingly, N-point open-
string amplitudes at genus one can be obtained from (N + 2)-point open-string
amplitudes at tree level. The construction is related to and in accordance with
various recent results in intersection theory and string theory.
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1 Introduction

When calculating scattering amplitudes in quantum field theory and string theory, recycling
and recursion are the most useful and powerful concepts to simplify and streamline calculations.
Usually, the appearance of a new recursion algorithm [1-5] was preceded by establishing a new
representation for a particular class of scattering amplitudes: this has for example been new
variables or the idea of treating the color and kinematic part of an amplitude separately [6].

In this article, we would like to turn this reasoning around and discuss the question, whether
there is a formalism inevitably leading to a recursion for scattering amplitudes?

The first question to be answered in this context is a geometrical one: we would like to
find a parameter space for scattering amplitudes, which is powerful enough to represent all
analytic properties for scattering amplitudes geometrically: soft and collinear limits including



the color information, loop information, cutting. At the same time it would be desirable to not
use Feynman graphs as model, as those lead to unphysical poles in intermediate steps of the
amplitude calculation.

A further hint towards which geometry could be general enough to formalize amplitude recur-
sions comes from the interplay between color an kinematics in QCD: in the purely kinematical
part of amplitude calculations, we usually do not make explicit reference to color, albeit we
carefully distinguish between planar and non-planar Feynman graphs. In other words, the color
part implies boundary conditions for the calculation in terms of the ordering of external legs.
In addition, the double-line formalism is a graphical way of keeping track how to multiply color
matrices, which in turn allows to define what is called planar and non-planar. Accordingly, each
Feynmn propagator dressed with double-lines effectively comes with a notion of left and right.
When aiming at a formalized way to establish amplitude recursions, we should use a geometrical
model, which allows to implement this information: the easiest way to do so, is to use bounded
two-dimensional Riemann surfaces of fixed genus. While we are going to explore the formalism
without reference to any physical theory, open-string amplitudes are naturally realized on these
Riemann surfaces. As an example, we are going to construct an amplitude recursion for open
strings at genus one to exemplify the expected features of the recursive formalism.

Having identified a suitable geometrical setup, one is led to think about the differential and
integral structures on these Riemann surfaces. Solutions to scattering amplitudes can usually be
represented in terms of iterated integrals on Riemann surfaces. Rather than recognizing certain
Feynman integrals and string amplitudes as particular examples of a general class of iterated
integrals on a particular surface, one could ask the question: which classes of iterated integrals
do exist on a particular Riemann surface canonically? This question has been thoroughly inves-
tigated in mathematics and physics during the last decade: the most prominent examples are
iterated integrals of abelian differentials on the particular Riemann surface in question. For a
Riemann surface of genus zero those are various flavors of ordinary multiple polylogarithms [7,8],
while a genus-one Riemann surface leads to elliptic polylogarithms [9,10].

For Riemann surfaces of genus zero, a further particular class of canonical integrals sticks
out: Selberg integrals [11] have been shown to generate all (harmonic) multiple polylogarithms,
when properly expanded. Based on the Knizhnik—Zamolodchikov (KZ) equation and the Drin-
feld associator [12-14], Aomoto and Terasoma have formalized the evaluation of Selberg inte-
grals [15,16] by considering limiting geometries parametrized by an auxiliary insertion point.
Beautifully, their formalism addresses the questions of regularization of divergent integrals in a
mathematically very simple and rigorous way. In other words: for canonical iterated integrals
on a genus-zero surface a recursive algorithm delivering their solutions is known. Even more,
since the algorithm is based on matrix representations of a certain free Lie algebra, the whole
calculation is purely algebraically.

Correspondingly, all scattering amplitudes whose integral representations can be accommo-
dated within the class of genus-zero Selberg integrals, can be calculated recursively. One recent
application of this technique is the evaluation of all genus-zero open-string amplitudes in ref. [17].

In this article, we would like to explore the appropriate generalization of Aomoto’s and
Terasoma’s formalism to genus one. We will consider bounded Riemann surfaces of genus one and
identify the canonical generalization of Selberg integrals thereon. Simultaneously, we are going
to consider the genus-one analogue of the Drinfeld associator and again establish a recursion
facilitated by an extra insertion point. As an example, we are going to apply the formalism to
open-string amplitudes at genus one.

Various recent results for scattering amplitudes are linked to the formalism established and



explored in this article: the CHY formalism [18] is connected to Selberg integrals and twisted
cohomology delivers basis choices for Selberg integrals at genus zero and genus one [19]. In
particular, Mafra and Schlotterer established a formalism for the evaluation of open-string am-
plitudes at genus one [20,21], which is closely related to the construction in this article. We will
comment on the connection to our genus-one formalism in subsection 3.5 and in section 5.

In section 2 we are going to review the recursive evaluation of Selberg integrals at genus
zero. We will apply the technique to genus-zero open-string amplitudes in a way equivalent to
the approach in ref. [17]. We are going to develop the genus-one formalism in section 3 and
discuss the relation between genus-one objects and those at genus zero in section 4. In section 5

we conclude and point out several open questions.

2 Genus zero (tree-level)

In this section we are going to review the recursive construction of genus-zero Selberg integrals
of Aomoto and Terasoma and relate it to the formalism for calculating open-string tree-level
o/-corrections put forward in [17]. By doing so, we will reformulate the construction in different
conventions, which are chosen to allow for a seamless generalization to genus one in section 3.

While reviewing, we are going to link and discuss various mathematical concepts and con-
structions having appeared recently, such as for example ref. [19]. Accompanying the review in
this section, there is the article [22], in which the exact form of the matrices eg and e; appearing
in [17] is derived starting from the braid matrices in refs. [15,16,19].

In this article, the Mandelstam variables

Sivoiy = o (kiy + ...+ ki,)? (2.1)

for external momenta k;, are usually treated as formal parameters in the integrals to be con-
sidered. Only when applying our formalism to actual scattering amplitudes, we will impose
momentum conservation for N massless external states:

N

Y s;=0, > s;=0 VI<j<N. (2.2)
1<i<j<N-1 =1
i

2.1 Singularities, iterated integrals and multiple zeta values

The natural environment for the calculation of open-string amplitudes is the bounded disk: a
bounded Riemann surface of genus zero. In general, a Green’s function on a Riemann surface,
which is going to serve as string propagator, is expected to diverge at zero separation of the
insertion points. Simultaneously, the derivative of the propagator should have a simple pole.
Both properties are obeyed by log x;; = log(x; — x;), where z; denote the positions of marked
points on the Riemann surface. In particular one finds

1

0

which is very close to the Abelian differential of the second kind on the Riemann sphere:

dx;

a;i—aj'

(2.4)



Consequently, we will be dealing with iterated integrals over those differential forms,

1
t—al

G(al,ag,...,ar;x):/owdt G(ag,...,ar;t), G(Gxz)=1, (2.5)
which are called Goncharov polylogarithms [7,8].

For the considerations below, we are going to confine the location of poles to a; € {0,1}:
this will lead to the class of integrals sufficient to express the results of tree-level open-string
integrals [23] as well as various results in numerous different quantum field theories.

Denoting the set of all words generated by the letters ey and e; by {eg,e;}*, multiple
polylogarithms G,, are multi-valued functions on C \ {0, 1} indexed by words of the form

w=el"tey. . eft ey, (2.6)
where n; > 1:
Gu(z) = G(0,...,0,1,...,0,...,0,1;z). (2.7)
——— ———
nyr—1 ni—1

The above definition differs by a sign from the sum representation of the multiple polylogarithm
Liy, ..., (z) in one variable for |z| < 1

l’kr‘
Gu(z)=(-1)" > W (=1)" Lin,,...n, () (2.8)

1<k < <ky r

which indeed justifies the name multiple polylogarithm.

Words ending in ep have been excluded in definition (2.7), since the form dt/t in the original
definition (2.5) of the iterated integral G, (z) would diverge at the lower integration boundary.
However, definition (2.7) of multiple polylogarithms G,,(x) may be extended to any word w €
{ep, e1}* using the shuffle algebra for multiple polylogarithms

Gu (x)Gw” («x) = Guwuw” (1') ) (2.9)
where w’, w” € {eg,e1}*, and the definition

log" (z)
nl

Gen(z) = (2.10)

This implies that for words ending in eg, multiple polylogarithms exhibit a logarithmic divergence
in the limit x — 0, while they vanish in this limit for words ending in e;

31613% Gue, (x) = 0. (2.11)
Moreover, a multiple polylogarithm indexed by a word e;w € {eg,e1}* satisfies the differential
equations
dz dz
dGe,uw(x) = wiGy(x), wo = W= (2.12)
which follows from definitions (2.5) and (2.7).
Multiple zeta values (MZVs) are defined and labeled by words of the form
w=el""tey. et ey, np>1, (2.13)



which lead to convergent values of G, at x =1
Cw=(—1)"Gy(1) = Lip, . p.(1). (2.14)

In addition to the divergence of dt/t at the lower integration boundary for words ending in e
discussed above, the integral G, (1) will also diverge at the upper integration boundary for words
beginning with e; due to the pole in the differential dt/(t — 1) at ¢t = 1. This is the reason for
requiring n, > 1 in the above definition.

In analogy to multiple polylogarithms, definition (2.14) can be extended to any word ending
in eg using the above shuffle regularization (2.9) and (2.10) of G, (x) as well as a similar regular-
ization for words beginning with e;. This regularization' of MZVs turns out to be a genus-zero
version of the tangential base point regularization [24,25]: along the positive direction at = = 0
and in negative direction at x = 1, respectively [26].

This regularization of the MZVs effectively amounts to the definitions

Ceop = G(0;1) =0,
(e, = —G(151) =0, (2.15)

the ordinary definition for the absolutely convergent sums for n, > 1 and n; > 0 for ¢ €
{1,...,r—1}

Comot m1 = (1) Gt s (2.16)
egr el...eol e1 1<k1;.<’% k‘?l...k‘?r egr e1...eo1 e’

and the use of the shuffle algebra to reduce the remaining cases to the former definitions
Cu Cuw = Cu/ww - (2.17)

2.2 Selberg Integrals

Even though the o’-expansion of open-string tree-level amplitudes can be finally phrased in
terms of rational factors, polynomials of Mandelstam variables (2.1) and MZVs, in intermediate
steps of the calculation, the notion of iterated integral in eq. (2.5) is not general enough. The
class of integrals accommodating the relevant features is called Selberg integrals [11,27,16], and
will be constructed in the following. Let us consider L points on the unit interval with the
ordering

D= <z <ap1<--<xz3<w93=1 (2.18)

and define” the empty Selberg integral or Selberg seed

S=9S[(z1,....x) = [ exp(sijlogay)= [ |yl (2.19)

0§$i<1‘j§1 0§$i<1‘j§1

MWhile the divergence for words ending in eo has been treated by the corresponding extension of the definition
of multiple polylogarithms, using the shuffle algebra to extract the divergent contributions from G, (1) in G (1),
any multiple polylogarithm G, (x) can be written on the canonical branch for x € (0,1) such that it takes the
form Gy (z) = L";‘O cx(z)log(1 — x)*, where ci,(2) are holomorphic functions of z in a neighborhood of = = 1.
Thus, for any word w € {eg, e1}™, the multiple zeta value (., can be defined by the regularized value of G (z) at
1, which, in turn, is the coefficient co(z): Cw = Reg,_; (Guw(z)) = co(1).

2 . _
We use the notation Hwa§1i<wj§wb - i,7€{1,2,..., L}y:zq<w;<z;<wzy’



with generic formal parameters s;;. The empty integral S[] shall be integrated over various
functions 1/z;;, which will be denoted by

. : Tk dx . .
S[Zk-‘rla'-'vZL](:EIw"733]6) :/ ¢S[2k+27"'>2L](1'17'"7xk+1)’ (220)
0 Thtlipy
where
1<i,<p Vped{k+1,...,L}. (2.21)

Note that the condition (2.21) is necessary in order to define honest iterated integrals: the
integration kernel 1/xy41;,,, in eq. (2.20) can not depend on variables which have already been
integrated out® In accordance with ref. [27], we call this property admissibility and an integral
with an integrand proportional to []; 1/xy 4, satisfying eq. (2.21) admissible. By definition, the
number of iterated integrations in a Selberg integral equals the number of entries in square
brackets. As argued in subsection 2.5 and subsection 2.7, Selberg integrals of length L — 3

%3 dxy

S[i5,... ,iL](arl,...,m)

S[Z‘47"-7Z'L](x17x27$3) /

.’E4 ,i4

= dx; S 2.22
/ C(x3) H kl_[4 37kzk ( )

where C(x3) is the region of integration denoted by
Cle))={0=x1 <ap<zp_1 <--<ax;} (2.23)

for 0 = 21 < x; < x9 = 1, include all integrals appearing in the calculation of L-point open-string
tree-level scattering amplitudes.

Besides of including all integrals for the calculation of tree-level string corrections, the main
advantage of the integrals (2.22) is that their solutions can be obtained from a recursive proce-
dure involving matrix operations [27,16]. This construction is going to be described below.

2.3 Auxiliary marked point and a system of differential equations

The main idea of the recursive construction of solutions to Selberg integrals by Aomoto and
Terasoma is the use of an auxiliary fixed insertion point z3. The notion of auziliary will become
clear, when discussing certain limits of x3 and their relation to string amplitudes below.

Prior to that, let us investigate the structure of the punctures appearing in the Selberg
integrals. The Selberg integrals S[ig41,...,i1](x1,...,x) are defined on the configuration space
of the (L + 1)-punctured Riemann sphere with k + 1 fixed coordinates

}—L—i-l,k:-i-l = {(ka+1,xk+2, e ,ZL‘L) c (CPI)L_k|V’i 75] LTy 75 T1,T2y... ,xk,xL_H,xj} (2.24)

in the following sense [27,19]: the differential forms

L
dx
N L (2.25)
p=k+1 Lp,ip
where 1 < i), < p, appearing in the definition (2.19) have integration variables xj41, Zx+2, ..., 2L

and are defined for x; # z; on the complex plane punctured by the k fixed coordinates

3In particular, the z-removal procedure from ref. [23] is not required.



1,2, ...,Zk. 1f this k-punctured complex plane is depicted on the Riemann sphere, an addi-
tional puncture at xy1 = oo is introduced leading to the k + 1 fixed coordinates in the configu-
ration space Fr41 k+1. Then, the twisted cohomologies of the forms in S[igy1,...,i0](z1, ..., 2x)
span the twisted de Rham cohomology of Fr41 1. Three of the k 4 1 fixed coordinates are
canonically chosen to be

(1,22, 2041) = (0,1, 00), (2.26)

such that for a configuration of the form (2.18), which is used in the integration domain of the
Selberg integrals, the punctures in F7,1; 141 can be depicted on a circle on the Riemann sphere
as follows:

Tr41 =0

21 =0 (2.27)

Accordingly, the genus-one Selberg integrals with k& = 3 defined in eq. (2.22) is a class of
integrals defined on the configuration space 414 with four fixed coordinates 1, x2, 3, xr41.
Since three of them are canonically fixed, the remaining fixed puncture parametrized by the
coordinate xs will be the auxiliary point used in the amplitude recursion: if it is merged with
the point o = 1, one fixed puncture is removed such that the Selberg integrals on Fr414
degenerate to integrals S[ig,...,ir](x1 = 0,29 = 1,23 = x2) defined on the configuration space
F13. This is the moduli space of L-punctured Riemann spheres known from string calculations
with the three coordinates being fixed by the SL(2,C) symmetry

MO,L = {(334, e ,.%'L) € ((CPl)L_S’Vi 7&] LT 7& xl,xg,xj,xL+1} = fL73, (2.28)

on which L-point tree-level amplitudes are defined. Indeed, as shown below, they will be recov-
ered in this limit of the Selberg integrals. The merging of x5 — x1 = 0 is slightly more involved
and will lead to the (L — 1)-point integrals in a certain soft limit. Thus, the auxiliary puncture
x3 interpolates between the L- and (L — 1)-point integrals. In the construction of Aomoto and
Terasoma, these two boundary values are related using the differential equation satisfied by the
integrals S[i4,...,ir](z1 = 0,22 = 1,x3) with respect to x3. In the rest of this subsection, we
will review the investigation of these differential equations.

Thus we are considering the following Selberg integrals

T3 dxy

S[’i4,...,iL](:L'1 = 0,1’2 = 1,:173) :/

S[if)a"'aiL](:L‘l — 0;$2 = 171:371.4)7 (229)
0 T4,y

where we assume z3 € (0,1). Attached to the point x3 there is an auxiliary external momen-
tum k3. Correspondingly, there will be Mandelstam variables ss3;, ¢ € {1,2,4,5,... L} and the
Mandelstam variables s; 141, @ € {1,2,3,... L} may be determined by momentum conservation.
However, for the moment we are not imposing any conditions like the momentum conservation



eq. (2.2) on any set or subset of the external states. Rather, the variables s;; shall be consid-
ered as independent parameters whose interpretation as Mandelstam variables in a scattering
amplitude context will become clear when considering the limits 3 — 0 and x3 — 1 below.

As a next step, let us explore differential equations with respect to the auxiliary point x3
acting on the Selberg integrals (2.29):

(2.30)

d d i
JR— ) ) “ o ) 1 = d ’
dxs Slia, is, .-, i](0, 1, x3) dx3 /C(Ia) i];[L " H

k=4 ':L'k:’lk

Noting that eq. (2.19) implies that the Selberg seed S converges to zero in the limit z; — z; for
L
S |zi=2; = 0, (2.31)
it follows that the derivative in eq. (2.30) only acts non-trivially on the integrand and not on
the integration domain. The identity
0 1 0 1

A 2.32
6$i :Uij 6:@ :Uij ( )

and integration by parts may be used to let partial derivatives act on the Selberg seed only:

Lo

d .. .
d—x?’S[M,%,--- ir](0,1,23) = /C Hd:L'z (Z d; ) H

(z3) j—4 jeu. fe=a Tk

(2.33)
The set Us in the previous equation is defined as

Us = {j € {3,4,...,L}‘j:3 or there exist labels 3 = j1, j2, ..., jm = j such that

m— L
1
H is a factor of H } (2.34)

Ljiv1,di i—a Tkig

and is tailored to the labels 44,5, . ..,iy, of the Selberg integral in eq. (2.33). Partial derivatives
of the Selberg seed yield factors of s;;/x

8 S5l
—S=> 3 2.35
ox; Z xq (2.35)
J 1#]
such that
d
& S[iayis,. .. ir)(0,1,z3) / Hdacz sy Y H (2.36)
dﬂ:'?, CES ]€U3 lQUg jl k=4 xklk
The structure of S[ig, i5,...,71](0,1, x3) as an iterated integral, in particular the condition 1 <

ix < k, implies that upon consecutive applications of partial fractioning

1 1 1 1 1
N ( - ) —_— (2.37)
LTkl Tkm LTk, Tem | Ti,m
where k > [ > m, we will again find (admissible) Selberg integrals S[i4, i5,...,i1](0,1, 23) with

1 < i < k on the right-hand side of eq. (2.36), however, with different labels 7.
Furthermore, all integrals on the right-hand side of eq. (2.30) will always contain a prefactor



of the form
Sii sk 500 50k
L ="t or L= (2.38)
r31 3 r32  x3—1

since the indices in x3; and x32 can no longer be reduced by partial fractioning. Accordingly, if
we consider the vector of all the integrals

S(l‘g) = (S[i4, i5, ce ,iL](O, 1, xg)) (239)

1<ip<k’
the result of an exhaustive application of the partial fractioning identity to the differential
equation (2.36) can be phrased in terms of a vector equation

d €o
— S - (=
d:L’g (1'3) (:133 + r3 — 1

€1

) S(xs), (2.40)

where the entries of the length (L — 1)!/2 x (L — 1)!/2 matrices ey and e; either vanish or are
homogeneous polynomials of degree one in the parameters s;; for i,7 € {1,2,...,L}. In an
amplitude context later, this implies (cf. eq. (2.1)) that eg and e; are proportional to o’.

The fact that the derivative of S[i4,is,...,41](0,1,23) is expressible as linear combination
of iterated integrals Sliy,is,...,71](0,1,x3) originates in a property of the differential forms
appearing in the integrand in eq. (2.30): they contain a basis of the twisted cohomology of
Fr+14, the so-called fibration basis [19]. Note that for each 4 < k < L, one can get rid of
one particular index 1 < i} < k by partial fractioning and integration by parts. Thus, one can
identify a suitable basis of the iterated integrals S[i4,i5,...,i1](0,1,23) as

B,

41

il = {Slig,i5,...,i0](0,1,23)|1 < i < k, i # Z;C} (2.41)

and reduce the vector in eq. (2.39) to the vector

S(za)ls, ;. = (S[z4,25,--'JL](O,1,$3))1§ik<k7ik#;€- (2.42)
In this case, the differential equation (2.40) for the reduced vector S(x3)|z, , ., is also of the
Tyolgseees (3
form p "
€0 €1
—3S =(— S 2.43
Ty S@lleg g g = (G4 5 0) Sl g (243)

where the entries of the matrices eg and e are again either vanishing or homogeneous polynomi-
als of degree one in the Mandelstam variables s;; for 4,5 € {1,2,..., L}. Different than before,
the dimension of the matrices is now (L — 2)! x (L — 2)!. These matrices turn out to be braid
matrices, that is, representations of the braid group of L 4 1 distinguishable strands with three
strands held fixed. It is well known, how to obtain these matrices recursively [27,16,19].

Of course, the choice of the basis is a priori arbitrary. However, depending on the intended
use, certain choices turn out to be much more beneficial than others in practice. For example, the
recursive definition of the matrices in ep and e; in ref. [19] are constructed for the choice By 1.1,
i.e. 2 <14 < k. On the other hand, the limits considered in subsection 2.5 will conveniently be
formulated in the basis Baa . 2.

Equation (2.40) is a first example of the type of differential equations we are going to deal
with in the following: it is an equation of Knizhnik—Zamolodchikov (KZ) type [12]. The solution
theory for this differential equation is well-known from refs. [13,14]. In order to proceed, we will
provide a short introduction to the KZ equation and its formal solutions in the next subsection.

Prior to that, we consider the simplest example L = 4 and show the above calculational

10



steps explicitly for the basis

By = {S[1)(0,1, z3),S[3](0, 1, z3) } , (2.44)
where o )
S[i4](0,1,23) = /0 dry S Y. S = 2yt eif ey iy wis sy . (2.45)
14

These integrals are defined (by twisted forms) on (the twisted de Rham cohomology of) F5 4 =
{xy € CP|zy # 71,22, 73,75} with punctures

O=m<myu<r3<wza=1<25 =00, (2.46)

where x1, T2, T3, 5 are fixed and x4 is varying, i.e. x4 is the integration variable in the integrals.
First, note that Bs is indeed a basis, since the remaining Selberg integral S[2](0,1,z3) with
14 = 2 is a linear combination of the elements in By due to the integration by parts identity

S41 S[l](O, 1, 333) + S49 S[Q] (0, 1, xg) + S43 8[3](0, 1, .%'3) =0. (2.47)

Now, let us calculate the derivatives of the entries of

~(S[1)(0, 1, 23)
S(z3)|s, = (S[S](O, 1’1,3)) (2.48)

in order to recover the KZ equation (2.43) using our general analysis from above. Starting with
S[1](0,1,x3), we find that the set Us defined in eq. (2.34) is for S[1](0, 1, x3) given by

Us(S[1](0, 1, 23)) = {3}, (2.49)

such that according to eq. (2.36)

ds[l](O,l,ﬂfs):/ dx4S<531+834+532)
0

dxs r31 X34 32/ T41
= 2L S[1](0, 1, 23) + — 2 S[1(0,1,m) + =2 (S[1](0, 1, 5) — S[3](0, 1, 23))
T3 xr3 — 1 €3

(2.50)

where we have used the partial fractioning identity (2.37) for the third equality. Similarly, for
S[3](0,1, z3) we find

Us(S[3](0, 1,23)) = {3,4}, (2.51)
such that
d x 1
—S[3](0,1, x3) = Cday S (531 452, s, 542) 2
dzs 0 T3l T32 T4l T42/) T43
= 2L9[3)(0, 1, 23) + —22—S[3](0, 1, 23) + X (S[3)(0, 1, 23) — S[1](0, 1, z3))
€3 zs—1 xs
p— ((s42 + s43) S[3](0, 1, x3) + s41 S[1](0, 1, x3)) , (2.52)

where we have again used partial fractioning (2.37) and integration by parts (2.47) for the
fourth equality. From the above calculations, we find that the Selberg vector S(x3)|s, satisfies
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the differential equation

d 1 [s31+834  —s34 1 sz 0
—S(x3)|lg, = | — + S(x3)|B, , 2.53
dxg (z3)ls, <£U3 < —sq1 s31ts;)  w3—1\sa1 sz (3)l, (2.53)
which is indeed of the form of the KZ equation (2.43) with the matrices
eo = <S31 + 834 —S34 ) 7 o) = <832 0 ) (2.54)
—S541 8311 S41 541 8432

given by the braid matrices used in ref. [19].

2.4 Generating function for polylogarithms and the Drinfeld associator

Let us introduce the general solution strategy for a KZ equation such as (2.40) by considering a
representation of some Lie algebra generators eg and ej, as well as a function F(x) with z € (0,1)
and values in the vector space the representations eg and e; act upon and which satisfies the

KZ equation
d (e e1
2 B = (x + ) F(z). (2.55)

z—1

Given this situation, one is often interested in calculating the limit of F(x) for z — 1 while
knowing the boundary value as x — 0, which is what shall be understood her by solving the
KZ equation (in spite of the fact that we still call F(z) a solution of eq. (2.55)). As will be
reviewed in this section, there is an operator, the Drinfeld associator ®(eg,e;) [13, 14], which
parallel transports the (regularized) boundary value of F(z) at x — 0 to its (regularized) value
at x — 1. It turns out that the Drinfeld associator is the generating series of the regularized
MZVs, which was originally shown in ref. [28] and which is reviewed in this paragraph following
the lines of ref. [26].

In order to construct the Drinfeld associator, we first investigate the following generating
function of multiple polylogarithms

L(z) = Z w Gy(T) . (2.56)
we{ep,e1 }*
The differential equations (2.12) imply that the series L(x) satisfies the KZ equation

d

L) = (jf + 1) L(x). (2.57)

Furthermore, the boundary conditions (2.10) and (2.11) determine the asymptotic behavior as
x—0
L(z) ~ z®. (2.58)

By the symmetry = — 1 — x of the KZ equation, there is another solution L of (2.57) with the
asymptotic behavior
Li(z) ~ (1 —x)* (2.59)

as ¢ — 1. Now, let F(x) be an arbitrary solution of the KZ equation (2.57). For this solution,
regularized boundary values are defined via

Co = lin% T °F(x), C;= liml(l —z) “F(z). (2.60)
T—

r—r
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Since for two functions Fo(z) and Fy () satisfying the KZ equation (2.55) the product (F1)~! Fy
is independent of x, and by the asymptotics (2.58), (2.59) of L(z) and Lj(z), respectively, the
calculation

(Ly(2)) ' L(z)Cy = glﬁig[l)(Ll(x))*l F(z) = lim(Li(2)) ' F(z) = (2.61)

r—1

shows that the product
® (e, e1) = (Ly(z)) ' L(x) (2.62)
maps the regularized boundary value Cy to the regularized boundary value C
Cy = ®(eg,e1) Cy . (2.63)

The operator ®(eq,e1) is the Drinfeld associator which is defined in terms of the generating
series of multiple polylogarithms L(z) and the corresponding solution L (z). In order to write
it as a generating series of MZVs, its definition (2.62) can be evaluated in the limit x — 1, since
®(eg, e1) is independent of z: it is a product of a function satisfying the KZ equation and an
inverse of such a function. This leads to the relation of the Drinfeld associator to the MZVs
discovered in ref. [28],

D(eg,e1) = lim (1 —x) “ L(z)

rz—1

= Y w
we{eg,e1 }*
=1 — (aleo, e1] — C3leq + e1, [eo, €1]]
+ Ca([ex, [e1, [e1, eo]]] + le1, [eo, [e1, €0]]]
— leo, [eo, [e0, e1]]] + %[eo, 61]2) +.o (2.64)

i.e. the Drinfeld associator is a generating series for the (regularized) MZVs defined in egs. (2.15),
(2.16) and (2.17). The limit  — 1 is chosen to correspond to taking the tangential base point
in negative direction at 1, such that the contributions from (1 — z)™° lead to the discussed
regularization of the divergent terms in L(z) by canceling the positive integer powers of log(1—x)
in the divergent multiple polylogarithms G, (z).

2.5 Regularized boundary values for the string tree-level KZ equation

Following the discussion in the previous subsection, let us investigate the vector-valued function

S(z3) defined in eq. (2.39) satisfying the KZ equation (2.40) and consider its limits when taking

the auxiliary point x3 to either zero or one’

limits (2.60) for S(x3)

: in other words, we investigate the regularized

— lim g~ — 1
Cy = mlslglox S(xz), Ci= wl;gl

(1 - 23)" S(x3). (2.65)

4The following paragraph is closely related to the original analysis of Selberg integrals in ref. [16], which serves
as the prime reference for our investigation and led to the formulation of the amplitude recursion in ref. [17].
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Boundary value C{E: Let us start by considering the limit z3 — z9 = 1, which is depicted

in the following figure:
Tr4+1 = X0

ZJSL"

1 =0 (2.66)

The relevant integrals in the amplitude recursion in this limit turn out to be the Selberg integrals
in Baa..2MNB3s. . 3,ie. integrals of the form

L L
S[i4,i5,...,iL](0,1,x3):/ [Td=: S]] 1, S = I1 zlt, (267
(

Clw3) j=4 k=4 Lk, 0=z <z;j<z;<z2=1

defined on the configuration space Fr414 with 1 < ¢, < k and iy # 2,3. For these integrals,
the action of the prefactor (1 — x3)~¢ is particularly simple: on the one hand, the set Us in
eq. (2.36) is simply Us = {3}. On the other hand, the only appearance of the insertion point x5
in the integral S[iy, is,...,i1](z1 = 0,29 = 1,23) with iy # 2 is in the Selberg seed. Therefore
using partial fractioning to obtain the KZ form from eq. (2.36) does not introduce any factor
of 1/x39 other than so3/x32 obtained from differentiating the Selberg seed. Thus, for the basis
By, 2, the representation e; in the KZ equation (2.43) is of the form

o) = <323H(L—3)!><(L—3)! 0(L—3)><(L—3)!> 7 (2.68)
A-3yxr-3) Br-3)x@-3)

where the upper left block proportional to the identity corresponds to the integrals in B2 2 . 2N
Bs 3,3, (cf. examples (2.54) or (2.100) below). For this subclass of integrals, the regularization
factor (1 — x3)~°" only contributes with the scalar (1 — z3)~%2% = z,5"*® and the corresponding
entries of the regularized limit C; can be calculated as

L L
. _ o . : 1
wlL}IIé 1'23823 S[Z4a 15, . .- 7ZL](07 17 $3) = / H d:l:l H :L‘fjjl H :L,-;?anrSSn H ]
srbe Clas—m2) 1y 0<z;j<z;<z3 0<zp<x3 fi=a Thik
= S[i4a U5, .. aiL] (07 Liag = $2)|§§§§52n+83" ) (269)

Thus the regularization x5 cancels the factor 33 in the Selberg seed S, which would otherwise

render the integral vanishing. Moreover, the punctures x3 and xs have merged, such that the
associated Mandelstam variables, and hence, the momenta of the external states, are added to
yield effective Mandelstam variables 8o, = S9,, + 83, and 8, = Syp for m,n # 2, 3.

The resulting differential form and integration domain in the integral (2.69) represent twisted
cohomology and homology classes, respectively, of the moduli space Mg 1, = Fr, 3. Thus, in this
limit, the forms in S(x3) span the twisted cohomology class of My j, and can, in particular, be
expressed as linear combinations of the Parke—Taylor forms of L-point string amplitudes, which
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are discussed in the next subsection. In terms of the disk picture 2.66, we are modifying the
relative distances on the boundary by taking the limit 3 — z2 = 1. Upon identification of the
points xo and z3 we find the transition

Fry1a = Fraz=Mor (2.70)

with the L insertion points x1,x9, x4, 2s5,..., 211, which is the setup suitable for describing
L-point amplitudes.

Boundary value COE: For the limit z3 — 0, we are facing the following situation

Tr41 =0

)

T3
T (2.71)
Similarly as before, this limit can conveniently be described in the basis B o . 2, since for this
choice, the maximum eigenvalue of ¢g is given by

Smax = S51,3,4,...,.L - (272)

This can be seen by repeating the observation that led to eq. (2.68) for ej: using partial frac-
tioning to express the right-hand side of eq. (2.36) in terms of Selberg integrals S[iy4, ..., iz] with
ir, # 2, i.e. to form the KZ eq. (2.43) for By . 2, assembles all the s;; with 4,j # 2, L+ 1 in the
matrix eg. Therefore, the regularization factor z;“ in Cy can at most contribute with a factor
x5 "™ to each integral.

The behavior of these entries for 3 — x1 = 0 may be determined using the change of
variables x; = z3w; for 0 = 21 < x; < 9 = 1, such that in particular wq = 0 and wg = 1. This
yields for iy # 2

lim {E??Smax Sligy...,ir](0,1,23)
x3—0
L L 4

L s
SR N | R ) T U O |

T Cl@s) i=4 o<z <m<zs = 0<wm<ws3 0<zn<zs k=4 Thix

L 1

— 1 ) Sjt 83 _ 52
~m, Mo T o T e T 0o [

3 O=w1 <w;<wsz=1 i—4 0<w; <w;<w3 0<wyn <ws3 0< iy, <22 k=4 ki

L L

— . L 53
= [dwi 11wy T wsiv 11 -

O=wi<w;<ws=1;_4 0<wj<w;<z3 0< Wy, <ws k=4 kik
= S[i4,i5,...,iL](O,1,w3 = 1)|32n:0, (2.73)

which is, as for the 3 — 1 limit, an integral S[is,is,...,i1](0,1, w3 = 1)|s,,=0 defined on
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Fr3 = Mo,. Note that if we would not restrict to the basis Ba2 .. 2 and there were r indices
kj € {4,5..., L} such that ix; = 2, then the change of variables would leave r factors of z3 in
the quotient of the measure and the denominator

L r
| duwy 11 dw, (2.74)

) i =1
k=4 Tki k=d kg {k;} Uik j=1 T3WE;

L
dxk

which vanishes for 3 — 0. Therefore, the entries of Cy are linear combinations of integrals

li o Smax Qlg L1 1
x;gloq“fﬂ 8[147 azL](Oa 51"3)

_ S[i4, i5, ... ,iL](O, 1, w3 = 1)|52n:0 if S[’L'4, o ,iL](O, 1, $3) S 82727.”,2 s (2 75)
0 otherwise . ‘

Mandelstam variables: According to eq. (2.69), the Mandelstam variables s3, associated
to the momentum of the auxiliary insertion point x3 are redundant in Cq: they simply appear
as a splitting of the effective momentum 35, = s9, + s3, associated to the insertion point at
x9 = 1 and thus, may be chosen to be set to zero. This choice is more subtle in the boundary
value Cy with the non-vanishing entries being calculated according to eq. (2.73): here, the
Mandelstam variables ss,, are not at all redundant, i.e. an artificial splitting of the momentum
contribution, but encode the full momentum of the insertion point ws = 1. Thus, it may be
expected that setting this momentum to zero effectively removes one external state, leaving an
integral defined on My 1. This expectation will be shown to be true in subsection 2.7 for
certain linear combinations of Selberg integrals.

Summary: To summarize, the vector of Selberg integrals S(x3) encodes the (N = L)- and
(N — 1= L — 1)-point amplitudes in the regularized limits Cy and C;, which can be related to
each other according to the previous subsection using the Drinfeld associator ®(eg, e1), with eg
and e; determined by the KZ eq. (2.40), as follows

3n — 0 . .
Cyon Fyz=Mon S5n N-point amplitudes on My n
~a
T2
D
S(xz3) on Fni14 ®(eq, e1) P (eq; €1)|s5,=0
S3n, — 0

Coon Fns=Mon (N — 1)-point amplitudes on Mo y_1 (2.76)
where the exact degeneracy to the amplitudes as s3, — 0 and the corresponding map via
(e, €1)]sg,=0 Will be explored in the next subsections.

2.6 Open string amplitudes at genus zero

In this section, we will finally relate the construction reviewed in the previous subsections
to open-string tree-level amplitudes. These amplitudes arise as correlators between vertex-
operators inserted at the boundary of the worldsheet, which is a bounded Riemann surface of
genus zero. Usually, these correlators are referred to as disk correlators. In order to ease the
calculation, one usually makes use of the conformal symmetry of the worldsheet in order to place
the boundary of the disk at the real line.
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Performing the calculation in this setup shows that (L + 1)-point tree-level open-string sub-
amplitudes split into a super-Yang—Mills Ayy part carrying all state dependence and a string
correction F% = F7(a/) [29,30]:

Agpen(1, L, L—=1,..,2, L+ L;d/) = Y F7(a/)Aym(l,0(L,L—1,...,3),2,L + 1)

ceSN_3

=FT. Ay, (2.77)

where the (L + 1)-point string corrections are given by

. L L L s
Fo(aly = (-1)k /C( 71)dei So (H ( 3 J’“+’“1)> : (2.78)
T2=4) j=3

k=3 \j=kt1 Tk Tkl

and where the permutation ¢ € S;_o acts on the labels within the brackets on the right-hand
side of 0. In eq. (2.77), the sum runs over all permutations o of the labels 3, ..., L, so there is a
total of (L —2)! different open-string tree-level subamplitudes. All subamplitudes not exhibiting
labels of the form above can be obtained by using monodromy relations [31,32]. In the second
line of eq. (2.77) we have rephrased the equation in terms of vectors of length (L — 2)! with
obvious definitions. Note that our notation of the labeling of the insertion points x; differs from
standard string literature: as depicted in figure (2.27) we choose

$1:0<xL<$L_1<--~<x3<$2:1, Tr41 = QO (2.79)

for the L + 1 = N states on the (positive) real line on the Riemann sphere CP!, rather than
the usual z1 = 0 < 29 < 23 < -+ < zy_1 = 1 with zy = o0o. Our choice is suited for the
formulation of the iterated (Selberg) integrals defined in eq. (2.20) and in particular to state the
admissibility condition (2.21).

While Yang—Mills tree-level amplitudes can be obtained (for example) from BCFW recursion
relations [3, 4], the string corrections F7(a’) are purely kinematical functions, which can be
represented as iterated integrals over the remaining insertion points z; and hence, as integrals
defined on Mo 11 (cf. eq. (2.28)). In ref. [23] it was recognized that a further simplification
and formal improvement occurs, if the vector F is represented as an again (L — 2)!-dimensional
vector of so-called Z-integrals:

Aopen(1, L, L —1,...,2, L+ 1;0/) = ZT - MK - Ayy;. (2.80)

The object MK is known as the momentum kernel and can be represented as a matrix of
dimension (L—2)!x(L—2)!. A recursive formula is known yielding all entries of this object [31,33].
The entries are products of Mandelstam variables (2.1), where the degree in the Mandelstam
variables of each entry is (L — 2). Z-integrals have been introduced in ref. [23] as well: they are
defined as

L
T1,L+122, L+1T12
Z(Qlaq2)' "aqL+1) = / Hdzl KN 5 (281)
C(z2=1) ;3 Lq192Tq2q3 " Tarqr+1Tqr+1q1

where the factor 1 4122 1,+1212 in the numerator and the fixing of the coordinates (x1, 2, z1+1) =
(0,1,00) corresponds to dividing out the gauge volume Vckg of the conformal Killing group
SL(2,C). The quotient together with the integration measure is called Parke-Taylor form, while
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KN is called Koba—Nielsen factor and defined by

KN = H acjf = H exp(s;jlogxji) . (2.82)

O=z1<z;<Tj<T2=1 O=z1<z;<zj<T2=1

Note that we have defined the Selberg seed in eq. (2.19) in exactly the same way: it is constructed
to equal the (L + 1)-point Koba—Nielsen factor

S=KN . (2.83)

Since log x;; is (almost) the genus-zero string propagator, the Koba-Nielsen factor can easily be
identified as a generating functional of graphs connecting the vertex operators, where each edge
connecting vertex operators at positions x; and x; is weighted by the corresponding Mandelstam
variable s;;.

Acting with x;-derivatives on the Koba—Nielsen factor will yield terms of the form (2.3),
which were the starting point for the definition of the Selberg integrals in subsection 2.2. Iterated
integrals in x; over various derivatives of the Koba—Nielsen factor, in particular the Z-integrals
defined in eq. (2.81), fall in the class of Selberg integrals [11]. It is only those integrals, which
need to be calculated in order to determine the full open-string tree-level amplitude at any
multiplicity.

2.7 Relation to the construction in 1304.7304

In this subsection, we review the construction in ref. [17] and relate it to the Selberg integrals
(2.29), showing how they reproduce the string corrections F? in eq. (2.77) in the appropriate
limits shown in the diagram (2.76).

The construction in ref. [17] is based on the definition

2 L L L S s L+1-v mfls s
Fg(xg):(—l)Ll/C( )HdajiSa( H (Z Jk+”‘«‘) H (Zml_’_m2>> 7
T3) j=4

V= k=L+2—v \j=k+1 Lk L1k m=4 I—4 Tml Tm2
(2.84)

where 0 € Sp_3 acts on the indices of the Mandelstam variables and insertion points ¢ €
{4,5,..., Ly and v € {1,2,...,L — 2}.> As argued in ref. [17], the vector

A

ﬁ‘(.rg) = (FL_Q’ FL_g, e ,Fl)T (285)

of length (L — 2)! satisfies a KZ equation

9 ) = (60 ;4 ) F(as), (2.86)

T3 :ngl

where the subvectors F, of length (L —3)! contain all the integrals (2.84) for a given v, i.e. ¥, =

(ﬁg(x?)))GGSLfs' R

Note that by definition (2.84), the integral F7(z3) is not an explicit linear combination
of Selberg integrals S(ig,is,...,ir)(x1 = 0,29 = 1,23). However, using integration by parts
and the Fay identity, any integral 13'5 (z3) can be rewritten as such a linear combination. This

5Note that in ref. [17], another notation for the insertion points has been used: 21 = 0 < 22 < 23 < -+ <
ZN—2 < 20 < zN—1 = 1 < zy = 00, such that by comparing with our notation given in eq. (2.79) the auxiliary
point x3 is denoted by zo and the number of external states is shifted by one.
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mechanism is discussed explicitly in ref. [22], where a basis transformation B such that
F(z3) = B S(a3)l,.. . (2.87)

has been constructed. Accordingly, the matrices &y and é; in the KZ equation (2.86) of F(x3)
are related to the matrices ey and e; in the KZ equation satisfied by S|z, , , by

¢y = BeyB™1, ¢, = Be;B7'. (2.88)

In particular, the non-vanishing entries of the basis transformation B are homogeneous polyno-
mials in s;; of degree L — 3. Therefore, the matrices éy and é; are proportional to the inverse
string tension o’ since the same holds for the matrices ey and e;.

Since F(x3) satisfies a KZ equation, as for the Selberg vector S(z3), the regularized boundary
values

Co= lim 27 F(z3), C;= lim (1 —z3) " F(a3) (2.89)

z3—0 r3—1

are well-defined and can be related by the Drinfeld associator ®(ép, é;1) to each other
Ci = d(ég,61) Cy. (2.90)

Note that according to eq. (2.88), this Drinfeld associator is related to the Drinfeld associator

®(ég, 1) = BP(eg, e1)B~" . (2.91)

From the results in subsection 2.5, it can be shown that the first (L —3)! entries, corresponding to
the subvector F 1—2(x3), of the regularized boundary value C; contain the open-string corrections
F in eq. (2.77) for the L-point tree-level amplitudes®

A F|L oin
¢ = ( ‘L,p t) . (2.92)

This observation explains the meaning of the upper series of limits depicted (up to the basis
transformation (2.87)) in the diagram (2.76). Following the same line of arguments which led to
eq. (2.67), the entries of F |1_point, parametrized by o € Sr_3 acting on the indices {4,5,..., L},
are explicitly given by

lim (1 — x3) B EF7 ,(23)

x3—1
L ' L L .. s
SCGLL AR | CEO S (Rt VI Dol e
Cles=e2=1) iy o<pj<m<ws  0<wn<us k=4 \j=kt1 ik Tkl
= FU’L—point y (293)

where, as argued in subsection 2.5, the effective L-point Mandelstam variables of the insertion
point at xo = 1 are given by so, + 53, for n = 1,4,5,..., L, or solely by so, in the additional
limit s3, — 0, and the L external strings states correspond to the L insertion points (x; =

6This was originally proven in ref. [16] in a different framework, restated in ref. [17] and proven using the
notation of this article in ref. [22]
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0,zp,2p-1,...,%4,02 = 1,2111 = 00) shown in figure 2.66.

Similarly, the only non-vanishing subvector I'A“l,(mg) in the regularized boundary value Cy
is the one for v = L — 2. Its non-vanishing entries degenerate in the limit s3, — 0 to the
(L — 1)-string corrections [16,17,22]

lim CO — (F ’(Ll)—point) ) (294)
O(z—3)(L—3)!

Explicitly, the non-vanishing entries are the ones for v = L — 2 and parametrized by the permu-
tations o such that 04 = 4. They can be calculated using the same change of variables z; = z3w;
which lead to the result in eq. (2.75)

lim lm a$™>F9 (2
53n—0x3—0 3 L_2( 3)

L L L

:(_1)N2/0w1<w-<w41-Hdwi 11 wi'e ([TT 1 32 Sik | k1
i =1li=

5 0<w; <w;<wa=1 k=5 \j=kt1 Yik Wkl

= FU‘(L*I)—point ) (295)

where the L — 1 external string states are described by the L — 1 insertion points (w; =
0,wp,wp—1,...,ws = l,wp4; = o0). Note that as discussed at the end of subsection 2.5,
the limit s3, — 0 is necessary to recover the (L — 1)-point amplitudes rather than the L-point
situation (it is responsible for the merging wy — ws = 1), this degeneracy is depicted in the
bottom line of the diagram (2.76) (up to the basis transformation (2.87)).

Finally, the open-string recursion at tree level proposed in ref. [17] is given by the s, — 0
limit of the associator equation (2.90), which takes the form

F |L- oint F —1)-poin
U] = @20, 1) 5500 (0’@ 1)-point (2.96)
: (L—3)(L—3)!

and is up to the basis transformation (2.87) the right-most vertical map depicted in the diagram
(2.76). According to ref. [17], eq. (2.96) can be used to calculate the o/-expansion of the L-
point string corrections in F |7 peins solely by matrix multiplication from the (L —1)-point string
corrections in F \( L—1)-point as follows: first, the matrices €y and é; have to be determined by
writing out the derivative of the vector F(x3) with respect to x3 in KZ form (2.86). Then, all
the words in {ép, é1}* up to the maximal word length given by the desired maximal order in
o/, say omax, can be calculated to form the truncation of the associator ®(ép, é1) at this length
according to eq. (2.64). Since éy and é; are proportional to the Mandelstam variables, longer
words would only contribute to higher powers in o/. This truncated Drinfeld associator can be
used to calculate the required o/-expansion of F | L-point UP to order opax by multiplication with
the a/-expansion of F (1, _1)point UP to order omay using the associator equation (2.96).

As an example, we apply this recursion for L = 5 to calculate the five-point from the four-
point string correction following the calculation in refs. [17,22]. The vector F(x3) defined in
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eq. (2.85) is given by

Fid ESM + m; s15
3 T54 r14 ) T15
54
- Fid w3 4 15 842
F(l‘g) = F(54) = 0 dl’4 0 diL'5 S Zjﬁ N (2.97)
2 ’d T14 T52
1 S S S
A (g am
F Sp2 (845  Sa2
1 vos \zas T 245
which satisfies a KZ equation
LY (é°+ & )1?“( ) (2.98)
_— €T = _— €T .
d:Cg 3 I3 xr3 — 1 3
with the matrices
s5431 0 —s541 — 854 —5851 —S851 851
0 s5431 —541 —S51 — 854  S41  —S541
0 0 0 - 0
8o = 5531 551 (2.99)
0 0 0 5431 0  —s;
0 0 0 0 S31 0
0 0 0 0 0 831
and
532 0 0 0 0 0
0 S32 0 0 0 0
— 0 0 0 0
o= | 012 5432 (2.100)
0 —S592 0 5532 0 0
—S42 842  —S52 — Sp4 —S42 85432 0
852  —S52 —552 —S42 — 854 0 S5432

The regularized boundary value Cy degenerates in the limit s3, — 0 according to eq. (2.95)

to the four-point string correction F'¢ given in eq. (2.78) with the four insertion points being

0=w < ws <wg=1< wg= 00, which is the well-known Veneziano amplitude
F(1+515)F(1+S54)

I'(14si15+s54)

0
Co |s5,=0 = _ : (2.101)

0
On the other hand, the regularized boundary value C; degenerates as shown in eq. (2.93) to

Fid
Ci |s5,=0 = FeY (2.102)

containing the five-point string corrections F'? defined in eq. (2.78) with the five insertion points
denoted by 0 = 21 < 25 < 24 < 2 = 1 < g = 00. The amplitude recursion of ref. [17] states
that the o/-expansion of the five-point string corrections can be calculated by the four-point
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string correction using the associator eq. (2.96), which is in this case

F(l+515)F(1+S54)
Fid I'(1+s15+s54)
0
4 N N
FOD | = (0l s5,=0, €1s3,=0) . ) (2.103)
0

where the Drinfeld associator ®(ég|ss, 0, €1]ss,—0) can be calculated according to eq. (2.64) and
truncated at the word length corresponding to the desired order in «’.

3 Genus one (one-loop)

In this section, we develop and explore the genus-one version of the concepts from section 2 and
apply the resulting formalism to one-loop open string interactions. The genus-one recursion is
similar to the recursion at genus zero from ref. [17] reviewed in subsection 2.7.

While the genus-zero recursion relates N-point amplitudes to (N — 1)-point amplitudes and
is thus a recursion in the number of external legs, the genus-one mechanism relates N-point
one-loop string corrections to (N + 2)-point tree-level corrections. Therefore it allows to relate

objects occurring at different genera’:

TL4+1

T3 1 =TL+1 — 2’1‘

23 z9 21 21, FL—1

T4

vy UL (3.1)

In the genus-zero recursion, the Drinfeld associator effectively glues a three-point interaction to
an (N —1)-point interaction by splitting one of the external string states into two separate states
and, hence, increases the number of external states by one resulting in an N-point tree-level
interaction. On the other hand, as shown below, the genus-one recursion amounts to two external
states of the (N + 2)-point tree-level interaction being glued together by the elliptic analogue of
the Drinfeld associator, the elliptic Knizhnik-Zamolodchikov-Bernard (KZB) associator, to form
a genus-one worldsheet of N external string states.

As will be discussed below, this geometrical interpretation in terms of scattering amplitudes
(or string corrections) is dictated by the behavior of the canonical genus-zero and genus-one
Selberg integrals.

In subsection 3.1 up to subsection 3.5, we follow a similar structure as in section 2 and
introduce the corresponding genus-one generalizations of the mathematical concepts: elliptic
iterated integrals, a genus-one version of Selberg integrals, the genus-one KZB associator, the

"Notation and limits depicted in figure (3.1) will be introduced and explained in the course of this section.
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KZB equation for an auxiliary marked point. In the subsequent subsection 3.6, the first orders
in o/ of the two-, three- and four-point one-loop string corrections are calculated using the
genus-one associator mechanism and shown to agree with the known results.

3.1 Singularities, iterated integrals and elliptic multiple zeta values

In the following, we will envisage the genus-one Riemann surface as a torus with A-cycle (red)
and B-cycle (blue), where the ratio of the respective lengths, the modular parameter, is denoted
by 7.

Im(z) 5
T T+ 1

< >

N—{— S

1 (3.2)

By mimicking the formalism at genus zero described in section 2, let us start by considering

canonical differentials on the torus: they are generated by the so-called Eisenstein—Kronecker

series F'(z,n,7) [34,10]

01(0,7)01(2 +n, 1)
01(z,7)01(n, T)

where 6 is the odd Jacobi function and ' denotes a derivative with respect to the first argument.

F(z,n,71)= (3.3)

Expanding in the second complex argument 7 one finds
o
nF(zn,7m) =3 g™ (", (3.4)
n=0

which — in distinction to the genus-zero scenario — defines an infinite number of differentials
g™ (z,7)dz. The index n labeling the functions g™ is called its weight. While ¢ = 1 is
trivial, the only function with poles, located at z € Z7 + Z, is ¢(Y), which is nicely visible when
writing down the g-expansion [35], where g = exp(2miT):

¢ (z,7) = weot(nz) + 4m Z sin(2rmz) Z qm". (3.5)
m=1 n=1

All ¢™ with n > 2 are holomorphic in the fundamental elliptic domain. However, due to the
simple pole of g™, these integration kernels can not be elliptic functions, i.e. meromorphic and
one- as well as 7-periodic. They are only one-periodic

9 (z+1,7) = g"(z,7) (3.6)
and, furthermore, have a well-defined symmetry property
9" (=z,1) = (=1)"g" (z,7). (3.7)

Rather than defining elliptic functions, the functions g™ can be considered to be genus-one
generalizations of the integration kernels defining the multiple polylogarithms (2.7), which also
lead to meromorphic, but multi-valued functions.
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The integrals over the kernels ¢(™ lead to elliptic polylogarithms [9,10]: due to their peri-
odicity in eq. (3.6) they are single-valued functions on the cylinder, but can be thought of as
multi-valued functions on the torus. This is equivalent to the behavior of the ordinary logarithm
at genus zero: on each Riemann sheet the logarithm is single-valued, while it is a multi-valued
function in the complex plane.

It will be precisely the integration kernels g1, whose integrals need to be regularized and
which will — in certain limits — act as the link between the string propagators at Riemann surfaces
of genus zero and genus one. Corresponding to the differentials introduced in eq. (3.4), one can
define a class of iterated integrals I' called elliptic multiple polylogarithms:

D(Ghad sz / dz' g" (' —a, ) T(@ma 2 ), (3.8)
which due to their nature as iterated integrals obey shuffle relations

f(Al,Ag,...,Aj;Z,T)f(Bl,BQ,...,Bk;Z,T) = f((Al,AQ,...,Aj)LLI(Bl,BQ,...,Bk);Z,T)
(3.9)
in terms of combined letters 4; = 3¢ .
The integral over g will be of particular interest below: I' (42, 7) requires regularization
because of an endpoint divergence at the lower integration boundary due to the pole at z = 0.
The standard regularization procedure — which we are going to use here — is called tangential
basepoint regularization and is discussed in detail for example in ref. [24,36]. In short, we
subtract the endpoint divergence by defining

Lreg( 452, 7) = lim dz g(l)(z, T) + log(2mie)

e—0

= log(1 — €*™%) — miz + 47 (1 — cos(2mkz 3.10
(1 ) > o (1—cos(2nk2) g (3.10)

Considering z € (0, 1), the following properties can be read off from the above g-expansion

freg((l);z:tl,T) :freg((l);z,r)$7ri, Freg((l);—z,T) :freg(é;z,T)—l—m, (3.11)

where we place the branch cut of the logarithm such that log(—1) = mi. This implies in particular
invariance under z — 1 — z for 0 < z < 1:

freg((l);z,T) :freg((l);l —2,7). (3.12)

In addition, we find the following asymptotic behavior for z — 0

Treg(§32, ) ~ log(2miz) + s(z) (3.13)

and z — 1
Treg( 32, 7) ~log(2mi(1 — 2)) + O(1 — 2). (3.14)

The above regularization procedure is an algebra homomorphism, e.g. compatible with the shuffle
product. From now on, we will use the regularized iterated integrals exclusively and omit the
subscript when noting I'. Furthermore, we are going to keep the dependence on 7 implicit for
all integration kernels ¢(™ and all iterated elliptic integrals T

In the same way as products of terms of the form 1/z;; can be related by partial fractioning
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(2.37), there is a genus-one analogue for the Kronecker series: the Fay identity. In terms of the
functions ¢(™(z) it can be phrased as

(n1) (n2) 1 (nitns) = (=1 iy ()
gt —z)g"(t) = —(-1)™g () + > ; g ()9 (t—x)
i=0

" Z ( 2 —1 +J> (—=1)MH g =) () g(n2+9) () (3.15)

and derived from a similar property obeyed by the generating function F(z,n, 7).

For compactness, we will use a notation similar to definition (2.7) in terms of words from an
alphabet for the elliptic multiple polylogarithms I' defined in eq. (3.8) with a; = ag = - -+ = a =
0. Concretely, since there are infinitely many integration kernels ¢, the alphabet is infinite
as well and denoted by {z(®,z(V .. }. For a word w = z(™) . x("k e {z@ 2™ 1% we
denote the corresponding elliptic multiple polylogarithm by
Ty(2) = D)) ) =T (00 "8 2) (3.16)

) ey

Denoting by X = {x(o), P N 1* the set of all words, we end up with the assignment

s {f‘w(z) :f‘(w;z) iwaX\(Xx(l))v (3.17)

L2 if w=(zM)", neN.

For words w € Xz with w # (z™))" for some n > 1, the map of the word w to an iterated
integral is traced back to eq. (3.17) by the shuffle algebra. For w # (z())", one finds

lim 'y (2) = 0, (3.18)
while the regularization (3.10) implies logarithmic divergences for words w = (z()” in this
limit:

. 1 .
Lpanyn(2) ~ ] log(2miz)" . (3.19)

Due to the one-periodicity of ¢(!), this divergence also appears at the upper integration boundary

for words w = (z(1))”

as z — 1. The corresponding regularization procedure is particularly
important for elliptic multiple zeta values to be discussed in the next paragraph.

Considering the limit z — 1 leads to the genus-one analogues of MZVs defined in eq. (2.14).
These so-called elliptic multiple zeta values (eMZVs) [37,38,35] are defined in terms of regularized

iterated integrals T, with w = z(™) . z(m) ¢ X \ WX fe n #£1,at z =1

. _ t. — Tim T
w(nk,...,nl,T)—w(w,T)—ll_)rrifw( )-ll_}nllf( sz, T), (3.20)
where w! denotes the reversal of the word w. In order to extend this definition to all words
w € X, the singularity of fxu)w(z, 7) at z = 1 has to be regularized. This can be done similarly
as for the multiple polylogarithms in eq. (2.15), and is elaborated on in detail in appendix A.
The main result is the following definition of the regularized eMZVS wyeg(w’; 7): for any word
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w e X \ zWX they are defined by eq. (3.20), i.e.

wwh7) ifwe X\ (zMX),

3.21
0 if w=(zM)", neN. (3:21)

w > wreg(wt; T) = {

Again, the remaining cases w € () X can be related to the above situations by use of the shuffle
algebra. As for the elliptic multiple polylogarithms, from now on unless stated otherwise, all
elliptic multiple zeta values are assumed to be regularized and simply denoted by w(w') omitting
the subscript and the 7-dependence in wyeg(w'; 7).

In the same way as the shuffle algebra is preserved when regularizing iterated integrals I
in eq. (3.10), this is true for the corresponding MZVs: (regularized) eMZVs inherit the shuffle
algebra, the properties implied by the Fay identity and some further properties from the elliptic
multiple polylogarithms such as the reflection identity

wng,...,n1) = (=)™ e (ng, 0 ng) (3.22)

due to the symmetry (3.7) of the integration kernels. Furthermore, even elliptic zeta values are
related to the (genus-zero) zeta values according to

w2m;T) = =202, - (3.23)

Numerous other relations between eMZVs can be retrieved from [39].

3.2 Genus-one Selberg integrals

In order to repeat the construction described for genus zero in subsection 2.2, we will need to
find a genus-one generalization of the Selberg seed function defined in eq. (2.19) which can be
used to construct genus-one Selberg integrals. The genus-one Selberg seed should depend on
the positions of insertion points inserted on the boundary of a genus-one Riemann surface: an
annulus. Therefore — in analogy to the genus-zero scenario — we expect to find iterated integrals
on the moduli space M 1, of L-punctured tori with one fixed point.

For simplicity, we restrict our discussion to integrals, where all insertion points are on one
boundary, which we choose to be the A-cycle: the real line between zero and one. This scenario
corresponds to planar, open interactions at one loop. A generalization to the non-planar case,
where points are allowed on both boundaries is not expected to pose any structural obstacles.

In contrast to the genus-zero labeling (2.18), the positions of the insertion points are going
to be denoted by

0:,21<ZL<ZL_1<'--<22<1:Z1m0dZ, (3.24)
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where we have used the symmetries of the torus to fix z; = 0.

24

z3

ZL

Remembering the basic properties of the genus-zero Selberg seed defined in eq. (2.19) when
taking derivatives (cf. eq. (2.35)), the generalization of the Selberg seed to genus one is straight-
forward. Defining

=

Tij =T(§ 2 — 2j,7) = Ty (245, 1), (3.26)

one can simply replace log z;; = G, (i) in the genus-zero Selberg seed by the above expression
to find

S = H exp (5;jGeo(2i)) — SE = H exp (sij T, (2, T)) . (3.27)
T;<x; 2 <Zzj
Indeed, this expression is already very close to the one-loop Koba-Nielsen factor KNF appearing
in the one-loop string amplitudes below. In particular, G, and fxu) are the regularized integrals
as defined in eq. (2.10) and eq. (3.10), respectively. A key observation for our construction is the
relation between these two functions which follows from eq. (3.19): the polylogarithm G, (27iz)
describes the asymptotic behavior of the elliptic polylogarithm T L (2, 7)as z—0.
Accordingly, let us define a genus-one version of the Selberg integrals defined in eq. (2.20)
starting from the genus-one Selberg seed

SE(T) :SE[}(Zl,...,ZN,T) = H exp (Si]‘ f‘ﬂ> . (328)

0=z §2i<Zj <zo

Completely parallel to the genus-zero scenario, we can define genus-one Selberg integrals as
follows: the empty integral SE[ } is the genus-one Selberg seed, which shall be integrated over

the integration kernels ¢(™). This class of integrals is denoted by
2k
E[n Sy M E[n T )
S [z::f if}(zla ey 2k) =/0 dzp 41 g;(gikfff,jﬂ S [z:ﬁ if}(zlv e Zhg1) s (3.29)

where we have defined
g =g = g (2 — 2j,7). (3.30)

For all genus-one Selberg integrals as well as for the genus-one Selberg seed, we will again
suppress the 7-dependence below. However, we will still indicate the dependence by using
partial derivatives.

We call the sum ngiq + --- + np the weight of the Selberg integral. This notation, where
instead of the actual shifts a; from eq. (3.8) the index of a position variable z; is used, will allow

for rather compact equations when manipulating genus-one Selberg integrals. Moreover, as for

(nk+1)

the genus-zero Selberg integrals, the shift z;,, in the integration kernel g; " it

can only be
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a variable which has not yet been integrated out, which leads to the genus-one analogue of the
admissibility condition in eq. (2.21):

1<i,<p Vpe{k+1,...,L} (3.31)

As in the genus-zero setting, the corresponding integrals in the genus-one setting are also called
admissible.

In order to be equipped for the next subsections, let us collect a couple of identities for
genus-one Selberg integrals. Derivatives of the function f‘ij can be redirected to another index
using the symmetry property (3.7) of g(\:

9 -
o Tiy = gV = z) = =5 Ty (8:32)
7 J

In the above language, the Fay identity (3.15) takes the form
(m),_(n) (mtn) N~ (MAT =1L () (metr)
m n 1 m-n n—r m-Tr
ki ki = (=1)™" 9ji +z%< m—1 )%i Ikj
r=

= m—r n+r—1 m—r) (n4r
+3 (1) ( >g§-i Jglntn). (3.33)

o n—1

The left-hand side of eq. (3.33) is admissible, when w.l.o.g. i < j < k: if this condition is met,

the right-hand side will consist of admissible combinations only.
(n)
]
: application of the Fay identity

The Fay identity is the reason why all integration kernels g;.” are included in the definition

(1)
ij
introduces weights n # 1, such that a closed system with respect to integration by parts and

the Fay identity requires all integration kernels gg.l).

When discussing a recursive solution for genus-one Selberg integrals below, we will have to

of the genus-one Selberg integrals (3.29) rather than only g

take various derivatives with respect to insertion points z;, which is thoroughly discussed in
appendix C.1. Here we would like to collect some key properties used in the calculations below.
Taking the regularization prescription in eq. (3.10) into account, we find

S¥ .=z, =0 for i # 7, (3.34)

which is the property analogous to eq. (2.31) in the genus-zero scenario. Taking a derivative of
the one-loop Selberg seed with respect to a particular variable yields

0 1

8P =S gl ST 3.35

azi vy SikYik ( )
For a fixed L, that is a fixed number of points z;, i« € {1,...,L}, and a given number of

integrations L — k, there is a large number of different Selberg integrals. It is natural to ask
for a particular set of integrals constituting a basis in the space of genus-one Selberg integrals.
In principle, there are two operations which can be performed on Selberg integrals: one can
integrate by parts and one can apply Fay identities. The question of a basis for this type of
integrals is a very old one and amounts to determining a basis of the corresponding twisted de
Rham cohomology, similar to the fibration basis in genus zero mentioned in the discussion above
definition (2.41) of the bases for (genus-zero) Selberg integrals.

Since a reduction to a basis is convenient, but not necessary in our construction, we do
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not try to rigorously provide a genus-one analogue of the fibration basis. However, we note
certain observations for a class of genus-one Selberg integrals with fixed L and a fixed number
of integrations L — k:

e for an index n, = 0, the corresponding integration kernel g;?i)p =1 is a constant, thus, we
can always choose i, = 1 in this case.

e as for the genus-zero Selberg integrals, for an index n, = 1, integration by parts yields a
linear equation for the integrals due to the partial derivative of the Selberg seed (3.35).
Hence, for each index n, = 1, we expect to be able to reduce the class of integrals from
1 <ip <ptol<i,#i, <pforany 1 <i; < p by such an integration by parts identity
and applications of the Fay identity (to recover admissible integrals). However, no further
such simplifications are expected for the indices n, > 1.

In subsection 3.4 below, we are going to consider a differential equation for a vector of genus-
one Selberg integrals of integral length L — 2, which are the relevant genus-one Selberg integrals
containing the one-loop and tree-level string corrections. This is the class given by the integrals

SB[ B e = 0,20) = [ gl SP[ R o1 = 022,
_/Z2 Hdzz S Hg,@’;), (3.36)

where 1 < i < k and the integration region is still given by eq. (2.23) (however, insertion
positions are labeled by z; here):

Clzi) ={0=21 <2p <2p-1 < <2}, (3.37)

such that the integral over this domain is given by

L

z2 z3 ZL—1
/ I dz :/ d23/ dz4--~/ dzr, . (3.38)
C(#2) ;=3 0 0 0

The integrals defined in eq. (3.36) are the genus-one generalization of the Selberg integrals
relevant for the tree-level amplitude recursion, which are given in eq. (2.22). As for this genus-
zero class, the differential equation satisfied by the vector of these genus-one Selberg integrals
leads to an associator equation relating one-loop to tree-level string corrections.
Using the considerations about a fibration basis above, we will at least reduce the class of
iterated integrals defined in eq. (3.36) to a spanning set
BY . = {SEVS’ ?f}(O,ZQ)’nk >0 and 1 < < k such that: iy # i) if np =1

13,24, ,7, 135 ooy

and ik =1if ng = O} (339)

similar to the genus-zero basis (2.41). We also allow ¢j, = 0 if we only intend to reduce the
kernels with ny = 0 and include all the kernels with ny = 1, which certainly does not yield a
basis, but a spanning set reduced by the redundant labeling of g,(gol)k = 1. In other words, the
labels 7). in B, , ., denote that the integrals defined by the set BE , are the genus-one

135tg50 /N
Selberg integrals from eq. (3.36), where for 3 < k < L any kernel of the form g,ilg/ is rewritten
"
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(1)

in terms of the kernels g, i with 1 < iy < k and ij, # 4}, using integration by parts and the Fay

identity. Similarly, any kernel g,gogk =1 is simply denoted by gl(coi =1.

3.3 Generating function for iterated integrals T' and the KZB associator

Before writing down a differential equation of KZB type for a vector of genus-one Selberg
integrals in subsection 3.4 below, which is the genus-one generalization of the KZ equation (2.40),
let us consider its formal solution® in terms of the so-called (elliptic) KZB associator, originally
described in ref. [41]. ¥ In fact, although usually represented in a language using a derivation
algebra, we would like to point out that the equation as well as its formal solution is very
naturally expressed in terms of the canonical iterated integrals T' on the genus-one Riemann
surface.

By following exactly the same line of arguments as in subsection 2.4, let us start from a

generating function '°

LE(z,7) = Z wTy(2,7) (3.40)
weX

of the elliptic multiple polylogarithms fw(z, 7), which can be shown to satisfy the differential
equation
;ZLE(Z,T) = nzm g™ (z, 7)™ LE(z, 7). (3.41)

This differential equation is known as the Knizhnik—Zamolodchikov—Bernard equation (or KZB
equation, for short) [42,43]. As for the genus-zero case, the asymptotic behavior around z = 0 is
determined by the asymptotics of the iterated integrals in eqs. (3.18) and (3.19) which amounts

to

)

LE(z,7) ~ exp (:U(l) f‘(é;zn‘)) ~ (27m'z)9”<1 . (3.42)

Due to the one-periodicity (3.6) of the integration kernels g™, the KZB equation is invariant
under z — z — 1 and, hence, there is another solution of the differential eq. (3.41), L¥(z, 7), with
the following asymptotics near z = 1

LE(z,7) ~ exp (:L'(l) f((l);z,T)) ~ (2mi(1 — z))m(l) . (3.43)
As for the genus-zero case, the associator
o5(r) = (L¥(z,7) " LA (z7) (3.44)

is independent of z, which can be verified straightforwardly by taking the derivative of both
sides of LY ®® = L® and using the differential eq. (3.41). Thus, the elliptic associator ®*(7)

8 As for the KZ equation, we are rather interested in relating a certain regularized boundary value to another
regularized boundary value using an associator equation, than completely solving the equation. A rigorous
discussion on solutions of the elliptic KZB equation can e.g. be found in ref. [40]

9KZB equations are the higher-genus generalization of the KZ equation [42,43]. In this article, we exclusively
consider the elliptic KZB equation and the elliptic KZB associator. Therefore, we simply refer to these genus-one
objects as KZB equation and KZB associator, respectively, while the genus-zero analogues are called KZ equation
and Drinfeld associator.

10For this subsection, we explicitly denote the 7-dependence of the functions in order to keep track of the
analytic behavior of certain limits. For example, in the asymptotic behavior shown in egs. (3.42) and (3.43), the
right-hand side is 7-independent.
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can be expressed in the limit z — 1, which yields the generating series of regularized eMZVs
E 1 D)1, E
o™ (7) = ll_r)riexp( x F(O,Z,T))L (z,7)
= z ww(w';T). (3.45)

weX

The last equation follows from definition (3.40) and the cancellation of the divergent integrals
due to the exponential prefactor in eq. (3.45). This is exactly the same mechanism which lead
to the expression of the Drinfeld associator in terms of the regularized multiple zeta values in
eq. (2.64) and effectively implements the appropriate regularization. Considering letters up to
22 only, the first couple of terms of the KZB associator read

oF(r) = 1+x(0) ( 0;7) + zMw(1; )+x(2)w(2;7)—|—

+ 200 4( (0 0;7) + 2Oz (1, 0;7) + x(o)x(z)w@, 0;7) + x(l)x(o)w(o, 1;7)
+:C(1) (1 1;7) —i—:c(l) (2,1;7’)
+ 2@ 2w(0,2; 7-) +2@2W0(1,2;7) + 2P2Pw(2,2;7) +

=1 + w(o) — 2C21‘
+ 2:v(0) 20 — (070 — zW 40,1, 7) = G (2D 2@ + 22 20)
+ (W@ — @MW) (w(0,3;7) — 2¢w(0,1;7)) + 5P z® 4 ... (3.46)
The elliptic associator ®F(7) provides an associator equation similar to eq. (2.63) at genus zero:

it connects the regularized boundary values of an arbitrary solution FE(Z, 7) of the KZB equation

9
—FE =3 g™ (n) pE 4
5, (5 7) 2.9 (2, 7)™ F(z,7), (3.47)

which are regularized according to the asymptotic behavior shown in egs. (3.42) and (3.43)
CE(r) = lim(2miz) " FB(z,7),  CP(r) = lim(2ri(z — 1)) " FP(z,r).  (3.48)
z—0 z—1

The calculation is similar to the genus-zero case (cf. eq. (2.61)) and the result is the genus-one
associator equation

P (T)CF (7) = lim(Lf (2, 7))~ LP(z, ) (2miz) " FP(z,7)
= iE(L?(Z, T)>71 FE(Z’ T)
= CE(7). (3.49)

3.4 KZB equation for an auxiliary point

The one-loop version of the recursive construction of open-string amplitudes will again facilitate
an extra marked point: the point zo, which is the variable parametrizing the integration domain
of the integrals in eq. (3.36).

In the limit 29 — 1 = 2z; mod Z, the integration domain closes and amounts to one complete
boundary of the cylinder: it leads to (L—1)-point genus-one string corrections defined on M; ;.
On the other hand, genus-one Selberg integrals degenerate to tree-level string corrections in the
limit zg — 0 = 21, since the integration domain gets confined to a genus-zero domain. These
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two boundary values can be related by the genus-one associator equation (3.49) providing the
genus-one analogue of the amplitude recursion of ref. [17].

Let us consider a vector of Selberg integrals with fixed upper labels, but lower labels stretch-
ing over all possible values:

SE [nk1+17 sy nlL ] (217 s Zk)

N ceey

SE(nk+1v~--»"L) _ . (3.50)
gE |:nkkJ:17 : ITL—LI} (215 ey 28)

Any of the one-loop string integrals, containing the (L — 1)-point one-loop string corrections, to
be calculated in subsection 3.6 below, will turn out to have k£ = 2 and hence, we can restrict
ourselves to the class of integrals defined in eq. (3.36). For the three-point example to be
evaluated below, we have to consider integrals with L = 4, such that we are going to work with
vectors like

SE

_i i_ (21722)
s® i ;A (21, 22)
SE| 2 11(21, 29)

sEGD s . (3.51)
El2 1

S 12, 1] (21722)
s® g: %_ (21, 22)
SE 3 ;1), (21, 22)

The entries are going to be ordered canonically. As agreed on in the discussion of the spanning

set B? s defined in eq. (3.39), whenever there is an nj, = 0, we write i, = 1 and we generally
358490000,

do not incorporate integration by parts identities to reduce the number of linearly independent

integrals, i.e. we usually work with the set of integrals B(]i07__.70. Accordingly, if none of the labels

ns,...,nr is zero, the vector SE(M3nL) g (L —1)! components.
In establishing the KZB equation for a vector of Selberg integrals, we are going to take

B(na-nz )(zl = 0, z9) with respect to the auxiliary point zo. While taking deriva-

derivatives of S
tives in the integral itself is elementary, combinatorics and in particular Fay identities kick in
and lead to rather lengthy expressions. The guiding principle for achieving a canonical form can
be deduced from the target KZB equation: we need to identify the analogue of the factors ¢(™
in eq. (3.47) in our scenario. In order to be able to pull the factors out of the Selberg integral,
the indices i and j are confined to two and one: the factors will be ggl") = g™ (2 —21) = g™ (29)
with n > 0.

Accordingly, we take the zs-derivative and afterwards apply Fay identities and partial fraction
in order to find a factor ggf) in the integral, which then can be pulled out. A detailed discussion
about this mechanism can be found in appendix C. In fact, a substantial part of the work
in establishing the recursion at genus one consists of finding a suitable representation for the
Selberg integrals, which leads to a nice and feasible form of the matrix coefficients in the KZB

equation below.
In order to illustrate the procedure, let us consider the zs-derivative of the Selberg vector

0,1
SE( ’ )(Zl = 0,22)2
D o o Tt 0000 —ey 0 0 0 0 SE(?’T)
gSE =93 | S14 Swatsza sz 0 0 0 0 —Sa3—s34 834 0 s34 getb)
2 0 —824 —s24 0 0 O 0 S24 —S93—S94 0 —s9g4 SE(QvO)



) S12+824  —S2a 0 o o |5 ©.0)
+ow | s swbsi 0 SEU Vgl sy | SEUY (3.52)
2

0 0 S1 0

An immediate observation is in place: considering the weight of the derivative to be one, taking
the weight n of each function ggf) into account and adding the weight of the genus-one Selberg
integrals, the total weight is conserved in each term of the above equation.

Correspondingly, we collect all Selberg vectors of weight w into a larger vector SE (zp):

gE — (gqEMana.nL), ) 3.53
h(z2) = (s (1=0.2)), o5 s (3.53)
For the Selberg integrals in the above example, one could for example rewrite the
SE(072)
sk — [gEWD | (3.54)
SE(ZO)
where the three subvectors are given by
sk i: 1: (21, 22)
E[1,1
SE[O,2}(Z ) S [1,2](21722)
L 1] =2 e[ L ! (21, 22) SE[2’O}(2 29)
EO02) _ | qeJ0, 2 E(LL) _ |1, 3]\ =2 E20) _ 1,1 [\<1 =2
S = s [12}(21,22) .S — | Lh3l .S — .
’ SE 11 (Zl Z2) SE[Q’O}(Zl 22)
SE 0,2(2 Z) :2,1: ’ 2,1 ’
|: 73:| 1, <2 El1,1
S 12,2 (21, 22)
S ; ;1), (21, 22)
(3.55)

So the vector Sg captures the combinatorics from distributing weight two on the two slots
(n3,nq) as well as the combinatorics of the labels iy, for each of those pairs. Neatly, the particular
ordering does not play a role in the formalism to be described, however, we will follow the sorting
convention in eq. (3.54).

As is visible from eq. (3.52), the z9-derivative leads to Selberg integrals of different weight.
Correspondingly, we are going to consider an infinitely large vector, where all vectors SE are
joined in order of increasing w:

So
B St
S*(z2) = SE | - (3.56)

In appendix C, we prove that the form in eq. (3.52) can be achieved for any genus-one Selberg
vector S¥(z2) for any number of insertion points L: it formally satisfies a KZB equation

9 " n
5. S8(z2) = 3 ia 85 (z0), (3.57)
2 n>0

where the non-vanishing entries of the matrices (™ are homogeneous polynomials of degree

one in the parameters s;; from the Selberg seed (3.28). The vector SP(z2) is the genus-one
analogue of the genus-zero Selberg vector S(z3) defined in eq. (2.39), which satisfies the KZ
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eq. (2.40). Note that S®(z9) = SF(z2,7) is actually 7-dependent, however, we will not denote
the dependence explicitly.

Let us investigate the structure of eq. (3.57) a little further. As visible in example (3.52),
taking a derivative of a Selberg integral will increase the weight by one. So taking a zo-derivative
on the Selberg vector SE yields

o Sh(z2) = 30 gVl S (=), (3.58)
22 n=0

where the factor z(™ is linear in the parameters s;; and does not contribute to the weight.
From counting the weights, one can thus deduce that the matrices (™ ought to be block-(off-
)diagonal, where the size of the blocks corresponds the lengths of the Selberg vectors of weight
w. Schematically, we find

S0 (22)
ST (22)
5 S5 (22)
g, 8" = 012 8" g5y g5y w85 4
22
SE (22)
2(1) SE

(3.59)

where only the blue blocks are non-vanishing. Given the blocks in the above equation, the other
matrices will have the following structure:

.’E(()O) xél)

ng) xil)

20 20 . 2= rE ,
ng) xgl)
7

2@ = x5 o (3.60)

e

3
0

where the blocks of the individual matrices are labeled by arq(f ),

In practice, one can not consider the infinitely long vector S¥(z;) and the corresponding
infinitely many non-vanishing, infinite-dimensional matrices z(™). Instead, the vector SF(zy)
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needs to be truncated at a certain maximal total weight wyax

%
S
SCn2) =] | (3.61)
S

Taking the zo-derivative on the finite-length vector SE  (23) leads to the differential equation
Swmdx

8 Wmax+1

525G = X 00 S () S (2), (362)

where the remainder r,, . prevents eq. (3.62) to be a complete KZB equation. However, as
will be discussed below, this remainder may be disregarded when calculating one-loop string
corrections up to a particular order in o'.

The matrices a:(g&max for 0 < n < wpax+1 correspond to the upper-left (wmax+1) X (Wax+1)

block matrices of these matrices z(™. Explicitly:

w(()()) .’L’(()l)
xg()) mgl)
:r(go'l)l)max = . * ’ x(_<1'L)UmaX = wgl) ’
(0)
Wmax —1
Thimas
(3.63)
W
L = 7y et =
Wmax+1
xgr?’lax gUmax )
(3.64)

Moreover, we see that the remainder r,, . is the (wmax + 1) X 1 block submatrix of the first
Wmax + 1 blocks of the (wpax + 2)-column of the matrix w(gol)umx I

o

20 S

0 s ]
x(gi)l)max+1 = (0) ’ rwmax == . . (365)

Wmax— 1

(0)

ZTw X
ma. (O)

Lwmax
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3.5 Boundary values

Having a (modified) KZB equation for the genus-one Selberg integrals at hand, we would like
to apply the genus-one associator equation (3.49). In order to do so, let us investigate the two
regularized boundary values C§ and CY of SP(zy) for 2o — 0,1. We will show, that these
boundary values comprise the tree-level and the one-loop string corrections, respectively.
Following the definition of the regularized boundary values in eq. (3.48), we will have to

evaluate
<2m>-x§f Sh(=))  (CEy
1
Cy :ZIQiglo(2ﬁi22)_z(1) SE(zy) :Zl;glo (2mizg) ™1 S¥(29) | = CoE,l ,
. _ 1
(27i(1 — z9)) %o SOE(ZQ) CEO

CP = lim (2mi(1 — 29)) " SB(25) = lim | (27i(1 — 2)) "1

zo—1 zo—1

SP(z) | = [Clu|. (3.66)

where C0E7w and CEw denote the regularized limits of the subvectors S (22) of weight w and the
second equality in the above equations follows from the block-diagonal form of z(!). Switching

again to finite matrix size, we define

1)

C e = Jim (2mizy)~"=omax S, (22).
E . . _M -
CF e = 10, (2mi(L = 29)) " "mex ST, (22). (3.67

Boundary value C]{]: Considering the limit zo — 1, we first determine the behavior of

_ (1 .
SE[’??” » 'L 2@ afterwards. According

ia, o ir ](22) and include the regularization factor 27mi(1 — z2)

to eq. (3.14), the genus-one Selberg seed degenerates as follows

lim S®
zo—1
= lim H exp (sij fﬂ) H exp (slj fjl) H exp (Sig f21>
721 0=z21<2;<z;<z2 j>2 1#2
= 2121311(2771'(1 — 29))%12 H exp (sij fﬂ) H exp ((slj + s25) fj1> + O((l - 22)812+1)

0=21<2z;<zj<z2 Jj>2

+0((1= )"t (3.68)

= lim (2777;(1 — 22))812 SE S1j=s15+s2;

zo—1

(L—1)-point

where we have used the symmetry property described in eq. (3.12). The factor denoted by
§1,=81;+592;
SE VTS the genus-one Selberg seed for L — 1 insertion points on the cylinder boundary

(L—1)-point
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0=z <zp<zp1<:-<2z3<1=2 modZ.

24

WZL,.

2= (3.69)

Since the insertion points zo and z; merge in the limit, we assign effective Mandelstam variables
§1j to Z1
81j = 815 + 825 - (3.70)

In terms of a momentum interpretation, we find the same behavior as in the genus-zero case in
eq. (2.69): the momentum of the external state which corresponds to one of the fixed insertion
points receives two contributions, one coming from the state at z; = 0 and the other from a
state at the same position of the cylinder boundary zo = z; mod Z due to the merged auxiliary
insertion point zo.

Accordingly, the genus-one Selberg integral defined in eq. (3.36) on the configuration space
of the torus with two positions fixed, degenerates at lowest order in (1 — z9) up to a (vanishing)
prefactor to an integral on My r_i:

lim SE [ng, U ﬂL}(Zl = 0, ZQ)

zo—1 13, ooy L

i o1~ =) [ TLan SE [ L) 001 o))
= lim (27i(1 — z 2 A — 2

zo—1 T 2 C(ZQ—>1) i—s v (L—l)—point fute ki zo=21=0 2

§1j=81+82;
= lim (2mi(1 — 22))%12 SE[TL& ’7L}(0, z9g =1=0mod Z) v

(2 ey 2
29—1 3 » UL

+0((1 = 29)2*1).
(3.71)

20=21=0

By the same arguments which led to eq. (2.68), we find that the relevant eigenvalues of the
matrices a:gj ) which correspond to the subspace cor%t)aining the one-loop string corrections are
1

s12, such that the regularization factor 27i(1 —22)™*»" cancels the otherwise vanishing prefactor
(2mi(1 — 22))*12 in eq. (3.71) and the entries of C¥ are given by the degenerate genus-one Selberg
integrals SE[?;” . ZLLL](O, 29 =1 =0 mod Z)]ZJ:;I:JJS%

Boundary value COE: The boundary value Cg is obtained by confining the region of integra-
tion to an infinitesimal interval as zo — 0 = z;. As for the genus-zero calculation in eq. (2.73),
the main tool to investigate this degeneration and the corresponding behavior of genus-one Sel-
berg integrals is a change of variables z; = zox;, where x; are points in the unit interval on the
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real line whereas z; lay on the boundary of a cylinder.

(3.72)

According to the discussion after eq. (3.27) and as a consequence of eq. (3.13), the seed SF
degenerates at lowest order in zo for zo — 0 up to a proportionality factor to the genus-zero
Selberg seed S for the L points 0 = x1 < xp < xp_1 < --- < 92 = 1 on the unit interval, which is
(cf. eq. (2.83)) precisely the (L + 1)-point genus-zero Koba—Nielsen factor defined in eq. (2.82):

lim SP = lim ex (5 r 295 )
22—0 29—0 xl_[x b\ 5ij x(l)( 2%j5is T )
i< J

= lim (2mizg)®12- L 11 z + O((z2)812-~L+1)

zo—0
2 0=z1<z;<x;<w2=1

= lim (2miz2)®%* S |1 point + (’)((22)512<~L+1)

z0—0

= lim (2mi29)*12 5 KN |(141) poin + O (22)"12441). (3.73)

zo—1

(1)

The discussion of the eigenvalues of xy,” is analogous to the genus-zero case. It turns out that

the maximal and therefore dominant eigenvalue of xS,} ) is s19..1, such that the regularization
. (1) . .

(2mize) "™ cancels the prefactor (27iz9)®12-L in eq. (3.73). Thus, the entries of CY are given

by

lim (27{'i22) 812...L SE[n37 o nL}(Zl = 0, 22)

200 18y e U
= [ d i S j
. . 1 — R =
fC(:vzzl) Hi:3 dz; S |L-p01nt Hk:=3 Thi, if ny =mny = =me =1, (374)
0 otherwise.

The only non-vanishing entries are the ones for which all integration kernels have weight one,
i.e. ng = 1, since only their pole can compensate for the z2L*2 factor from the measure.

A similar behavior was observed for the genus-zero boundary value which led to eq. (2.75).
Moreover, these simple poles ensure that the only non-vanishing integrals are exactly the degen-
erate genus-zero Selberg integrals S[is, i4,...,1](0, 1,29 = 1) found in the genus-zero regularized
boundary values Cy and C; in egs. (2.75) and (2.69), respectively. However, here we recover
integrals defined for L points on the unit interval, which constitute a basis of the twisted de
Rham cohomology of Mg 141 with (L 4 1) insertion points 0 = 1 < 2, < 41 < -+ < T2 =
1 < zp41 = 00. As discussed in subsection 2.7, these integrals are related to the (L + 1)-point
genus-zero string corrections by a basis transformation.
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Mandelstam variables: In contrast to both the genus-zero discussion and the limiting sit-
uation C¥, in the boundary value C§ the Mandelstam variables o5 in eq. (3.73) associated to

1-1
the auxiliary insertion point 25 are not redundant: the auxiliary genus-one momentum k; "

kiree associated to the tree-level insertion

associated to zo encodes the genus-zero momentum
point xo

ky 1P = e (3.75)

In order to keep track of how this momentum contributes to the one-loop momenta, two distinct
processes have to be considered: first, the topological change by the identification of x; with
xr+1 giving the genus-one insertion point z; depicted in figure (3.1) and second, the merging
of zp = 1 = z; mod Z shown in figure (3.69). In the first case, the momenta k{"™® and kS
associated to x1 and x4, respectively, yield the joint contribution to the one-loop momentum
associated to z1

kl -loop __ — ktree + kgj-el . (3.76)
The second limit is the merging of zo to 21, which adds the momentum k:l oo 4 ssociated to 29

to the momentum k;"°°" and we expect to find the effective momentum
]{71 -loop __ k’l loop k’l loop ktree k,tree ktree 3.77
=R + =Ry Tkt (3.77)

for the insertion point z; = z2 mod Z of the (L — 1)-point one-loop interaction in the regularized

1-loop

boundary value Cl, where we denote the one-loop momenta £; in the limit z0 — 2z; =

1 mod Z by a tilde as depicted in figure eq. (3.82). However, from our calculations of C} in

]{71 -loop

eq. (3.68) we see that the Mandelstam variables associated to are

81j = s1j + 525 - (3.78)
Therefore, the actual one-loop momentum associated to z; = zo mod Z turns out to be

kl -loop __ — ktree + ktree (379)

This is in agreement with simultaneous momentum conservation in the tree-level and one-loop
interaction if and only if

kS = (3.80)
which can be interpreted as follows: going the first procedure discussed above, which is depicted
in figure (3.1), in the other direction from genus one to genus zero, the momentum kl loop
associated to z; is expected to split in a certain way and to contribute to the two tree-level

momenta k{**® and k'S accordingly. From eq. (3.80) follows that these two contributions are

very unequal: while the momentum associated to 21 obtains the full contribution k{"°¢ = kl loop

the momentum associated to zy 1 goes away empty-handed k'fiel = 0. Note that the momenta
associated the remaining tree-level insertion points x; for i = 3,4, ..., L are exactly the one-loop

momenta associated to the punctures z; for any 0 < 29 < 1 = 27 mod Z:

fII00P — oo — plree for i —=3.4,... L. (3.81)
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T e 7.1-loop __ j.tree
T e kpy” = kL%

7.1-loop __ j.tree
kL - kL

7.1-loop __
kl t N t t
ree ree ree
ki™® + kg + k1S9

7.1-loop __ j.tree
kS - kS

. . e 7.1-loop __ 7.tree
e pree ptree e ha =
o S e

(3.82)

Summary: The regularized boundary value C(I;j is found to only have finitely many non-
vanishing entries which are degenerate genus-zero Selberg integrals and hence linear combina-
tions of (N 4 2) = (L + 1)-point tree-level string corrections. In turn, as will be discussed in
detail in the next subsection, the entries of C¥ given by eq. (3.71) contain the N = (L — 1)-point
one-loop string corrections.

Therefore, the genus-one Selberg vector SF(23) indeed interpolates between the genus-zero
and genus-one string corrections and the corresponding associator equation

ct=oF cf (3.83)

provides a recursion linking genus zero and genus one and generalizing the genus-zero recursion
from ref. [17].

The consideration about the contributions of the insertion points defining the genus-one
Selberg integrals to the Mandelstam variables in the string corrections appearing in the boundary
values COE and C]f leads to a geometric interpretation of the associator eq. (3.83): the N-point
one-loop worldsheet is obtained from the (IN+2)-point tree-level worldsheet by an effective gluing
of the two legs corresponding to the insertion points 1 = 0 and x111; = oo on the Riemann
sphere. By momentum conservation the Mandelstam variables associated to the insertion point
z1 in the one-loop string corrections of C]E are given by the sum 51; = s1; + s9;.

3.6 Open-string amplitudes at genus one

The associator equation (3.83) can be employed to calculate the o/-expansion of the N-point
one-loop string corrections up to any desired order in o from (N + 2)-point tree-level integrals.

While setting up the calculation and relating various entries of the regularized boundary
values to known integral representations for string corrections at genus zero and genus one,
we will simultaneously single out the relevant parts of the matrix equation (3.83) and thereby
substantially improve applicability of our method.

1-loop

The main goal is the calculation of the N-point one-loop string-correction up to order oy

in /. As observed in the previous subsection, integrals on M y defining the N-point one-loop
string corrections arise in the zo — 1 limit of genus-one Selberg integrals with L = N 41 marked
points. Simultaneously, (N + 2)-point tree-level string corrections are encoded in the zo — 0
limit of the same genus-one Selberg integrals.

As pointed out at the end of subsection 3.4 above, for practical calculations we wil have to
truncate the infinite genus-one Selberg vector to S‘Ewa(zg). Given the target values N and
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0111;1&01’ for the calculation, let us determine wy.x as well as various other parameters for the
calculation.

Each of the objects on the right-hand side in eq. (3.83) has an expansion in the parameter
o': since 2™ x o (cf. eq. (2.1), the expansion in word length of the elliptic KZB associator is

exactly its o/-expansion. The o/-expansion of the tree-level integrals in C(')E can be obtained from

1-loop

P of the one-loop

the recursions in refs. [44,17]. Therefore, the maximal target o'-order o
string corrections on the right-hand side is reached, when the KZB-associator is expanded up

to o’-order

lmax = O}I_lla(;(op - Og?r? (3.84)
where 0% denotes the leading (e.g. minimal) order in the o/-expansion of tree-level integrals in

CE. This order turns out to be given by [30]

o =2 [ =3-N. (3.85)
In order to determine wpax, we need to think about the positions of the relevant information

within the vectors C§ and C¥: on the one hand, according to eq. (3.74) the non-vanishing

subvector of COE which includes the tree-level string corrections is contained in the weight

wo=1L—2 (3.86)

subvector Cg’wo of C¥. On the other hand, the one-loop string corrections are contained in the
weight
wp=L—-5-d (3.87)

subvector CEwl. The quantity d denotes the number of additional factors of ¢(™) appearing in
higher-point one-loop string integrals: d = 0 for L < 8 and d > 0 [35]. For all calculations in this
article, d = 0 holds. The relevant part of the elliptic KZB associator is the submatrix ®F

w1,wo?
which satisfies the equation
E E E
Cl,wl = (I)wl,’wo CO,wO . (388)
Since for all amplitude situations we find w; < wp, the submatrix @Eth is located above the

diagonal of ®F.
Here comes the block-(off-)diagonal form of the matrices z(™) depicted in (3.60) into play,

which ensures that for a certain word length I, only finitely many words w = (™) ... 2(™) con-

E

wy wo- A detailed discussion, where sufficient and necessary conditions
k)

E
w1,Wo

tribute non-trivially to ®

for a word to contribute non-trivially to ® are formulated, is given in appendix C.2.

E

w1,wo

respectively, can be calculated by finite-dimensional submatrices of (™), which are the matrices
(n)

Ty for some maximal weight wmax > wo:

The o/-expansion of ® up to some maximal order l.x in o/ or maximal word length,

Swmax

(), g = B Vi g + O (o)1) (3.89)

The integer Wmax = Wmax(lmax) i determined in appendix C.2 by carefully sorting out, which
blocks 2" contribute to ®F(2(™),, wo- The result is that the o/-expansion of the (L — 1)-point
one-loop string corrections up to order 019 can be calculated from the associator eq. (3.88)

using words up to the maximal word length l,.x defined in eq. (3.84) and the maximal weight

Wmax = max(lmax + w1 — wo, wO) . (390)
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In other words, the associator submatrix @E(x("))whwo can be deduced from a truncated as-
sociator, which is determined by evaluating the matrix products of truncated representations
of letters, taking only words up to length I, and weight wpax into account. The truncated
matrix representations x(fg}max of the letters can be obtained from the modified KZB eq. (3.62).
Since word length Iy ax and maximal weight wmax are finite quantities, all sums consist of a finite
number of terms and all matrices are of finite size. The process yields the finite-dimensional,
truncated associator equation

1-loo

CE +O((a/)0max p+1> — @E (m(") ) CE (391)

17Swmax lmax Swmax O,Swmax )

where @Enax is the truncation of ®¥ at the maximal word length lax. The finite subvectors

, oz
COE7SwmaX - ZIQIQO(27T,LZ2) Z‘Swmax Sgwmax(ZQ) )
E : , Y E
Cr < = Jim (27i(1 — 29)) " svomax S, (22) (3.92)

of COE and C]E, respectively, contain the (L + 1)-point tree-level string corrections at weight
wyg = L — 2 < wpax and the (L — 1)-point one-loop corrections at w; = L — 5 — d. Thus,

denoting by ®F (:E(n)

C (@ Jwywy the weight-(w1, wo) submatrix of the truncated KZB associator
E (x(”)

), the relevant truncated vector equation which relates the string corrections to

Imax <Wmax
each other is 1
E P+ _ BB E
P, +0 (@) ) = 0F (20 Vo Chuy - (3.93)
where O (x(;z)max)wl,wo is the weight-(w1,wp) submatrix of the truncated elliptic KZB asso-
ciator @ (ajglmax).

3.6.1 Two points

As a first example, let us calculate the two-point one-loop string correction. This correction
is non-trivial only, if we treat the Mandelstam variables s;; as independent parameters of the
integrals, which do not satisfy any constraints like the ones imposed by momentum conservation.
The two-point string-correction is given by the integral [21]

1
1-loop /=~ _ ~ T o ~
S5 point (813) = /0 dz3 exp (513 I‘31> = r;)s’fg)w(l, ..., 1,0), (3.94)

n

where §13 is the Mandelstam variable associated to the loop momentum. Since the integral
requires two vertex insertion points, the appropriate genus-one Selberg integral with an extra
insertion point 29 is of length L = 3 and the insertion points are ordered as

0=21<23<2z3<1=2 modZ (3.95)

on the boundary of the cylinder. Indeed, in the limit zo — 1, the punctures zo and z; merge,
leaving the two punctures relevant for the one-loop string corrections. Thus, we consider the
iterated integrals

22 , . N - .
s® [7; } (0,22) = /0 dz3 S® g;g,?f) , SP=exp (813 I'31 +s12 21 +523 F23) , 1<ig<3.
(3.96)
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In this section, we point out and explain the different steps of the calculation of the o/-expansion

of the two-point one-loop string correction from the four-point tree-level integral and write down

the explicit results of each step necessary to obtain the expansion up to order 0111133(0? =2in /.
Additional details of the calculation are collected in appendix B.1.

According to eq. (3.87), the two-point one-loop correction can be found in the weight wy =0
entry CY,,, while the tree-level correction resides at weight wg = 1 (cf. eq. (3.86)). The

o/-expansion of the four-point tree-level correction turns out to start at order o%¢¢ = —1,

min
(cf. eq. (3.104)). Therefore, consulting eq. (3.90), it is sufficient to consider the truncated
Selberg vector at maximal weight wmax = 2 to calculate the one-loop string corrections up to

second order in o/, i.e. we only need to consider the vector

SE19](0,22)
SE1 110, 2
SE,(25) = E[ﬂ( 2 (3.97)
SE[2](0, 22)
S®[3](0, 22)
where we use the reduced set of integrals BY obtained from the relations
SE[0](0,20) = 8"[8](0,20),  s138%[1](0, 22) = 5238 [3] (0, 20) (3.98)

to exclude the integrals S® [g} (0, z2) and SE[%} (0, z2) from our analysis.
Before we can explicitly check that the regularized boundary values indeed reproduce the

tree-level and one-loop string corrections and apply the associator eq. (3.93), we have to de-

termine the matrices :c(<0%, xg% and :c(<2% appearing in the modified KZB equation satisfied by

822(22). Following the general algorithm in appendix C.1 and performing the corresponding
calculations shown in appendix B.1, the partial differential equation can indeed be written in
the form (3.62):

0 «E

5., SEa(e2) = (08023 + 90} + 7)) SEa(e2) + 72 S5 (=2), (3.99)

T
where S¥(z7) = (SE[:ﬂ (0, z9), S® [g’} (0, 22)) and the matrices are given by

0 S13 0 0 512 0 0 0
(0) 0 0 —s23 —s23 (1) 0 s123 0 0
_ , = 3.100
200 0 0 0 LT 0 0 sipsay —sus (8.100)
0 O 0 0 0 0 —S813 S12 + 813
and
0 0 0 O 0 0
(2) _ —S923 0 0 0 _ 0 0 3.101
J}SQ 0 S13 0 0 ’ "2 —2823 —S893 ' ( ' )
0 si3 0 0 —S513 2s13

Now, we can evaluate the relevant entries of the regularized boundary values COE7w0:1 and CEuu:O

explicitly: the latter involves the weight w; = 0 eigenvalue x(()l) = s10 of wgg in the regularization

43



(1)
factor (27i(1 — 29))” “<2, which leads to the boundary value

CFy = lim (2mi(1— 22)) 2 S®[9](0, 20) = S35 (513) (3.102)

291 2-point
given by the one-loop string correction S%_'Il)%?ﬁt@lg) with effective Mandelstam variable
13 = s13 + 523, (3.103)

which is in agreement with our general considerations in eq. (3.68). On the other hand, the

relevant eigenvalue of wgg for the boundary value C(]il is acgl) = 51923, such that

ir(l + Slg)r(l + 823)
S13 F(l + s13 + 823)

CEy = lim (2mizg) % SB[ 1(0,2) = (3.104)

zo—0
yields indeed the well-known Veneziano amplitude for the four-point amplitude of open strings
at tree-level. Since each Mandelstam variable comes with a factor of o/, we find the leading
order to be o' = —1.
Since according to eq. (3.84), the maximal order in o' or, equivalently, the maximal word
length in the KZB associator is ljax = 3, the truncated associator eq. (3.91) reads

Sy pb (513) 0
* 1 P(14s13)(1+523)
) +0((a)?) = @5(a)) | *9 F<1+0813+823> . (3.105)
* 0

From the matrices given in eqgs. (3.100) and (3.101) and the truncation ®¥ of the associator ®
45), we find that the only words contributing

n

given by the generating series of eMZVs in eq. (3
to the relevant (w;, wp) = (0, 1)-submatrix @g(aﬁ(g))m are at

e word length 1: x(go%

e word length 2: the commutator

0 —s13(s13 + s23) 0 0
(1) () _ 0 0 —2s13503 —2853 3.106
0 0 0 0

e word length 3: the nested commutator

0 s13(s13 + 523)° 0 0
0 0 -2 252
24}, 124}, 29 = s13823(513  528) Dspg(sus o) |31
=2 P2 0 0 0 0
0 0 0 0
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and the products

0 —2s25593 0 0 0 —s24503 0 0
0) (0) (2 0 0 00 0) (2) (0 0 0 2513533 251353
e P T R = T P o o0
0 0 0 0 0 0 0 0
(3.108)

The above list of contributions can be easily obtained from our general analysis in appendix C.2.
Evaluating all matrix products, the relevant (wy, wp)-submatrix of the truncated KZB asso-
ciator is explicitly given by the entry

(I)g(x(éng)ql = S13 (w(O) + (813 + 323)w(1, 0) + (813 + 823)2w(1, 1,0)
— 513523(w(0,2,0) + 2w(2,0, 0))) . (3.109)

The o/-expansion of the Veneziano amplitude can be obtained from the identity

F(l + 813)F(1 + 823) Cn
=ex — 1) 22 (8T + 50a — (513 + s93)"
[(1+ s13 + 523) P é( )i (1 sy = (513 4 523)")

=1— (2513823 + O((O/)3> . (3.110)

Using these two o’-expansions, the right-hand side of the relevant part of the truncated associator
eq. (3.105) is given by

-loo ~
S%—poigt(sw) + O((a/)3)
n 1 F(l + 813)F<1 + 823)
— By
3 (x§2)071 513 F(l 1 513 + 823)

=1+ (s13 + s23)(1, 0) + (s13 + 523)°0(1, 1,0) + O(()?) | (3.111)

where we have used the identity w(0,2,0) = —(2 — 2w(2,0,0) for the regularized eMZVs [39].
This reproduces indeed the two-point one-loop string correction 521__;%?&(513) given in eq. (3.94)
with the effective Mandelstam variable 513 = s13 + s23 up to second order in /. Simultaneously,
this result approves the validity of the (relevant part) of the truncated associator eq. (3.111).
We have performed the calculation up to the order ollﬁlgfp =4 in o/. In order to compare

our result with the literature, in particular with ref. [21], we translate our result into iterated
integrals of Eisenstein series'' 7y and use the one-loop open Green’s function

Gij = Tij +w(0,1) (3.112)

in the definition (3.27) of the Selberg seed S¥ and in the one-loop string corrections S]{}};g?nt(éij)
rather than just I';;. The additional term w(0,1) vanishes in the sum >i<j Sij (fﬁ +w(0, 1)) if
momentum conservation is imposed and is, thus, physically irrelevant. Using these two adjust-

ments, we find that the relevant part of the right-hand side of the associator eq. (3.105) up to

"The conversion from the w-form of eMZVs to their representation in terms of iterated integrals of Eisenstein
series 7o is thoroughly explained in ref. [45].
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order (a/)* is given by

o (1 . 1
Sy |, =1+ 5 (56 - 30(0,0)) + 5% (10(6,0,0) ~ 24G20(4,0,0) - 164

ij

3
+ 54113 (970 (47 07 47 O) - 187(47 47 O? 0) - 126’70 (87 07 07 0) - ZCQ’YO (47 0)

19
— 144¢470(4, 0,0, 0) + 240¢270(6,0,0,0) + @@L) +0((@)).  (3113)

Note that egs. (3.111) and (3.113) show nicely on a simple example, how using the associator
eq. (3.83) relating the (L 4 1)-point tree-level to (L — 1)-point one-loop string corrections may
geometrically be interpreted in terms of a gluing mechanism of worldsheets as discussed at
the end of subsection 3.5: starting with the four-point Veneziano amplitude, gluing together
the external legs of the string worldsheet which correspond to the two external states labelled
by the positions z; = 0 and x4 = oo on the Riemann sphere yields a two-point genus-one
worldsheet with punctures z; = 29 mod Z and z3. The effective momentum propagating between
21 = 29 mod Z and z3 yields the Mandelstam variable 513 = s13 + s23 of the two-point one-loop
interaction.

3.6.2 Three points

The calculation for three points proceeds in analogy to the two-point example without structural
difficulties and complications. Naturally, the dimensionality of the relevant matrices and vectors
is larger, such that we do not write them down explicitly but rather provide the results of the
computation.

The recursive algorithm requires one extra point on top of the three insertion points present
in three-point one-loop string correction integrals. Correspondingly, we are going to consider
the class of genus-one Selberg integrals with L = 4. The relevant integral is of the form

S% gz)onpl)t Sl] / dzs / dzq exp (Slg I'31 +514 F41 +534 F34) , (3.114)

The above integral resides in the weight w; = 0 subvector of CI{]. We are going to perform the

calculation up to order ol IOOP = 3 in «’. Since the corresponding five-point tree-level integrals
min
for the truncation of the genus-one Selberg vector is wmyax = 3 according to eq. (3.90). The

relevant finite-dimensional matrices x(<3) for n = 0,1,2,3 are obtained from the algorithm in

appendix C.1, which leads to the modified KZB equation

start at order o = —2 and appear at weight wg = 2 in COE, the required maximal weight

0
925 ——SZ;3(22) Z 9o1 13<3)S<3(Z2) + 738y (22) - (3.115)

n=0

(1)

Regularized boundary values can be calculated from the z,,;

(1)

w1=0

(1)

_oand z submatrices of T3,
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which results in the expected subvectors

0
0
0
S[1,1](0, 1,29 — 1
CH, = lim (27ri22)*‘”(21) ST (z9) = L 1]( . 2=1) (3.116)
’ Z2~>0 :
S[2,3](0,1,z9 = 1)
0
0

containing the five-point, genus-zero Selberg integrals for zo — 0 at weight wg = 2 and the
three-point one-loop string correction for zo — 1 at weight w; = 0:

(L 00 ~
CEo = Jim (27i(1 = 22)) ™0 S§(20) = (Sy7000:(319)) (3.117)

291 3-point

with the effective Mandelstam variables
817 =s15+ 825, Sy = Si (3.118)

for i,7 € {3,4}. The truncation of the KZB associator at Imax = 5 (cf. eq. (3.84)), is required in
order to use the finite associator eq. (3.93)

Clo+0((a)*) = @E (22 CF, - (3.119)
The words contributing to the weight-(0,2) submatrix q)g(q:(;g )o,2 of this truncation are de-
termined with the mechanism described in appendix C.2. The resulting o’-expansion of the
right-hand side of eq. (3.119) up to order 019 —= 3 reads in terms of iterated integrals of

max

Eisenstein series and the redefinition f‘ij =T ij +w(0,1) = G;; in the Selberg seed as follows:

1 1
1-loop [~ _ - - (2 =2 =2 _
S3 point (3i5) G, 2 + 3 (313 + 514 + 334) (G2 — 1279(4,0))
1 .
+ §( — 513534514 ( — 24070(6,0,0) 4 144¢270(4,0,0) + (3)

— (8% + 884+ 84) (~4070(6,0,0) + 96¢270(4,0,0) + G3)) +O((a')").
(3.120)

which agrees with the known o’-expansion of the three-point string correction.

3.6.3 Four points

If momentum conservation is imposed at the one-loop level, the first non-trivial example is the
four-point one-loop string correction. It is given by the integral [35]

1 23 24 B
Sl:;%?ﬁt(giﬂ :/ dZB/ d24/ dzs H exp (§z‘j sz') , (3.121)
0 0 0

0<z;<z;<z3

where 4,5 € {1,3,4,5}. The calculation of the o'-expansion is exactly the same as for the
previous integrals: the one-loop integral is found in the weight w; = 0 subvector of C? and the
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tree __

six-point tree-level integrals at the weight wg = 3 with o}, = —3. Hence, in order to obtain the

expansion up to order 0:19P = 2 the KZB associator can be truncated at the maximal word
length lhax = 5 and eq. (3.90) requires the maximal weight wpax = wo = 3. The matrices x(gg

for n = 0,1, 2,3 are obtained by forming the modified KZB eq. (3.62)

0

975 S<3 22) Z g21 T )S<3 (z2) +13SE(20). (3.122)

As before, the subvectors of the regularized boundary values which contain the six-point, three-
level Selberg integrals for zo — 0 at weight wy = 3 and the four-point one-loop string correction

(1)

for zg — 1 at weight wy = 0 can be calculated using the appropriate submatrices of x5 and

read
0
0
S[1,1,1](0,1, 25 = 1)
(1)
Ch; = lim (2mizy) ™% SE(2y) = : (3.123)
? 20—0 )
S[2,3,4](0,1,29 = 1)
0
0
and
CE,y = lim (27i(1 — 2)) "% SP(z2) = (i (5i7)) (3.124)
1,0 — fagare 4-point Sij ’ :
respectively, with the effective Mandelstam variables
S1j=s1;+s2;,  Sij =5 (3.125)

for i,j € {3,4,5}. The truncated elliptic KZB associator at the maximal length lj,ax = 5, with
the contributing words calculated as usually, leads to the finite associator eq. (3.93)

Clo +O((0/)3) = oP(2%)os CFy - (3.126)

Expressed in terms of iterated integrals of Eisenstein series and using the redefinition fij —
f‘ij +w(0,1) = G;; in the Selberg seed, the o/-expansion of the right-hand side of eq. (3.126)
turns out to be

_ B
472

— 6 (F1o — 2513 + 514 + Fag — 2524+ 53.4) 10(4,0,0) + O((0)?),  (3.127)

Sl loop ( )

4-point (512 — 2513+ 814+ 523 — 2524+ 534)

| =

Gij B

which has been checked up to order (a/)? to agree with the expected o/-expansion of the four-
point string correction.
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4 Relating genus zero and genus one

In this section, we briefly discuss how the regularized boundary value C§* of a function satisfying
a KZB equation is related to a corresponding genus-zero limit Cj of a solution of a K7 equation.
This provides an explanation why in our construction of the recursion relating loop-level string
corrections to tree-level string corrections described in the previous section, genus-zero string
corrections are discovered from the genus-one Selberg integrals.

Before we focus on genus-one quantities, we determine the origin of the regularization used
for the regularized genus-zero boundary value

— 13 —€o0
Co = ilg%)x F(z) (4.1)

of a solution F'(x) of the KZ equation

L pa) = <e° ;G )F(;U). (4.2)

dx x r—1

In order to estimate the behavior of F'(z) close to zero, the change of variables x = ew and the
limit € — 0 are used, such that the KZ equation can be written as

=L Plew) = (Z’U —er 0(@) F(ew) (4.3)

up to linear order. Using this differential equation and the fact that [eg,e'] = O(e), the
function F'(ew) can be approximated by

F(ew) = e (ew)® fo + O(e) (4.4)

for some constant fp in a neighborhood of zero. The regularization in Cjy ensures that this
constant is exactly the regularized boundary value

Co=fo. (4.5)

The genus-one calculation can be carried out analogously, which naturally leads to a close
relation to the constant fy. For a function F®(z,7) satisfying the KZB equation
0

—~FE - (n) (n) pE 4.
EACUEDWACRE U (16)

the change of variables z = ex and letting ¢ — 0 lead to a similar situation as above: from the
g-expansion of the integration kernels g™ (2, 7), we find that [35]

1 ifn=0,
&=+0 iftn=1,
g(n)(f% )= +O (2mi)2™m om—1 ki 2 1 ! (4.7)
_2C2m - QW Zk,l>0l m q™ + 0(6 ) ifn=2m > O,
O(e) ifn=2m+1>1.

Therefore, we can assemble the even generators (2™ and the corresponding order-zero prefactors
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into

.1‘(6)( _9 Z (sz 271'2 ' Z l2m 1 kl) x(?m) (48)

m>0 k>0

in order to write the KZB eq. (4.6) as

f—quE(ex,T) = (;1) + 2 () + O(e)) FE(ex,7) (4.9)

in a neighborhood of zero. This is a differential equation of the form (4.3) of the KZ equation
in the same regime. In other words, in the limit ¢ — 0, the operator

VEZB (z(0)) = 37 ¢l (4.10)
n>0

on the right-hand side in the KZB equation (4.6) degenerates to the operator

VEZ%(eg,e1) = ee—; + exei 1 (4.11)
in the KZ equation (4.2) with eg = z") and e; = z(®):
VEZB () = ¥RZ (1) 2()) 1 O(e). (4.12)
Thus, as before for F(x), the function F®(ex,7) can be approximated by
FP(ex,m) = 70 (ex)™ £+ 0(e). (4.13)

where f§ is some constant. Note that a similar degeneration to the genus-zero framework occurs
for the generating series L (z) of elliptic multiple polylogarithms defined in eq. (3.40): according
to eq. (3.42), for eg = z(1) the series has at lowest order the same behavior as the generating
series L(z) of the multiple polylogarithms

LE(ex) = (2miex)™"” (1 + O(e)) = (2mi)"" L(ex) ., _p (1 + O(€)) . (4.14)
We can conclude that the regularized boundary value
Cg' = lim VB2, ) = £ (4.15)
zZ—

is indeed independent of 7 and, upon comparing eq. (4.4) with eq. (4.13), it is proportional (up
to a constant matrix) to the corresponding genus-zero boundary value Cy = fp for a function
F(z) satisfying a KZ equation with ey = z(!)

Cy = lim VR ) = B o fo = Gy (4.16)

Note that if eg # x(1), but they have the same maximal eigenvalue, then the above argument
modifies slightly but stlll applies analogously such that the elements of C’OE turn out to be some
linear combinations of the elements of Cy, which is exactly the situation observed in the recursion
described in the previous section.
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5 Summary and Outlook

In this article, we have generalized the recursive formalism for the evaluation of genus-zero
Selberg integrals by Aomoto and Terasoma to genus one. After establishing and discussing
the genus-one formalism, we have put it to work to evaluate one-loop open-string scattering
amplitudes.

The original construction at genus zero is based on relating two boundary values of a
Knizhnik-Zamolodchikov equation by the Drinfeld associator. The boundary values arise as
two different limits of Selberg integrals and can be shown to contain integrals constituting
the N-point and (N — 1)-point open-string tree-level amplitudes respectively. Accordingly, the
method allows to determine all tree-level string corrections at arbitrary order in o’ recursively
using a suitable representation of the Drinfeld associator.

Our genus-one formalism is based on canonical generalizations of the above construction: at
the heart there is now the elliptic Knizhnik-Zamolodchikov-Bernard equation, whose boundary
values are related by the genus-one analogue of the Drinfeld associator, the elliptic KZB asso-
ciator. The boundary values arise as limits of genus-one Selberg integrals and can be shown to
contain the one-loop N-point and the tree-level (N + 2)-point open-string integrals. Thus all
one-loop open-string corrections can be calculated using the elliptic associator equation (3.83)
to any desired order in o/. Our results so obtained match the known expressions at multiplicity
two, three and four.

The original recursion at genus zero as well as our recursion at genus one have clear geomet-
rical interpretations in terms of degenerations of bounded Riemann surfaces: the extra marked
point serves as variable in the KZ and KZB equations and thereby simultaneously parametrize
the degeneration of the Riemann surfaces in the limits, which define the boundary values. The
class of iterated integrals leading to the Selberg integrals as well as the respective integration
domains are very naturally defined in terms of the de Rham cohomology of the Riemann surface
in question: at genus zero, the twisted forms appearing in the Selberg integrals form a basis
of the twisted de Rham cohomology of the configuration space of punctured Riemann spheres
with fixed points. Similarly, the twisted forms in the genus-one Selberg integrals form a closed
system with respect to integration by parts, the Fay identity and taking derivatives.

The following points deserve further investigation:

e Very likely, recursions with an extra marked point can not only be constructed for cor-
rections to open-string amplitudes as done in this article. Rather, it seems the formalism
is extendable to a wide range of string- and quantum field theories. An application or
translation to the calculation of scattering amplitudes in A/ = 4 super-Yang—Mills theory
in the multi-Regge limit might be a first testing ground: several recursive structures as well
as numerous formal similarities are already visible in refs. [46,47]. Another environment
for amplitude recurrences, similar to our current construction, is discussed and applied
in refs. [48,49]. It would be very interesting to understand the relation between the two
approaches.

e Considering the step from genus zero to genus one, all generalizations have been completely
canonical. We do not see any structural obstructions for establishing a similar recursion
for higher genera. Given the algebraic complexity of the genus-one construction already,
combinatorics will not only cause large matrix sizes, but also originate from considering
three geometric parameters in the period matrix at genus two.
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e Our construction makes use of several genus-zero tools developed in the context of [19],
the most prominent example being the matching of dimensions of the respective matrices,
which correspond to a basis of Selberg vectors w.r.t. partial fraction and integration by
parts: the respective dimensions are exactly as predicted by twisted de Rham theory.

e A substantial part in establishing our genus-one recursion was devoted to finding a useful
and feasible way to single out a basis for Selberg vectors. For higher orders in o’ as well as
for higher multiplicity, a formulation of genus-one Selberg integrals in terms of weighted
graphs and Fay identities using weighted adjacency matrices analogous to the genus-zero
description in [22] might be the correct computational framework.

e Most importantly, a formalism for calculating one-loop open-string amplitudes from a
differential equation has been put forward in refs. [20,21]. The constructions are formally
rather similar: both rely on an elliptic KZB equation. While we are using an extra insertion
point as differentiation variable, Mafra and Schlotterer employ the modular parameter
for this purpose. Our formulation employs iterated integrals for the insertion points and
the w-representations of eMZVs, while in refs. [20,21] iterated T-integrals, Eisenstein series
and the vyg-representation of eMZVs is employed. There is little doubt that the formalisms
can be shown to be equivalent.

e Our genus-one recursion is tailored to the calculation of planar open-string corrections,
where vertex insertions are allowed on only one of the boundaries of the annulus. An
extension to non-planar open-string amplitudes is expected to be straightforward: in par-
ticular one ought to use doubly-periodic integration kernels instead of the functions ¢(™).
In particular does a construction for non-planar one-loop string corrections already exist
in refs. [20,21].
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Appendix

A Regularization of elliptic multiple zeta values

In this section, we give a brief description how eMZVs may be regularized analogously to the
regularization of the (genus-zero) MZVs.

The reversal of the ordering in the definition (3.20) and the regularization of the iterated
integrals T' implies that only the eMZVs

) ooy — i T — Tim (7L - Pk
wng,...,n;7) =w(w’;7) *iﬂ%rw(z”)*lﬁir( 0T, (A.1)
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labeled by the word w = (") ... z(") € X with n; = 1 inherit the end point divergence at the
upper integration boundary due to the 1/(z— 1) asymptotics of g!")(z, 7) in the limit z — 1. For
example the definition (3.10) and the asymptotic behavior (3.14) imply that if we would allow
for n1 = 1 in the definition of the eMZVs, then

w(l;7) = lim f(é;Z,T) :li_%log@m(l —2)), w(l,....,1;7) = —w(l;7)" (A.2)

z—1

are divergent and the g-expansion of g(l) implies

w(0,1;7) = lim1 T(39;2,7) (A.3)
z—
_ 1 . @)1 /
l;ni/o dz' g\ (', 7)z
it qk:l
= limlog(2mi(l — 2)) — — —2 ) —, (A.4)
z—1 2 k10 k

such that

w(1,0;7) = lim f(g (1);2,7)

z—1
= tim (D(§:2,7) D(hi2,7) = D(§ §:2,7))
=w(l;7) —w(0,1;7)
, ki
_m a
=5 +2 ) k: (A.5)

is free of any logarithmic divergence. Using the shuffle algebra, any (divergent) elliptic multiple
zeta value can be expanded in powers of w(1;7), such that the regularized eMZVs wyes can be
defined as being the convergent coefficient (of 1) in this expansion. For example from above, we
find at depth one

Wreg(1;7) =0, (A.6)
at depth two

w(0,1;7) = —w(1,0;7) + w(0)w(1;7), such that wreg(0,1;7) = —w(1,0;7) = —wreg(1,0;7)

A7
and further examples of divergent eMZVs are at depth three and weight one 0
w(0,0,1;7) = —w(0,1,0; 7) — w(1,0,0; 7) + w(0, 0; 7)w(1; T)
= —w(1,0,0;7) + w(0,0; T)w(1; 7) (A-8)
and at weight 2
w(1,0,1;7) = —2w(1,1,0; 7) + w(1, 0; T)w(1;7), (A.9)

as well as

w(0,1,1;7) = —w(1,1,0;7) — w(1,0,1;7) + w(0; 7)w(1, 1;7)
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=w(1,1,0;7) —w(1,0; T)w(1;7) + w(0; 7)w(1, 1;7), (A.10)
such that

Wreg(0,0,1;7) = —wreg (0,0, 157) ,
Wreg(la 0,1;7) = _2‘—'Jreg(17 1,0;7),
wreg(o,l,l;T) :Wreg(1a1u0;7)~ (All)

As for the regularized elliptic multiple polylogarithms, we generally omit the subscript in wyeg
and always refer to the regularized versions when we write an elliptic multiple zeta value w.

B Explicit Calculations

This appendix provides the explicit calculations of some of the results stated in the main part
of this article.

B.1 Two-point String Corrections

In this subsection, we give the detailed calculations for the two-point example in subsection 3.6.1.
The two-point amplitude is described by the class of genus-one Selberg integrals with L = 3,
thus, we consider the iterated integrals

zZ
s® [Zf } (0,22) = / : dz3 S® g;(;?;) ) S® = exp (513 T31 +512 o1 +503 1~ﬂ23) ) 1<i3<3.
" (B.1)
The two-point one-loop amplitude with Mandelstam variable s = s13 + so3 is reproduced for
n =0, i3 = 1 as the first entry of the boundary value

SE[?](O,Zz)
SE{H(O,Zz)

ct = 212i§1(27m'(1 — 29)) | SB {ﬂ (0,22) (B.2)
3]0

In order to evaluate the first entry of C¥ we can use the block-diagonal form of z(!) with the

first block being xgl) = s19 as shown below. Thus, the relevant entry of the regularization factor

(1)

for zo — 1is (2mi(1 — 22)) ™1~ ~ e~ %12 T21 and the integral is given by

; 1 —s12qE|0
2121§1(27T7J(1 22)) S {1} (0, z2)
~ z2 ~ ~ ~
= lim e 1212 / dz3 exp <513 I3 +s12 21 +523 F23)
zo—1 0

1 )
= / dz3 exp ((813 + 523) 1131)
0

(513 +s923)" (1 =

n>0
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_2(513+323/ degn!T(} = L:z3,7)
W—’

n>0
n

= 2(813+823)nw(1,...,1,0). (B3)
n=0 —

The regularization of the above boundary value corresponds to the first eigenvalue sio of (1),
which can be determined by bringing the derivative of SE{ }(0 z9) in KZB form

0

z2 z2
87 SE [ } (0, 2’2) = / ngSngéi)S + / ngSQgg%)S
z2 0 0

z2
= 82195) SE{?}(Q 22) +/0 d235319§11)5

= 195 SB[ 9]0, 22) + saghy’ 8P| 1] (0, 20), (B.4)

such that the first columns of the matrices z(*) and z(!) are given by

0 s31 0 0 ... s1 0 0 0 ...
xm):(' 51 ) x<1>:(?1 ) (B.5)

Note that we have used the integration by parts identity
893 SE[ }(0 22)+8138 [ }(0,22) =0. (B.6)

The boundary value for zo — 0 is more subtle. In this limit, the one-loop propagator degenerates
to the tree level propagator and, in particular, loses its 7-dependence at the lowest order in z9

1
; 2 (1) -
Zl;gofreg(o,zg, 7) = log(2miza) + (’)(zg) , 9"V (22, 7) = - + O(22) (B.7)
such that, using the change of variables z; = zow;, the unregularized limit for ng =1, i3 = 1 is
given by

lim S[1](0,25)

zo—0

. = = = = (1)
= lim dz3 exp (813 I'31 +s12 21 4523 F23) 931
z2—0 Jo
1

1
= lim [ dws29(2mizows)'3(2mizg)*?(2mize(1 — w3))*® —— (1 4+ O(22))
z22—0 Jo 22W3
1
= lim (27izy S123/ dwz wy® (1 — ws3)*® — (1 + O(22))
z2—0 w3

(1 F(l + 813)F(1 + 823)
s13 D(14 s13 + s23)

= 1 A1 5123
Amy(2miz2)

) (1+ O(2)). (B.8)

Therefore, at the lowest order in 2, the integral S® { 1} (0, z2) degenerates to the four-point tree-
level amplitude with Mandelstam variables s13 and sa3. Now, let us check that the regularization
by the factor (2772'22)_5”(1) projects out that lowest-order coefficient of z3. In order to obtain

the appropriate eigenvalue of (), the differential equation satisfied by SE{ }(0 z9) has to be
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brought in KZB form and the coefficient of SE[H (0, z2) itself has to be determined

0

22 N ~ )
9 qE H] (0,22) = / dz3 exp (513 '3y +519 91 +593 r23) g;(ﬁ) (8129&? i 5239%))
Z9 0

2]
= 5129511) SE { %} (0, 22) — S93 /0 ng SE géi)g:%) (Bg)

In order to bring the second integral into the appropriate form, the Fay identity

(1) (1) (2) (?)

1) (1 1) (1
931930 = G921 + 93 ( a5y a5y

2
+ 932) + 951° 932 — 921" 931 (B.10)

has to be used, followed by an application of eq. (B.6)

0
EP SE{H(O, 29) = —52399 S®191(0, 22) — 8239501) s® ﬂ (0, 29) — 939 SE[%} (0, 22)

(1

H |

+ 8129511) SE{ }(07 22) — 3239511) s® [%} (0, 22) + 323921) s® [%}(07 22)
9] |
)

— — 523957 SP[91(0, 22) — s039) S® ﬂ (0, 22) — 52395, SE[%} (0, 22)

+ (s12 + s13 + S23) 9&) SE“](O, 29

(B.11)
Therefore, we find that the appropriate eigenvalue of 21 is indeed S123 = S12 + S13 + So3, such
that according to eq. (B.8) the second, i.e. the weight-one, entry of COE is given by the four-point
tree-level amplitude

SE[9](0, 22) .
E[1 1 T(1+s13)T(14s23)
ny S [1}(0’ ZQ) s13 F(lii’13+523)2d
CE = lim e~ T2 | 8E[2(0,2) | = « . (B.12)
22~)0
SE[%}(()? ZQ) *

As discussed in subsection 3.5, since the eigenvalue of (1) can not be bigger than sj23 and we

can only compensate the Jacobian zy in eq. (B.8) from the change of variables z3 = zows by
1

22W3

integration kernel g(”3)(23i3,7') with n3 # 1 which is regular close to the origin, there would

the singular asymptotic behavior of g(l)(zg,r) — for zo — 0, if there would be another
not be such a compensation. Thus, all other entries of the boundary value COE which do not
correspond to a singular integration kernel g(!)(23;,,7) vanish and we obtain

0
1 I'(Q+s13)T'(1+s23)

s13  I'(1+s13+s23)
CE — 0 . (B.13)
0

In order to check the consistency of the first entry of the vector equation

ct=o" Cf (B.14)
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up to order (o/)2, we also need to calculate the derivative of S¥(z), which includes the following

two derivatives: the first one is

0
P SE[ }(0 22) / dzy S* 9;(;1) (5219§1) + 5239&3))

= 812951) S [1 } (0, 22) — 523/0 ng SE g:(ﬁ)g:%) s (B15)

where we can apply again the Fay identity

2 —r) 1+T T+ 1—7r 2+4r
9:(%2)9:(51) == 912 + Z ( > 921 )+ Z < ) §2 )gl(cl )

= gél) + 9968 + 95 083 + g5 63 — 951)9:(31) +2¢9 957 (B.16)

Therefore, we find

2 682] = suagl? $2[2] - o) S5 [2] + o2 $P[1] + o0 523

st ] el

ol (2on 1] o 7[2]) <ol
o (s P [1]) o (-1
ol (Caen ] n 1) ok o o] - 1)
o (571 ]) 4 o2 (s 572)) w1

s12 +823) S [ﬂ —5233E[%D

and similarly
(;;S [%](0 22) / dzs S® 9:(1.2) (8219§1) + 82392 / dzg S" 38 9:(),2)
— so10%) SE[% - 823/0 dzs S” ¢33 95 —/0 dzg S” 8239:&3)
= s2195) SE[%} — 823 /0 g 57 953955
+ /022 dz3 SE(S?)IQQ(),P + 8329%))9:(),3)
= szlgéi) SE[%] + 513 /022 dzs SP gg)géll) , (B.18)

where we can again use

1 1 3 3
gi(%l)gé; = gél) + 9%2)9( )+ 952)g§1) + 9%2)9:(’,1) - 952)9:g2) + 29&1)9( )

3 2 2 0 2
=—g§1) 51)95,1) 9%1)9:5,1) 51)9§1)+9§1)g()+29§1)9§2)7 (B.19)

such that

iSEB}(O 2’2) —g21 (8138E[ } +28138EB}> +g§11) (—SlgsE[ﬂ + (812+813) SE{%})

029
+ g7 (813 SE[ D + g8 (—813 SE[?D : (B.20)
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(n)

The relevant 4 x 4-submatrices z2, of 2 for n € {0,1,2} appearing in the differential
eq. (3.99) of S<2(22)

0
52582xzw::(g£%é3—+g;><%—+g&><>)s<xzﬁ-+rzs§@a» (B.21)

can now be read off from the differential equations (B.4), (B.11), (B.17) and (B.20), which gives
the matrices in egs. (3.100) and (3.101).

C KZB equation of the genus-one Selberg integrals

In the first part of this appendix, the KZB equation satisfied by the genus-one Selberg integrals
is derived and discussed. In the second part, it is shown how a modified KZB equation can
be used in practice to calculate the o’-expansion of the genus-one string corrections from the
genus-zero string corrections.

C.1 Partial differential equations

In this subsection, a combinatorial algorithm to express the derivative az St [?j N i ] (0, z2)

of the genus-one Selberg integrals in KZB-type form is provided, where

SP[7 7] (0,22) /@Iwa@H%% (1)

with 1 < i, < k, and, in particular, we show how the KZB equation is recovered. This will allow
(n)

us to calculate the matrices z_,, in the partial differential eq. (3.62) up to any desired weight

Wmax- Lhe algorithm involves two steps: the first one is based on integration by parts such that
ns, ...

any partial derivative in the integrand of 8 SE { is. .

i } (0, z2) only acts on the Selberg seed

E_ [lo<z,< <z €XD (sij r ]Z> The second step is an iterative application of the Fay identity to
(nk)

recover admissible products Hﬁ 39, 0 the integrand, such that the integral can be written as

i } (0, 22), where the coefficients
are a product of a polynomial of degree one in the Mandelstam variables with rational coefficients

and one factor of 951) for some n € N. These polynomials in front of 9(1) SE[n?” o nL](O 29)

13,
(n)
(Swmax) :
The first step can conveniently be described using the following definitions in analogy to the

a linear combination of genus-one Selberg integrals SE[m’

will be the entries of the matrices x

graphical notation of ref. [22] for the genus-zero recursion. We call a product of the form

Nk yq)
H Thoritir where ki1 > ki, (C.2)
a g-chain from ky to k, with weights (ng,, ng,, ..., ng, ). Furthermore, a g-chain with a branch
at k; is a product of the form
= ) (my) )
7 1 nl i+1 TLm i+1
( kZ-&-ljL ll, ! H lH-l,+ m1 li H mz+1+7m1 ) (03)

i=1
with the g-subchains from k1 to kj, from k; to ls and from k; to my. If there exists a g-chain

)

in the product Hk 3g from ky to ks, ks is said to be g-chain connected to k1. In order to
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formulate the first step in the algorithm, we define for 1 < k < L the set of all the integers which
are g-chain connected to k

. L
Ut = {k <k < LJK is g-chain connected to k in H gz(ﬂi)}’ (C.4)
k=3
which, as indicated by the superscripts 7 = (ns,...,ng) and i = (is,...,ir), depends on the

product Hk 3 gk () and is the genus-one analogue of the set defined in eq. (2.34). Similarly, we

define the set of all the integers to which k is g-connected

= {3 < k' < k|k is g-chain connected to k' in g ) C.5
k zk

Thus, the set U, ,f o goes up the g-chain with possible branches beginning at k£ and the set D?’i goes
down the g-chain beginning at k. Using these definitions, the derivative of S¥ [”3’ ok ] (0, z2)

3]

with respect to zo can be expressed as

0 SE |:’I’L3, s nL ] (0 / H d Z 0 SE L (nK)
822 135 ooy 22 Zi “ 82:[ i3 gkalk
leuy™ -

/Z l_IdzZ sP Z Z sl]glj HglngZ) (C.6)
2 leUg” eU{”

(nk)

This can be seen as follows: first, we note that since 1 < i, < k, the product Hk 39k,

s a
product of g-chains starting at 1 and g-chains starting at 2

Hgm = I g 11 g (C.7)

kU k>3 kU k>3

The partial derivative of the integrand of S [m” o ZL } (0, z2) with respect to zo only acts on SP
and the g-chains starting at 2

0 (&t (k) L B ) [ O ()
8Z2<s I a3 (a@ >H RUE LI | o I | ©®

k=3 keU™ k>3 keUD" k>3

(k)

ke 7 >3 ki, can be split into a product of all the (disjoint) g-chains

Moreover, the product []

(possibly with branches) starting at 2 and ending at some k € Ug o (or several such terminal val-

. . . . 1 (k) n
ues in case of branches). If we consider one such g-chain without a branch gZ’}% H:le ngfkli gkfg

for k > k;11 > k; > 2, the partial derivative with respect to zo acts as follows

z+1 ”kl
<8z s H i1k Ik 2 )

r—1
(nki—Q—l) 8 nkl

E
=89 gk Fer ki1 ks 82291%2
i=1
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E Nk, ) 0 ny
=S gkkTH k,kal Dz, gk1,12)

0 n
— l+1 k1 E ng 1+1 ko ng
- <62k1 gk’ k’r H gkz+1 k gkl 2 + S nggr H k1+17 k1 )gkhQ

8 K Nk E i ) a Nk
= (328 )gkkTHgm; g, 1 SB gn H A BT L)

where we have used integration by parts for the second last equation and omitted the boundary
terms, since they vanish in the iterated integral S {m’ o ZL } (0, z2). The above calculation can

iteratively be repeated until any partial derivative only acts on the factor S¥, such that due to
the product rule of the derivative we obtain

r—1
Tk, 1 Nk E (lel 1) Nk
(62 gk ke H k”‘: k1’12> ((Z Oz, (9Zk> 5 ) bl gki-s-;ki gkhl?' (C.10)

The product rule ensures that the same holds for the g-chains with branches as well. Therefore,
we can continue with the calculation (C.8) and use the above procedure such that all the partial
derivatives only act on the Selberg seed. The calculation is the following

o (T2

L
< 9 SE> k) 4 gE H g(n‘k) 9 H g(n‘k)
822 h k Zk k‘,zk 822 k‘,lk

=3 keU™ k>3 keUD" k>3
(D @\ TT ) 0 (ms) (ns)
= S Geay + | Do S I a I as
0z s — 0y ot o
= leUi 1>3 keU™" k>3 keUD" k>3
L
a3 321 1:[
leu =
< (1) z (k)
_gE . Nk
=S Z Z 813915 Ik iy,
leUgf,iFlJ#l k=3

LA DOR D EREES SR I )

leuit \jeuy " "\ {1} jeut

=gF Z Z sl]gl] H gknz’;) , (C.11)

vl jeult

where we have used the antisymmetry gl(]1 ) = —gj(ll) for the last equality. This completes the

proof of eq. (C.6).
As an example, let us consider L = 6 and the following product p(z) with a branch at k = 3

p(z) = S gin®) gins) glas) glns) (C12)
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Upon discarding boundary terms, the partial derivative of p(z) with respect to z9 is

3} 0 n n
5P =5, (8" 965”9857 985" 9857 )

8 8 n, n.
= ( S )9((52 )9é3 )94(13 )9:(323) +s" < 9(26)> 95(>3 )94(134)9:(),2 )
0z9 0z
n. 8 n
+ SF 9(2 )gé35)94(13 ! <6229§23))
) J n n
= (82 SE) 9 g5 gl g + SP ( o 69é26)> P

n. 8 n,
+ 8" 9é2 )9é35)94(13 Y <_6zg§23)>
3

B ((aZQ + 0z + 833) S )-962 953 943 93

L gF gé26> < gé35>) gig“)g( 3) +SEgé2 )gég 5) ( 95134)) g§23)
023 0z3

_((2 9 90 (no) (ns) (na) (ns)
_(<3Z2+8z6+8z )S >962 953943 "932

8 n, n, n 8 n. n.
+ 8" 9é2 2 ( 92 9é35)> 94(13 )9523) s® gézﬁ)géza 2 ( 02 94(134)> 9§23)
9 0 9 0 9N\ () (ns5) (na) (ns)
((822 + 826 + 823 + 625 + 624) 5 > 962 953 Jaz 952

=8¢ (Z smg,ﬁ?) 96" 9% a3 055", (C.13)
k=2

i,(2,3,3,2)

which is exactly the result expected from eq. (C.6) since U, =1{2,3,4,5,6}.

However, the integrals in eq. (C.6) do not yet have the desired form, i.e. a factor of ggf) times
a product of the form g/,(C ") with 1 < i <k for all k € {3,...,L}. This form can be obtained in
a second step using the Fay identity (3.33). Due to the decomposition in eq. (C.7), any term in

eq. (C.6) can be split into a product of a g-chain from 1 to j labeled by D;” ={ji<ja<---<

js < j} and a g-chain from 2 to [ labeled by Dlﬁ’i ={li <ly <--- <l <1} and the remaining
factors:

L L
(1) (ng) _ Ji (njy) ( ; (ry) ()
sgly T1 o0 = swiaty oy, HQMJJ g o H zml+l 9,2 II Ihy - (C-14)
k=3 k=3,kg D} 'UD™

The factor gl(jl) connects the two g-chains starting at 1 and 2, such that applying the Fay identity
iteratively, the product

(n] h+1 (njl z+1 nl1
glj 95,45 Hg]H-l]z 911 llr lz+1l 91,2 (0'15)

can be written as a factor ggf) times a linear combination of admissible factors. The correct

procedure is the following:

e First, assume (without loss of generality, rename the labels otherwise) that I < j, such
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that the subscript j in gl"jl can be lowered to js using the Fay identity as follows:

| | i
9 955, = (CD"gi g5l = (=1)" g, (;;jl ) : (C.16)
ny,n;

where the product on the right-hand side is defined to be the sum obtained by the Fay
identity (3.33). It is a linear combination of gl(nlJrn] g g](lj) and gl(nlJrnJ 2 j(;) for 0 < i <
ng + n; with rational coefficients. Importantly, it is a linear combination of admissible

(n

factors and the index j in g; J Y has been lowered to Js-

(nitnj=) (nj,)

e Now, if [ < js, we repeat this step with the products g, Lis o

lower indices j;, unless we arrive at gj(1 i ), where another application of the Fay iden-
tity leaves us with a linear combination of 91( 1) and admissible factors times the product

Similarly for

9 ll) ]_[:_11 gl(zjfl)gl(:;l). Now, the same procedure can be applied to gl(ﬁ)gl(;f) H::_% ;:iﬁj)gl(?g)

such that we are left with a linear combination of admissible factors times a factor ggll)
and some rational coefficients. However, if we arrive at some j; such that [ > j;, we have
to apply the Fay identity earlier to the product gl(r;:) [1= Hi“) 91(1”121) in order to recover

admissible factors.

° Thus if we arrive at some j; with [ > j;, we apply the above procedure to the product
g H’r‘ 1 ( l7,+1) ( ll)
llr

Gy i beginning with the factor

ail,
995 = i, ( | ) : (C.17)
ghjt n,ny

As above, this process can be applied to lower [; unless we arrive either at gl(ﬁlgl) or at
l; < j¢. In the latter case, we again proceed with the application of the Fay identity with
respect to the j; index as in the previous step. In the former case, we arrive at a linear
combination of g(-m)

;.2 and we are left with applying the procedure to the j; index unless we
hit j;.

e The above process ends once we could rewrite the product in eq. (C.15) as a linear com-

(

bination of 92711) times solely admissible factors and some rational coefficients.

Writing the weights of the genus-one Selberg vector as @ = (ws, ..., wr) € NF72 such that the
total weight is given by w = || = w3 + ... wp, and the admissible labelings i = (is,...,iL) €
NE=2 with 1 < 4 < k, this algorithm converts the derivative of the genus-one Selberg integral
Sk {wg” o L } (0,29) = SE{ ](O z9) given in eq. (C.6) to a form similar to the KZB equation

13y ooy

%SE[?] (0, z2) 2921 Z Z xwz SE{?}<0722), (C.18)

where m = |m| and the sum over ; € NI=2 runs over the admissible labelings, i.e. the vectors j

such that 1 < (y )Z = Ji < 2+ 1. Each coefficient :c - € Q[sy;] either vanishes or is a polynomial
of degree one in the Mandelstam variables over the rational numbers, determined by the above

algorithm. Note that all the terms ggl) SE[ }(0 z9) are of total weight w + 1 = n 4+ m, since
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m = w + 1 —n. This is a consequence of the above algorithm: the partial derivatives in the
last line of eq. (C.6) only act on the Selberg seed S, which effectively multiplies S® with some

(1) which increases the total weight

. Hence, the integrand SFTE_, g(nk) is multiplied with g;;
by one. The application of the Fay 1dent1ty in the second step of the algorithm preserves this
weight, which leads to the differential eq. (C.18).

The differential eq. (C.18) can be turned into a matrix equation by collecting the iterated

integrals of a given weight w = |@| and all the possible admissible labelings i in a vector

SE(2) = (sE[lg](o zz)) o (C.19)

|W])=w,i adm

such that eq. (C.18) reads

8 E w—+1 ( ) -
n
7Sw(z2) = Z 921 xgb)sw-i—l—n(zQ) ) (020)
622 n—0
where the entries of the matrices mgl ) are given by the coefficients x ;“;Zj according to
(m(n))lﬁ,{adm _ Iu—j; (C 21)
w m, j adm 1,5 ’

and |m| = w + 1 —n, |&| = w. This partial differential equation is exactly eq. (3.58) with the
matrices being determined by the above algorithm. However, this is not yet a KZB equation,

but if the vector with subvectors SE(ZQ) up to a maximal weight wpax

SE e (22) = (SE(2)) (C.22)

0<w<wWmax
is differentiated, the partial differential eq. (3.62), i.e

8 Wmax+1
672,28<’wmax Z 921 $<wmax Ewmax (Z2) + rwmaxs’l]?}max-‘rl(’zZ) (023)

is recovered, which is almost a KZB equation up to the remainder r,, . . As discussed in
(n)

subsection 3.4, the matrices 7, are block-(off-)diagonal with respect to the weight-(wo, w1)
blocks and are given by

.”L‘(()O) 33(()1)

(0) . (1) _ (1)

(0)

Wmax—1

(1)

Lwmax

(C.24)
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Y

(2) - 2) (Wmax+1)
:L‘<wmax - x2 ytt Swmax

(2) (wmax+1)

w:
mwmax A

(C.25)

where the blank blocks are zero submatrices. The remainder r,, ., corresponds to the weight-

(0)

(Wmax + 2) column of the matrix Tl B8 follows

o

0 s )
x(g'zl)max'i‘l = (0) I rwmax - . . (026)

wmax 1

(0)

Twmax
2 (0)

Lwmax

The matrix ngnzax has (wmax + 1)? blocks of weights (wp, w;) and is block-(off-)diagonal, shifted

by n — 1 to the bottom. This is a consequence of the increase in the weight of the subvectors
SE (z2) by one, when differentiated with respect to z3. Moreover, this also leads to the fact that
the differential eq. (C.23) is not exactly in KZB form. It differs from the KZB form by the term
which comes from the differentiation of the highest weight subvector SE g (22) D S<wmax( 29): the

(0) .

factor proportional to 1 = gy’ is a linear combination of iterated integrals of weight wmax+1, but
SlEUmax +1(#2) is not included in S<wma (z2). Thus, we have to account for this contribution by the
matrix rq,,.. Therefore, in principle, only the infinite vector S¥(22) = limu,, o0 Sy, (22)
satisfies the proper KZB eq. (3.57),

0

n>0
with z(®) = limy, . —00 xgz}max. This is how the KZB equation is recovered and satisfied by the
genus-one Selberg integrals.

C.2 a’-expansion of genus-one string corrections

The KZB eq. (C.27) satisfied by the Selberg vector S¥(z5) is an infinite-dimensional vector
equation. However, as mentioned in subsection 3.6, in order to calculate the o’-expansion of

the one-loop string corrections up to any desired order 011{11&‘;(01’, we may in practice truncate the

vector SF(23) at a certain weight wmyay and simply work with the finite-dimensional, modified

KZB eq. (C.23). In this section this truncation is discussed and, in particular, an expression for

1-loop
max

Recall that due to the block-diagonality of (1), the regularized boundary values (3.66) of

the required maximal weight wy.x depending on the desired order o is given.
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the genus-one Selberg integral,

CE
0,0
CE = lim (2miz) " SB(z) = | Cb4 | |
z0—0
Cty
CP = lim (2ri(1 - 2)) "2 8B () = | CFy | (C.28)
29 .
are ordered with respect to the total weight
(1) (1)
CE, = lim (2mizy) ™ SE(z),  CP, = lim (2mi(1 — 2)) "™ SE(z9). (C.29)

20—0 ’ zo—1

Furthermore, from our discussion in subsection 3.5, we have learned that on the one hand, the

E

only non-vanishing subvector of C¥ is Cowo

with the weight wg = L — 2, which contains the
Selberg integrals S [113 o ZlL } (0, z2) that degenerate to the genus-zero integrals in the regularized
limit. On the other hand, the (L — 1)-point, genus-one string corrections reside in the subvector
C‘Ewl of C¥ which corresponds to the weight w; = max(L — 5,0) for L < 8 and wy = L —5 —d,
where 0 < d < L — 5, for eight-point and higher string corrections at L > 8 [35]. Hence, the
relevant part of the associator equation is

E E E
Cl,w1 = (I)wl,wo CO,wo ) (030)
and we only require the weight-(wy,wp) submatrix @Ew}o of the KZB associator. But since

w; < wo and due to the block-(off-)diagonal form of the matrices (™), this relevant (wy,wg)-
(n)
<Wmax

at each word length [, which is the order

block can be calculated using the finite matrices x

B
w1,Wo

for some sufficiently large wmax > wo:
as shown below, the non-trivial contribution to ®
I in the o/-expansion of the associator since z(™) o o, is a finite sum 3, ww(w') of products

w = x(é’-':ljll)gnax (Sn'liEnax e xgb’li))max7 Where
Wmax = max(l + wy; — wg, wo) (C.31)
and (ni,ng,...,n;) is a length-I, ordered partition of wyax, i.e. N1 +ng+ -+ +n; = Wpax, which

satisfies for each r € {1,2,...,1} the additional conditions

r—1
0<i=Y (ns—1) < Wmax, 0<j4+mn—1< wnax- (C.32)
s=1
Therefore, in order to calculate the o/-expansion of @51@0 up to order lyax, we need to determine

(n)

the matrices Ty

for 0 < n < wpax in the partial differential eq. (3.62) with wmax = lmax +
tree
min

integrals in Cl begins, eq. (C.30) implies that the maximal word length is

w1 — wg. Moreover, if o is the minimal order at which the o/-expansion of the tree-level

1-loo tree
lmax = Omax P — Omin » (033)

which yields together with eq. (C.31) an expression for the maximal weight depending on the

1-100p) .

desired order Wmax = Wmax (0

These statements can be shown as follows: first, we note that the weight-(4, ) submatrix of
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(n)

Ty is
(@i = o G (C.34)
(n)

where z; " is given by eq. (C.21). Therefore, the product of two such matrices has the weight-

(i,7) submatrix

Wmax

(n1) (n1),.(n2) 5
(xgwmaxx<wmax 7] - Z ':U k zk+n1—16k,j+n2—1

(m)x(nz) 5

=T, i—(n1—1)

i—(n1—1),j+n2—1 - (C35)

Note that this vanishes in particular for weights n, and ny which do not satisfy

0<i—(n1—1),5+n2—1< wpax- (C.36)
Iterating this calculation, it turns out that the weight-(4,j) submatrix of the matrix product
w x(élii)gnaxaj(él’lignax T ng’li))max iS
nr
wZ] - H T, ’l‘ l(ns 1) 6Z_Zi;ll(nr_1)7j+nl_1 ) (0'37)

where for each r € {1,2,...,1} the weights n; have to satisfy

r—1
Ogi_Z(ns_l)SwmaXa 0<j+n —1< wpax (038)
s=1

in order to have a possibly non-vanishing submatrix w;;. Therefore, taking (i, j) = (w1, wy), we
(n1)  (n2) (n)

Ctwmax L Stmax * - L<wpmay CONITIbUtes non-trivially at length
) of the KZB associator only if

can conclude that the product w = x

[ to the (w1, wp)-submatrix <I>(w w

l
wo — w1 + Z(nr —-1)=0. (C.39)

This gives for n1 = wmax and n,. = 0 for r > 1 the maximal weight which has to be considered
Wmax = | + w1 — wp . (C.40)

Hence, in order to calculate the contribution at order [ in the o/-expansion of ®F we have

(m) (n2) ()

wma T Ltmax * * - <t With Wmax = | + w1 — wg and n, given by
the ordered, length-I partitions (n1,ng, ... ,nl) of wmax. However, not all such partitions actually

(w1,wo)’

to include all the words w = x

contribute: a partition (ni,ng,...,n;) of wnax can only contribute if it satisfy the conditions
(C.38). 12 This completes the proof of the statements in egs. (C.31) and (C.32).

12For example in the two-point calculation in subsection 3.6.1 with L = 3, wo = 1, w1 = 0, Wmax = 2 and at

word length [ = 3, the word xg%xf%x(g gives no non-trivial contribution to the submatrix ®§ (m<2>)0 1 since it

fails to satisfy the necessary condition (C.32) for r = 2. By comparison, the words z <;m(<22>m(<02> and x(<02>x(<0;x(<2;

satisfy the conditions and are indeed found to contribute non-trivially to ®; (1’<<2) )o,1-
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