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DNA Motif Match Statistics Without Poisson

Approximation

WOLFGANG KOPP* and MARTIN VINGRON

ABSTRACT

Transcription factors (TFs) play a crucial role in gene regulation by binding to specific
regulatory sequences. The sequence motifs recognized by a TF can be described in terms of
position frequency matrices. Searching for motif matches with a given position frequency
matrix is achieved by employing a predefined score cutoff and subsequently counting the
number of matches above this cutoff. In this article, we approximate the distribution of the
number of motif matches based on a novel dynamic programming approach, which accounts
for higher order sequence background (e.g., as is characteristic for CpG islands) and
overlapping motif matches on both DNA strands. A comparison with our previously pub-
lished compound Poisson approximation and a binomial approximation demonstrates that
in particular for relaxed score thresholds, the dynamic programming approach yields more
accurate results.

Keywords: dynamic programming, Markov model, motif enrichment.

1. INTRODUCTION

Transcription factors (TFs) play an essential role in the regulation of gene expression. They

function by binding to short sequences known as transcription factor binding sites (TFBSs), which are

typically located in promoter or enhancer regions (Alberts et al., 2002). Based on the motif descriptions of the

TFBSs, many programs search for and count occurrences of the motif matches in a sequence (Chen et al.,

1995; Frith et al., 2004; Cartharius et al., 2005; Bailey et al., 2009; Roider et al., 2009; Zambelli et al., 2009;

McLeay and Bailey, 2010). Since the motifs typically lack specificity, the need arises to determine the

statistical significance of a motif match and thereafter to evaluate how many matches one would expect to

find by chance. Relative to this information, motif enrichment can be inferred, for example, for a set of

promoters (Thomas-Chollier et al., 2008).

The binding motif of a TF is frequently summarized as a position frequency matrix (PFM) (Stormo,

2000). A PFM tabulates the frequency at which a certain base has been observed at a position of a TFBS.

PFMs are commonly depicted as sequence logos (Schneider and Stephens, 1990), and large numbers of

known motifs are available through different databases, including TRANSFAC (Wingender et al., 1996),
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JASPAR (Sandelin et al., 2004), or Hocomoco (Kulakovskiy et al., 2013). Alternatively, TFBSs may be

expressed via a collection of consensus strings.

An important area of research has been to determine the distributions of the number of motif matches in a

random set of DNA sequences, which is at the heart of enrichment testing. For word patterns, the distri-

bution of match counts has been studied in great depth (for review, see Reinert et al., 2000) and can even be

determined exactly based on dynamic programming (Zhang et al., 2007; Marschall and Rahmann, 2008,

2010). However, the exact solutions require the enumeration of all compatible words to derive the statistics,

which is only feasible if the set of words if sufficiently small (Zhang et al., 2007).

When counting PFM matches in a sequence, first, a cutoff for the match needs to be defined. Once the

threshold is chosen, one can count the number of matches and evaluate the distribution of the number of

matches (Rahmann et al., 2003). Unfortunately, computing the exact match count distribution is often

intractable. For this reason, efficient approximative solutions have been proposed, including the binomial

distribution (Thomas-Chollier et al., 2008) or the compound Poisson distribution (Pape et al., 2008; Kopp

and Vingron, 2017). The accuracy of these solutions depends on the validity of their statistical assumptions,

which may not always be satisfied. For instance, the binomial model assumes independence between

matches in a sequence and consequently ignores self-overlapping matches, whereas the compound Poisson

approximation assumes motif matches to occur only rarely (‘‘rare hit’’ assumption).

In this article, we present a novel modeling approach to delineate the distribution of the number of PFM-based

motif matches that aims to account for self-overlapping motif matches and at the same time relaxes the ‘‘rare hit’’

assumption. This approach is based on our recently proposed computation of the motif match statistics (Kopp and

Vingron, 2017). First, we present a novel Markov model that describes the random process for generating motif

matches. This model is instrumental for determining the probability of a clump start match, for example, a motif

match that is not overlapped by any previous matches. A similar concept has been introduced for studying word

pattern matches (Marschall and Rahmann, 2008). Second, we introduce a dynamic programming approach for

computing the distribution of the number of matches, which was inspired by Liu and Lawrence (1999). Finally, we

present an extension of these models for scanning motif matches on both DNA strands.

We demonstrate the accuracy of the dynamic programming approach for various parameter settings and a

large set of known motifs, including a palindromic motif and a repeat-like motif, in comparison to our

earlier compound Poisson model (Kopp and Vingron, 2017) and a binomial model. Generally, we find that

the novel dynamic programming approach yields similar or more accurate results compared with the other

models, especially when a rather relaxed match score was chosen.

2. METHODS

2.1. Motifs, background, motif score, and motif hits

Let A = fA‚ C‚ G‚ Tg denote the alphabet of DNA letters and w = w1w2 � � �wN a sequence of length N

from this alphabet. The probability of w is given by a homogeneous order-d Markov model (the back-

ground model), whose transition probabilities are denoted by p(wi - d � � �wi - 1; wi) = P(wijwi - 1 � � �wi - d) and

whose stationary distribution is denoted by l. Thus, we have

PB(w) = l(w1 � � �wd)
YN

i = d + 1

p(wi - d � � �wi - 1; wi):

The transition probabilities p(a0 � � � ad - 1; ad) are estimated via the maximum likelihood procedure de-

scribed in Reinert et al. (2000):

p̂(a0 � � � ad - 1; ad) =
N(a0 � � � ad - 1‚ ad)P
ad

N(a0 � � � ad - 1‚ ad)
‚ (1)

with N(a) denoting the count of a 2 Ad + 1 in w 2 AN and under the additional constraints that each word

occurs equally likely on both DNA strands and with reversed nucleotide order (from 50 to 30 and 30 to 50).
These constraints simplify the motif matching statistics when both DNA strands are scanned for motif

matches and they are enforced by utilizing the detailed balance condition (Kopp and Vingron, 2017).

We represent the DNA binding affinity by a PFM. A PFM is a jAj · M matrix, where jAj denotes the size

of the alphabet and M denotes the length of the TF binding site. A PFM contains the elements pj(w), which
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correspond to the frequency of observing nucleotide w at position j. We shall further assume that all

elements of the PFM are strictly positive and its columns are normalized to 1 such that they represent

probabilities. Then, the likelihood of a word w0 2 AM with respect to the PFM is given by

PM(w0) =
YM
j = 1

pj(w
0
j):

We adapt the commonly used log-likelihood ratio (Rahmann et al., 2003; Li and Tompa, 2006; Touzet

et al., 2007), or motif score, to discriminate likely bound sequences from unbound sequences according to

s(w0) : = log
PM(w0)

PB(w0)

� �
‚ (2)

where w0 2 AM and assume that d � M for the remainder of this article.

We leverage the motif score to determine motif hits (or putative TFBSs) by utilizing a predetermined

score threshold. Position i in a sequence is called a motif hit if s(wi . . . wi + M - 1) is greater or equal to the

score threshold. According to Neyman and Pearson (1933), it is reasonable to choose a score threshold ta,

which is associated with a desired false-positive level a. Hence, motif hits are called with significance level

a. To choose ta, we determine the distribution of the scores PB(S = s) using an efficient algorithm, where we

assume the underlying sequence to be generated by an order-d background model starting in the stationary

distribution l as described previously (Kopp and Vingron, 2017). We obtain the score threshold ta asso-

ciated with significance level a from PB(S = s) by computing PB(S � ta) = a.

Scanning a DNA sequence for motif matches results in a stochastic process fYig1�i�N - M + 1, where

Yi : = 1[s(wi � � �wi + M - 1) � ta] denotes an indicator random variable that reflects a TFBS occurrence at

position i. In case both DNA strands are scanned for motif matches, an additional set of random variables,

denoted by fY 0ig1�i�N - M + 1, reflects the reverse strand matches. The total number of motif matches X

emitted on both DNA strands is given by

X =
XN - M + 1

i = 1

Yi + Y 0i:

If only one strand is scanned, the contribution of Y 0i becomes obsolete.

2.2. Types of matches

Scanning a DNA sequence for binding site matches might result in self-overlapping matches, depending

on the structure of the motif, which influences the distribution of the number of motif matches. To account

for that, the notion of a clump has been introduced, which refers to one or more motif matches that are

mutually overlapping (Reinert et al., 2000).

Within a clump, two distinct types of motif matches are possible: A clump start match and self-

overlapping matches. Without loss of generality, we scan for motif matches from left to right. Therefore, a

match Yi = 1 at position i starts a clump if it is not overlapped by any previous matches to its left. For example,

for a motif of length M = 3, the sequence Y1 = 0‚ Y2 = 0‚ Y3 = 1 constitutes a clump start at position 3.

Otherwise, we observe a self-overlapping match.

2.2.1. Motif matches when scanning a single strand. The probability of observing a clump start is

denoted by

s : = P(Yi = 1jYi - 1 = 0‚ � � � ‚ Yi - M + 1 = 0): (3)

The computation of the clump start probability shall be deferred to Section 2.3. We define the probability

of a self-overlapping match by

bk : = P(Yk = 1‚ Yk - 1 = 0‚ � � � Y1 = 0jY0 = 1) (4)

for k 2 f1‚ � � �M - 1g, which we efficiently approximate using our earlier approach (Kopp and Vingron,

2017).
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2.2.2. Motif matches when scanning both DNA strands. In many applications, we do not know in

advance on which DNA strand a TFBS might occur, which is solved by simply scanning both strands. This

in turn also creates a coupling between matches on both strands that needs to be addressed. In the

following, without loss of generality, we consider the ordering of events: Y1Y 01 Y2 Y 02 Y3 Y 03 � � �. That is, we

scan the sequence from left to right, and a forward strand event Yi precedes the corresponding reverse

strand event Y 0i at position i.

A clump starts on the forward strand if matches at the M - 1 previous positions (on both strands) are

absent. Its probability is defined by

s : = P(Yi = 1jfYi - m = 0‚ Y 0i - m = 0gi - M<m<i): (5)

Likewise, a clump starts on the reverse strand Y 0i = 1 if additionally Yi = 0, in which case the probability

is given by

s0 : = P(Y 0i = 1‚ Yi = 0jfYi - m = 0‚ Y 0i - m = 0gi - M<m<i): (6)

When scanning both DNA strands, overlapping motif matches might occur in three different configu-

rations: (1) Hits might overlap on the same strand, (2) a forward strand hit Y0 = 1 precedes a reverse strand

hit Y 0k = 1 for 0 � k < M, and (3) a reverse strand hit Y 00 = 1 precedes a forward strand hit Yk = 1 for

0 < k < M, where k denotes the shift between the positions (Fig. 1).

The associated probabilities with the overlapping match configurations are defined by

bk : = P(Yk = 1‚ fYj = 0‚ Y 0j = 0g1�j<k‚ Y 00 = 0jY0 = 1) (7)

b30‚ k : = P(Y 0k = 1‚ fYj = 0g1�j�k‚ fY 0j = 0g0�j<kjY0 = 1) (8)

b30‚ 0 : = P(Y 00 = 1‚ jY0 = 1) (9)

b50‚ k : = P(Yk = 1‚ fYj = 0‚ Y 0j = 0g1�j<kjY 00 = 1): (10)

We approximate them by using the procedure discussed in Kopp and Vingron (2017).

2.3. A Markov model for generating motif matches

In this section, we introduce a Markov model that resembles the process of generating motif matches as

one DNA strand is scanned for match occurrences. We shall exploit this model later to determine the clump

start probability, which constitutes an important prerequisite for Section 2.4.

2.3.1. Model states, state transitions, and transition probabilities. Before establishing the

Markov model states, two independence assumptions are required: First, for i + M - 1 < j, the events Yi and

Yj are assumed to be statistically independent because they are nonoverlapping. Second, a motif match

Yi = 1 at position i renders the events upstream and downstream independent, for example, Yi - 1 is inde-

pendent of Yi + 1 given Yi = 1. We justify them in Section 5.

Next, we define the Markov model and use it to express the realizations of Y1Y2Y3 � � � in terms of the

states and state transition. We shall use the Markov model to analyze the stationary distribution of the

model, which allows us to evaluate the unknown probability of a clump start match s.

The state space of the Markov model is established through a correspondence relationship with match

patterns in Y1Y2 � � �. Accordingly, a motif of length M results in M states due to the assumption that

nonoverlapping positions are assumed to be independent:

a b c

FIG. 1. Three types of overlapping hit with a shift of k between the motif starts. (a), (b), and (c) correspond to

matches on the same strand, a forward strand match followed by a reverse strand match and a reverse strand match

followed by a forward strand match, respectively. The arrows pointing to the right and left represent the (50/30) and

(30)50) directions of the DNA, respectively.
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n

h

n1

n2

..

.

nM - 3

nM - 2

b=b=b=
b=b=b=

(Yi - M + 2 = 0‚ Yi - M + 3 = 0‚ � � � ‚ Yi - 2 = 0‚ Yi - 1 = 0‚ Yi = 0)

(Yi - M + 2 = � ‚ Yi - M + 3 = � ‚ � � � ‚ Yi - 2 = � ‚ Yi - 1 = � ‚ Yi = 1)

(Yi - M + 2 = � ‚ Yi - M + 3 = � ‚ � � � ‚ Yi - 2 = � ‚ Yi - 1 = 1‚ Yi = 0)

(Yi - M + 2 = � ‚ Yi - M + 3 = � ‚ � � � ‚ Yi - 2 = 1‚ Yi - 1 = 0‚ Yi = 0)

..

.

(Yi - M + 2 = � ‚ Yi - M + 3 = 1‚ � � � ‚ Yi - 2 = 0‚ Yi - 1 = 0‚ Yi = 0)

(Yi - M + 2 = 1‚ Yi - M + 3 = 0‚ � � � ‚ Yi - 2 = 0‚ Yi - 1 = 0‚ Yi = 0)

‚ (11)

where ‘‘�’’ represents any outcome (zero or one) at the respective position. As the motif is shifted along the

sequence, the Markov chain switches from one state to another, determined by the match pattern of the motif

at a position. State h represents a motif match at a current position i regardless of the previous events. nk

denotes a memory state that indicates that the last match occurred k positions upstream of the current position

and n denotes the absence of motif matches for M - 1 consecutive position (including the current position).

Traversing the sequence Y1Y2Y3 � � � in an ordered manner imposes a restriction on the possible state tran-

sitions (Fig. 2). For example, the transition (Zi = n2)! (Zi + 1 = n1) is not viable, whereas (Zi = n)! (Zi + 1 = h)

is. This in turn results in an M · M transition matrix:

P(n! n) 0 0 0 P(nM - 2 ! n)

P(n! h) P(h! h) P(n1 ! h) � � � P(nM - 3 ! h) P(nM - 2 ! h)

0 P(h! n1) 0 0 0

0 0 P(n1 ! n2) 0 0

0 0 0 0 0

..

. . .
. ..

.

0 0 0 � � � P(nM - 3 ! nM - 2) 0

2
666666664

3
777777775

‚ (12)

whose individual transition probabilities are derived from Equations (3) and (4) as

P(n! n) : = 1 - s (13)

P(n! h) : = s (14)

P(h! h) : = b1 (15)

P(h! n1) : = 1 - b1 (16)

P(nk ! h) : = P(Y0 = 1jY - 1 = 0‚ � � � ‚ Y - k + 1 = 0‚ Y - k = 1)

=
P(Yk = 1‚ Yk - 1 = 0‚ � � � ‚ Y1 = 0jY0 = 1)

P(Yk - 1 = 0‚ � � � ‚ Y1 = 0jY0 = 1)

=
bk

1 -
Pk - 1

i = 1

bi

for 1 � k � M - 2 (17)

P(nk ! nk + 1) : = 1 - P(nk ! h) for 1 � k < M - 2 (18)

P(nM - 2 ! n) : = 1 - P(nM - 2 ! h): (19)

2.3.2. Computing the clump start probability s. In the previous section, we have established the

states and state transitions for the Markov model. We expressed the transition probabilities solely based on

FIG. 2. Illustration of the Markov model. The

nodes denote the states of the model using a TF

motif of length M = 5. Arrows indicate viable state

transitions, which may (or may not) be associated

with a positive transition probabilities. Under-

neath each node, the associated pattern in Y1Y2 � � �
is depicted, where the black and white boxes

denote the outcomes one and zero and the bullet

represents any outcome (zero or one) that are

described by the Correspondences [Equation

(11)]. TF, transcription factor.
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s and fbkg1�k�M - 1. While fbkg1�k�M - 1 can be efficiently approximated, the computation of s remains to

be discussed.

Recall that due to the choice of the score threshold ta, motif matches occur with probability P(Y = 1) = a. This

implies that the stationary distribution of the Markov model should visit the state Z = h also with probability

l(Z = h) = a, where l denotes the stationary probability. Thus, we introduce an optimization procedure whose

objective is to establish l(h; s) = a with respect to the unknown parameter s. We utilize the objective function:

f (l(s)) : = - a log (l(h; s)) - (1 - a) log (1 - l(h; s))‚ (20)

which has a unique minimum at l(h; s) = a as can be verified by studying df (l)=dl = 0. This function

is motivated by the cross-entropy error, which is widely used to fit supervised statistical classifiers,

for example, the logistic regression model (Bishop, 2006). While the objective (l(h; s) - a)2 would be

another (perhaps more intuitive) possibility, it may result in numerical issues due to the fact that a is usually

rather small. In contrast, the chosen objective function [Equation (20)] is slightly better behaved in this

respect. Furthermore, other objective functions may be envisioned as well, so long as they have a minimum

at l(h; s) = a. But since we have not noticed any numerical issues with the current choice (as by the

experiments presented in this work), we believe that the current objective works well in practice.

We minimize Equation (20) iteratively starting from s0 = a using conjugate gradients. In each iteration,

the stationary distribution of the Markov model is computed with respect to the current s using the power

method (Karlin and Taylor, 1981).

2.4. Computing the distribution of the number of matches

In this section, we develop an algorithm for computing the distribution of the number of motif matches

based on the previously determined overlapping match probabilities fbig1�i<M and the clump start prob-

ability s. The algorithm was inspired by Liu and Lawrence (1999), which allows to efficiently sum the

probabilities of all possible permutations of placing X motif matches in a sequence of fixed length N via

dynamic programming. For example, to compute the probability of placing two matches in Y1::Y3, we

would have to determine P(Y1::Y3 = 110) + P(Y1::Y3 = 101) + P(Y1::Y3 = 011). In the general case, this

amounts to summing over (N
x ) individual permutations. While dynamic programming has been proposed for

studying word-pattern-based motifs (Zhang et al., 2007), we are not aware of a comparable approach for

studying PFM-based motifs directly.

We start by discussing the case where overlapping motif matches are ignored. We denote the indices

associated with the events Y1 � � � Yi by [1 : i]. The number of motif matches in that segment is denoted by

X[1:i] and its probability to exhibit x matches is denoted by P(X[1:i] = x).

According to equation (18) in Liu and Lawrence (1999), given that P(X[1:i] = x) has already been com-

puted, P(X[1:j] = x + 1) can be established recursively by

P(X[1:j] = x + 1) =
X
i<j

P(X[1:i] = x)P(Yi + 1 = 1‚ X[i + 2:j] = 0)‚ (21)

provided that neighboring events in fYig are considered independent. As a consequence, the resulting

distribution of the number of matches would be identical to a binomial distribution.

At this point, we would like to convey the intuition behind Equation (21) via an example as it is of

fundamental importance for the dynamic programming algorithm that we introduce below. Consider the

probability of observing two matches in the sequence Y1 . . . Y4. That is P(X[1:4] = 2). Since the example is

small enough, it is illustrative to enumerate the permutations:

P(X[1:4] = 2) = P(Y1::Y4 = 0011) +
P(Y1::Y4 = 0101) +
P(Y1::Y4 = 1001) +
P(Y1::Y4 = 0110) +
P(Y1::Y4 = 1010) +
P(Y1::Y4 = 1100):

By ordering these permutations as shown above, we can see that the right-hand side of Equation (21) is

obtained
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P(X[1:1] = 1)P(Y2 = 1‚ X[3:4] = 0) = P(1100)

P(X[1:2] = 1)P(Y3 = 1‚ X[4:4] = 0) = P(1010) + P(0110)

P(X[1:3] = 1)P(Y4 = 1) = P(1001) + P(0101) + P(0011):

The generalization of this example yields Equation (21).

Next, we adapt Equation (21) to account for self-overlapping matches. This requires to memorize at

which position in the segment [1 : i] the last match occurred because this influences the probability of a

match at i + 1. Toward this end, we introduce the number of matches Xa
[1:i] in the segment [1 : i] with an

additional index a indicating the location of the last match in that segment. For 1 � a < M, the last match

occurred at position i - a + 1, and for a = M, the last match occurred at M or more positions upstream of

i + 1. In other words, 1 � a < M describes self-overlapping matches, whereas a = M results in a clump start

match. Note also that all nonoverlapping upstream positions can be aggregated due to the assumption that

nonoverlapping events are assumed to occur independently. The recursive definition for P(Xa
[1:j] = x + 1) now

becomes

P(Xa
[1:j] = x + 1) =

X
i<j

X
b�M

P(Xb
[1:i] = x) · h(b) · z(j - i)‚ (22)

where we make use of Equations (3) and (4) to define

a : = j - i if j - i < M

M o:w:

�
(23)

h(b) : = bb if b < M

s o:w:

�
(24)

z(b) : = 1 if b < M

(1 - s)b - M �
P

i<M 1 - bi o:w:

�
(25)

The purpose of the auxiliary function h(:) is to incorporate one more match at position i + 1, which can

happen through an overlapping match or a clump start match. However, z(:) accounts for the absence of

additional matches in the segment [i + 2‚ j], where we defer the incorporation of the absence of matches for

the case b < M to the termination step of the algorithm.

For convenience, we define

di : = 1 -
Xi

j = 1

bj: (26)

We initialize the procedure for P(Xa
[1:j] = 1) according to

P(Xa
[1:j] = 1) = (j - M + 1) · (1 - s)j - MsdM - 1 for a = M

(1 - s)j - as ow:

�
(27)

for 1 � a � M and 1 � j � N - M + 1.

Then, we evaluate Equation (22) for x = 2 to the maximal number of matches to be considered xmax.

Finally, the algorithm terminates by

P(X[1:N - M + 1] = x) = P(XM
[1:N - M + 1] = x) +

XM - 1

a = 1

P(Xa
[1:N - M + 1] = x)da - 1: (28)

Together with the fact that P(X[1:j] = 0) = (1 - s)j, this establishes the distribution of the number of

matches P(X[1:N - M + 1] = x).

We have also developed an extension of the Markov model and dynamic programming procedure for the

case of studying the number of motif matches on both DNA strands. Since they are based on similar

considerations, we relegate their description to Appendix.
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2.4.1. Runtime. The asymptotic runtime of the dynamic programming algorithm is given by

O(xmax(N - M + 1)2M), where xmax denotes the maximum number of hits after which the distribution is

truncated and N denotes the length of the DNA sequence and M denotes the length of the TF motif.

Typical values for N, M, and xmax are N = 200, M = 15, and xmax = 30. Thus, since N@M and N@xmax, in

practice, the dominant factor of the runtime, stems from the square of the DNA sequence length N.

2.4.2. Analyzing multiple distinct DNA sequences. In many cases, it is of interest to determine the

distribution of the number of motif hits across S distinct pieces of DNA, for instance, across a set of

promoter regions.

Let us assume that the S individual sequences are of equal length N and disjoint. In this case, we need to

compute P(X[1:N - M + 1]) only once. Subsequently, we determine the distribution of the sum of matches

across the S sequences by employing the convolution operation recursively, using a divide-and-conquer

strategy. This leads to a runtime of O(xmax log (S)).

3. EVALUATION METHODOLOGY

3.1. Comparison between methods

We estimated background models of various orders from a subset of Dnase-I hypersensitive sites pub-

lished by the ENCODE consortium (Thurman et al., 2012) as such sequences are frequently under scrutiny

when it comes to searching for motif matches.

For the experiments, we focus on evaluating the more interesting case of counting motif matches on

both DNA strands and compare the dynamic programming approach PDP, our recently proposed com-

pound Poisson approximation PCP (Kopp and Vingron, 2017), and the binomial model PBin, which is

defined by

PBin(X = x) = 2 · (N - M + 1)

x

� �
ax(1 - a)2 · (N - M + 1) - x:

We compare (1) different sequence lengths, (2) different false-positive probabilities a of obtaining a

motif hit, (3) different background model orders d, and (4) various motifs (Fig. 3a–c). A summary of the

setup is given in Table 1.

As a reference for the analysis, we determined an empirical distribution PE by sampling 10,000 random

DNA sequences of lengths given in Table 1 from the background models and counted the number of

respective motif hits, which resulted in a highly reproducible empirical distribution.

We measure the quality of the analytic approximations by evaluating the total variation distance relative

to PE

d(PE‚ Q) : =
X
x�0

jPE(x) - Q(x)j‚ (29)

where Q denotes a placeholder for PDP, PCP, and PBin. The smaller d(PE‚ Q), the more accurate the

approximation is. Additionally, we measure the discrepancy on the 5% significance region only

d5%(PE‚ Q) : =
X

x�q
95%

jPE(x) - Q(x)j: (30)

where q95% denotes the 95% percentile of PE.

3.2. Comparison of the models on JASPAR motifs

We compared PDP, PCP, and PBin on all JASPAR core motifs with a minimum length of 6 bps

contained in the MotifDb Bioconductor package (444 motifs in total). An order-1 background model was

obtained from ENCODE Dnase-I hypersensitive sites as described above. The distribution was deter-

mined for scanning 10 · 100 bp sequences using a = 0.01 as well as for scanning 100 · 100 bp se-

quences using a = 0.001. As a reference, we determined the sampling-based distribution PE. To assess
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how PDP compares with the other models, we determined the differences between the total variations

according to

DdDP - CP : = d(PDP‚ PE) - d(PCP‚ PE) (31)

DdDP - Bin : = d(PDP‚ PE) - d(PBin‚ PE) (32)

for each motif where negative values DdDP - CP and DdDP - Bin indicate that the dynamic programming

approach yields more accurate results, whereas positive values suggest the opposite.

Table 1. Parameter Choices for the Comparative Analysis

d a seqlen, bp

0 0.01 50 · 100

0 0.01 10 · 500

0 0.001 500 · 100

0 0.001 100 · 500

1 0.01 50 · 100

1 0.01 10 · 500

1 0.001 500 · 100

1 0.001 100 · 500

a b

c

FIG. 3. DNA motifs.
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4. RESULTS

4.1. Comparison between models

In this section, we systematically compare PDP, PCP, and PBin for a range of parameter settings and

motifs and focusing on scanning both DNA strands.

Since the motif structure influences the shape of the distribution of the number of motif matches, we

selected a nonself-overlapping motif (Fig. 3a) and two self-overlapping motifs (a palindrome motif and a

repeat-like motif; Fig. 3b, c) for the model comparison.

While the binomial distribution generally yields accurate results for nonoverlapping motifs (Fig. 4a), it is

not suitable for modeling the distribution of the number of matches for self-overlapping motifs (Fig. 4b, c).

However, both the dynamic programming approach PDP and the compound Poisson model PCP are

a

b

c

FIG. 4. Distribution of the number of motif matches for the

motifs depicted in Figure 3. The distributions were computed

for a = 0.01 and background order d = 1 using 50 sequences of

length 100 bp (see Table 1).
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applicable for nonself-overlapping and self-overlapping motif matches, as they both account for the

structural properties of the motifs (Fig. 4a–c).

As described previously (Reinert et al., 2000), the compound Poisson model rests on the ‘‘rare hit’’

assumption, which requires a sufficiently stringent choice for a. For instance, for a = 0.001, the compound

Poisson model yields accurate results regardless of the motif structure (Tables 2–4), whereas for a relaxed

choice of a, the ‘‘rare hit’’ assumption becomes violated, which causes biases. This is evident for the

nonself-overlapping motif (Fig. 3a) and a = 0.01 where the compound Poisson model overestimates the

variance of the distribution and results in a less accurate approximation compared with the binomial model

(Table 2).

In comparison, the dynamic programming approach does not explicitly rest on the ‘‘rare hit’’ assump-

tion; thus, it yields similar or more accurate results especially for a relaxed choice of a = 0.01 compared

with the other models. For example, for the nonself-overlapping motif and a = 0.01, PDP yields similar

results to PBin and more accurate results than PCP (Table 2), whereas for self-overlapping motifs, PDP yields

more accurate results compared with both other model types (Tables 3 and 4).

Inspecting the performance of the dynamic programming approach at fairly stringent significance level

a = 0.001, we observe that for nonself-overlapping motifs, all three approximations (PDP, PCP, and PBin)

yield comparably accurate results (Table 2), whereas for self-overlapping motifs, only PDP and PCP seem to

be adequate and yield similar results (Tables 3 and 4).

Next, to exclude biases due to variations of the background model and sequence length, we varied the

background model order (d 2 f0‚ 1g) and the individual sequence length (100 or 500 bp). We observe a

similar relationship between the accuracies of PDP, PCP, and PBin, regardless of variations of the back-

ground model order and sequence length (Tables 2–4). In other words, the dominant effect on the model

accuracies is determined by the choice of a and the model’s ability to account for self-overlapping matches,

rather than d and the sequence length.

Table 2. Total Variation Distances Defined by Equation (29) Between PE, PDP, PCP,

and PBin for E47 (Fig. 3a)

d a seqlen d(PE‚ PDP) d(PE‚ PCP) d(PE‚ PBin)

0 0.01 100 0.0801 0.218 0.106

1 0.01 100 0.0661 0.218 0.0998

0 0.01 500 0.0926 0.227 0.0891

1 0.01 500 0.0627 0.217 0.101

0 0.001 100 0.0545 0.0574 0.0712

1 0.001 100 0.066 0.0676 0.0833

0 0.001 500 0.0544 0.0528 0.0707

1 0.001 500 0.071 0.0736 0.0868

Bold values mark the most accurate result in each row.

Table 3. Total Variation Distances Defined by Equation (29) Between PE, PDP, PCP,

and PBin for the Palindrome Motif (Fig. 3b)

d a seqlen d(PE‚ PDP) d(PE‚ PCP) d(PE‚ PBin)

0 0.01 100 0.0487 0.103 1

1 0.01 100 0.0487 0.11 1

0 0.01 500 0.0573 0.103 1

1 0.01 500 0.056 0.105 1

0 0.001 100 0.0446 0.047 1

1 0.001 100 0.051 0.0504 1

0 0.001 500 0.0396 0.0386 1

1 0.001 500 0.0595 0.0605 1

Bold values mark the most accurate result in each row.
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Finally, we explicitly compared the total variation on the right tail of the distribution of the number of

matches using Equation (30), since this regime is of relevance for motif match enrichment testing. In

particular, we chose to compare the discrepancy on the 5% percentile of PE since these regions can be

accurately and highly reproducibly approximated via sampling in a reasonable time. The discrepancies

measured by Equations (29) and (30) produce highly concordant results (Tables 2–7). That is, there are no

cases where the discrepancy measured by Equations (29) and (30) substantially disagrees.

4.2. Performance evaluation on JASPAR motif

In the previous section, we have studied the accuracies PDP, PCP, and PBin relative to PE in depth for

three selected motifs. In this section, we assess the adequacy of the approximations for a large set of known

motifs from JASPAR (Sandelin et al., 2004). Accordingly, for each motif, we determine the difference in

total variation between PDP and the alternatives, PCP and PBin, as defined by Equations (31) and (32),

respectively. We asked whether the distribution of DdDP - Bin and DdDP - CP over all JASPAR motifs is

biased toward negative values, which would indicate that PDP is more accurate compared with the alter-

natives. To this end, we conducted the Wilcoxon rank sum test using the null hypotheses median

DdDP - Bin = 0 and DdDP - Bin = 0, respectively. We observe that for a relaxed score cutoff with a = 0.01, the

dynamic programming approach significantly outperforms the binomial and the compound Poisson ap-

proximation (Table 8), suggesting that it generally yields more accurate results for known motifs in this

regime. Furthermore, we observe that for a stringent cutoff with a = 0.001, the dynamic programming

approach also establishes the most accurate results. However, the differences are less pronounced, espe-

cially for DdDP - CP (Table 8). This suggests that for stringent cutoff the compound Poisson approximation

and the dynamic programming algorithm yield similar results.

Table 4. Total Variation Distances Defined by Equation (29) Between PE, PDP, PCP,

and PBin for the Repeat-Like Motif (Fig. 3c)

d a seqlen d(PE‚ PDP) d(PE‚ PCP) d(PE‚ PBin)

0 0.01 100 0.103 0.115 0.718

1 0.01 100 0.0964 0.117 0.714

0 0.01 500 0.0945 0.115 0.727

1 0.01 500 0.0743 0.103 0.712

0 0.001 100 0.0952 0.0694 0.587

1 0.001 100 0.107 0.0808 0.591

0 0.001 500 0.0623 0.0597 0.589

1 0.001 500 0.0849 0.0844 0.595

Bold values mark the most accurate result in each row.

Table 5. Total Variation Distances on the 5% Tile Defined by Equation (30)

Between PE, PDP, PCP, and PBin for E47 (Fig. 3a)

d a seqlen d5%(PE‚ PDP) d5%(PE‚ PCP) d5%(PE‚ PBin)

0 0.01 100 0.0103 0.0447 0.0139

1 0.01 100 0.0113 0.0407 0.0161

0 0.01 500 0.0113 0.0437 0.0157

1 0.01 500 0.00674 0.0339 0.0192

0 0.001 100 0.00684 0.00691 0.0103

1 0.001 100 0.0111 0.0083 0.0171

0 0.001 500 0.00921 0.00992 0.0104

1 0.001 500 0.0118 0.00924 0.0181

Bold values mark the most accurate result in each row.
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5. DISCUSSION

In this article, we have introduced a novel statistical model and a dynamic programming algorithm that

are jointly used to approximate the distribution of the number of motif matches. First, we have described

the Markov model that we have employed to determine the previously unknown probability of a clump start

match. Second, using the clump start and the overlapping match probabilities, we have derived a dynamic

programming algorithm for determining the distribution of the number of matches in a finite-length se-

quence. Furthermore, we have also developed an extension that accounts for overlapping motif matches on

both DNA strands simultaneously.

The Markov model and the dynamic programming algorithm are tightly linked, which can be appreciated

by the fact that both are completely determined by the clump start and overlapping match probabilities.

Furthermore, we illustrate that the dynamic programming algorithm can be rearranged such that it makes

use of the transition probabilities of the Markov model in Appendix A.

Focusing on the more interesting case of studying motif matches on both DNA strands, we have

systematically compared the accuracy of novel dynamic programming approach with a binomial model and

compound Poisson approximation (Kopp and Vingron, 2017).

Our results suggest that the dynamic programming approach yields more accurate results if relaxed

significance levels of a are considered (e.g., a = 0.01) for nonself-overlapping as well as for self-

overlapping motifs. This can be explained due to the relaxation of the ‘‘rare hit’’ assumption (also known as

Poisson assumption) and by accounting for self-similarity of a motif at the same time. For stringent choices

of a (e.g., a = 0.001), however, we find that the compound Poisson and the dynamic programming approach

generally yield highly concordant results, regardless of the motif structures.

Our approach makes use of two simplifying assumptions: First, events at nonoverlapping positions are

considered independent, and second, events separated by a match are independent. The first assumption holds

exactly for order-zero background models, whereas for higher-order background models, it amounts to an

simplifying assumption. However, since nonoverlapping events are coupled only very weakly, this assumption

Table 6. Total Variation Distances on the 5% Tile Defined by Equation (30)

Between PE, PDP, PCP, and PBin for the Palindrome Motif (Fig. 3b)

d a seqlen d5%(PE‚ PDP) d5%(PE‚ PCP) d5%(PE‚ PBin)

0 0.01 100 0.00675 0.0159 0.0527

1 0.01 100 0.00613 0.022 0.0523

0 0.01 500 0.0104 0.019 0.0607

1 0.01 500 0.0114 0.0205 0.054

0 0.001 100 0.00454 0.00595 0.0533

1 0.001 100 0.00661 0.00736 0.061

0 0.001 500 0.00801 0.00786 0.0631

1 0.001 500 0.0101 0.0106 0.0536

Bold values mark the most accurate result in each row.

Table 7. Total Variation Distances on the 5% Tile Defined by Equation (30)

Between PE, PDP, PCP, and PBin for the Repeat-Like Motif (Fig. 3c)

d a seqlen d5%(PE‚ PDP) d5%(PE‚ PCP) d5%(PE‚ PBin)

0 0.01 100 0.013 0.0187 0.0547

1 0.01 100 0.0105 0.0199 0.0513

0 0.01 500 0.0117 0.0155 0.0519

1 0.01 500 0.0135 0.0177 0.0511

0 0.001 100 0.0148 0.0107 0.0567

1 0.001 100 0.0115 0.00941 0.0495

0 0.001 500 0.00866 0.00817 0.0509

1 0.001 500 0.00889 0.00885 0.0496

Bold values mark the most accurate result in each row.
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is usually justified even for higher order background models. Furthermore, this assumption allows to limit the

state space of the Markov model to M states and influences the runtime of the dynamic algorithm. The second

assumption is simultaneously affected by the background model order and the choice for the score cutoff ta.

Regarding the background model, the assumption is compatible with background model orders zero and

one, but it amounts to a simplifying assumption for orders greater than one, as the background model then

influences positions that span the separating event Yi = 1. Regarding the stringency of the score cutoff, the

assumption is met exactly only if a motif match corresponds to a single word. For cutoffs ta that are

associated with a set of multiple compatible words, which is usually the case, this assumption is only

approximately satisfied, and for too relaxed choices of ta, the assumption might not be justified. Therefore,

while the dynamic programming approach does not explicitly rely on the Poisson assumption, it still

requires reasonably stringent choices for ta. Our comparative analysis suggests that the assumption still

holds reasonably well for a = 0.01, but we recommend against using too relaxed choices of a (e.g., a = 0.05).

Finally, while the dynamic programming algorithm achieves more or similarly accurate results compared

with the other models, its runtime requirement is significantly more demanding. For instance, it scales

quadratically with the sequence length. Therefore, it is best suited for analyzing a small set (e.g., some 100

sequences) of relatively short length (e.g., some 100 bp in length). If long sequences are subjected to the

study, we recommend to use the compound Poisson model instead.

Appendix

A. RELATIONSHIP BETWEEN THE MARKOV MODEL
AND THE DYNAMIC PROGRAMMING ALGORITHM

The Markov model and the dynamic programming procedure discussed in this article are tightly linked.

This can be appreciated by the fact that both are completely determined by s and bi. Therefore, by algebraic

rearrangement, one could transform one representation into the other. In this section, we illustrate the

equivalence relationship between the transition probabilities of the Markov model and the quantities used

in the dynamic programming algorithm by an example.

Consider the case of computing the probability P(Y1 . . . Y5 = 01010) using a motif of length M = 3, which

involves the evaluation of s, b1, and b2 [defined by Equations (3) and (4)].

First, using the correspondence relationship [Equation (11)], the transition probabilities of the Markov

model can be used to express the desired probability as

P(Y1 . . . Y5 = 01010) = P(n! n)P(n! h)P(h! n1)P(n1 ! h)P(h! n1)‚

and then, using the definitions for the transition probabilities [Equations (13)–(19)], we obtain

P(Y1 . . . Y5 = 01010) = (1 - s)s(1 - b1)
b2

(1 - b1)
(1 - b1)

and finally by cancellation

P(Y1 . . . Y5 = 01010) = (1 - s)sb2(1 - b1):

However, by definition, s, b1, and b2 can be used directly to express

Table 8. Median Difference Between Total Variation

Distances Across All JASPAR Motifs

a Median DdDP - Bin ( p-value) Median DdDP - CP ( p-value)

0.01 -0.034 (<10-16) -0.045 (<10-16)

0.001 -0.0089 (<10-16) -0.00064 (0.0005)

p-Values were determined using the Wilcoxon rank sum test.
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P(Y1 . . . Y5 = 01010) = (1 - s)sb2(1 - b1)‚

which yields the same results as above.

The latter approach was adapted by the dynamic programming algorithm to sum the probabilities

P(Y1::YN).

B. MARKOV MODEL FOR GENERATING MOTIF MATCHES
IN BOTH DNA STRANDS

While in the main text, we discussed the Markov model for generating Y1Y2Y3 � � �, that is, when a single

DNA strand is scanned for matches, in this section, we introduce the extension of the Markov model to the

case when both DNA strands are scanned. Without loss of generality, we seek to describe the random

process in the order Y1Y 01Y2Y 02 � � �, where matches are considered from left to right and forward strand

matches precede reverse strand matches at the same position.

B.0.1. Model states, state transitions, and transition probabilities

Like in the main text, we define the state space of the Markov model via match patterns in

Y1Y 01Y2Y 02 � � �. We obtain

hf b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = � ‚ Y 0 - 1 = � ‚ Y 00 = �
Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = � ‚ Y0 = 1

� �

hr b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = � ‚ Y 0 - 1 = � ‚ Y 00 = 1

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = � ‚ Y0 = �

� �

n0 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = � ‚ Y 0 - 1 = � ‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = � ‚ Y0 = 1

� �

n1 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = � ‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = 1‚ Y0 = 0

� �

..

.

nM - 3 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = 0‚ � � � ‚ Y 0 - 2 = 0‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = 1‚ � � � ‚ Y - 2 = 0‚ Y - 1 = 0‚ Y0 = 0

� �

nM - 2 b= Y 0 - M + 2 = 0‚ Y 0 - M + 3 = 0‚ � � � ‚ Y 0 - 2 = 0‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = 1‚ Y - M + 3 = 0‚ � � � ‚ Y - 2 = 0‚ Y - 1 = 0‚ Y0 = 0

� �

n01 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = � ‚ Y 0 - 1 = 1‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = � ‚ Y0 = 0

� �

n02 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = � ‚ � � � ‚ Y 0 - 2 = 1‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = � ‚ Y - 1 = 0‚ Y0 = 0

� �

..

.

n0M - 3 b= Y 0 - M + 2 = � ‚ Y 0 - M + 3 = 1‚ � � � ‚ Y 0 - 2 = 0‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = � ‚ � � � ‚ Y - 2 = 0‚ Y - 1 = 0‚ Y0 = 0

� �

n0M - 2 b= Y 0 - M + 2 = 1‚ Y 0 - M + 3 = 0‚ � � � ‚ Y 0 - 2 = 0‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = � ‚ Y - M + 3 = 0‚ � � � ‚ Y - 2 = 0‚ Y - 1 = 0‚ Y0 = 0

� �

n b= Y 0 - M + 2 = 0‚ Y 0 - M + 3 = 0‚ � � � ‚ Y 0 - 2 = 0‚ Y 0 - 1 = 0‚ Y 00 = 0

Y - M + 2 = 0‚ Y - M + 3 = 0‚ � � � ‚ Y - 2 = 0‚ Y - 1 = 0‚ Y0 = 0

� �
:

Note that the number of states in this case is exactly twice the number of states relative to the Markov

model that accounts for matches on a single strand only. The reason for this is that there are separate match
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states hf and hr that represent a forward and a reverse strand match. Moreover, fnig0�i<M - 1 memorizes a

recent forward strand match, whereas fn0ig1�i<M - 1 memorizes a respective reverse strand match. They are

necessary to account for self-overlapping matches. Finally, n corresponds to the absence of matches for the

last M - 1 positions (including at the current position). Thus, n is necessary to account for nonself-

overlapping matches.

As a consequence of scanning the DNA sequence in the specified order (Y1Y 01Y2Y 02 Y3 � � �), a set of

viable transitions is induced, which are illustrated in Figure 5. The transition network accounts for clump

start and self-overlapping matches that might arise on both DNA strands.

The state transitions are quantified by the transition matrix, which is defined by

M =

0 P(hr ! hf ) P(n! hf ) aT a0T

P(hf ! hr) P(hr ! hr) P(n! hr) bT b0T

0 0 P(n! n) cT cT

P(hf ! n0) 0 � � � 0

0 0 0 C 0

0 P(hr ! n01) 0 � � � 0

0 0 0 0 D

2
666666666666664

3
777777777777775

‚ (33)

where the bold zeros denote submatrices containing only zeros and where we made use of

aT = P(n0 ! hf ) � � � P(nM - 2 ! hf )½ � (34)

a0
T = P(n01 ! hf ) � � � P(n0M - 2 ! hf )½ � (35)

bT = P(n0 ! hr) � � � P(nM - 2 ! hr)½ � (36)

b0
T = P(n01 ! hr) � � � P(n0M - 2 ! hr)½ � (37)

cT = 0 � � � 0 P(nM - 2 ! n)½ � (38)

c0
T = 0 � � � 0 P(n0M - 2 ! n)½ � (39)

FIG. 5. Markov model transition diagram. The states hf and hr correspond to obtaining motif hits on the forward or

reverse strand, respectively. The remaining states represent the absence of a motif match at the current position, but

which memorize previous matches up to the length of the motif. They are necessary to properly account for the self-

overlapping structure of the given motif. In the sketch, a self-overlapping match would occur if a match state hf or hr

follows after any other state except for n. A transition from n to hf or hr reflects a clump start match.
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C =

P(n0 ! n1) 0 0

0 P(n1 ! n2) 0

. .
.

0 0 P(nM - 3 ! nM - 2)

2
666664

3
777775 (40)

D =

P(n01 ! n02) 0 0

0 P(n02 ! n03) 0

. .
.

0 0 P(n0M - 3 ! n0M - 2)

2
666664

3
777775:: (41)

The individual transition probabilities contained in the transition matrix [Equation (33)] are expressed

analogously to the single-stranded scanning scenario, in terms of the clump start probabilities s and s0 and

the self-overlapping match probabilities bk, b30‚ k, b50‚ k [see Equations (5)–(10) in the main text]. They are

defined by

P(n! hf ) : = P
Y 00 = �
Y0 = 1

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - M - 1 = 0

Y - 1 = 0‚ � � � ‚ Y - M - 1 = 0

� �
= s (42)

P(n! hr) : = P
Y 00 = 1

Y0 = 0

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - M - 1 = 0

Y - 1 = 0‚ � � � ‚ Y - M - 1 = 0

� �
= s0 (43)

P(n! n) : = 1 - s - s0 (44)

P(hf ! hr) : = P(Y 00 = 1jY0 = 1) = b30‚ 0 (45)

P(hf ! n0) : = 1 - b30‚ 0 (46)

P(hr ! hf ) : = P(Y0 = 1jY 0 - 1 = 1) = b50‚ 1 (47)

P(hr ! hr) : = P(Y 00 = 1jY 0 - 1 = 1) = b1 (48)

P(hr ! n01) : = P(Y 00 = 0‚ Y0 = 0jY 0 - 1 = 1) = 1 - b50‚ 1 - b1 (49)

P(nk ! hf ) : = P
Y 00 = �
Y0 = 1

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - k = 0

Y - 1 = 0‚ � � � ‚ Y - k = 1

� �

=
P(Yk + 1 = 1‚ fYj = 0‚ Y 0j = 0g1�j�k‚ Y 00 = 0jY0 = 1)

P(fYj = 0‚ Y 0j = 0g1�j�k‚ Y 00 = 0jY0 = 1)

=
bk + 1

1 -
Pk

i = 1 bk -
Pk

i = 0 b30‚ k

for 1 � k � M - 2

(50)

P(nk ! hr) : = P
Y 00 = 1

Y0 = 0

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - k = 0

Y - 1 = 0‚ � � � ‚ Y - k = 1

� �

=
b30‚ k + 1

1 -
Pk

i = 1 bk -
Pk

i = 0 b30‚ k

for 1 � k � M - 2

(51)

P(n0k ! hf ) : = P
Y 00 = �
Y0 = 1

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - k = 1

Y - 1 = 0‚ � � � ‚ Y - k = �

� �

=
b50‚ k + 1

1 -
Pk
i = 1

bk -
Pk
i = 1

b50‚ k

for 1 � k � M - 2
(52)

P(n0k ! hr) : = P
Y 00 = 1

Y0 = 0

���� Y 0 - 1 = 0‚ � � � ‚ Y 0 - k = 1

Y - 1 = 0‚ � � � ‚ Y - k = �

� �
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=
bk + 1

1 -
Pk

i = 1 bk -
Pk

i = 1 b50‚ k

for 1 � k � M - 2 (53)

P(nk ! nk + 1) : = 1 - P(nk ! hf ) - P(nk ! hr) for 1 � k � M - 3 (54)

P(n0k ! n0k + 1) : = 1 - P(n0k ! hf ) - P(n0k ! hr) for 1 � k � M - 3 (55)

P(nM - 2 ! n) : = 1 - P(nM - 2 ! hf ) - P(nM - 2 ! hr) (56)

P(n0M - 2 ! n) : = 1 - P(n0M - 2 ! hf ) - P(n0M - 2 ! hr): (57)

B.1. Computation of the clump start probability. The transition matrix of the Markov model is

fully determined by the clump start and the self-overlapping match probabilities. The self-overlapping

match probabilities are approximated according to Kopp and Vingron (2017). We seek to leverage the

Markov model, similarly as described in the main text, to establish the clump start probabilities.

First, note that when studying both DNA strands, two clump start events are conceivable, which occur

with probabilities s and s0. However, we can approximately express

s0 � s(1 - b30‚ 0): (58)

That is, for a palindromic motif, the clump is biased toward starting at the forward strand and the match

at the reverse strand will be considered an overlapping match. As a consequence, we only need to identify

one unknown quantity s, rather than solving for s and s0 simultaneously, which significantly simplifies the

problem. We seek to adjust s such that in the stationary distribution the states hf and hr are visited with

probability 2 · a and define a function

f (s) : = - (2a) log (l(hf ; s) + l(hr; s)) - (1 - 2a) log (1 - l(hf ; s) - l(hr; s)))‚ (59)

whose minimum is obtained at 2a = l(hf ; s) + l(hr; s). We optimize f (s) as described in the main text.

B.2. Distribution of the number of matches in both DNA strands. In this section, we discuss the

extension of the algorithm for computing the number of motif matches in both DNA strands simultaneously.

We define the total number of matches (on both strands) in the sequence from positions 1 to j by X[1:i] and

denote the probability of obtaining x matches in this segment by P(X[1:i] = x).

For the same reason as discussed in the main text, accounting for self-overlapping matches in the

recursion algorithm requires memorizing position and strandedness of the last motif match in [1 : i].

Therefore, we define the number of matches Xa
[1:i] and X0a[1:i] that end with a forward strand match and a

reverse strand match, respectively. If 1 � a < M, the match is located at position i - a + 1, whereas if a = M,

the last match occurred at least M - 1 positions upstream of i.

Assuming that P(Xa
[1:j] = x) and P(X0a[1:j] = x) have already been established, we obtain P(Xa

[1:j] = x + 1) and

P(X0a[1:j] = x + 1) recursively according to

P(Xb
[1:j] = x + 1) =

Xj - 1

i = 1

XM
a = 1

P(Xa
[1:i] = x) � h(a) � z(j - i)

+
Xj - 1

i = 1

XM

a = 1

P(X0
a
[1:i] = x) � h50(a) � z(j - i)

(60)

P(X0
b
[1:j] = x + 1) =

Xj - 1

i = 1

XM
a = 1

P(Xa
[1:i] = x) � h30(a) � z0(j - i)

+
Xj - 1

i = 1

XM

a = 1

P(X0
a
[1:i] = x) � h0(a) � z0(j - i)

+
Xj

i = 1

P(X1
[1:i] = x) � h30(0) � z0(j - i + 1)

(61)

using the definitions
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di : = 1 -
Xi

k = 1

bk -
Xi

k = 0

b30‚ k (62)

d0i : = 1 -
Xi

k = 1

bk -
Xi

k = 1

b50‚ k: (63)

b : = j - i if j - i < M

M o:w:

�
(64)

h(a) : = ba if a < M

a0 o:w:

�
(65)

h0(a) : = ba if a < M

a0(1 - b30‚ 0) o:w:

�
(66)

h30(a) : = b30‚ a if a < M

a0 � (1 - b30‚ 0) o:w:

�
(67)

h50 (a) : = b50‚ a if a < M

a0 o:w:

�
(68)

z(a) : = 1 if a < M

dM - 1 � (1 - s(2 - b30‚ 0))a - M o:w:

�
(69)

z0(a) : = 1 if a < M

d0M - 1 � (1 - s(2 - b30‚ 0)a - M o:w:
:

�
(70)

h(:), h0(:), h30(a), and h50 (a) incorporate an additional match depending on the locations and strandedness

of the previous and the next match: forward! forward, reverse! reverse, forward! reverse, and

reverse! forward. z(:) and z0(:) account for the absence of matches in the remainder of the sequence.

Therefore, notice that the first and second summations on the right-hand side of Equations (60) and (61)

account for a previous forward and reverse strand match, respectively. Moreover, the third summation on

the right-hand side of Equation (61) accounts for palindromic motif hits.

To establish the distribution P(X[1:N - M + 1]), we start by setting P(X[1:j] = 0) = (1 - s - s0)j = (1 - s(2 - b30‚ 0))j,

where we made use of Equations (5) and (20). The dynamic programming is initialized for P(Xa
[1:j] = 1) and

P(X0a[1:j] = 1) according to

P(Xa
[1:j] = 1) = (j - M + 1) · (1 - s)j - MsdM - 1 for a = M

(1 - s)j - as ow:

�
(71)

for 1 � a � M and 1 � j � N - M + 1. Then, we evaluate the recursion defined by Equations (60) and (61)

in an ordered manner from x = 2 to the maximal number of matches to be considered xmax. Finally, the

algorithm terminates by

P(X[1:N - M + 1] = x) = P(XM
[1:N - M + 1] = x) + P(X0

M
[1:N - M + 1] = x) +XM - 1

a = 1

P(Xa
[1:N - M + 1] = x)da - 1 +

XM - 1

a = 1

P(X0
a
[1:N - M + 1] = x)d0a - 1‚

(72)

which yields the distribution of the number of motif matches in a sequence of length N with a motif length of M.
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