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Figure 1: Neural Voice Puppetry enables applications like facial animation for digital assistants or audio-driven facial reenactment.

Abstract

We present Neural Voice Puppetry, a novel approach
for audio-driven facial video synthesis. Given an audio se-
quence of a source person or digital assistant, we generate
a photo-realistic output video of a target person that is in
sync with the audio of the source input. This audio-driven
facial reenactment is driven by a deep neural network that
employs a latent 3D face model space. Through the underly-
ing 3D representation, the model inherently learns temporal
stability while we leverage neural rendering to generate
photo-realistic output frames. Our approach generalizes
across different people, allowing us to synthesize videos of
a target actor with the voice of any unknown source actor
or even synthetic voices that can be generated utilizing stan-
dard text-to-speech approaches. Neural Voice Puppetry has
a variety of use-cases, including audio-driven video avatars,
video dubbing, and text-driven video synthesis of a talking
head. We demonstrate the capabilities of our method in
a series of audio- and text-based puppetry examples. Our
method is not only more general than existing works since
we are generic to the input person, but we also show supe-
rior visual and lip sync quality compared to photo-realistic
audio- and video-driven reenactment techniques.

–We highly recommend to watch the supplemental video–

https://justusthies.github.io

1. Introduction

In the recent years, speech-based interaction with com-
puters made significant progress. Digital voice assistants
are now ubiquitous due to their integration into many com-
modity devices such as smartphone, tvs, cars, etc.; even
companies use more and more machine learning techniques
to drive service bots that interact with their customers. These
virtual agents aim for a user-friendly man-machine interface
while keeping maintenance costs low. However, a significant
challenge is to appeal to humans by delivering information
through a medium that is most comfortable to them. While
speech-based interaction is already very successful, such
as shown in virtual assistants like Siri, Alexa, Google, etc.,
the visual counterpart is largely missing. This comes to no
surprise given that a user would also like to associate the vi-
suals of a face with the generated audio, similar to the ideas
behind video conferencing. In fact, the level of engagement
for audio-visual interactions is higher than for purely audio
ones [9, 25].

The aim of this work is to provide the missing visual chan-
nel by introducing Neural Voice Puppetry, a photo-realistic
facial animation method that can be used in the scenario of
a visual digital assistant. To this end, we build on the re-
cent advances in text-to-speech synthesis literature [32, 15],
which is able to provide a synthetic audio stream from a text
that can be generated by a digital agent. As visual basis, we
leverage a short target video of a real person. The key com-
ponent of our method is to estimate lip motions that fit the
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Figure 2: Pipeline of Neural Voice Puppetry. Given an audio sequence we use the DeepSpeech RNN to predict a window of character logits
that are fed into a small network. This generalized network predicts coefficients that drive a person-specific expression blendshape basis
which lies in the subspace of a generic expression 3D face model. We render the target face model with the new expressions using a neural
rendering network.

input audio and to render the appearance of the target person
in a convincing way. This mapping from audio to visual
output is trained using the ground truth information that we
can gather from a target video (aligned real audio and image
data). We designed Neural Voice Puppetry to be an easy to
use audio-to-video translation tool which does not require
vast amount of video footage of a single target video or any
manual user input. In our experiments, the target videos are
comparably short (2-3 min), thus, allowing us to work on a
large amount of video footage that can be downloaded from
the Internet. To enable this easy applicability to new videos,
we generalize specific parts of our pipeline. Specifically,
we compute a latent expression space that is generalized
among multiple persons (in our experiments 116). This also
ensures the capability of being able to handle different audio
inputs. Besides the generation of a visual appearance of a
digital agent, our method can also be used as audio-based
facial reenactment. Facial reenactment is the process of re-
animating a target video in a photo-realistic manner with
the expressions of a source actor. In the recent years, facial
reenactment has witnessed a growing interested from the re-
search community [28, 36]. This enables a variety of applica-
tions, ranging from consumer-level teleconferencing through
photo-realistic virtual avatars [29, 30, 22] to movie produc-
tion applications such as video dubbing [11, 18]. Recently,
several authors started to exploit the audio signal for facial
reenactment [24, 3, 33]. This has the potential of avoiding
failures of visual-based approaches, when the visual signal is
not reliable, e.g., due to occluded face, noise, distorted views
and so on. Many of these approaches, however, lack video-
realism [3, 33]. An exception is the work of Suwajanakorn
et al. [24], where they have shown photo-realistic videos of
President Obama that can be synthesized just from the audio
signal. This approach, however, requires very large quanti-
ties of data for training (17 hours of President Obama weekly
speeches) and, thus, limits its application and generalization
to other identities.

To summarize, we propose a generalized audio-driven facial
animation approach that

• can be trained on ’in-the-wild’ portrait videos (2-3 min
per target video).

• includes a representation of person-specific talking
styles (i.e., we preserve the talking style of the target
video).

• can be driven by synthetic voices generated from text-
to-speech approaches, thus, enabling the transfer from
text to facial animations without the need of video-text
annotations.

• is able to render photo-realistic video content of a target
actor that is in sync with the speech using a novel neural
rendering technique.

2. Related Work
Neural Voice Puppetry is a facial reenactment approach

based only on audio input. In the literature, there are many
video-based facial reenactment systems that enable dubbing
and other general facial expression manipulation. Our focus
in this related work section lies on the audio-based meth-
ods. These methods can be organized in facial animation
and facial reenactment. Facial animation concentrates on the
prediction of expressions that can be applied to a predefined
avatar. In contrast, audio-driven facial reenactment aims to
generate photo-realistic videos of an existing person includ-
ing all idiosyncrasies from an audio signal. In the following,
we will discuss these and related fields.

Video-Driven Facial Reenactment Recently, several
works haven been proposed for video-driven facial reen-
actment which are also covered by a state-of-the-art report
of Zollhöfer et al. [36]. A source and target face are first
reconstructed using a parametric face model. The target face
is reenacted by replacing its expression parameters with that



of the source face. Thies et al. [28] uses a static skin texture
and a data-driven approach to synthesize the mouth interior.
In Deep Video Portraits [19] a generative adversarial net-
work is used to produce photo-realistic skin texture that can
handle skin deformations with synthetic renderings as input.
Recently, Thies et al. [27] proposed neural textures, a high-
dimensional feature maps learned during scene capture and
accessed throuh a UV look up. A defereed neural renderer
refines the reconstruction. Results show that neural textures
can generate high quality facial reenactments. For instance,
it produces higher fidelity mouth interiors with less artifacts.
Kim et al. [18] analyzed the notion of style for facial expres-
sions and showed its importance for dubbing. They define
the style as a person-specific temporal global signature that
can be related to the speaker’s facial geometry and person-
ality, e.g., how a person speaks, smiles. An audio-visual
reenactment technique with a focus on dubbing has been
proposed by Garrido et al. [11]. The dubbing language track
is used to force lip closure by detecting bilabial consonants
/m/, /p/, and /b/. The synthesized face is rendered using the
estimated target lighting and skin reflectance.

Audio-Driven Facial Animation Audio-driven facial ani-
mation is the field of generating animations for predefined
3D facial avatars from audio inputs. These methods do not
focus on photo-realistic results, but on the prediction of fa-
cial motions. There is a variety of proposed techniques in the
literature, we will focus on the most relevant publications.

Karras et al. [17] drives a 3D facial animation using
an LSTM that maps input waveforms to the 3D vertex co-
ordinates of a face mesh, also considering the emotional
state of the person. In contrast to our method it needs high
quality 3D reconstructions for supervised training and does
not render photo realistic output. Taylor et al. [26] pre-
sented a technique to animate different avatars by any input
speaker. To handle different input speakers, the audio sig-
nal is first converted into a phoneme transcript using an off
the shelf speech recognition. A deep neural network then
maps the phonemes into the parameters of a reference face
model. The network is trained on data collected for only
one person speaking for 8 hours. They show animations
of different synthetic avatars using deformation retargeting.
VOCA [6] is an end-to-end deep neural network for speech-
to-animation translation trained on multiple subjects. Similar
to our approach, a low-dimensional audio embedding based
on features of the DeepSpeech network [13] is used. From
this embedding, VOCA regresses 3D vertices on a FLAME
face model [21] conditioned on a subject label. In contrast
to our method, it requires high quality 4D scans recorded in
a studio setup. Our approach works on ’in the wild’ videos,
with a focus on temporally coherent predictions and photo-
realistic renderings. Tzirakis et al. [31] presented Deep
Canonical Attentional Warping (DCAW) which is trained to

map the audio signal to expression blendshape parameters.
Trained on the Lip Reading Words (LRW) dataset [4], the
DCAW network learns to warp the words of an input video
to the words of the LRW dataset. Result show the ability of
the approach to generalize to different speakers.

Audio-Driven Facial Reenactment The most relevant lit-
erature is in the field of audio-driven facial reenactment that
has the goal to generate photo-realistic videos that are in sync
with the input audio stream. A number of techniques are
available for audio-driven facial reenactment [2, 8, 24, 3, 33].
Suwajanakorn et al. [24] uses an audio stream from Presi-
dent Barack Obama to synthesize a high quality video of him
speaking. A Recurrent Neural Network is trained on many
hours of his speech to learn the mouth shape from the audio.
The mouth is then composited with proper 3D matching to
reanimate an original video in photo-realistic manner. Be-
cause of the huge amount of used training data (17h), it is not
applicable to other target actors. In contrast, our approach
only needs a 2-3 min long video of a target sequence. Chung
et al. [3] present a technique that animates the mouth of a
still, normalized image to follow an audio speech. First, the
image and audio is projected into a latent space through a
deep encoder. A decoder then utilizes the joint embedding of
the face and audio to synthesize the talking head. The tech-
nique is trained on tens of hours of data in an unsupervised
manner. In contrast to our method, it is a pure 2D image
based method. Another 2D image-based method has been
presented by Vougioukas et al. [33]. They us a temporal
GAN to produce a video of a talking face given a still image
and an audio signal as input. The generator feeds the still
image and the audio to an encoder-decoder architecture with
a RNN to better capture temporal relations. It uses discrim-
inators that work on per-frame and on a sequence level to
improve temporal coherence. As conditioning, it also takes
the audio signal as input to enforce the synthesized mouth to
be in sync with the audio. In [34] a dedicated mouth-audio
syn discriminator is used to improve the results.

Text-Based Video Editing Fried et al. [10] presented a
technique for text-based editing of videos. Their approach
allows overwriting existing video segments with new texts
in a seamless manner. A face model [12] is registered to the
examined video and a viseme search finds video segments
with similar mouth movements to the editing text. The cor-
responding face parameters of the matching video segment
are blended with the original sequence parameters based on
a heuristic, followed by a deep renderer to synthesize photo-
realistic results. The method is person specific and requires
a one hour long training sequence of the target actor and,
thus, is not applicable to short videos from the Internet. The
viseme search is slow (∼ 5min for three words) and does
not allow for interactive results.



3. Overview

Neural Voice Puppetry consists of two main parts (see
Fig. 2), a generalized network that predicts a latent expres-
sion vector, thus, spanning an ’audio-expression’ space. This
audio-expression space is shared among all persons and al-
lows for reenactment, i.e., transferring the predicted motions
from one person to another. The audio expressions are in-
terpreted as blendshape coefficients of a 3D face model rig.
This face model rig is person-specific and is optimized in the
second part of our pipeline. This specialized stage captures
the idiosyncrasies of a target person including the facial mo-
tion and appearance. It is trained on a short video sequence
of 2−3 minutes (in comparison to hours that are required by
state-of-the-art methods). The facial motions are represented
as delta-blendshapes which we constrain to be in the sub-
space of a generic face template [1, 28]. A neural texture in
conjunction with a deferred neural renderer is used to store
the appearance of the face of an individual person. In the
following, we first focus on the required data to train the
generalized and the specialized components. An advantage
of our method is that we do not need a studio setup to re-
trieve the data, but we can use short video clips downloaded
from the internet. Based on this data, we train a generalized
temporal-coherent audio-expression estimation network that
is used to drive person-specific video avatars.

4. Data

Learning-based approaches heavily rely on the data they
are trained on. In contrast to previous model-based methods,
Neural Voice Puppetry is based on ’in-the-wild’ videos that
can be download from the internet. Especially, we do only
require RGB videos without the need of complex capturing
setups and specific lighting. The videos have to be synced
with the audio stream, such that we can extract ground truth
pairs of audio features and image content. In our experiments
the videos have a resolution of 512× 512 with 25fps.

Training Corpus for the Audio2ExpressionNet Fig. 3
shows an overview of our video training corpus that is used
for the training of the small network that predicts the ’audio
expressions’ from the input audio features (see Sec. 5.1).
The dataset consists of 116 videos with an average length of
1.7min (in total 302750 frames). We selected the training
corpus, such that the persons are in a neutral mood (com-
mentators of the German public TV).

Target Sequences For a new target sequence, we extract
the person-specific talking style in the sequence. I.e., we
compute a mapping from the generalized audio expression
space to the actual facial movements of the target actor (see
Sec. 5.3). The target sequences have a length of 2− 3min
and, thus, are easy to obtain from the Internet. The video
data is also used to train a person-specific rendering network.

Figure 3: Video training corpus downloaded from the Internet.

4.1. Preprocessing

We preprocess the input data to extract face tracking
information as well as audio features. The preprocessing is
done automatically, no manual interaction is required.

3D Face Tracking: Our method is using a statistical face
model and delta-blendshapes [1, 28] to represent a 3D latent
space for modelling facial animation. The 3D face model
space reduces the face space to only a few hundred parame-
ters (100 for shape, 100 for albedo and 76 for expressions)
and stays fixed in this work. Using the dense face tracking
method of Thies et al. [28], we estimate the model param-
eters for every frame of a sequence. Note that the shape
and albedo parameters are shared between all frames of one
sequence. During tracking, we extract the per-frame expres-
sion parameters that are used to train the audio to expression
network. To train the neural renderer, we also store the ras-
terized texture coordinates of the reconstructed face mesh.

Audio-feature Extraction: The video contains a synced
audio stream. We use the recurrent feature extractor of the
pre-trained speech-to-text model DeepSpeech [13] (v0.1.0).
Similar to Voca [6], we extract a window of character logits
per video frame. Each window consists of 16 time intervals
à 20ms, resulting in an audio feature of 16× 29. The Deep-
Speech model is generalized among thousands of different
voices, trained on Mozilla’s CommonVoice dataset.

5. Method

To enable photo-realistic facial reenactment based on au-
dio signals, we employ a 3D face model as intermediate
representation of facial motion. A key component of our
pipeline is the audio-based expression estimation. Since
every person has its own talking style and, thus, different
expressions, we establish person-specific expression spaces
that can be computed for every target sequence. To en-
sure generalization among multiple persons, we created a
latent audio expression space that is shared by all persons.
From this audio expression space, one can map to the per-
son specific expression space, enabling reenactment. Given
the estimated expression and the extracted audio features,
we apply a novel deferred neural rendering technique that
generates the final output image.



5.1. Audio2ExpressionNet

Our method is designed to generate temporally smooth
predictions of facial motions. To this end, we employ a
deep neural network with two stages. First, we predict per-
frame facial expression predictions. These expressions are
potentially noisy, thus, we use an expression aware temporal
filtering network. Given the noisy per-frame predictions as
input the neural network predicts filter weights to compute
smooth audio-expressions for a single frame. The per-frame
as well as the filtering network can be trained jointly and
outputs audio expression coefficients. This audio-expression
space is shared among multiple persons and is interpreted
as blendshape coefficients. Per person we compute a blend-
shape basis which is in the subspace of our generic face
model [28]. The networks are trained with a loss that works
on a vertex level of this face model.

Per-frame Audio-Expression Estimation Network
Since our goal is a generalized audio-based expression esti-
mation, we rely on generalized audio features. We use the
RNN-part of the speech to text approach DeepSpeech [13]
to extract these features. These features represent the logits
of the DeepSpeech alphabet for 20ms audio signal. For
each video frame, we extract a time window of 16 features
around the frame that consist of 29 logits (length of the
DeepSpeech alphabet is 29). This, 16× 29 tensor is input to
our per-frame estimation network. To map from this feature
space to the unfiltered audio-expression space, we apply 4
convolutional layer and 3 fully connected layer. Specifically,
we apply 2D convolutions with kernel dimensions (3, 1)
and stride (2, 1), thus, filtering in the time dimension. The
convolutional layers have a bias and are followed by a leaky
ReLU (slope 0.02). The feature dimensions are reduced
successively from (16× 29),(8× 32),(4× 32),(2× 64) to
(1× 64). This reduced feature is input to the fully connected
layers that have a bias and are also followed by a leaky
ReLU (0.02), except the last layer. The fully connected
layers map the 64 features from the convolutional network
to 128, then to 64 and, finally, to the audio expression space
of dimension 32, where a TanH activation is applied.

Temporally Stable Audio-Expression Estimation To
generate temporally stable audio-expression predictions, we
jointly learn a filtering network that gets T per-frame esti-
mates as input (see Fig. 4). Specifically, we estimate the
audio-expressions for frame t using a linear combination of
the per-frame predictions of the timesteps t−T/2 to t+T/2.
The weights for the linear combination are computed using
a neural network that gets the audio-expressions as input
(which results in an expression-aware filtering). The filter
weight prediction network consists of five 1D convolutions
followed by a linear layer with softmax activation (see sup-

Figure 4: To get smooth audio-expressions, we employ a content-
aware filtering in the time dimension.

plemental material for detailed description). This content
aware temporal filtering is also inspired by the self-attention
mechanism [35].

Person-specific Expressions To retrieve the 3D model
from this audio-expression space, we learn a person-specific
audio expression blendshape basis which we constrain by the
generic blendshape basis of our statistical face model. I.e.,
the audio-expression blendshapes of a person are a linear
combination of the generic blendshapes. This linear relation,
results in a linear mapping from the audio expression space
which is output of the generalized network to the generic
blendshape basis. This linear mapping is person specific,
resulting in N matrices with dimension 76× 32 during train-
ing (N being the number of training sequences and 76 being
the number of generic blendshapes).

Loss: The network and the mapping matrices are learned
end-to-end using the visually tracked training corpus. We
employ a vertex-based loss function, with a higher weight
(10x) on the mouth region of the face model. Specifically,
we compute a vertex-to-vertex distance from the audio-based
predicted and the visually tracked face model in terms of a
root mean squared (RMS) distance:

Lexpr = RMS(vt − v∗t ) + λ · Ltemp

with vt, the vertices based on the filtered expression estima-
tion of frame t and v∗t being the visual tracked face vertices.
In addition to the absolute loss between predictions and the
visual tracked face geometry, we also use a temporal loss that
considers the vertex displacements of consecutive frames:

Ltemp = RMS((vt − vt−1)− (v∗t − v∗t−1))

+RMS((vt+1 − vt)− (v∗t+1 − v∗t ))

+RMS((vt+1 − vt−1)− (v∗t+1 − v∗t−1))

These forward, backward and central differences are
weighted with λ (in our experiments λ = 20). The losses
are measured in millimeters.



5.2. Neural Face Rendering

Based on the recent advances in neural rendering, we
employ a deferred neural rendering technique that is based
on neural textures to store the appearance of a face [27].
Our rendering pipeline synthesizes the lower face in the tar-
get video based on the audio-driven expression estimations.
Specifically, we use two networks. One network that focuses
on the face interior, and another network that embeds this
rendering into the original image. The estimated 3D face
model is rendered using the rigid pose observed from the
original target image. We render a neural texture with a reso-
lution of 256× 256× 16. The network for the face interior
translates these rendered feature descriptors to RGB colors.
The network is using a similar structure as a classical U-
Net with 5 layers. But instead of using strided convolutions
that result in a downsampling in each layer, we are using
dilated convolutions with increasing dilation factor and a
stride of one. Instead of transposed convolutions we are us-
ing standard convolutions. All convolutions have kernel size
3× 3. Note, dilated instead of strided convolutions do not
increase the number of learnable parameters, but it increases
the memory load during training and testing. Dilated convo-
lutions help to reduce visual artifacts and result in smoother
results (also temporally). The second network that blends
the face interior with the ’background image’ has the same
structure. To remove potential movements of the chin in the
background image, we erode the background image around
the rendered face. Thus, the task of this second network is
to inpaint the region between the face and the background.

Loss: We use a per-frame loss function that is based on an
`1 loss to measure absolute errors and a VGG style loss [16].

Lrendering = `1(I, I
∗) + `1(Î , I

∗) + V GG(I, I∗)

with I being the final synthetic image, I∗ the ground truth
image and Î the intermediate result of the first network that
focuses on the face interior (loss is masked to this region).

5.3. Training

Our training procedure has two stages – the generalization
and the specialization phase. In the first phase, we optimize
for the shared network parameters that enable a generaliza-
tion among different source actors. Specifically, we train
the audio-based expression estimation among all sequences
from our dataset (see Sec. 4) in a supervised fashion. Given
the face tracking information acquired in an automatic data
preprocessing step, we know the 3D face model of a specific
person for every frame. In the training process, we repro-
duce these 3D reconstructions based on the audio input by
optimizing the network parameters and the person-specific
mapping from the audio expression space to the 3D space.

In the second phase, the rendering network for a specific
target sequence is trained. Given the ground truth images

and the visual tracking information, we train the deferred
neural renderer end-to-end including the neural texture.

Our pipeline is implemented in PyTorch. For both stages
we are using the Adam [20] optimizer with default settings
(β1 = 0.9, β2 = 0.999, ε = 1 · e−8) and a learning rate of
0.0001. The Audio2ExpressionNet is trained for 50 epochs
(resulting in a training time of ∼ 28 hours on a Nvidia
1080Ti) with a learning rate decay for the last 30 epochs,
a batch size of 16 and Xavier initialization. The rendering
networks are also trained for 50 epochs for each target person
individually with a batch size of 1 (∼ 30 hours training time,
∼ 5 hours in case of strided convolutions).

New target video Since the audio-based expression esti-
mation network is generalized among multiple persons, we
can apply it to unseen actors. The person specific mapping
between the predicted audio expression space coefficients
and the expression space of the new person can be obtained
by solving a linear system of equations. Specifically, we
extract the audio-expression for all training images and com-
pute the linear mapping to the expressions that are visually
estimated. In addition to this step, the person-specific render-
ing network for the new target video is trained from scratch.

5.4. Inference

At test time, we only require a source audio sequence.
Based on the target actor selection, we use the corresponding
person-specific mapping. The mapping from the audio fea-
tures to the person specific expression space takes less than
2ms on an Nvidia 1080Ti. Generation of the 3D model and
the rasterization using these predictions takes another 2ms.
The deferred neural rendering takes ∼ 5ms which results in
a real-time capable pipeline.

Text-to-Video Our pipeline is trained on real video se-
quences, where the audio is in sync with the visual content.
Thus, we learned a mapping directly from audio to video
that ensures synchronicity. Instead of going directly from
text to video, where such a natural training corpus is not
available, we synthesize voice from the text and feed this
into our pipeline. For our experiments we used samples
from the DNN-based text-to-speech demo of IBM Watson1.
Which gives us state-of-the-art synthetic audio streams that
are comparable to the synthetic voices of virtual assistants.

6. Results
Neural Voice Puppetry has several important use cases,

i.e., audio-driven video avatars, video dubbing and text-
driven video synthesis of a talking head, see supplemental
video. In the following sections, we discuss these results
including comparisons to state-of-the-art approaches.

1https://text-to-speech-demo.ng.bluemix.net/

https://text-to-speech-demo.ng.bluemix.net/


Figure 5: Comparison to state-of-the-art audio-driven model-based
video avatars. Our approach is applicable to multiple targets.

Figure 6: Qualitative comparison of our method to Voca [6]. It is a
representative image for a talking sequence of Winston Churchill.

6.1. Audio-driven model-based video avatars:

First we discuss model-based video avatars that can be
controlled by audio input. In Fig. 5 we show a representative
image from a comparison to Taylor et al. [26], Karras et
al. [17] and Suwajanakorn et al. [24]. All three methods
were published at SIGGRAPH 2017, where this sequence
has been shown as a direct comparison, thus, all results
are generated by the original implementation of the authors.
Only the method of Suwajanakorn et al. is able to produce
photo-realistic output. The method is fitted to the scenario
where a large video dataset of the target person is available
and, thus, limited in its applicability. They demonstrate it on
sequences of Obama, using 14 hours of training data and 3
hours for validation. In contrast, our method works on short
2− 3 min target video clips. In our supplemental video, we
show multiple comparisons to Voca [6]. Fig. 6 shows an
image of a legacy Winston Churchill sequence. In contrast
to Voca, our aim is to generate photo-realistic output videos
that are in sync with the audio. Voca focuses on the 3D
geometry requiring a 4D training corpus, while our approach
uses a 3D proxy only as an intermediate step and works on
videos from the Internet. Our 3D proxy is based on a generic
face model and, thus, has not the details as a person-specific
modelled mesh. Nevertheless, using our neural rendering
approach, we are able to generate photo-realistic results.

6.2. Audio-driven 2D-based image avatars:

’You said that?’ [3] is a GAN-based method that works
without an explicit 3D model. It is operating in a normalized
space of facial imagery (cropped, frontal faces) and needs a

Figure 7: Comparison to the 2D-based methods ’You said that?’ [3]
and ’Realistic Speech-Driven Facial Animation with GANs’ [34].

Figure 8: Visual dubbing fails to map strong expressions from the
source to plausible expressions of the target actor.

single image of the target person. In contrast, our method em-
ploys a 3D model to ensure 3D consistent movements in the
output video. Instead of a normalized image, we generate an
output that is embedded in a real video (see Fig. 7). Similar
to ’You said that?’, Vougioukas et al. [34] generate talking
head animations from a still image, including movements of
eyebrows and eye blinks. Fig. 7 also shows a comparison to
this method on a sequence of President Trump that is driven
by the audio of an impersonator.

6.3. Video dubbing:

State-of-the-art video dubbing is based on video-driven
facial reenactment [11, 28, 19, 27, 18]. In contrast, our
method is only relying on the voice of the dubber. The ’De-
ferred Neural Rendering’ [27] is a generic neural rendering
approach, but the authors also show the usage in the scenario
of facial reenactment. It builds upon the Face2Face [28]
pipeline and directly transfers the deformations from the
source to the target actor. Thus, tracking errors that occur
in the source video (e.g., due to occlusions or fast motions)
are transferred to the target video. In a dubbing scenario, the
goal is to keep the talking style of the target actor which is
not the case for [11, 28, 19, 27]. To compensate the influence
of the source actor talking style, Kim et al. [18] proposed a
method to map from the source style to the target actor style.
Our approach directly operates in the target actor expression
space, thus, no mapping is needed (we also do not capture
the source actor style). This enables us to also work on
strong expressions, as shown in Fig. 8.

6.4. Text-driven video synthesis

Fried et al. presented ’Text-based Editing of Talking-
head Video’ [10] which provides a video editing tool that is
based on the transcript of the video. The method reassembles



Figure 9: Self-reenactment: Evaluation of our rendering network
and the audio-prediction network.

captured expression snippets from the target video, requiring
blending heuristics. To achieve their results they rely on
more than one hour of training data. We show a direct
comparison to this method in the supplemental video. Note,
our method only uses the synthetic audio sequence as input,
while the method of Fried et al. uses both the transcript and
the audio. In the comparison our method generates the entire
video, while the text-based editing method only synthesizes
the frames of the new three words.

6.5. Ablation studies

We use self-reenactment to evaluate our pipeline (Fig. 9),
since it gives us access to a ground truth video sequence
where we can also retrieve visual face tracking. As a distance
measurement, we use an `2 distance in color space (colors
in [0,1]). Using this measure, we evaluate the rendering
network (assuming good visual face tracking) and the entire
pipeline. Specifically, we compare the results using visual
tracked mouth movements to the results using audio-based
predictions (see video). The mean color difference of the
re-rendering on a test sequence of 645 frame is 0.003 for the
visual and 0.005 for the audio-based expressions.

In the supplemental video we also show a side-by-side
comparison of our rendering network using dilated convolu-
tions and our network with strided convolutions (and a kernel
size of 4 to reduce block artifacts in the upsampling). Both
networks are trained with the same number of epochs (50).
As can be seen, dilated convolutions lead to visually more
pleasing results (smoother in spatial and temporal domain).

Our results are covering different target persons which
demonstrates the wide applicability of our method and that
we are able to map the generalized audio-expression space
to different person-specific talking styles and appearances.
As can be seen in the supplemental video, the expression es-
timation network that is trained on multiple target sequences
(302750 frames) results in more coherent predictions than
the network solely trained on a sequence of Obama (3145
frames). The usage of more target videos increases the train-
ing corpus size and the variety of input voices and, thus,
leads to more robustness.

Our training corpus is based on German news speakers.
Nevertheless, most of our results are in English and show a
good transferability. In the video we also show a comparison
of the transfer from different source languages to different
target videos that are originally also in different languages.

Figure 10: User study: percentage of attendees (in total 56) that
rated the visual and audio-visual quality good or very good.

User study We further quantify the output quality of our
approach in a user study. To this end, we show sequences of
the competing methods, as well as results of our method. The
56 attendees with a computer science background judged
upon synchronicity and visual quality (’very bad’, ’bad’, ’nei-
ther bad nor good’, ’good’, ’very good’). The study consists
of 24 videos which are presented to the user in randomized
order. See supplemental material for the collection of videos
we used and the statistics. In Fig. 10, we show the percentage
of attendees that rated the specific approach good or very
good. As can be seen our approach gives the best visual
quality and also state-of-the-art quality for audio-visual sync
for photo-realistic methods based on audio input similar to
the video-based approach of Thies et al. [27]. The method of
Vougioukas [34] achieves higher audio-visual sync but lacks
visual quality and is not able to synthesize natural videos.

7. Limitations

As can be seen in the supplemental video, our approach
works robustly on different audio sources and target videos.
But it still has limitations. Especially, in the scenario of
multiple voices in the audio stream our method fails. Re-
cent work is solving this ’cocktail party’ issue using visual
clues [7]. As all other reenactment approaches, the target
videos have to be occlusion free to allow good visual track-
ing. Another limitation is the fixed talking style. We assume
that the target actor has a constant talking style during a
target sequence. In follow-up work we plan to estimate the
talking style from the audio signal to control the expressive-
ness of the facial motions.

8. Conclusion

In this work, we presented a novel audio-driven facial
reenactment approach that is generalized among different
audio sources. This allows us not only to synthesize videos
of a talking head from an audio sequence from another per-
son, but also to generate a photo-realistic video based on a
synthesized voice. I.e., text-driven video synthesis can be
achieved that is in sync with artificial voice. We hope that
our work is a stepping stone in the direction to audio-visual
assistants.
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A. Network Architectures
Audio2ExpressionNet: A core component of Neural
Voice Puppetry is the estimation of facial expressions based
on audio. To retrieve temporal coherent estimations, we
employed a process with two stages. In the first stage, we
estimate per frame expressions based on DeepSpeech fea-
tures. The network is depicted in Fig. 11. The output of this
network is an audio-expression vector of length 32. This
audio-expression is temporally noisy and is filtered using an
expression aware filtering network which can be trained in
conjunction with the per frame expression estimation net-
work. The temporal filtering mechanism is also depicted in
the main paper. The underlying network that predicts the
filter weights gets as input T = 8 per-frame predicted audio
expressions. We apply 5 1D-convolutional filters with kernel
size 3 that reduce the feature space successively from 32× 8
over 16 × 8, 8 × 8, 4 × 8, 2 × 8 to 1 × 8. Each of these
convolutions has a bias and is followed by a leaky ReLU
activation (negative slope of 0.02). The output of the con-
volutional network is input to a fully connected layer with
bias that maps the 1× 8 input to the 8 filter weights that are
normalized using a softmax function.

To train the network we apply a vertex-based loss as de-
scribed in the main paper. The vertices that refer to the
mouth region are weighted with a 10× higher loss. We
use the mask that is depicted in Fig. 12. For generalization
we used a dataset composed of commentators from the Ger-
man public TV (e.g., https://www.tagesschau.de/
multimedia/video/video-587039.html). In to-
tal the dataset contained 116 videos.

Rendering network: In Fig. 13, we show an overview of
our neural rendering approach. Based on the expression

Figure 11: Based on the audio features extracted by the RNN of
DeepSpeech, we predict an audio-expression vector.

Figure 12: During the training of the Audio2ExpressionNet, we
give higher weight to the per-vertex loss in the region of the mouth.

predictions, that drive a person-specific 3D face model, we
render a neural texture to the image space of the target video.
A first network is used to convert the neural descriptors sam-
pled from the neural texture to RGB color values. A second
network embeds this image into the target video frame. We
erode the target image around the synthetic image, to remove
motions of the target actor like chin movements. Using this
eroded target image as background and the output of the
first network, the second network outputs the final image.
Both networks have the same structure, only the input dimen-
sions are different. The first network gets an image with 16
feature channels as input (dimension of the neural descrip-
tors that are sampled from a neural texture with dimensions
256× 256× 16), while the second network composites the
background and the output of the first network, resulting
in an 6 channel input. The networks are implemented in
the Pix2Pix framework [14]. Instead of a classical U-Net
with strided convolutions, we build on dilated convolutions.
Specifically, we replace the strided convolutions in a U-Net
of depth 5. Instead of transposed convolutions we use a
standard convolution, since we do not downsample the im-
age and always keep the same image dimensions. Note that
we also keep the skip connections of the classical U-Net.
The number of features per layer is 32 in our experiments,
resulting in networks with ∼ 2.35mio parameters (which is
low in comparison to the used network in Deferred Neural
Rendering [27] with ∼ 16mio parameters). We employ the
structure that is depicted in Fig. 15. Each convolution layer

Figure 13: Our neural rendering approach consists of a deferred
neural renderer and an inpainting network that blends the modified
face interior into the target image.

https://www.tagesschau.de/multimedia/video/video-587039.html
https://www.tagesschau.de/multimedia/video/video-587039.html


Figure 14: Our user study contained 24 videos from different state-of-the-art methods, including 3 original videos. Here we show some
frames of the videos.

has a kernel size of 3× 3 and is followed by a leaky ReLU
with negative slop of 0.2. All layers have stride 1 which
means that all layers intermediate feature maps have the
same spatial size as the input (512× 512). The first convolu-
tional layer maps to a feature space of dimension 32 and has
a dilation of 1. With increasing layer depth the feature space
dimension as well as the dilation increases by a factor of 2.
After layer depth 5, we use standard convolutions.

Figure 15: We use a modified U-Net architecture that uses dilated
convolutions instead of strided convolutions. Transposed convolu-
tions are replaced by std. convolutions.

B. User Study
In this section, we present the statistics of our user study.

Fig. 16 shows a collection of videos that we used for the
user study. The clips are from the official videos of the

corresponding methods and are similar to the clips that we
show in our supplemental video. Fig. 16 shows the average
answers of our questions, including the variance.
In the user study we asked the following questions:

• How would you rate the audio-visual alignment (lip
sync) in this video?

• How would you rate the visual quality of the video?

With the answer possibilities ”very good”,”good”,”Neither
good nor bad”,”bad”, ”very bad”.

C. Ethical Considerations

In conjunction with person specific audio generators like
Jia et al. [15], a pipeline can be established that creates video-
realistic (temporal voice- and photo-realistic) content of a
person. This is perfect for creative people in movie and
content production, to edit and create new videos. On the
other hand, it can be misused. To this end, the field of digital
media forensics is getting more attention. Recent publica-
tions [23] show that humans have a hard time in detecting
fakes, especially, in the case of compressed video content.
Learned detectors are showing promising results, but are
lacking generalizeability to other manipulation methods that
are not in the training corpus. Few-shot learning methods
like ForensicTransfer [5] try to solve this issue. As part of
our responsibility, we are happy to share generated videos of
our method with the forensics community. Nevertheless, our
approach enables several practical use-cases, ranging from
movie-dubbing to text-driven photo-realistic video avatars.
We hope that our work is a stepping stone in the direction
of audio-based reenactment and is inspiring more follow-up
projects in this field.
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