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Abstract

In chronic lymphocytic leukemia (CLL), a diverse set of genetic
mutations is embedded in a deregulated epigenetic landscape that
drives cancerogenesis. To elucidate the role of aberrant chromatin
features, we mapped DNA methylation, seven histone modifi-
cations, nucleosome positions, chromatin accessibility, binding of
EBF1 and CTCF, as well as the transcriptome of B cells from CLL
patients and healthy donors. A globally increased histone deacety-
lase activity was detected and half of the genome comprised
transcriptionally downregulated partially DNA methylated domains
demarcated by CTCF. CLL samples displayed a H3K4me3 redistribu-
tion and nucleosome gain at promoters as well as changes of
enhancer activity and enhancer linkage to target genes. A DNA
binding motif analysis identified transcription factors that gained
or lost binding in CLL at sites with aberrant chromatin features.
These findings were integrated into a gene regulatory enhancer
containing network enriched for B-cell receptor signaling pathway

components. Our study predicts novel molecular links to targets of
CLL therapies and provides a valuable resource for further studies
on the epigenetic contribution to the disease.
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Introduction

Genomic sequence analysis has identified a comprehensive set of

leukemogenic candidate genes in chronic lymphocytic leukemia (CLL;

Martin-Subero et al, 2013; Landau et al, 2015; Puente et al, 2015).
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However, how these genetic changes drive the cellular and clinical

pathophenotype of the disease is currently an open question (Zenz

et al, 2010; Kipps et al, 2017). The complex molecular pathogenesis of

CLL involves microenvironmental stimulation via aberrant signaling

including the B-cell receptor (BCR), NF-jB, IL-4, and TLR pathways,

among others (Abrisqueta et al, 2009; Zenz et al, 2010; Hallek, 2015;

Stilgenbauer, 2015; Kipps et al, 2017). The relevance of BCR signaling

in CLL is underlined by the clinical success of BCR signaling inhibitors

like ibrutinib (Byrd et al, 2013; Burger et al, 2015) and idelalisib

(Furman et al, 2014), and by the prognostic impact of somatic hyper-

mutations and the gene usage of the immunoglobulin itself (Zenz et al,

2010; Duhren-von Minden et al, 2012). Remarkably, apart from a

biased usage of the immunoglobulin genes and mutations in the BCR

complex in a specific small subset of CLL patients, there are no recur-

rent genetic mutations within the components of the BCR signaling

cascade. Rather, CLL cells display a massive global transcriptional

deregulation that is affecting intracellular pathways and microenviron-

mental signaling toward cellular survival (Burger & Chiorazzi, 2013).

Thus, it appears that a diverse set of genetic lesions conspires with

epigenetic aberrations to drive cancerogenesis in a manner that is only

partially understood. The relevance of deregulated epigenetic signaling

for CLL is apparent from a number of findings. Epigenetic aberrations

in a mouse model of CLL are among the earliest detectable modifi-

cations (Chen et al, 2009), and the loss of tumor suppression in

13q14.3 involves transcriptional deregulation by an epimutation

(Mertens et al, 2006). Genome-wide DNA hypomethylation was

already early recognized in CLL cells (Wahlfors et al, 1992; Lyko et al,

2004), and more recently, a strong correlation with transcriptional

activity was observed (Kulis et al, 2015). The DNA methylation status

is a surrogate marker for CLL patient subgroups that overexpress the

ZAP70 kinase and the mutational status of the BCR-immunoglobulin

genes that allow prognostic dichotomization of CLL into more or less

aggressive cases (Cahill et al, 2013; Claus et al, 2014). The epigenetic

subtypes of CLL defined by the DNA methylome may become impor-

tant for patient stratification as they are of prognostic relevance

(Queiros et al, 2015). These epigenetic subtypes are correlated with

the two genetically defined subgroups of CLL that express a non-

mutated or mutated immunoglobulin heavy-chain variable region gene

(IGHV) and reflect the tumor cell of origin in an epigenetic continuum

of B-cell development (Kulis et al, 2015; Oakes et al, 2016).

Here, we conducted a comprehensive characterization of the

chromatin landscape in primary CLL cells. Our analysis revealed

that the massive changes in the CLL-specific transcriptome can be

linked to deregulated chromatin features and activity changes of a

transcription factor (TF) network downstream of microenvironmen-

tal signaling cascades. Our comprehensive data set represents a rich

resource for studying gene regulation and epigenomics in CLL. We

exploited it to integrate chromatin features and TF binding with

gene expression programs in CLL B cells and suggest molecular

mechanisms for the aberrant survival of malignant CLL cells.

Results

Aberrant chromatin features identified in CLL

In order to characterize CLL chromatin modifications in correlation

with transcriptional activity, we analyzed the chromatin landscape

and the transcriptome of CD19+ B cells from peripheral blood from

23 CLL patients and from 17 pools of non-malignant B cells (NBCs)

of healthy donors (Figs 1 and EV1, Appendix Fig S1 and Table S1,

Datasets EV1 and EV2). While a number of pathophysiological

processes such as microenvironmental signaling occur in secondary

lymphoid organs of CLL patients (Burger & Gribben, 2014), the

comprehensive analysis of different epigenetic layers required the

acquisition of sufficient numbers of CD19+ B cells and was there-

fore conducted from peripheral blood. CLL patients were selected to

assess the fundamental changes in the original, untreated, and non-

evolved disease including both disease subtypes of IGHV mutated

and non-mutated samples. NBC pools were from age-matched

healthy donors. Based on the genome-wide DNA methylation pro-

files, CLL samples could be assigned to B-cell maturation stages as

shown previously (Kulis et al, 2015; Oakes et al, 2016; Fig EV1A).

These developmental changes of epigenetic signals were excluded

here for the identification of differentially methylated regions

(DMRs) between CLL cells and NBCs.

The different chromatin features we mapped are depicted at

the transcription factor 4 (TCF4) locus as an example for a gene

upregulated in CLL (Fig 1A). The readouts include DNA methylation

by whole-genome bisulfite sequencing (WGBS), histone chro-

matin immunoprecipitation (ChIP-seq) of H3K4me1, H3K4me3,

H3K9me3, H3K9ac, H3K27me3, H3K27ac, and H3K36me3, nucleo-

some occupancy from high-coverage MNase digestion followed by

H3 ChIP-seq, and open chromatin sites identified by the assay for

transposase-accessible chromatin (ATAC-seq). For selected samples,

also ChIP-seq of EBF1 and CTCF was performed. In addition, RNA

transcription was analyzed by strand-specific RNA-seq of long and

short RNAs (Appendix Fig S1A). The added value of this compre-

hensive analysis is apparent from inspection of the TCF4 gene. The

histone modifications predict downstream enhancers and intronic

enhancers that become activated in CLL cells as judged from the

enrichment of H3K4me1 and H3K27ac (Fig 1A). The predicted

enhancer loci in this region were particularly extended (> 10 kb)

and are therefore an example for so-called “super-enhancers” (SEs,

see below; Whyte et al, 2013). In order to systematically evaluate

histone modification changes, we annotated chromatin with a

12-state ChromHMM Hidden Markov model (Fig 1B). Chromatin

states differed substantially between CLL samples and NBCs and

showed transitions for repressive chromatin states 4, 5, and 6

(H3K9me3, H3K27me3) and potential enhancer states 1, 8, 9, and

11 (carrying H3K27ac and/or H3K4me1 while lacking H3K4me3;

Fig 1B and C, Datasets EV4, EV6–EV7).

To link changes of chromatin features with TF binding, we iden-

tified accessible chromatin with ATAC-seq. The method detects TF

binding by mapping open and bona fide active chromatin regions

that are depleted of nucleosomes. The differentially accessible

regions in CLL patients and NBCs comprised 38,072 loci of which

~ 24,400 loci were located at the transcription start site (TSS),

regions of transcription, and active or repressed regions (Figs 1D

and EV1E). Loss of ATAC signal in repressed regions points to a

more heterochromatic conformation in CLL, while at active chro-

matin regions, it might indicate a reduced promoter/enhancer activ-

ity. The IGHV mutated vs. non-mutated CLL can be distinguished

according to the ATAC-seq profiles (Rendeiro et al, 2016). However,

only ~ 1% of the differential ATAC-seq peaks identified here

between CLL and NBCs were related to the heterogeneity of IGHV
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mutated and non-mutated IGHV CLL samples. This finding is illus-

trated for the EBF1 TF locus in Fig EV1F.

The changes of the chromatin landscape were linked to the

deregulated activity of TFs and chromatin modifiers in CLL accord-

ing to the workflow depicted in Appendix Fig S1B. A B-cell-specific

gene regulatory network (GRN) was constructed with the ARACNE

framework (Alvarez et al, 2016). The GRN served as the backbone

to integrate TFs and deregulated epigenetic signaling and comprised

2,804 regulators with a median value of 45 target genes. It was also

used to compute the activity of TFs and chromatin modifiers from

their target gene expression with our RNA-seq data. In total, 1,378

regulators displayed a differential activity between the CLL and NBC

states (P < 0.05). As an example, TCF4 and selected deregulated

target genes are shown in Fig 1E.

Large repressive partially DNA methylated domains

When comparing DNA methylation in CLL with NBC controls, we

found a global hypomethylation in CLL as previously reported

(Wahlfors et al, 1992; Lyko et al, 2004; Kulis et al, 2012). It was

predominantly due to the formation of large partially methylated

domains (PMDs; Figs 2A and EV2A, Appendix Fig S2A–D, Dataset

EV3). Remarkably, the CLL DNA methylome contained a strikingly

large genome fraction of ~ 50% PMDs in comparison with NBCs

(< 1%; Fig 2A) with a significant overlap to PMDs previously identi-

fied for other tissues and cancer entities (Fig EV2B). The inter- and

intra-sample variability of DNA methylation in CLL cells compared

to NBC controls was high (P = 0.005, Wilcoxon rank-sum test,

Appendix Fig S2C) and CLL cells harbored an increased fraction of

intermediate DNA methylation within PMDs (P = 1.6E-4, Wilcoxon

rank-sum test, Appendix Fig S2C). PMDs were enriched for lowly

expressed and downregulated genes (Fig 2B, P = 2E-48, Fisher’s

exact test, Fig 2C), which can be rationalized by increased levels of

repressive H3K9me3 and H3K27me3 histone marks (Fig 2D and

Appendix Fig S2E). Regions with reduced transcriptional activity

like the “B compartment” determined by Hi-C chromosome

conformation capture (Fortin & Hansen, 2015) as well as lamina-

associated domains (Guelen et al, 2008) were overrepresented in

PMDs (Fig EV2C). In addition, active states (Appendix Fig S2F) and

the H3K36me3 active transcription mark (Fig 2D) were depleted in

PMDs, which were flanked by open chromatin (Fig EV2D). Our

CTCF ChIP-seq data revealed an enrichment of CTCF binding at

PMD boundaries, pointing to a potential function of CTCF to demar-

cate these regions and possibly limiting their further expansion

(Fig 2D). Of note, the majority (75%) of somatic mutations in CLLs

were located in the PMDs identified here (Fig 2E), consistent with

the increased mutation rates in heterochromatin regions (Schuster-

Bockler & Lehner, 2012). On the level of local meC changes, we

identified 8,671 differentially methylated regions (DMRs) of which

8,669 were hypomethylated in CLL (Fig EV2E). In total, 7,932 DMRs

(91%) overlapped in CLL with predicted enhancer chromatin states

(1, 8, 9, and 11; Appendix Fig S2G). Open chromatin regions within

these DMRs as detected by ATAC-seq were enriched in binding

motifs for NFATC1, EGR, and E2A (Fig EV2F).

Global changes in the promoter-associated H3K4me3
histone mark

Next, we investigated changes at promoters. When calculating

correlation functions using raw mapped reads for H3K4me3, a small

but significant extension of this signal by two additional modified

nucleosomes was detected (~ 400 base pairs, P < 0.002, Figs 3A

and B, and EV3A). We then extracted all extended H3K4me3 regions

from peak calls with a P-value < 0.05 and a median change of

400 bp. This yielded 2,785 regions for CLL and only two regions for

NBCs (Dataset EV5). The 2,785 CLL-specific extended regions

spanned over annotated TSSs (Fig EV3A). We evaluated nucleosome

occupancy using histone H3 maps obtained by MNase-ChIP-seq

(Fig EV3B) and detected a significant gain of nucleosomes at 2,639

out of the 2,785 promoters (Figs 3C and EV3C, Dataset EV5). This

change was accompanied by a loss of ATAC-seq signal in these

regions (Fig 3D). A TF binding motif analysis yielded an enrichment

for the bifunctional NFY regulator (Ceribelli et al, 2008), SP1 and

ETS and KLF family motifs when using all unchanged H3K4me3

regions as background (Fig 3E). We thus conclude that extension of

the H3K4me3 signal was linked to a gain of nucleosomes, which

might also result in the masking of TF binding sites. Genes with an

increased nucleosome occupancy around their TSS were found to be

enriched for the BCR signaling pathway, such as NFKB1 (Fig EV3C

and D). From those 23 genes in the BCR signaling pathway, 18

(80%) were downregulated in CLL.

Using the active TSS state from our ChromHMM model, alterna-

tive TSSs were extracted that were specific for CLL. In total, 49 sites

with alternative TSSs could be found that were independent of the

extended H3K4me3 signal described above, e.g., from the PITPNM2

gene (Appendix Fig S3A). In order to explore potential mechanisms

of the CLL-specific activation of alternative promoters, we searched

for enrichment of TF motifs compared to the promoter that was also

◀ Figure 1. Chromatin feature annotation, open regions, and gene regulation.

A Chromatin features mapped here displayed differences between CLL patients and NBCs from healthy donors. As an example, the TCF4 locus is shown for CLL1 and
NBC donor H7 samples. The TCF4 gene encodes for a transcription factor from the E protein family. Based on the increased H3K4me1, H3K27ac, and ATAC signal, two
predicted enhancer loci were marked that became active in CLL. Note that the y-axis for RNA-seq is scaled differently for CLL (8,000) and NBCs (100) to visualize that
the TCF4 gene was not completely silenced but lowly expressed also in NBCs as evident also from the H3K36me3 mark. Light gray depicts active chromatin region
and dark gray the confined enhancer locus coinciding with an open chromatin region. The chromatin state annotation is described in panel (B).

B Chromatin segmentation of co-occurring histone modifications by ChromHMM yielding a model with 12 chromatin states. The indicated emission parameters for the
contributions of individual histone marks and the average amount of each state (Mb) for CLL and NBC samples are given.

C Chord diagram representation of genome-wide chromatin state changes between CLL and NBC. The amount of chromatin change is proportional to the size of the
segments with each tick representing 4 Mb of chromatin. Color coding of chromatin states as in panel (B).

D Distribution of ~ 24,400 annotated differentially accessible regions (ATAC-seq) in CLL compared to NBC samples (“CLL diff.”) according to the chromatin state
annotation. In total, 7,605 regions gained an ATAC-seq signal in CLL, while it was lost at 16,790 loci.

E Part of the computed B-cell gene regulatory network showing TCF4 and its deregulated target genes as well as some of the adjacent nodes. The GRN was used to
calculate the activity of regulators like TCF4 based on their target gene expression. Color code: TFs, red; target genes, gray; chromatin modifier, blue.
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A Left, example of a large PMD on chromosome 2 derived from a consensus of CLL samples (n = 11). Right, genome-wide quantification of PMDs across CLL samples
(n = 11) and NBCs (n = 6). The PMDs mapped with this set of 11 CLL samples were used for further analysis in figure panels (A–E) in combination with the RNA-seq
and ChIP-seq analysis of the samples listed in Appendix Figure S1A. Red, methylated DNA; blue, unmethylated DNA.

B Expression of genes located inside (blue) and outside (gray) the PMD regions. In the boxplot, maximum, third quartile, median, first quartile and minimum are
indicated.

C Fraction of differentially expressed genes inside or outside PMD regions. Up- and downregulated genes are shown in red and green, respectively.
D Upper panel: Average signal of histone modification marks normalized to H3 and standard deviation in 5-kb windows around the � 50 kb flanking regions of PMD

boundaries. Normalized fold changes were calculated by dividing to the average signal flanking outside the PMD boundaries. Blue box, within PMDs; thin line,
outside PMDs, norm.—normalized. Lower panel: Distribution of bound CTCF sites in CLL cells as determined by ChIP-seq (blue line) around the � 50 kb flanking
regions of PMD boundaries in 5-kb windows. The height of the curves gives the sum of the next nearest CTCF peak at the given distance to the PMD boundary.

E Percentage of somatic mutations located inside (blue) or outside (gray) the PMD regions. Red line represents the expected ratio based on the genomic length of PMD
and non-PMD regions. Mutation data were from Puente et al (2015).
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active in NBC samples. The top four TFs identified at 67% of the

CLL-specific alternative promoters were the lineage-associated TFs

FOXA1, LEF1, POU3F1, and REPIN1 (Appendix Fig S3B).

An additional deregulated feature of the active H3K4me3 mark

was linked to the repressive H3K27me3 modification. About 4,000

promoters that were bivalent in NBCs (simultaneous presence

of H3K4me3 and H3K27me3) lost H3K4me3 in CLL (Fig 3F,

ChromHMM state 7). Many of these genes were members of the

HOX, FOX, SOX, and POU TF families that are functionally

connected with developmental processes. No differential loss of

H3K4me3 at bivalent promoters between IGVH mutated and unmu-

tated CLL was detected (Fig EV3E). Only ~ 400 promoters were

bivalent in CLL but not in NBCs (P < 0.001). Differences in apparent

promoter bivalency could also result from a heterogeneity of the

individual marks. However, a truly bivalent state with H3K4me3

and H3K27me3 has only very low levels of transcription (Voigt

et al, 2013). In contrast, a mixture of cells with fully active promot-

ers (H3K4me3) and cells with silenced (H3K27me3) promoters

should display transcriptional activity from the H3K4me3 fraction.

For our set of promoters, we found that 67% of bivalent promoters

were silent in NBCs (RPKM < 0.1) and thus represent bona fide

bivalent promoters. We therefore propose that a large fraction of

bivalent promoters that were poised for activation changed into a

repressed state in CLL cells and retained only the H3K27me3 mark.

In ~ 1,700 CLL promoters that lost H3K4me3, binding motifs of the

MEF2 family of transcriptional activators were enriched (Fig 3G).
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Figure 3. H3K4me3 and nucleosome positioning changes at promoters.

A Correlation function of H3K4me3 ChIP-seq reads. A broadening of H3K4me3 domains in CLL by 1–2 nucleosomes was detected. The number of replicates analyzed
was 11 (CLL) and 4 (NBC), respectively. Error bars represent the SEM.

B H3K4me3 peak width distribution at common promoters in CLL and NBC controls. In the boxplot, maximum, third quartile, median, first quartile and minimum are
indicated. The number of replicates analyzed was 11 (CLL) and 4 (NBC), respectively.

C Distribution of nucleosome occupancy calculated from histone H3 ChIP-seq averaged over a 1,000-bp window within promoters. H3K4me3 regions displayed higher
nucleosome density for CLL as compared to NBC samples. The boxplot representation and number of samples was the same as in panel (B).

D Exemplary region at the TAF13 promoter showing higher H3K4me3 levels upstream of the TSS with lost ATAC signal (gray bar) as compared to the NBC control.
E TF motif analysis of ATAC signal lost at CLL promoters with broadened H3K4me3 regions.
F Heatmap of genome-wide histone modification patterns at promoters within �2 to 5 kb around the TSS (x-axis) for an NBC (H3) and a patient (CLL1) sample. Each

line on the y-axis corresponds to one promoter. The clustering revealed one cluster with loss of H3K4me3 at bivalent promoters in CLL.
G TF motif analysis at bivalent promoters that lost H3K4me3 in CLL.

6 of 20 Molecular Systems Biology 15: e8339 | 2019 ª 2019 The Authors

Molecular Systems Biology Jan-Philipp Mallm et al



The MEF2 family TFs were suggested to regulate H3K4me3 (Pon &

Marra, 2016; Di Giorgio et al, 2017) also in the context of

H3K27me3 (Aziz et al, 2010). Furthermore, the H3K4-specific

methylases KMT2B (MLL2) and KMT2D (MLL4), and to a lesser

degree also KMT2A/C/E, were downregulated in CLL (Fig EV3F).

Accordingly, we speculate that both the reduced activity of KMT2

enzymes and their impaired targeting by MEF2 TFs contribute to

the loss of H3K4me3 at bivalent promoters in CLL.

Annotation of potential enhancers

The active ChromHMM states 1, 8, 9, and 11 comprised 238,820

regions (368 Mb) and represent loci that potentially contain enhan-

cers. This set overlapped with the corresponding B- and T-cell chro-

matin states of the Roadmap consortium to 89.8 and 72.2%,

respectively (Fig EV4A, Dataset EV9). The majority of previously

reported enhancer loci from ENCODE and FANTOM projects were

found in our state “Active 2” (state 9, H3K4me1, H3K27ac) and with

a lower enrichment in states 1, 8,10, and 11 with the bivalent chro-

matin state 7 being the most enriched repressive state (Fig EV4B and

C). Furthermore, binding sites of MEF2, IRF4, and FOXM1 identified

by ENCODE were enriched in these states (Fig EV4B). The most

prominent chromatin state transitions from NBCs to CLL cells were

from “Quiescent” (state 12) to “Poised” (state 8, H3K4me1), from

“Transcribed” (state 2, H3K36me3 in the body of transcribed genes)

to “Active 3” (state 1, H3K4me1, H3K27ac, and H3K36me3, predic-

tive for active intragenic enhancers) and from “Poised” to “Active 2”

(state 9, H3K4me1 and H3K27ac, predictive of intergenic enhancers;

Fig 4A and B). Genome-wide, the highest overlap with bidirectional

expression of RNA was observed with “Active 1” (state 10, predictive

for TSS) and “Active 2” (state 9, predictive for active intergenic

enhancer; Fig 4A and C). Bidirectional RNA expression at enhancers

could also discriminate between CLL and NBCs, identifying a set of

disease-specific active enhancers (Fig 4D).

Next, super-enhancers were annotated by clusters of open chro-

matin regions co-occurring with large regions of H3K27ac domains

in the range of 10 kb and above by using the ROSE software tool

(Whyte et al, 2013; Dataset EV9). In total, 310 out of a union set of

1,289 SEs showed differential activity (false discovery rate

(FDR) < 0.01). There were 219 up- and 91 downregulated SEs in

CLL as compared to NBCs (Fig 4E). Exemplary predicted SEs that

became active and upregulated the associated genes in CLL are

shown for TCF4, CREB3L2, and FMOD (Figs 1A, and EV4D and E).

The CLL-relevant genes that were up-/downregulated by proximal

SEs are depicted in Fig 4E and F. The list includes the T-cell recep-

tor alpha locus on chromosome 14 (TRA locus), the immune check-

point receptor CTLA4, FMOD as a CLL tumor-associated antigen

allowing for expansion of specific CD8+ autologous T lymphocytes

(Mayr et al, 2005), and BCL2, a highly successful therapeutic target

(Kipps et al, 2017). For the latter, a SE-mediated regulation has

been detected previously in non-Hodgkin lymphoma and CLL

tissue (Meng et al, 2014). Interestingly, SE activity nearby the

cyclin-dependent kinase inhibitor 1 gene CDKN1A (encoding p21)

was reduced in CLL, which has been reported to be a p53-indepen-

dent tumor suppressor (Abbas & Dutta, 2009). In addition, we

found a number of TF genes being activated by proximal SEs in

CLL that include LEF1, ETV6, and NFATC1 in addition to TCF4 and

CREB3L2 mentioned above.

Impact of histone deacetylase inhibition on enhancer and
promoter activities

On a genome-wide scale, a large number of transitions from active

chromatin states in CLL involved a loss of the H3K27ac modification

(Fig 1D). Accordingly, we examined whether histone deacetylase

(HDAC) activity differed between CLL and NBCs. A significant

upregulation of several members from all HDAC classes (HDAC1,

HDAC3, HDAC8, HDAC9, SIRT5) on the RNA level was apparent in

CLL (Fig 4G). Direct measurements of the global activity of class I/II

HDACs revealed an about fourfold higher activity in primary CLL

cells compared to NBCs (Fig 4H). This activity could be efficiently

inhibited with panobinostat. Upon treatment of primary B cells from

▸Figure 4. Differential enhancer activity in CLL and NBCs.

A Overlap of active regions identified in CLL and NBCs by ChromHMM, ATAC peaks, or bidirectionally expressed RNA loci labeled as “Bidi”. Venn diagram showing the
total number of overlapping regions (not area-proportional).

B Chromatin transitions within differential active states between NBC and CLL. Heatmap representation of the amount of chromatin (log2Mb + 1) transitioning from a
particular state in NBC (rows) to CLL (columns). Transitions were considered for all recurrent active chromatin state regions (states 1, 8, 9, and 11) present in a minimum
of three samples even if the consensus state was not an active state. Accordingly, the matrix includes transitions between non-active states at low frequencies.

C Chromatin states at bidirectionally transcribed predicted enhancers loci. All Bidi loci identified in NBC samples (n = 961) and CLL samples (n = 8,530) are shown. The
Bidi loci show an enrichment of the states “Active 2 (predicted active enhancer)” and “Active 1 (predicted transcription start sites)”.

D Clustering of samples via expression of bidirectionally regions that are differential between NBCs and CLL and quantified using DESeq2.
E Volcano plot of differential super-enhancers targeting known leukemia and cancer genes. Examples include SE loss at CDKN1A, PI3KC2B, and KMT2B (MLL2) and SE

gain at FMOD, CREB3L2, CTLA4, TCF4, LEF1, and BCL2. Points represent non-differential SEs (gray) and differential SEs (FDR < 0.01) with fold change > 1 (orange).
F RNA expression changes of selected genes associated with differential SEs. Top: genes significantly (FDR < 0.05) upregulated by SEs in CLL. Bottom: genes significantly

downregulated by SEs in CLL. In the boxplot, maximum, third quartile, median, first quartile and minimum are indicated. The number of replicates analyzed was 19
(CLL) and 7 (NBC), respectively.

G Comparison of normalized gene expression of histone deacetylases between CLL and NBCs. Histone deacetylases significantly upregulated in CLL are shown in bold.
The boxplot representation and number of samples was the same as in panel (F).

H HDAC activity and its inhibition by panobinostat in B cells from CLL patients (red) in comparison with healthy donors (gray). Error bars indicate standard deviation
measured in four biological replicates.

I Genome browser view of H3K27ac tracks (in gray) at exemplary genes for NBCs and CLL cells 24 h after mock and after panobinostat treatment. At genes such as
CDKN1A (cell cycle control) and KLF13, reduced H3K27ac signal in CLL was increased upon HDAC inhibition to the level found in NBCs. WNT11 is shown as an example
of a de novo gain of an active enhancer due to treatment with panobinostat.

J Heatmap displaying changes in H3K27ac read occupancy in CLL upon panobinostat treatment for 24 h. A general gain of H3K27ac in enhancers upon panobinostat
treatment was observed.
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CLL patients and healthy donors in vitro for 2 and 24 h according to

the scheme depicted in Appendix Fig S4A, H3K9ac and H3K27ac

acetylation levels increased as expected (Appendix Fig S4B). The

panobinostat treatment was substantially more toxic to CLL cells

than to NBCs (Appendix Fig S4C and D) and induced changes of

gene expression and histone modifications (Fig 4I and J,

Appendix Fig S4E). Deregulated H3K27ac patterns could be reverted

in part by treatment with the HDAC inhibitor panobinostat and

affected both promoters and enhancers (Fig 4J). Gene expression

levels of 17% of all nascent transcripts were significantly up- or

downregulated (Appendix Fig S4E). After 2 h of panobinostat treat-

ment, only chromatin modifying processes were affected (e.g.,

upregulation of histone acetylation). At the 24-h time point, tran-

scription of genes changed that were associated with RNA metabo-

lism, possibly compensating the HDAC inhibition-related gene

expression changes. Notably, a number of genes involved in BCR

signaling and apoptosis were affected. These changes included reac-

tivation of BCL2L11, CDKN1A, PIK3CB1, NFKBIA, MEF2C, and IRF3

in CLL, while BCL2, ZAP70, LEF1, ETS1, and RUNX1 were repressed

(Dataset EV11). The complex gene expression response after

panobinostat treatment can be rationalized by considering that pan-

HDAC inhibitors like panobinostat not only induce histone hyper-

acetylation, but also affect posttranslational acetylation of non-

histone proteins including TFs. For example, it has been shown that

acetylation changes the activity of NF-jB (Chen et al, 2001),

enhances DNA binding and transactivation of MEF2C (Ma et al,

2005), and decreases DNA binding and transcription activity of SP1/

3 (Braun et al, 2001; Waby et al, 2010).

Differential occupancy of TF binding sites at enhancers

We identified TF binding motifs in ATAC-seq peak regions (median

size 327 bp) for different potential enhancer loci and excluded a

� 1 kb region around promoters. The annotations included differen-

tial ATAC signals (Dataset EV10) at ChromHMM states 1, 8, 9, and

11 (Fig 5A and C), states 1 and 9, which both carry a strong

H3K27ac signal (Appendix Fig S5A), and states 8 and 11 for poten-

tial poised or weak enhancers (Appendix Fig S5B). In addition, the

consensus ATAC peaks were intersected with DMRs for states 1, 8,

9, and 11 (Fig EV2F) as well as differential H3K27ac regions either

genome-wide (excluding promoters; Appendix Fig S5C) or for SEs

called as described above (Appendix Fig S5D). These different

approaches showed a large overlap of the TF motifs retrieved.

Motifs recognized by E protein (including TCF4), TCF7/LEF, NFAT,

EGR, and Forkhead TF families were gained in CLL, while motifs

that were lost in CLL were mostly from the EBF, ETS, NF-jB, and
JUN/FOS (AP-1) families (Appendix Table S2). PAX5, which has

been recently identified within CLL subgroups as an essential super-

enhancer factor for CLL cell survival (Ott et al, 2018), was no top

hit in our differential TF motif analysis of SEs in CLL vs. NBCs. For

the largest set of potential enhancer loci (ChromHMM states 1, 8, 9,

11), NFAT and E2A (E protein family) motifs were identified for

sites that gained ATAC signal in CLL (Fig 5A). In addition, a total of

279 potential enhancer loci simultaneously exhibited significant

changes of their H3K27ac signal at DMRs. For 256 (92%) of these

sites, H3K27ac increased while meC was lost, suggesting that meC

loss was correlated with enhancer activation. As an example, NFAT

binding motifs are displayed, which revealed both a decrease in

DNA methylation and an enrichment of the H3K27ac mark in CLL

cells (Fig 5B). This finding points toward activation of this TF in

CLL cells as shown previously (Oakes et al, 2016) in dependence of

DNA methylation and H3K27ac. Next, we performed a correspond-

ing TF motif analysis within regions with lost ATAC-seq signal in

CLL at predicted enhancer loci (ChromHMM states 1, 8, 9, 11). The

most frequently lost motifs were those of EBF/EBF1 and CTCF

(Fig 5C). The differential gain or loss of binding of selected TFs was

further analyzed by ATAC-seq footprinting at the genomic location

of the motif sequences from Fig 5A and C as shown for E2A, EBF,

and CTCF (Fig 5D). While the fine-scale pattern also reflected the

sequence preference of the Tn5 transposase, the depth of the

footprint and the differential accessibility around the aligned motifs

confirmed the gain/loss of occupancy in CLL precisely at the target

sequence.

The differential CTCF occupancy as inferred from ATAC-seq was

corroborated by a CTCF ChIP-seq analysis and revealed clear dif-

ferences between CLL cells and NBCs (Fig EV5A). Using DiffBind to

extract differentially occupied regions from our CTCF ChIP-seq data,

we found that CTCF binding was lost in CLL cells at 5,964 sites and

gained at 441 sites (Fig EV5B). Of these lost sites, 93% overlapped

with peaks from the ENCODE data set of the B-lymphocyte cell line

GM12875 (GEO GSM749670), and with 55 and 47% of the gained

and lost CTCF sites, respectively, determined from our ATAC-seq

analysis. CTCF was lost in CLL cells mostly at chromatin states

predictive for enhancers (Fig EV5C). In addition, while CTCF

▸Figure 5. ATAC-seq and TF binding motif analysis of enhancers.

A Plot of the most enriched TF binding motifs in regions that showed gained ATAC-seq signal at ChromHMM states 1, 8, 9, and 11 (predictive for enhancers). Color
coding represents different TF classes. The size of the spots is proportional to the percentage of target sequences with a given motif.

B H3K27ac (left) and DNA methylation (right) at NFAT binding sites. CLL cells showed both an H3K27ac enrichment and DNA hypomethylation at NFAT target sites,
suggesting a higher activity of TFs from the NFAT family in CLL.

C Same as panel (A) but for lost ATAC-seq signal.
D ATAC footprints for E2A, EBF, and CTCF motifs from the Homer analysis. The E2A motif footprint (binding site of E protein family TFs like TCF4) displayed an increased

binding signal in CLL, while sites with the EBF and CTCF motif lost the ATAC signal.
E Expression of the genes nearest to target enhancers with constitutively bound (“stable”) CTCF vs. enhancers that lost CTCF in CLL. Loss of CTCF binding correlated

with reduced gene expression.
F Correlation matrix of simultaneously open regions computed from the scATAC-seq data. For all loci, the pair-wise correlation coefficients were calculated and plotted

to visualize how different loci were wired to each other. As an example, the TCF4 locus on chromosome 1 is depicted.
G Enhancer–promoter rewiring at the NFKB2 locus. Top: Clustering of NBC and CLL samples according to gene expression of NFKB2, PSD and FBXL15. NBC samples were

in the left cluster with high NFKB2 expression, which was reduced in the right cluster containing the CLL samples. Bottom: A switch of interactions between the
NFKB2 promoter and two different enhancers in CLL (red line) vs. NBCs (gray line) was observed. Based on the CTCF ChIP-seq analysis, both intronic enhancers at the
NFKB2 and the FBXL15 gene show constitutively bound CTCF nearby, even though the targets of the two enhancers were switched.
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demarcated PMDs as shown above, the PMD boundaries did not

colocalize with TAD boundaries (Fig EV5D). Furthermore, loss of

CTCF did not occur at TAD boundaries, which were rather occupied

by CTCF in both malignant cells and NBCs (Fig EV5E). However,

loss of CTCF was linked to the downregulation of the nearest gene

in CLL (Fig 5E).
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For the further analysis, we compiled lists of “active enhancers

in CLL” and “active enhancers in NBCs”. They were derived from

the consensus of individual ATAC-seq peak regions flanked by

active chromatin states 1 and 9 (Dataset EV9). The two lists

comprised 10,145 loci in CLL and 7,312 in NBCs of which 4,771

were shared between the two groups after merging. The enhancers

defined in this manner showed a large overlap of 85 � 8% (average

and standard deviation for all patient samples) with those identified

from a corresponding analysis based on ATAC-seq peaks flanked by

H3K27ac peaks instead of using the ChromHMM states. This finding

is to be expected since states 1 and 9 carry a strong H3K27ac signal

that is obtained from the peak called H3K27ac ChIP-seq used as

input for ChromHMM.

Mapping promoter–enhancer interactions from single-cell
ATAC-seq data

Next, we identified accessible chromatin loci in single cells via

single-cell ATAC-seq (scATAC-seq), which can resolve the hetero-

geneity between individual cells (Appendix Fig S6A–C). We

analyzed 494 malignant cells from three CLL patients and 343 NBCs

from two healthy donors. Distinct signatures of co-occurring open

loci were found across different cells with a high overall overlap of

open chromatin regions identified by bulk ATAC-seq and scATAC-

seq. The heterogeneity of TF binding between single cells was

assessed from the integration frequency of ATAC at known TF bind-

ing motifs (Appendix Fig S6B). Several motifs like NRF1, NFYA/B,

and JUN/FOS (AP-1) identified above from the analysis of deregu-

lated CLL chromatin features at promoters and enhancers displayed

also the highest heterogeneous accessibility between individual cells

in CLL.

Single-cell ATAC-seq can also reveal co-regulation of genomic

loci by correlating concomitant accessibility of loci in heterogeneous

cell populations. Based on the scATAC-seq data, we computed

correlation matrices that contain information about pairs of genomic

regions that are simultaneously open in the same cell (Fig 5F).

Correlations between two regions can arise from spatial contacts

between them or from other types of co-regulation, e.g., binding of

a common regulator to both loci in the same cell. Using the anno-

tated “active enhancers in CLL/NBC” lists (Dataset EV9), about 800

accessible enhancers per cell were detected on an average. With a

threshold derived from the correlation coefficients obtained in a

permuted data set (Appendix Fig S6D and F), we then identified

enhancer–promoter pairs within 100-kb windows (Dataset EV10).

We found that 68% of these pairs were also listed as spatial contacts

in the 4D genome database (Teng et al, 2015), suggesting that 2/3

of the promoter–enhancer pairs involve physical contacts. In total,

3,955 promoter–enhancer pairs were identified, with most promot-

ers being connected to one enhancer at mean and median distances

of 32 and 20 kb (CLL) and 23 and 10 kb (NBCs), respectively

(Appendix Fig S6E and G). A total of 1,612 pairs were specific for

CLL, 1,932 pairs were specific for NBCs, and 411 pairs were present

in both CLL and NBCs. In addition, a set of 205 rewired promoters

was defined as promoters that do not share any enhancer between

CLL and NBCs but were correlated with at least one enhancer in

each of the cell types. Within this set of rewired promoters, 70 and

49 were linked to genes down- and upregulated in CLL, respectively.

These genes were enriched for pathways involved in signal

transduction, apoptosis, and differentiation. We then evaluated the

properties of enhancers that were assigned to different target genes

in CLL and NBCs. Based on our CTCF ChIP-seq analysis, we found

that at 90% of the rewired enhancers CTCF was stably bound in

both cell types (Fig EV5F). As an example, the NFKB2 locus that is

downregulated in CLL is shown (Fig 5G). In CLL, the regular

enhancer of NFKB2 was replaced with an enhancer that was

connected to the FXB15 gene in NBCs. The FXB15 enhancer had a

reduced activity as inferred from the loss of ATAC signal in CLL,

potentially causing downregulation of NFKB2. Based on these obser-

vations, we propose that rewiring between enhancers and their

target promoters might be one mechanism that leads to deregulated

gene expression in CLL. This process appears to be independent of

CTCF binding changes. Rather, it is consistent with the previous

conclusion that CTCF insulates larger contact domains, while speci-

fic enhancer–promoter interactions might involve other factors like

YY1 (Weintraub et al, 2017).

Assignment of TFs to aberrant CLL chromatin features

Aberrant regulatory epigenetic signals were detected at 81% of the

transcriptionally deregulated genes in CLL (Fig 6A, Datasets EV11

and EV12). Based on our TF motif analysis at promoters and enhan-

cers, we selected the most relevant TFs that displayed differential

binding with respect to two or more of our chromatin readouts as

described in Materials and Methods (Appendix Table S2). These TFs

were assigned to four different deregulated CLL chromatin features

at promoters or enhancers (Fig 6B). A gene set enrichment analysis

of targets of these TFs retrieved pathways that are highly relevant

for the CLL pathophysiology (BCR, NF-jB, and MAPK signaling;

Fig 6C, Appendix Fig S7). Relevant links in this context were, for

example, from SYK (Benkisser-Petersen et al, 2016) to NFATC1,

BCL2 (Roberts et al, 2016) to TCF4, and NOTCH1 (Fabbri et al,

2017; Ryan et al, 2017) to NF-jB. Using the connections provided

by our gene regulatory network, specific chromatin modifiers were

identified that had deregulated activities and could be involved in

the observed changes of meC, H3K4me3, H3K27me3, and H3K27ac

at promoters and enhancers (Appendix Fig S7). The resulting dereg-

ulated TF network thus rationalizes how epigenetic dysregulation in

CLL could be linked to changes in TF activity. This TF network can

be used to generate hypotheses on how these activity changes are

driven by external signaling and how the chromatin aberrations

feedback to signaling.

Integrative gene regulatory enhancer network analysis

The pair-wise correlations between enhancers and promoters

computed from the scATAC-seq data was combined with the B-cell

GRN to derive a “gene regulatory enhancer containing network”

(GREN; Datasets EV13 and EV14). From the complete GREN, a CLL-

specific GREN was extracted that includes the connected network

derived from the CLL-specific TF list, their target genes, as well as

linked chromatin modifiers that affect the aberrant chromatin

features in CLL. As an additional requirement for this selected

network part, all included factors needed to be deregulated in their

activity/expression between CLL and NBCs. A part of this network

that is centered around TCF4 and EBF1 is shown in Fig 6D. To vali-

date the ATAC-based motif analysis for EBF1 (Fig 5C) and
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predictions from our CLL GREN, we conducted a ChIP-seq analysis

of EBF1. Binding of EBF1 was lost at 826 sites and gained at 173

sites in CLL, separating malignant and NBC samples and showing a

very good overlap with the ATAC analysis (Appendix Fig S8A–D).

Interestingly, genes that in CLL lost EBF1 binding at their enhancers

could be clustered into the functional groups of immune response

and cell activation, two pathways of central relevance in the patho-

physiology of CLL (Appendix Fig S8E). We then applied our CLL-

specific GREN to dissect regulation by EBF1, which can act as both

an activator and repressor (Boller et al, 2018). Several enhancers of

EBF1 target genes were predicted to be active only in NBCs (H402,

H441, H464, H1000) and silenced in CLL. These enhancers represent

candidates for being driven by EBF1, which is lost in CLL. As an

example, H464 and its target gene SNX22 are highlighted (Fig 6D).

We confirmed the predicted loss of EBF1 at the intronic H464

enhancer by ChIP-seq and determined a global CLL-specific EBF1

binding pattern (Fig 6E, Appendix Fig S8 and Table S3). Although

H3K27ac at the SNX22 locus was only slightly reduced, transcription

of the SNX22 gene was largely decreased (average log fold changes

�5.1) as evident from the RNA-seq tracks (Fig 6E). Furthermore,

enhancers H1000 (MICAL3 gene) and H441 (NIN gene) also showed

the expected loss of EBF1 binding, while little change was observed

for H402 (NIN gene, not shown; Appendix Fig S8F). Thus, for three

out of four enhancers in our CLL-specific gene regulatory network, a
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Figure 6. Integration of chromatin state changes, TF binding, and gene expression.

A Relation of chromatin states and gene expression changes. For 81% of differentially expressed genes, a change in a regulatory chromatin feature was observed.
B Scheme of chromatin feature changes and associated TFs identified in this study (Appendix Table S2).
C Pathway analysis of identified core TFs and their target genes from our B-cell GRN. Significantly enriched gene sets (P < 0.05) relevant to CLL pathophysiology were

retrieved (BCR signaling, NF-jB signaling, and MAPK signaling).
D CLL GREN. TFs identified here, associated chromatin modifiers, and differentially expressed target genes were integrated into a network. A part that includes TCF4

and EBF1 is shown. The different TSSs of the TCF4 gene (Fig 1A) were combined into a single gene target for the corresponding SE. Several enhancers of EBF1 target
genes were active in NBCs (H402, H441, H464, H1000) but became silenced in CLL. As an example, H464 and SNX22 are highlighted by a red rectangle. These
enhancers represent candidate enhancers for involving EBF1 binding. Color code: active enhancers, dark, light, and medium green for CLL only (“C”), only in NBCs
(“H”), and both cell types (“CH”), respectively; TFs, red; target genes, gray; chromatin modifier, blue.

E Analysis of regulation of SNX22 by the intronic H464 enhancer shown in panel (B). This enhancer lost its ATAC signal at the predicted EBF1 binding site. EBF1 ChIP-
seq analysis validated that EBF1 is indeed lost at this site. Although H3K27ac at the locus was only slightly reduced, transcription of SNX22 was largely reduced. These
findings are consistent with a mechanism where EBF1 binding drives gene expression of SNX22 by binding to H464.
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predicted loss of EBF1 binding in CLL was experimentally validated

by the EBF1 ChIP-seq.

Discussion

Here, we dissected the aberrant epigenetic circuitry in primary CLL

cells vs. NBCs by conducting a comprehensive analysis of chromatin

modifications. Deregulated chromatin features were uncovered that

included both localized changes at regulatory enhancer and

promoter elements as well as large-scale chromatin reorganization

on the Mb scale and above. The most striking example for the latter

was the massive accumulation of large PMDs. These domains corre-

lated with repressive chromatin and gene silencing as in other

cancers (Berman et al, 2011; Hon et al, 2012; Hovestadt et al, 2014;

Schultz et al, 2015). They mapped to lamina-associated domains

(Guelen et al, 2008) and Hi-C B compartments (Fortin & Hansen,

2015; Fig EV2C), reflecting an enhanced heterochromatic chromatin

organization in CLL. Interestingly, boundaries of PMDs were

enriched for occupied CTCF sites, which might indicate a role of

CTCF to limit the expansion of PMDs. This view is supported by the

finding that CTCF binding sites can act as bifurcation points for

differential DNA methylation and that CTCF binding can be modu-

lated by DNA demethylation activity (Teif et al, 2014; Wiehle et al,

2019). Our integrative analysis of a large set of readouts revealed

altered chromatin features at promoter/enhancer elements for 81%

of the differentially regulated genes in CLL cells (Fig 6A). The

underlying CLL-specific TF network that we derived from aberrant

chromatin features displayed strong connectivity with epigenetic

readers and writers such as SIN3 and the NuRD and SWI/SNF chro-

matin remodeling complexes that were deregulated in CLL

(Appendix Fig S7, Dataset EV14). While little is known about the

function of remodeling complexes in CLL, the NuRD and SWI/SNF

remodelers play an important role in hematopoiesis and differentia-

tion and have been implicated in oncogenesis and cancer progres-

sion in numerous other entities (Lai & Wade, 2011; Kadoch &

Crabtree, 2015; Prasad et al, 2015). Furthermore, it is noted that the

ability of these complexes to translocate nucleosomes might be

crucial to modulate chromatin accessibility at enhancers and involve

their targeting by histone modifications like H3K4me1 (Local et al,

2018). In line with these considerations, we observe striking

changes in nucleosome positioning and occupancy at B-cell-specific

genes in CLL. In our promoter analysis, changed nucleosome occu-

pancy at active promoters resulted in a loss of accessible chromatin

and additionally modified histones. This change seems somewhat

different from the broadened H3K4me3 regions observed previously

in other entities (Chen et al, 2015) as the extension observed in CLL

comprised only 1–2 nucleosomes. Interestingly, extension of the

H3K4me3 mark via gain of nucleosomes at transcriptional start sites

and loss in ATAC-seq signal was linked to an enrichment of TF

binding motifs for NFYA, SP1, and KLF proteins. This finding may

point to a loss in TF binding due to the higher nucleosome density

that also could contribute to the extension of the H3K4me3 signal. A

bivalent signature switch at CLL promoters characterized by a loss

of the active H3K4me3 mark points to a reduced developmental

plasticity of CLL cells. According to our analysis, loss of H3K4me3 is

predicted to occur via MEF2 TFs (Aziz et al, 2010; Di Giorgio et al,

2017) and reduced KMT2 activity. Furthermore, we find a number

of additional links in our core TF network to modifiers of H3K4me3

that included, for example, KMT2E, KDM5A, SETD7 (Appendix Fig

S7, Dataset EV14).

Extensive changes of enhancer activity were observed that

allowed us to clearly discriminate between CLL and NBCs, with a

pronounced loss of enhancer activity in CLL. It could be related to

an elevated HDAC activity measured in CLL samples and was

reverted in part by panobinostat treatment that led to increased

H3K27ac at enhancers. Our scATAC-seq analysis revealed correla-

tions between bona fide active sites and led us to propose that

enhancer-mediated changes of transcription activity occurred via

rewiring to different target promoters in CLL cells. A similar data set

does not exist for CLL, as only direct physical contact have been

mapped at low resolution by Hi-C (Beekman et al, 2018) or for

selected interactions by 4C (Ott et al, 2018).

From our chromatin feature maps, we derived a highly

connected CLL-specific network centered around the TFs targeting

17 central binding motifs and an enrichment of BCR signaling genes

(Fig 6B and C, Appendix Fig S7 and Table S2, Dataset EV14). These

central motifs include gained motifs in CLL for NFAT, TCF4, and

LEF1 and lost motifs for EBF1 and AP-1, which have similarly been

reported in two other studies (Oakes et al, 2016; Beekman et al,

2018). The integrated view on the interplay of TFs, chromatin modi-

fiers, and associated target genes derived here provides a rich

resource to generate hypotheses for novel molecular links to the

CLL pathophenotype. For example, the regulation of BCL2 via TCF4

predicted in our GREN (Appendix Fig S7) is of special interest since

it is the target of venetoclax, a highly effective treatment option in

CLL (Roberts et al, 2016). The importance of enhancers as drivers

of deregulated gene expression in CLL is another notable finding

emerging from our work. Since a large number of enhancers change

their activity state and/or their target genes, a promoter centric view

will be insufficient to rationalize the global reprogramming of the

CLL transcriptome. Finally, given the complex interlinked structure

between a large number of TFs, chromatin modifiers, and their

target genes, it appears quite clear that simple linear models will not

be able to fully grasp essential parts of the pathomechanism.

Accordingly, we envision that the approach of developing integrated

gene regulatory enhancer containing networks will prove to be valu-

able for therapy response prediction and patient stratification for

CLL. Furthermore, the comprehensive data sets created here and in

another study (Beekman et al, 2018) provide a rich resource for CLL

researchers. It will largely facilitate studies that involve clinically

relevant disease phenotypes with deregulated molecular mecha-

nisms, which are reflected by the multitude of aberrant features

present in the CLL epigenome.

Materials and Methods

Patient samples

All CLL patients analyzed in this study gave written informed

consent (ethics committee approval) and were characterized in

the diagnostics department of the University Hospital Ulm

(Appendix Table S1). The median age of the CLL patients was

62 years (range, 47–79). NBC control samples were enriched from

peripheral blood of in total 65 age-matched donors (median,
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57 years, range, 51–70) that were collected in 17 sample pools. For

all samples from CLL patients and from NBC donors, CD19-positive

B cells were purified, yielding a CD19-positive fraction of 98 � 2%

in NBC donor and 99 � 1% in CLL patient samples. A fraction of

79% of CLL patients had favorable genetic aberrations [del(13q)] as

sole abnormality associated with increased survival times, 21% had

normal karyotype. 61% of the patients were diagnosed with hyper-

mutated IGHV associated with good prognosis. Due to the high

numbers of B cells required for multiple sequencing, we selected

asymptomatic CLL patients who had been approached with the

watch-and-wait strategy. None of the patients analyzed had previ-

ous treatment of the CLL disease with high numbers of CLL cells

unaffected by the potential impact of prior therapy in the peripheral

blood with a median leukocyte count of 101.4 × 109/l (range, 37.5–

280.6 × 109/l).

Whole-genome bisulfite sequencing

DNA was extracted with the AllPrep DNA/RNA Mini Kit (Qiagen),

spiked with unmethylated lambda DNA (Promega) and sonicated to

achieve an average size of 250–300 bp. After bisulfite conversion

using the EZ DNA Methylation Kit (Zymo), strand-specific WGBS-

seq libraries were prepared as described previously (Kretzmer et al,

2015). For each library, three lanes with 100 bp paired-end reads

were sequenced on the Illumina HiSeq 2000 system.

ChIP-seq of histone modifications and transcription factors

Patient-derived cells were cross-linked with 1% methanol-free

formaldehyde for 10 min. After quenching with glycine, cells were

washed three times with PBS and the cell pellet was frozen in liquid

nitrogen. For analysis, the cell pellet was thawed and treated with

four units MNase per 1 × 106 cells for 15 min. MNase was stopped

with 10× covaris buffer, and the chromatin was sheared for an addi-

tional 15 min with the S2 covaris device. The soluble chromatin

was then recovered and subjected to a background-minimizing pre-

clearing step with an unspecific IgG antibody. For each ChIP assay,

an equivalent of 3 × 106 cells was used. After the IP, chromatin was

digested with RNaseA and proteinase K. From the purified DNA

sequencing, libraries were generated with the NEBNext Ultra library

preparation kit (NEB). ChIP-seq of both CTCF and EBF1 was

done with the SimpleChIP-seq kit from Cell Signaling Technology

according to the manufacturer’s instructions. After purification of

the DNA, libraries were cloned with the NEBNext Ultra II library kit

(NEB). The antibodies used for ChIP-seq were H3K4me1 (Abcam

ab8895), H3K4me3 (Abcam ab8580), H3K9ac (Active Motif 39137),

H3K9me3 (Abcam ab8898), H3K27ac (Abcam ab4729), H3K27me3

(Abcam ab6002), H3K36me3 (Abcam ab9050), H3 (Abcam ab1791),

CTCF (Active Motif 61311), and EBF1 (Sigma SAB2501166) and are

listed in Appendix Table S4.

ATAC-seq

Nuclei from formaldehyde-fixed or viable frozen (one out of seven

NBC samples) cells were isolated with Nuclei EZ lysis buffer

(Sigma-Aldrich), washed once in ATAC-seq lysis buffer (10 mM

Tris–HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 0.1% IGEPAL

CA-630) and incubated with Tn5 transposase (Illumina) for 30 min

at 37°C or viable frozen cells (three out of seven NBC samples) were

directly incubated with Tn5 for 30 min at 37°C in the presence of

0.1% Igepal CA-630 (Sigma-Aldrich). After incubation, Tn5 was

stopped with EDTA, for previously fixed samples, cross-links were

reversed, and the DNA was purified with AMPure beads (Beckman

Coulter). Barcodes were added by PCR, and the libraries were puri-

fied again with AMPure beads. The scATAC-seq sequencing libraries

were generated with the Fluidigm C1 system as described previously

(Buenrostro et al, 2015). In brief, viably frozen, primary B cells

were loaded on a 96-chamber C1 flow cell and captured cells were

analyzed by microscopy to exclude doublets. After harvesting the

pre-amplified single-cell ATAC-seq libraries, dual external barcodes

were added by PCR and all libraries from one C1 flow cell were

pooled. Libraries were 50-bp paired-end sequenced on Illumina

HiSeq 2000 (all scATAC-seq samples) or 4000 systems.

RNA-seq

For RNA-seq, short and long RNA fractions were isolated with the

miRNeasy Mini Kit (Qiagen), RNA was digested by DNase I

(Promega) for 30 min at 37°C and depleted from rRNA with Ribo-

Zero Gold, and finally, directional cDNA synthesis and sequencing

library preparation were conducted according to the NEBNext Ultra

Directional RNA Library Prep Kit (NEB). All libraries were 50-bp

single-end sequenced on the HiSeq 2000 machine.

Panobinostat treatment and HDAC activity assay

Primary CLL cells from three treatment-naı̈ve patients and NBCs in

a pool of 28 healthy donors were treated with 5 nM panobinostat

(Biozol) ex vivo. Cells were sampled before as well as 2 and 24 h

after initiation of treatment. Western blots were conducted to evalu-

ate changes in the abundance of H3K9ac and H3K27ac. The samples

were subject to ChIP-seq experiments for seven histone modifi-

cations and the H3 control and also to RNA-seq as described below.

Malignant and NBCs of each of four individual CLL patients or

healthy donors, respectively, were enriched for CD19-positive. A

total of 10,000 cells were seeded in serum-free medium and incu-

bated for 30 min with DMSO as mock control or different concentra-

tions of panobinostat (25 pM–250 nM). HDAC-Glo I/II assay

(Promega) was performed in technical triplicates according to

manufacturer’s protocol and measured with the Promega GloMax

device.

DNA methylation analysis

Whole-genome bisulfite sequencing data were processed with

MethylCtools as previously described (Hovestadt et al, 2014). In

addition to the default pipeline of MethylCtools, an updated version

of BWA-MEM (v0.7.12-r1039) was used to align reads to the human

reference genome, build hg19 (hs37d5) from the 1000 Human

Genome project (Li & Durbin, 2010). DNA methylation levels (b-
values) were calculated for more than 23 million CpG sites covered

with at least five reads and supported to be a correct CpG by the

sequencing data in individual samples (> 75% of reads; Hovestadt

et al, 2014). The non-conversion rates were below 0.25% for all

samples as determined from the spiked-in lambda phage genome

DNA. Partially methylated domains were identified for each sample
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using an approach described previously (Berman et al, 2011; Hoves-

tadt et al, 2014). In brief, the genome was scanned with a

10-kb sliding window (R caTools package, v1.17.1) to retrieve

windows with average methylation levels < 0.65. The resulting

10-kb windows were joined together if overlapping, and the merged

regions over 100 kb were called as partially methylated domains.

The consensus PMDs were generated as the union of PMDs present

in at least half of the CLL samples analyzed (≥ 6). Differentially

methylated regions between CLL and NBCs were identified using

the R Bioconductor (Gentleman et al, 2004) package, DSS (v2.10.0;

Feng et al, 2014), and P < 0.05, the minimum length of 200 base

pairs and the differential methylation threshold of 0.3. The DMRs

and PMDs overlapping with the UCSC “gap” table, comprising

centromeres, telomeres or regions with no sequence information,

were discarded from further analysis. Normal B-cell programming

might account for some of the methylation changes from the

comparison of CLL to NBCs (Oakes et al, 2016). To account for this,

DMRs were filtered out if they show “similar” methylation changes

(< 0.2 b-value) also in the comparison of high-maturity memory B

cells to naive B cells as described previously (Oakes et al, 2016).

Methylation profiles were employed to assign CLL samples into

three distinct CLL subtypes (low, intermediate, and high)

programmed using a reference 450K methylation data from 185 CLL

cases. Raw 450K data were processed using the Minfi Bioconductor

package (v1.16.1; Aryee et al, 2014). Phylogenetic analysis was

carried out as previously reported (Brocks et al, 2014; Oakes et al,

2016) on the 450K data of CLL cases and normal B-cell subsets

together with the WGBS data of CLL cases from our study. As a vali-

dation, a support vector machine (SVM) model (Queiros et al, 2015)

was adopted to classify CLL samples into three distinct subtypes,

confirming our previous results. To exclude any label switching,

genetic fingerprinting was performed to all the samples profiled by

WGBS, ChIP-seq, ATAC-seq, and RNA-seq, validating the sample

origin.

ChIP-seq data analysis

After mapping with bowtie to the hg19 genome assembly with

decoy regions (options –best -strata -v 1 -m 1), peaks were called

with MACS for H3K4me1, H3K4me3, H3K9ac, and H3K27ac using

H3 as a background control. For H3K9me3, H3K27me3, and

H3K36me3, SICER was used to determine enriched regions with

histone H3 serving again as a control. In order to computationally

validate the quality of the ChIP-seq experiments, we clustered the

different IP samples using their Pearson correlation. Additionally,

quality scores suggested by the ENCODE project were used to assess

the overall quality of each ChIP-seq data set (Dataset EV4). Peaks

were then used for chromatin state analysis with ChromHMM as

stated below. Topology and size distributions of modified chromatin

regions were calculated with MCORE as described in Molitor et al

(2017) with the modification that histone H3 was used as a back-

ground file for normalization. CTCF and EBF1 ChIP-seq sequencing

libraries were mapped as described above, and peaks were called

with MACS2 using standard parameters for narrow peak detection.

Differential histone modification and TF binding analysis from

ChIP-seq data were performed using the peaks called for each

sample and the corresponding reads counts within the alignment

files using DiffBind (Dataset EV8). Read counts were scaled to the

control, and normalization was done relative to the number of reads

within peak regions. Differential enhancers were called using edgeR

with an FDR threshold of 0.01 within DiffBind. For the 24-h mock

treatment and panobinostat samples, paired analysis was performed

using DESeq2 with an FDR threshold of 0.01 within DiffBind.

The panobinostat differential H3K27ac regions were annotated

as promoter overlapping with respect to any TSS from Gencode v17

and annotated as enhancer overlapping with respect to the enhan-

cers of combined CLL occurring in at least three untreated or two

24-h-treated samples. For both CTCF and EBF1, differential regions

between CLL and NBCs were computed form a consensus peak list

within DiffBind.

Genome segmentation and chromatin annotation

The chromatin was segmented and annotated using a multivariate

Hidden Markov model with the ChromHMM software (Ernst &

Kellis, 2012). The model was trained using seven histone modifi-

cation marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9ac,

H3K9me3, and H3K36me3) across all samples where histone modi-

fication ChIP-seq data were of sufficient quality for all histone

marks (samples H1, H3–5, H8, CLL1–3, CLL5–11). The model was

learned by using the merged peak called with MACS or SICER from

the ChIP-seq data as binarized input for ChromHMM and allowing

for a maximum of 400 iterations. We generated and compared

models with 7–50 states and decided to use 12 states (Datasets EV6

and EV7). This model captured all combinations of biologically

interpretable states with median correlation of 0.72 to the 50-state

model and displayed high concordance with the Roadmap 15-state

model. For further analysis, the 12-state ChromHMM model was

used to segment the genome of each individual sample (including

the panobinostat-treated samples not used for generating the

model).

Nucleosome occupancy maps

Paired-end sequenced histone H3 ChIP-seq libraries from MNase-

digested chromatin were used to determine nucleosome positions in

malignant and NBCs. Reads were mapped with Bowtie as described

above and processed using NucTools (Vainshtein et al, 2017) to

generate genome-wide nucleosome occupancy landscapes, extract

individual genomic regions, and calculate the nucleosome repeat

length, as described previously (Teif et al, 2012, 2014; Vainshtein

et al, 2017). Aggregate nucleosome occupancy profiles around

genomic features were calculated using HOMER (Heinz et al, 2010)

and NucTools (Vainshtein et al, 2017). The pathway enrichment

analysis was performed with DAVID and EnrichR.

ATAC-seq data analysis

Both scATAC-seq and bulk ATAC-seq were processed in a similar

manner. Reads were trimmed using Trimmomatic version 0.36 (Bol-

ger et al, 2014) and mapped to the human genome (hs37d5) using

bowtie2 (Langmead et al, 2009) with the options “–very-sensitive -X

2000”. After removing reads which in regions blacklisted by

ENCODE (https://sites.google.com/site/anshulkundaje/projects/

blacklists), duplicate reads were discarded using rmdup of SAMtools

version 1.3 (Li et al, 2009) and reads mapping to the mitochondrial
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genome were also removed. For further analysis and calculation of

coverage tracks, all reads were shifted to be centered on the cutting

position of the transposase and extended to a total of 29 bp to repre-

sent the region occupied by the transposase (Adey et al, 2010). For

bulk ATAC-seq, peak calling was done with MACS2 version 2.1.1

(Zhang et al, 2008) with the parameters “–nomodel –shift -10 –

extsize 28 –broad”. Differential ATAC-seq signals were calculated

with DiffBind (Ross-Innes et al, 2012), within peak regions called in

at least four replicates (Dataset EV10.1). Fold change thresholds

were determined as the intersections of three Gaussian functions fit-

ted to the distribution of log2 fold changes from DiffBind

(Fig EV1E). The FDR threshold used for the differential ATAC-seq

signal analysis was set to the x-value of the inflection point of the

number of differentially accessible regions as function of FDR

threshold. The analysis was also conducted with only fixed frozen

NBC samples to ensure that the results were not affected by dif-

ferences between fixed and viably frozen control samples (Dataset

EV10.2, used for TF motif analysis in Appendix Fig S5A and B).

For scATAC-seq, typically 40,000–100,000 unique integrations

per cell were obtained. Cells with very few (less than 0.2-times the

average) or very frequent (more than three standard deviations

above the average) integrations were removed from the analysis.

Variations in accessibility for different TF binding motifs were deter-

mined with chromVAR (Schep et al, 2017). Correlation coefficients

for simultaneous insertions across all cells at promoters and enhan-

cers were computed with the R-package RWire, which has been

deposited at https://github.com/FabianErdel/RWire. Target promot-

ers of enhancers within TAD-sized regions were identified based on

the respective correlation values using a threshold (0.22) derived

from the spurious correlations obtained after randomly permuting

insertions (see Appendix Fig S6 for details). The resulting set of

promoter–enhancer pairs was used for downstream analysis and

integrated into the gene regulatory network.

Enhancer annotation

Different sets of putative enhancers in CLL and NBCs were compiled

that all excluded promoter regions as defined by a region of � 1 kb

around the TSS (RefSeq): (i) In order to identify TF motifs gained or

lost in CLL within the ATAC peak regions, the differential ATAC

signal was intersected with either all four potential enhancer

containing ChromHMM states 1, 8, 9, and 11 (Fig 5A and C) or only

with the predicted active enhancer states 1 and 9, which carry a

strong H3K27ac signal (Appendix Fig S5A) or with the predicted

poised/weak enhancers from states 8 and 11 (Appendix Fig S5B).

(ii) Active enhancer lists were based on either ATAC signal or bidi-

rectional transcription (Bidi) as active marks. ATAC-seq peaks or

sites of bidirectionally expressed RNA loci identified in both repli-

cates of a given patient or NBC control sample were selected. A

� 1 kb region around the ATAC/Bidi signal center was intersected

with the predicted intergenic and genic active enhancer states 1 and

9. The size of � 1 kb was selected based on the average extension

of key enhancer marks (H3K27ac, H3K4me1, p300, Bidi; Chen et al,

2018). Subsequently, overlapping regions were merged. Consensus

active enhancer lists for CLL and NBCs were generated from individ-

ual patient or NBC control lists by selecting regions which were

identified in at least three of the available CLL patient sample and

one (ATAC) or two (Bidi) of the NBC controls, for which both the

ChromHMM annotation and ATAC-seq/Bidi data were available.

(iii) SEs were predicted with the ROSE tool (Whyte et al, 2013) by

using the H3K27ac read signal within the overlap region of ATAC

and H3K27ac peaks. The Gencode v17 genes were defined as a

background gene model for filtering transcription start sites within

ROSE. Differential analysis of H3K27ac at enhancers was performed

using DiffBind on the enhancer regions occurring in at least three

samples with the original H3K27ac data for the individual samples.

Differential loci were called using DiffBind with an FDR threshold of

0.01. Functional assignment of differential SEs was done with

GREAT (McLean et al, 2010) with modified parameters of 10 kb

upstream, 5 kb downstream, and 2 Mb distal which annotates

cis-regulatory regions.

TF motif analysis

To identify TF motifs in regions of interest with gained or lost

occupancy, we used the HOMER package with appropriate back-

ground controls for each individual data set (Heinz et al, 2010).

All TF motif analysis was conducted within the ATAC peak

regions. For the TF footprinting analysis, loci with a certain motif

were retrieved with HOMER’s “annotatePeaks.pl” and “known

motifs” analysis. Coverage tracks � 100 bp around the center of

the motifs were generated with ngs.plot (Shen et al, 2014) using

combined reads from all CLL patients or NBC controls collapsed to

the center of the transposase binding event. In Appendix Table S2,

the TF sequence-binding motifs and selected factors are listed that

were associated with at least one additional aberrant chromatin

feature in CLL in addition to chromatin accessibility changes as

detected by ATAC-seq. These chromatin features included histone

H3K4me3 broadening, nucleosome gain or loss of the bivalent

H3K4me3-H3K27me3 mark at promoters, or, at enhancers, dif-

ferential DNA methylation or H3K27ac changes. Only TFs were

included that showed a significant differential protein activity (or

gene expression for network target genes) as computed from our

B-cell-specific gene regulatory network (Fig 1E). The latter served

to select specific TFs from TF families that recognize the same

DNA sequence motif. For example, a number of the ETS family

TFs recognize the same sequence motif (Wei et al, 2010) but

many of these TFs did not display differential activity as computed

from their target gene expression data.

RNA-seq data analysis

Sequence reads were mapped to the human genome (hs37d5,) using

STAR version 2.3.0 (Dobin et al, 2013) with the parameters: –genome-

Load LoadAndRemove –alignIntronMax 500000 –alignMatesGapMax

500000 –outSAMunmapped Within –outFilterMultimapNmax 1 –

outFilterMismatchNmax 3 –outFilterMismatchNoverLmax 0.3 –

sjdbOverhang 50 –chimSegmentMin 15 –chimScoreMin 1 –chimS-

coreJunctionNonGTAG 0 –chimJunctionOverhangMin 15. RPKM

and TPM values were computed for the long and the total RNA. The

mapped reads were quantified using HTSeq-count from the HTSeq

framework version 0.6.0 using the intersection_nonempty option in

a stranded fashion according to the gencode17 annotation (Anders

et al, 2015). Normalization and differential expression analysis were

performed using DESeq2 (Love et al, 2014; Dataset EV11). Bidirec-

tional expression was computed within a 1-kb sliding window. Loci
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were selected that had at an expression level of at least 20% of the

reads of the higher transcribed strand produced from the other

strand and displaying a bimodal shape of the differently directed

reads. Regions overlapping transcription start sites or exons on both

strands were excluded.

Gene regulatory network construction and activity calculation

A human B-cell regulatory network was constructed from 264

publicly available samples (Basso et al, 2010) including normal B

cells, B-cell lymphomas, and cell lines by using the ARACNe-AP

algorithm (Lachmann et al, 2016) with default parameters (MI

P = 10�8, 100 bootstraps, and permutation seed = 1). Regulatory

proteins were taken from a previously compiled list of 5,927

proteins (TFs, transcriptional co-factors, and signaling pathway-

related genes etc.) based on gene ontology annotations (Alvarez

et al, 2016). From this list, 3,862 proteins were present in the B-cell

network, which additionally contained 12,119 target genes and

214,405 interactions. The average and median of target genes per

regulator were 56 and 45, respectively. The activity values of regu-

lators were calculated based on our RNA-seq data set by using the

VIPER algorithm (Alvarez et al, 2016). For this, the raw RNA-seq

counts were normalized by variance-stabilizing transformation

using DESeq2 (Love et al, 2014). Activities for 2,804 of the 3,862

regulators could be computed. To identify regulators which showed

a significantly different activity between the CLL samples and the

NBC samples, a two-sided Student’s t-test was performed and the

P-values were adjusted for multiple testing (Benjamini & Hochberg,

1995) yielding 1,378 differentially active regulators with an

adjusted P-value < 0.05. Differential expression of regulators target

genes of the regulators was determined with DESeq2. Gene set

enrichment analysis was performed using the R-package “gPro-

fileR” (Reimand et al, 2016) with the B-cell network as universe to

identify significantly enriched KEGG pathways (Kanehisa & Goto,

2000) for the identified core TFs and their target genes. The

network was visualized using Cytoscape version 3.5.1 (Shannon

et al, 2003). Regulators with a differential activity change between

the CLL and the NBC samples (P < 0.05) and all differential

expressed non-regulators (P < 0.01) with a log fold change of

�1.7 < LFC > 1.7 were selected for further analysis. To identify

aberrant chromatin modifier in CLL vs. NBCs, the list of deregu-

lated regulators/genes was intersected with the EpiFactors database

(Medvedeva et al, 2015). This list was then reduced to those genes

that were linked to the deregulated chromatin features identified in

our study (meC loss, H3K27me3 gain, H3K27ac loss/gain, and

H3K4me3 loss/gain).

All enhancer–promoter pairs with a correlation of 0.22 or higher

in the scATAC-seq analysis (Appendix Fig S6D and F) were used

from the CLL and the NBC samples. To remove duplicates, overlap-

ping regions were put together and the gene promoters were

mapped to gene symbols. The enhancer–promoter pairs were

grouped into CLL only (C), NBCs only (H), and found in both

groups (CH). For all these cases, the enhancers were numbered

consecutively (C1-C1208 in case of the CLL-specific enhancers) and

the information about the genomic positions was added as a node

attribute. For all the genes in the B-cell network, the enhancer–gene

interactions were integrated. For the CLL-specific network, the

interactions between the core TFs (Appendix Table S2), their dereg-

ulated target genes, and the selected chromatin modifier as well as

the enhancers were extracted from the B-cell network (Datasets

EV13 and EV14). Exemplarily, the part of the network around TCF4

and EBF1 is shown in Fig 6D. In Appendix Fig S7, the linked part

around the core TFs is shown, and here, some chromatin modifiers

were grouped into complexes.

Data availability

The data and computer code produced in this study are available

from the following sources:

All original sequencing data have been deposited at European

Genome-phenome Archive under the accession number EGAS00001002518

(http://www.ebi.ac.uk/ega/).

Processed WGBS, ChIP-seq, (sc)ATAC-seq, and RNA-seq data are

available under GSE113336 (https://www.ncbi.nlm.nih.gov/ge

o/query/acc.cgi?acc=GSE113336) at Gene Expression Omnibus as

full bigBed/BigWig files.

Metadata from the comprehensive analyses are provided as

Datasets EV1–EV14 with the manuscript. They are described in

Appendix Table S6, and additional data are available via the web

page http://www.cancerepisys.org/data/cancerepisys_data/.

Software used for the data analysis for the different sequencing

readouts is listed in Appendix Table S7. Custom analysis scripts and

tools are available from Github at https://github.com/Cance

rEpiSys/Mallm-et-al-processing-scripts, and the R-package RWire

has been deposited at https://github.com/FabianErdel/RWire.

Expanded View for this article is available online.
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