Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

## Dimerization of conserved ascaroside building blocks generates species-specific male attractants in *Caenorhabditis* nematodes

Chuanfu Dong,<sup>1</sup> Franziska Dolke,<sup>1</sup> Siva Bandi,<sup>2</sup> Christian Paetz,<sup>3</sup> and Stephan H. von Reuß<sup>\*1,2</sup>

 Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany.
 Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland.
 Research Group Biosynthesis / NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8,

 Research Group Biosynthesis / NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany.

\*stephan.vonreuss@unine.ch

| SUPPORTING INFORMATION                     | Pages      |
|--------------------------------------------|------------|
| Supporting Figures S1 – S11                | S2 – S28   |
| Supporting Tables                          | S29 – S33  |
| Supporting NMR spectra (Figures S12 – S76) | S34 – S103 |
| References                                 | S104       |

## **Supporting Figures**

**Figure S1:** Phylogeny of analyzed *Caenorhabditis* species <sup>[1]</sup> and occurrence of dominating ascaroside dimers as identified using ESI-(+)-MS/MS analysis.





Figure S2a: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.



Figure S2b: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.



Figure S2c: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.



Figure S2d: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.



Figure S2e: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.



Figure S2f: HPLC-ESI-(+)-HR-MS/MS spectra of dimeric ascarosides from Caenorhabditis spp.





**Figure S3b:** Composition of ascaroside dimers in *C. nigoni* JU1422 as deduced from HPLC-ESI- (+)-HR-MS/MS extracted ion chromatograms.





**Figure S3c:** Composition of ascaroside dimers in *C. brenneri* PB2801 as deduced from HPLC-ESI-(+)-HR-MS/MS extracted ion chromatograms.

Intens. x10<sup>5</sup>-Ctr OVERLAY (asc-C5)-asc-C5 JU1373 1.5 1.0 (asc-C5)-asc-C6 0.5 (asc-C5)-asc-C7 (asc-C5)-asc-C4 0.0 12 14 18 20 22 Time [min] Intens **C5** 482 (asc-C4)-asc-C# MS/MS EIC 347.1700 ±0.01 1200 C<sub>6</sub>H<sub>10</sub>O<sub>2</sub><sup>+</sup> 1000 800 -600 -400 200 Time (min) Intens. x10<sup>5</sup>-**C5** 496 (asc-C5)-asc-C# MS/MS EIC 361.1857 ±0.01 0 C<sub>6</sub>H<sub>10</sub>O<sub>2</sub><sup>+</sup> 1.5 -1.0 но 0.5 **C6** 510 C7 C4 524 482 0.0-14 12 18 20 22 Time [min] 16 10 Intens **C5** 510 MS/MS EIC 375.2013 ±0.01 (asc-C6)-asc-C# C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> 400 -300 200 -100 -0-Inte MS/MS EIC 389.2170 ±0.01 (asc-C7)-asc-C# C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> нс non-detected (background noise only) 0+10 12 14 18 20 22 Time [min] 16

**Figure S3d:** Composition of ascaroside dimers in *C. tropicalis* JU1373 as deduced from HPLC-ESI-(+)-HR-MS/MS extracted ion chromatograms.



**Figure S3e:** Composition of ascaroside dimers in *C. sinica* JU727 as deduced from HPLC-ESI- (+)-HR-MS/MS extracted ion chromatograms.



**Figure S3f:** Composition of ascaroside dimers in *C. briggsae* AF16 as deduced from HPLC-ESI- (+)-HR-MS/MS extracted ion chromatograms.



**Figure S4a:** HPLC-ESI-(-)-HR-MS/MS spectra and MS/MS fragmentation of trimeric ascarosides from *C. nigoni* JU1422.





**Figure S5:** 400 MHz <sup>1</sup>H NMR spectra (in CD<sub>3</sub>OD) showing the isolation of 4'-(asc-C4)-asc-C5 (**5**) from the *C. remanei* PB4641 exometabolome: (**A**) Partially enriched fraction from 1<sup>st</sup> solid phase extraction (SPE) on RP-C18; (**B**) enriched fraction from 2<sup>nd</sup> SPE on RP-C18ec; (**C**) pure 4'-(asc-C4)-asc-C5 (**5**) isolated by HPLC.



**Figure S6a:** 400 MHz *dqf*-COSY spectra (in CD<sub>3</sub>OD) showing the isolation of 4'-(asc-C4)-asc-C5 (**5**) from the *C. remanei* PB4641 exometabolome. (**A**) Partially enriched fraction from  $1^{st}$  solid phase extraction (SPE) on RP-C18; (**B**) enriched fraction from  $2^{nd}$  SPE on RP-C18ec; (**C**) pure 4'-(asc-C4)-asc-C5 (**5**) isolated by HPLC; note that structure assignment is already possible after the  $1^{st}$  SPE fractionation step.



**Figure S6b:** Enlarged sections of 400 MHz *dqf*-COSY spectra (in CD<sub>3</sub>OD) showing the isolation of 4'-(asc-C4)-asc-C5 (**5**) from the *C. remanei* PB4641 exometabolome. (**A**) Partially enriched fraction from 1<sup>st</sup> solid phase extraction (SPE) on RP-C18; (**B**) enriched fraction from 2<sup>nd</sup> SPE on RP-C18ec; (**C**) pure 4'-(asc-C4)-asc-C5 (**5**) isolated by HPLC; note that assignment of the 4-linkage is already possible after the 1<sup>st</sup> SPE fractionation step.



**Figure S7:** HPLC-ESI-(-)-HR-MS chromatograms showing the isolation of ascaroside dimers from *C. nigoni* strain JU1422: (**A**) & (**B**) partially enriched fractions from Solid Phase Extraction (SPE) on RP-C18; (**C**), (**D**) & (**E**) highly enriched HPLC fractions that were analyzed by *dqf*-COSY.





**Figure S8:** HPLC-ESI-(+)-HR-MS/MS spectra of (**A**) 2'-(asc-C5)-asc-C5 (**6**), (**B**) 2'-(asc-C6)-asc-C5 (**7**), and (**C**) 2'-(asc-C6)-asc-C6 (**8**) from *C. nigoni* JU1422.

**Figure S9a:** Sections of the 400 MHz *dqf*-COSY spectra (in  $CD_3OD$ ) of 2-linked ascaroside dimers (**A**) 2'-(asc-C5)-asc-C5 (**6**), (**B**) 2'-(asc-C6)-asc-C5 (**7**), and (**C**) 2'-(asc-C6)-asc-C6 (**8**) enriched from *C. nigoni* JU1422.



**Figure S9b:** Sections of the 400 MHz *dqf*-COSY spectra (in  $CD_3OD$ ) of 2-linked ascaroside dimers (**A**) 2'-(asc-C5)-asc-C5 (**6**), (**B**) 2'-(asc-C6)-asc-C5 (**7**), and (**C**) 2'-(asc-C6)-asc-C6 (**8**) enriched from *C. nigoni* JU1422.



**Figure S10a:** Comparative analysis of the 400 MHz <sup>1</sup>H NMR spectra (in CD<sub>3</sub>OD) of (**A**) synthetic 2'-(asc-C6)-asc-C6 (**8**) and (**B**) the natural product isolated from *C. nigoni* JU1422.



**Figure S10b:** Comparative analysis of the 400 MHz <sup>1</sup>H NMR spectra (in CD<sub>3</sub>OD) of (**A**) synthetic 2'-(asc-C6)-asc-C6 (**8**) and (**B**) the natural product isolated from *C. nigoni* JU1422.



**Figure S10c:** Comparative analysis of the 400 MHz *dqf*-COSY spectra (in CD<sub>3</sub>OD) of (**A**) synthetic 2'-(asc-C6)-asc-C6 (**8**) and (**B**) the natural product isolated from *C. nigoni* JU1422.



**Figure S10d:** Comparative analysis of the 400 MHz <sup>1</sup>H NMR spectra (in CD<sub>3</sub>OD) of (**A**) enriched 2'-(asc-C6)-asc-C5 (**7**) from *C. nigoni* JU1422, (**B**) synthetic asc- $\Delta$ C9, and (**C**) synthetic 2'-(asc-C6)-asc-C5 (**7**).



**Figure S11:** Comparative UPLC-HR-MS analysis of ascaroside dimers from *C. nigoni* JU1422 and synthetic standards of 2'-(asc-C6)-asc-C5 (7), 2'-(asc-C6)-asc-C6 (8), 4'-(asc-C6)-asc-C5 (13a), and 4'-(asc-C6)-asc-C6 (13b) confirms the structure assignment of the natural compounds as 2-linked 7 and 8.



## Supporting Tables

| Table S1a. HPLC-ESI-HR-MS/MS data of ascaroside dimers from Caenorhabditis | species. |
|----------------------------------------------------------------------------|----------|
|----------------------------------------------------------------------------|----------|

|      |       |               | (asc-C#                     | (asc-C#)-asc-C#                                 |                             | (asc-C#)-asc-C# (asc-C#)-asc-C#                   |                                     | (asc-C#)-asc                                     |                             | asc-C#                                         |                             | C#                                             |                             |                                              |
|------|-------|---------------|-----------------------------|-------------------------------------------------|-----------------------------|---------------------------------------------------|-------------------------------------|--------------------------------------------------|-----------------------------|------------------------------------------------|-----------------------------|------------------------------------------------|-----------------------------|----------------------------------------------|
|      |       |               | [M                          | - H] <sup>.</sup>                               | [M + Na] <sup>+</sup>       |                                                   | [M + NH <sub>4</sub> ] <sup>+</sup> |                                                  | [M – agylcone] <sup>+</sup> |                                                | [monomer-C≡O]+              |                                                | [agylcone] <sup>+</sup>     |                                              |
| Fig. |       |               | m/z                         | formula                                         | m/z                         | formula                                           | m/z                                 | formula                                          | m/z                         | formula                                        | m/z                         | formula                                        | m/z                         | formula                                      |
| S2a  | C4C4  | obs.<br>calc. | <b>449.2033</b><br>449.2028 | C <sub>20</sub> H <sub>33</sub> O <sub>11</sub> | <b>473.2003</b><br>473.1993 | C <sub>20</sub> H <sub>34</sub> NaO <sub>11</sub> | <b>468.2447</b> 468.2439            | C <sub>20</sub> H <sub>38</sub> NO <sub>11</sub> | <b>347.1703</b><br>347.1700 | C <sub>16</sub> H <sub>27</sub> O <sub>8</sub> | <b>217.1070</b><br>217.1071 | C <sub>10</sub> H <sub>17</sub> O <sub>5</sub> | <i>nd</i><br>87.0441        | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> |
| S2a  | C4C5  | obs.<br>calc. | <b>463.2176</b><br>463.2185 | C <sub>21</sub> H <sub>35</sub> O <sub>11</sub> | <b>487.2157</b><br>487.2150 | C <sub>21</sub> H <sub>36</sub> NaO <sub>11</sub> | <b>482.2608</b><br>482.2596         | C <sub>21</sub> H <sub>40</sub> NO <sub>11</sub> | <b>347.1718</b><br>347.1700 | C <sub>16</sub> H <sub>27</sub> O <sub>8</sub> | <b>217.1076</b><br>217.1071 | $C_{10}H_{17}O_5$                              | <i>nd</i><br>87.0441        | $C_4H_7O_2$                                  |
| S2a  | C4C6  | obs.<br>calc. | <b>477.2348</b> 477.2341    | C <sub>22</sub> H <sub>37</sub> O <sub>11</sub> | <b>501.2317</b><br>501.2306 | C <sub>22</sub> H <sub>38</sub> NaO <sub>11</sub> | <b>496.2765</b><br>496.2752         | C <sub>22</sub> H <sub>42</sub> NO <sub>11</sub> | <b>347.1705</b><br>347.1700 | C <sub>16</sub> H <sub>27</sub> O <sub>8</sub> | <b>217.1072</b><br>217.1071 | $C_{10}H_{17}O_5$                              | <i>nd</i><br>87.0441        | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> |
| S2a  | C4C7  | obs.<br>calc. | <b>491.2501</b><br>491.2498 | C <sub>23</sub> H <sub>39</sub> O <sub>11</sub> | <b>515.2471</b><br>515.2463 | C <sub>23</sub> H <sub>40</sub> NaO <sub>11</sub> | <b>510.2914</b><br>510.2909         | C <sub>23</sub> H <sub>44</sub> NO <sub>11</sub> | <b>347.1703</b><br>347.1700 | C <sub>16</sub> H <sub>27</sub> O <sub>8</sub> | 217.1069<br>217.1071        | $C_{10}H_{17}O_5$                              | <i>nd</i><br>87.0441        | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> |
| S2b  | C5C4  | obs.<br>calc. | <b>463.2197</b><br>463.2185 | C <sub>21</sub> H <sub>35</sub> O <sub>11</sub> | <b>487.2165</b><br>487.2150 | C <sub>21</sub> H <sub>36</sub> NaO <sub>11</sub> | <b>482.2609</b><br>482.2596         | C <sub>21</sub> H <sub>40</sub> NO <sub>11</sub> | <b>361.1858</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1217</b><br>231.1227 | C <sub>11</sub> H <sub>19</sub> O <sub>5</sub> | <b>101.0609</b><br>101.1597 | $C_5H_9O_2$                                  |
| S2b  | C5C5  | obs.<br>calc. | <b>477.2335</b> 477.2341    | C <sub>22</sub> H <sub>37</sub> O <sub>11</sub> | <b>501.2312</b> 501.2306    | C <sub>22</sub> H <sub>38</sub> NaO <sub>11</sub> | <b>496.2760</b><br>496.2752         | C <sub>22</sub> H <sub>42</sub> NO <sub>11</sub> | <b>361.1861</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1228</b><br>231.1227 | C <sub>11</sub> H <sub>19</sub> O <sub>5</sub> | <b>101.0596</b><br>101.1597 | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> |
| S2b  | C5C6  | obs.<br>calc. | <b>491.2495</b><br>491.2498 | C <sub>23</sub> H <sub>39</sub> O <sub>11</sub> | <b>515.2472</b><br>515.2463 | C <sub>23</sub> H <sub>40</sub> NaO <sub>11</sub> | <b>510.2917</b> 510.2909            | C <sub>23</sub> H <sub>44</sub> NO <sub>11</sub> | <b>361.1862</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1225</b><br>231.1227 | C <sub>11</sub> H <sub>19</sub> O <sub>5</sub> | <b>101.0599</b><br>101.1597 | C₅H <sub>9</sub> O <sub>2</sub>              |
| S2b  | C5C7  | obs.<br>calc. | <b>505.2664</b><br>505.2654 | C <sub>24</sub> H <sub>41</sub> O <sub>11</sub> | 529.2621<br>529.2619        | C <sub>24</sub> H <sub>42</sub> NaO <sub>11</sub> | <b>524.3066</b><br>524.3065         | $C_{24}H_{46}NO_{11}$                            | <b>361.1857</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1226</b><br>231.1227 | $C_{11}H_{19}O_5$                              | <b>101.1245</b><br>101.1597 | $C_5H_9O_2$                                  |
| S2c  | C5C8  | obs.<br>calc. | <b>519.2807</b><br>519.2811 | C <sub>25</sub> H <sub>43</sub> O <sub>11</sub> | <b>543.2753</b><br>543.2776 | C <sub>25</sub> H <sub>44</sub> NaO <sub>11</sub> | <b>538.3204</b> 538.3222            | C <sub>25</sub> H <sub>48</sub> NO <sub>11</sub> | <b>361.1863</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1228</b><br>231.1227 | $C_{11}H_{19}O_5$                              | <i>nd</i><br>101.1597       | $C_5H_9O_2$                                  |
| S2c  | C5C9  | obs.<br>calc. | <b>533.2975</b><br>533.2967 | C <sub>26</sub> H <sub>45</sub> O <sub>11</sub> | <b>557.2927</b><br>557.2932 | $C_{26}H_{46}NaO_{11}$                            | <b>552.3370</b> 552.3378            | C <sub>26</sub> H <sub>50</sub> NO <sub>11</sub> | <b>361.1857</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1227</b><br>231.1227 | $C_{11}H_{19}O_5$                              | <i>nd</i><br>101.1597       | $C_5H_9O_2$                                  |
| -    | C5C10 | obs.<br>calc. | <b>547.3103</b><br>547.3124 | C <sub>27</sub> H <sub>47</sub> O <sub>11</sub> | <b>571.3094</b><br>571.3089 | C <sub>27</sub> H <sub>48</sub> NaO <sub>11</sub> | <b>566.3544</b> 566.3535            | C <sub>27</sub> H <sub>52</sub> NO <sub>11</sub> | <b>361.1865</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1232</b><br>231.1227 | C <sub>11</sub> H <sub>19</sub> O <sub>5</sub> | <i>nd</i><br>101.1597       | $C_5H_9O_2$                                  |
| S2c  | C5C11 | obs.<br>calc. | <b>561.3288</b><br>561.3280 | C <sub>28</sub> H <sub>49</sub> O <sub>11</sub> | <b>585.3269</b><br>585.3245 | C <sub>28</sub> H <sub>48</sub> NaO <sub>11</sub> | <b>580.3712</b> 580.3691            | C <sub>28</sub> H <sub>54</sub> NO <sub>11</sub> | <b>361.1850</b><br>361.1857 | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | <b>231.1226</b><br>231.1227 | $C_{11}H_{19}O_5$                              | <b>101.0697</b><br>101.1597 | $C_5H_9O_2$                                  |
| -    | C5C12 | obs.<br>calc. | 575.3431<br>575.3437        | C <sub>29</sub> H <sub>51</sub> O <sub>11</sub> | 599.3414<br>599.3402        | C <sub>29</sub> H <sub>52</sub> NaO <sub>11</sub> | 594.3855<br>594.3848                | C <sub>28</sub> H <sub>54</sub> NO <sub>11</sub> | 361.1864<br>361.1857        | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | 231.1235<br>231.1227        | C <sub>11</sub> H <sub>19</sub> O <sub>5</sub> | <i>nd</i><br>101.1597       | $C_5H_9O_2$                                  |
| -    | C5C13 | obs.<br>calc. | 589.3604<br>589.3593        | C <sub>30</sub> H <sub>53</sub> O <sub>11</sub> | 613.3563<br>613.3558        | C <sub>30</sub> H <sub>54</sub> NaO <sub>11</sub> | 608.4012<br>608.4004                | C <sub>28</sub> H <sub>54</sub> NO <sub>11</sub> | 361.1871<br>361.1857        | C <sub>17</sub> H <sub>29</sub> O <sub>8</sub> | 231.1231<br>231.1227        | $C_{11}H_{19}O_5$                              | <i>nd</i><br>101.1597       | $C_5H_9O_2$                                  |

|      |              |               | (asc-C#)-asc-C#             |                                                 | (asc-C#)-asc-C# (asc-C#)-asc-C# |                                                   | #)-asc-C#                   | (asc-C#)-asc                                     |                             | asc-C#                                         |                             | C#                                             |                             |                                               |
|------|--------------|---------------|-----------------------------|-------------------------------------------------|---------------------------------|---------------------------------------------------|-----------------------------|--------------------------------------------------|-----------------------------|------------------------------------------------|-----------------------------|------------------------------------------------|-----------------------------|-----------------------------------------------|
|      |              |               | [M ·                        | [M - H] <sup>-</sup>                            |                                 | [M + Na] <sup>+</sup>                             |                             | [M + NH <sub>4</sub> ] <sup>+</sup>              |                             | [M – agylcone] <sup>+</sup>                    |                             | er-C≡O]⁺                                       | [agylcone] <sup>+</sup>     |                                               |
| Fig. |              |               | m/z                         | formula                                         | m/z                             | formula                                           | m/z                         | formula                                          | m/z                         | formula                                        | m/z                         | formula                                        | m/z                         | formula                                       |
| -    | C6C4         | obs.<br>calc. | <b>477.2331</b> 477.2341    | C <sub>22</sub> H <sub>37</sub> O <sub>11</sub> | <b>501.2305</b><br>501.2306     | C <sub>22</sub> H <sub>38</sub> NaO <sub>11</sub> | <b>496.2753</b> 496.2752    | $C_{22}H_{42}NO_{11}$                            | <b>375.2008</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | 245.1385<br>245.1384        | $C_{12}H_{21}O_5$                              | <b>115.0757</b><br>115.0754 | $C_6H_{11}O_2$                                |
| S2c  | C6C5         | obs.<br>calc. | <b>491.2496</b><br>491.2498 | C <sub>23</sub> H <sub>39</sub> O <sub>11</sub> | 515.2567<br>515.2463            | C <sub>23</sub> H <sub>40</sub> NaO <sub>11</sub> | <b>510.2910</b><br>510.2909 | C <sub>23</sub> H <sub>44</sub> NO <sub>11</sub> | <b>375.2014</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | 245.1382<br>245.1384        | $C_{12}H_{21}O_5$                              | <b>115.0753</b><br>115.0754 | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| S2d  | C6C6         | obs.<br>calc. | <b>505.2651</b><br>505.2654 | C <sub>24</sub> H <sub>41</sub> O <sub>11</sub> | <b>529.2622</b><br>529.2619     | $C_{24}H_{42}NaO_{11}$                            | <b>524.3066</b><br>524.3065 | C <sub>24</sub> H <sub>46</sub> NO <sub>11</sub> | <b>375.2013</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1383</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <b>115.0752</b><br>115.0754 | $C_6H_{11}O_2$                                |
| S2d  | C6C7         | obs.<br>calc. | <b>519.2813</b><br>519.2811 | C <sub>25</sub> H <sub>43</sub> O <sub>11</sub> | <b>543.2777</b><br>543.2776     | C <sub>25</sub> H <sub>44</sub> NaO <sub>11</sub> | <b>538.3222</b> 538.3222    | C <sub>25</sub> H <sub>48</sub> NO <sub>11</sub> | <b>375.2011</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1383</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <b>115.0758</b><br>115.0754 | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| S2d  | C6C8         | obs.<br>calc. | <b>533.2972</b><br>533.2967 | C <sub>26</sub> H <sub>45</sub> O <sub>11</sub> | <b>577.2951</b> 557.2932        | $C_{26}H_{46}NaO_{11}$                            | <b>552.3378</b> 552.3378    | $C_{26}H_{50}NO_{11}$                            | <b>375.2008</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1364</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <b>115.0733</b><br>115.0754 | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| S2d  | C6C9         | obs.<br>calc. | <b>547.3129</b> 547.3124    | C <sub>27</sub> H <sub>47</sub> O <sub>11</sub> | <b>571.3106</b> 571.3089        | C <sub>27</sub> H <sub>48</sub> NaO <sub>11</sub> | <b>566.3526</b> 566.3535    | C <sub>27</sub> H <sub>52</sub> NO <sub>11</sub> | <b>375.2010</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1386</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <b>115.0747</b><br>115.0754 | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| -    | C6C10        | obs.<br>calc. | <b>561.3276</b> 561.3280    | C <sub>28</sub> H <sub>49</sub> O <sub>11</sub> | <b>585.3252</b><br>585.3245     | C <sub>28</sub> H <sub>50</sub> NaO <sub>11</sub> | <b>580.3620</b> 580.3691    | $C_{28}H_{54}NO_{11}$                            | <b>375.2015</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1382</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <i>nd</i><br>115.0754       | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| -    | C6C11        | obs.<br>calc. | <b>575.3431</b><br>575.3437 | C <sub>29</sub> H <sub>51</sub> O <sub>11</sub> | <b>599.3389</b> 599.3402        | C <sub>29</sub> H <sub>52</sub> NaO <sub>11</sub> | <b>580.3832</b> 594.3848    | C <sub>29</sub> H <sub>56</sub> NO <sub>11</sub> | <b>375.2003</b><br>375.2013 | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | <b>245.1385</b><br>245.1384 | $C_{12}H_{21}O_5$                              | <i>nd</i><br>115.0754       | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| -    | C6C12        | obs.<br>calc. | 589.3589<br>589.3593        | C <sub>30</sub> H <sub>53</sub> O <sub>11</sub> | 613.3546<br>613.3558            | C <sub>30</sub> H <sub>54</sub> NaO <sub>11</sub> | 608.3997<br>608.4004        | C <sub>30</sub> H <sub>58</sub> NO <sub>11</sub> | 375.2008<br>375.2013        | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | 245.1387<br>245.1384        | $C_{12}H_{21}O_5$                              | <i>nd</i><br>115.0754       | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| -    | C6C13        | obs.<br>calc. | 603.3755<br>603.3750        | C <sub>31</sub> H <sub>55</sub> O <sub>11</sub> | 627.3698<br>627.3715            | C <sub>31</sub> H <sub>56</sub> NaO <sub>11</sub> | 622.4143<br>622.4161        | $C_{31}H_{60}NO_{11}$                            | 375.2005<br>375.2013        | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | 245.1375<br>245.1384        | $C_{12}H_{21}O_5$                              | <i>nd</i><br>115.0754       | C <sub>6</sub> H <sub>11</sub> O <sub>2</sub> |
| S2e  | C7C5         | obs.<br>calc. | 505.2661<br>505.2654        | C <sub>24</sub> H <sub>41</sub> O <sub>11</sub> | 529.2632<br>529.2619            | C <sub>24</sub> H <sub>42</sub> NaO <sub>11</sub> | <b>524.3077</b><br>524.3065 | C <sub>24</sub> H <sub>46</sub> NO <sub>11</sub> | 389.2161<br>389.2170        | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | 259.1538<br>259.1540        | $C_{13}H_{23}O_5$                              | 129.0903<br>129.0910        | C7H13O2                                       |
| S2e  | C7C6         | obs.<br>calc. | 519.2817<br>519.2811        | C <sub>25</sub> H <sub>43</sub> O <sub>11</sub> | 543.2791<br>543.2776            | C <sub>25</sub> H <sub>44</sub> NaO <sub>11</sub> | <b>538.3236</b> 538.3222    | C <sub>25</sub> H <sub>48</sub> NO <sub>11</sub> | 389.2165<br>389.2170        | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | 259.1534<br>259.1540        | $C_{13}H_{23}O_5$                              | <b>129.0910</b><br>129.0910 | C7H13O2                                       |
| S2e  | C7C7         | obs.<br>calc. | <b>533.2960</b><br>533.2967 | C <sub>26</sub> H <sub>45</sub> O <sub>11</sub> | <b>557.2935</b><br>557.2932     | $C_{26}H_{46}NaO_{11}$                            | <b>552.3380</b> 552.3378    | C <sub>26</sub> H <sub>50</sub> NO <sub>11</sub> | <b>389.2171</b><br>389.2170 | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | <b>259.1536</b><br>259.1540 | $C_{13}H_{23}O_5$                              | <b>129.0914</b><br>129.0910 | C7H13O2                                       |
| S2e  | C7C8         | obs.<br>calc. | <b>547.3118</b> 547.3124    | C <sub>27</sub> H <sub>47</sub> O <sub>11</sub> | <b>571.3085</b> 571.3089        | C <sub>27</sub> H <sub>48</sub> NaO <sub>11</sub> | <b>533.3533</b><br>566.3535 | C <sub>27</sub> H <sub>52</sub> NO <sub>11</sub> | <b>389.2176</b><br>389.2170 | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | <b>259.1529</b><br>259.1540 | $C_{13}H_{23}O_5$                              | <b>129.0901</b><br>129.0910 | C7H13O2                                       |
| S2f  | C7C9         | obs.<br>calc. | <b>561.3283</b><br>561.3280 | C <sub>28</sub> H <sub>49</sub> O <sub>11</sub> | <b>585.3245</b><br>585.3245     | C <sub>28</sub> H <sub>50</sub> NaO <sub>11</sub> | <b>580.3689</b><br>580.3691 | C <sub>28</sub> H <sub>54</sub> NO <sub>11</sub> | <b>389.2168</b><br>389.2170 | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | <b>259.1538</b><br>259.1540 | $C_{13}H_{23}O_5$                              | <b>129.0910</b><br>129.0910 | C7H13O2                                       |
| -    | C7C10        | obs.<br>calc. | <b>575.3449</b><br>575.3437 | C <sub>29</sub> H <sub>51</sub> O <sub>11</sub> | <b>599.3407</b><br>599.3402     | C <sub>29</sub> H <sub>52</sub> NaO <sub>11</sub> | <b>594.3856</b><br>594.3848 | C <sub>29</sub> H <sub>56</sub> NO <sub>11</sub> | <b>389.2175</b><br>389.2170 | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | <b>259.1548</b><br>259.1540 | C <sub>13</sub> H <sub>23</sub> O <sub>5</sub> | <i>nd</i><br>129.0910       | C7H13O2                                       |
| S2f  | C7C11        | obs.<br>calc. | <b>589.3606</b><br>589.3593 | C <sub>30</sub> H <sub>53</sub> O <sub>11</sub> | 613.3572<br>613.3558            | C <sub>30</sub> H <sub>54</sub> NaO <sub>11</sub> | <b>608.4015</b><br>608.4004 | C <sub>30</sub> H <sub>58</sub> NO <sub>11</sub> | <b>389.2175</b><br>389.2170 | C <sub>19</sub> H <sub>33</sub> O <sub>8</sub> | <b>259.1538</b><br>259.1540 | C <sub>13</sub> H <sub>23</sub> O <sub>5</sub> | <b>129.0904</b><br>129.0910 | C7H13O2                                       |
| S2f  | <b>∆C9C7</b> | obs.<br>calc. | <b>559.3128</b> 559.3124    | C <sub>28</sub> H <sub>47</sub> O <sub>11</sub> | 583.3095<br>583.3089            | C <sub>28</sub> H <sub>48</sub> NaO <sub>11</sub> | <b>578.3544</b> 578.3540    | C <sub>28</sub> H <sub>54</sub> NO <sub>11</sub> | <b>415.2326</b><br>415.2337 | C <sub>21</sub> H <sub>35</sub> O <sub>8</sub> | 285.1694<br>285.1707        | C <sub>15</sub> H <sub>25</sub> O <sub>5</sub> | <i>nd</i><br>155.1078       | C <sub>9</sub> H <sub>15</sub> O <sub>2</sub> |

 Table S1b.
 HPLC-ESI-HR-MS/MS
 data of ascaroside dimers from Caenorhabditis species.

|      | from C. rem              | anei PB4641          | from C. nigoni JU1422    |                          |                                |  |  |
|------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------------|--|--|
| #    | 4'-(asc-C4)              | -asc-C5 ( <b>5</b> ) | 2'-(asc-C5)-asc-C5 (6)   | 2'-(asc-C6)-asc-C5 (7)   | 2'-(asc-C6)-asc-C6 (8)         |  |  |
|      | <sup>1</sup> H           | <sup>13</sup> C      | <sup>1</sup> H           | <sup>1</sup> H           | <sup>1</sup> H                 |  |  |
| 1    | -                        | 182.1                | -                        | -                        | -                              |  |  |
| 2    | 2.22 ddd 14.9, 9.8, 6.1  | 35.2                 | 2.32 dt 5.0, 7.2         | 2.32 m                   | 2.24 <i>t</i> 7.2              |  |  |
| _    | 2.35 ddd 15.1, 10.0, 6.4 |                      |                          |                          |                                |  |  |
| 3    | 1.83 <i>m</i>            | 35.0                 | 1.80 <i>m</i>            | 1.80 <i>m</i>            | 1.65 <i>m</i><br>1.76 <i>m</i> |  |  |
| 4    | 3.82 m                   | 72.2                 | 3.83 m                   | 3.83 m                   | 1.57 m                         |  |  |
| 5    | 1.15 <i>d</i> 6.1        | 18.7                 | 1.14 <i>d</i> 6.1        | 1.14 <i>d</i> 6.2        | 3.80 <i>m</i>                  |  |  |
| 6    |                          |                      |                          |                          | 1.14 <i>d</i> 6.3              |  |  |
| 1'   | 4.69 s                   | 96.8                 | 4.71 s                   | 4.71 s                   | 4.71 s                         |  |  |
| 2'   | 3.72 s.br                | 69.2                 | 4.79 s.br                | 4.79 s.br                | 4.78 s.br                      |  |  |
| 3'   | 1.92 ddd 13.2, 11.4, 3.8 | 32.7                 | 1.87 ddd 13.2, 11.4, 3.2 | 1.90 ddd 13.3, 11.2, 3.4 | 1.89 ddd 13.4, 11.5, 3.3       |  |  |
|      | 2.07 dt 12.6, 3.8        |                      | 2.01 dt 13.1, 4.1        | 2.01 dt 13.2, 3.9        | 2.00 dt 13.3, 3.9              |  |  |
| 4'   | 4.87 ddd 11.3, 9.6, 4.5  | 71.4                 | 3.41 ddd 11.4, 9.6, 4.6  | 3.40 ddd 11.5, 9.7, 4.9  | 3.40 ddd 11.5, 9.7, 4.9        |  |  |
| 5'   | 3.90 <i>dq</i> 9.6, 6.1  | 67.8                 | 3.68 dq 9.7, 6.3         | 3.71 <i>dq</i> 9.7, 6.3  | 3.70 dq 9.7, 6.3               |  |  |
| 6'   | 1.16 <i>d</i> 6.1        | 18.0                 | 1.23 d 6.2               | 1.22 <i>d</i> 6.3        | 1.22 d 6.3                     |  |  |
| 1"   | -                        | 171.8                | -                        | -                        | -                              |  |  |
| 2"   | 2.50 dd 15.1, 5.4        | 43.1                 | 2.39 m                   | 2.39 dt 3.1, 7.4         | 2.39 dt 3.0, 7.5               |  |  |
| 2"   | 2.30 dd 15.0, 7.5        | 69.0                 | 1 80 m                   | 1 70 m                   | 1 69 m                         |  |  |
| 3    | 4.20 m                   | 00.0                 | 1.00 ///                 | 1.80 m                   | 1.79 m                         |  |  |
| 4"   | 1.21 d 6.2               | 18.7                 | 3.80 <i>m</i>            | 1.56 m                   | 1.57 m                         |  |  |
| 5"   |                          |                      | 1.14 <i>d</i> 6.3        | 3.81 <i>m</i>            | 3.79 <i>m</i>                  |  |  |
| 6"   |                          |                      |                          | 1.14 <i>d</i> 6.3        | 1.14 <i>d</i> 6.3              |  |  |
| 1""  | 4.67 s                   | 97.1                 | 4.65 s                   | 4.65 s                   | 4.65 s                         |  |  |
| 2""  | 3.70 s.br                | 69.3                 | 3.72 s.br                | 3.73 s.br                | 3.72 s.br                      |  |  |
| 3""  | 1.72 ddd 13.0, 11.7, 3.7 | 35.6                 | 1.77 <i>m</i>            | 1.77 ddd 13.3, 11.4. 3.0 | 1.77 ddd 13.0, 11.5. 3.1       |  |  |
|      | 1.92 <i>dt</i> 13.3, 3.9 |                      | 1.96 <i>m</i>            | 1.96 <i>dt</i> 13.1, 4.1 | 1.95 <i>dt</i> 13.2, 3.9       |  |  |
| 4""  | 3.51 ddd 11.6, 9.5, 4.8  | 67.9                 | 3.52 m                   | 3.52 ddd 11.3, 9.6, 4.7  | 3.51 ddd 11.5, 9.7, 4.9        |  |  |
| 5''' | 3.62 dq 9.6, 6.2         | 71.0                 | 3.62 dq                  | 3.62 <i>dq</i> 9.5, 6.2  | 3.61 <i>dq</i> 9.7, 6.3        |  |  |
| 6''' | 1.22 d 6.2               | 18.0                 | 1.22 <i>d</i> 6.2        | 1.22 d 6.2               | 1.22 d 6.3                     |  |  |

 Table S2. NMR data of natural ascaroside dimers (400 MHz, in CD<sub>3</sub>OD) isolated from C. remanei (5) and C. nigoni (6 - 8).

| #    | <b>#</b> 2'-(asc-C6)-asc-C5 ( <b>7</b> ) |                 | 2'-(asc-C6)-asc-C             | C6 ( <b>8</b> ) | 4'-(asc-C6)-asc-C5            | 5 ( <b>13a</b> ) | 4'-(asc-C6)-asc-C6            | ( <b>13b</b> )  |
|------|------------------------------------------|-----------------|-------------------------------|-----------------|-------------------------------|------------------|-------------------------------|-----------------|
|      | <sup>1</sup> H                           | <sup>13</sup> C | <sup>1</sup> H                | <sup>13</sup> C | <sup>1</sup> H                | <sup>13</sup> C  | 1H                            | <sup>13</sup> C |
| 1    | -                                        | nd              | -                             | nd              | -                             | nd               | -                             | nd              |
| 2    | 2.34 <i>m</i>                            | 34.0            | 2.24 <i>t</i> 7.3             | 36.8            | 2.35 m                        | 34.8             | 2.25 t 7.2                    | 36.8            |
|      | 2.27 m                                   |                 |                               |                 |                               |                  |                               |                 |
| 3    | 1.80 <i>m</i>                            | 34.9            | 1.65 <i>m</i> , 1.76 <i>m</i> | 22.6            | 1.80 <i>m</i>                 | 33.2             | 1.67 <i>m</i> , 1.77 <i>m</i> | 22.6            |
| 4    | 3.83 m                                   | 72.2            | 1.57 <i>m</i> ª               | 37.4            | 3.85 <i>m</i>                 | 71.7             | 1.57 <i>m</i> ª               | 37.6            |
| 5    | 1.14 <i>d</i> 6.1                        | 18.7            | 3.80 <i>m</i> <sup>b</sup>    | 72.2            | 1.16 <i>d</i> 6.2             | 18.5             | 3.80 <i>m</i> <sup>b</sup>    | 72.1            |
| 6    |                                          |                 | 1.14 <i>d</i> 6.2             | 18.7            |                               |                  | 1.14 <i>d</i> 6.2             | 18.7            |
| 1'   | 4.71 s                                   | 94.1            | 4.71 s                        | 94.3            | 4.69 s                        | 97.2             | 4.69 s                        | 97.3            |
| 2'   | 4.79 s.br                                | 72.3            | 4.78 s.br                     | 72.3            | 3.73 s.br                     | 69.6             | 3.72 s.br                     | 69.5            |
| 3'   | 1.90 ddd                                 | 33.4            | 1.88 ddd                      | 33.1            | 1.85 ddd                      | 33.2             | 1.85 ddd                      | 32.9            |
|      | 13.4, 11.8, 3.4                          |                 | 13.4, 11.5, 3.0               |                 | 13.3, 11.3, 3.0               |                  | 12.9, 11.4, 2.9               |                 |
|      | 2.01 <i>dt</i> 13.0, 3.8                 |                 | 2.00 dt 13.2, 3.6             |                 | 2.04 dt 12.9 4.2              |                  | 2.03 dt 12.8, 4.0             |                 |
| 4'   | 3.40 ddd                                 | 68.2            | 3.41 ddd                      | 68.5            | 4.87 ddd                      | 71.1             | 4.86 ddd                      | 71.0            |
|      | 11.4, 9.6, 4.4                           |                 | 11.3, 9.7, 4.7                |                 | 11.3, 9.7, 4.5                |                  | 11.4, 9.7, 4.6                |                 |
| 5'   | 3.71 dq 9.6, 6.2                         | 70.1            | 3.70 <i>dq</i> 9.5, 6.3       | 70.1            | 3.85 dq 9.7, 6.2              | 68.2             | 3.86 dq 9.7, 6.2              | 68.0            |
| 6'   | 1.23 <i>d</i> 6.1                        | 17.9            | 1.22 <i>d</i> 6.3             | 17.8            | 1.14 <i>d</i> 6.3             | 18.5             | 1.14 <i>d</i> 6.2             | 18.7            |
| 1"   | -                                        | nd              | -                             | Nd              | -                             | Nd               | -                             | Nd              |
| 2"   | 2.39 dt 3.2, 7.3                         | 34.6            | 2.39 dt 3.1, 7.3              | 34.7            | 2.40 <i>t</i> 7.4             | 31.4             | 2.35 dt 5.2, 7.2              | 34.8            |
| 3"   | 1.70 <i>m</i> , 1.80 <i>m</i>            | 21.8            | 1.70 <i>m</i> , 1.79 <i>m</i> | 22.6            | 1.67 <i>m</i> , 1.79 <i>m</i> | 22.3             | 1.67 <i>m</i> , 1.78 <i>m</i> | 22.6            |
| 4"   | 1.56 <i>m</i>                            | 37.2            | 1.57 <i>m</i> ª               | 37.4            | 1.56 <i>m</i>                 | 37.3             | 1.57 <i>m</i> ª               | 37.6            |
| 5"   | 3.81 <i>m</i>                            | 72.2            | 3.79 <i>m</i> <sup>b</sup>    | 72.2            | 3.80 <i>m</i>                 | 71.9             | 3.80 <i>m</i> <sup>b</sup>    | 72.1            |
| 6"   | 1.14 <i>d</i> 6.1                        | 18.7            | 1.14 <i>d</i> 6.1             | 18.7            | 1.13 d 6.2                    | 18.5             | 1.13 <i>d</i> 6.2             | 18.7            |
| 1""  | 4.65 s                                   | 97.6            | 4.65 s                        | 97.4            | 4.64 s                        | 97.4             | 4.64 <i>s</i>                 | 97.3            |
| 2""  | 3.73 s.br                                | 70.1            | 3.72 s.br                     | 70.1            | 3.72 s.br                     | 69.6             | 3.72 s.br                     | 69.5            |
| 3''' | 1.77 ddd                                 | 35.1            | 1.77 ddd                      | 35.7            | 1.76 ddd                      | 35.6             | 1.76 ddd                      | 35.8            |
|      | 13.2, 11.1, 3.0                          |                 | 13.3, 11.2, 3.1               |                 | 13.1, 11.1, 3.0               |                  | 13.2, 11.2, 3.0               |                 |
|      | 1.96 <i>dt</i> 13.2, 3.7                 |                 | 1.95 dt 13.4, 3.8             |                 | 1.95 dt 13.0, 3.8             |                  | 1.95 dt 13.2, 3.9             |                 |
| 4''' | 3.52 ddd                                 | 68.2            | 3.51 ddd                      | 68.3            | 3.51 ddd                      | 68.2             | 3.51 ddd                      | 67.9            |
|      | 11.2, 9.5, 4.4                           |                 | 11.1, 9.6, 4.6                |                 | 11.0, 9.5, 4.6                |                  | 11.2, 9.4, 4.5                |                 |
| 5''' | 3.62 dq 9.3, 6.2                         | 70.9            | 3.62 dq 9.5, 6.3              | 70.9            | 3.61 <i>dq</i> 9.4, 6.2       | 71.1             | 3.61 <i>dq</i> 9.5, 6.1       | 71.3            |
| 6''' | 1.23 <i>d</i> 6.1                        | 17.9            | 1.22 d 6.3                    | 17.8            | 1.22 d 6.2                    | 17.8             | 1.22 d 6.2                    | 17.9            |

Table S3. NMR data of synthetic ascaroside dimers (400 MHz, in  $CD_3OD$ ).

|   | ascaroside | [M - H] <sup>-</sup>                            | [M - H] <sup>-</sup> | [M - H] <sup>-</sup> | [dimerC6C6] <sup>-</sup>                        |                 | [asc-C6] <sup>-</sup>                          |
|---|------------|-------------------------------------------------|----------------------|----------------------|-------------------------------------------------|-----------------|------------------------------------------------|
|   | trimer     |                                                 |                      |                      |                                                 |                 |                                                |
|   |            |                                                 |                      | obs. <i>m/z</i>      | obs. <i>m/z</i>                                 | obs. <i>m/z</i> | obs. <i>m/z</i>                                |
|   |            | formula                                         |                      |                      | C <sub>24</sub> H <sub>41</sub> O <sub>11</sub> | C15H23O6        | C <sub>12</sub> H <sub>21</sub> O <sub>6</sub> |
|   |            |                                                 | calc. m/z            |                      | 505.2654                                        | 299.1500        | 261.1344                                       |
| 1 | C6C6C4     | C34H57O16                                       | 721.3652             | 721.3618             | 505.2621                                        | 299.1478        | 261.1330                                       |
| 2 | C6C6C5     | C <sub>35</sub> H <sub>59</sub> O <sub>16</sub> | 735.3809             | 735.3765             | 505.2620                                        | 299.1484        | 261.1323                                       |
| 3 | C6C6C6     | C <sub>36</sub> H <sub>61</sub> O <sub>16</sub> | 749.3965             | 749.3914             | 505.2621                                        | 299.1477        | 261.1326                                       |

 Table S4a.
 HPLC-ESI-(-)-HR-MS/MS data of trimeric ascarosides ((asc-C6)-asc-C6)-asc-C# from C. nigoni JU1422 (see Fig. S4a).

 Table S4b.
 HPLC-ESI-(+)-HR-MS/MS data of trimeric ascarosides ((asc-C6)-asc-C6)-asc-C4 from C. nigoni JU1422 (see Fig. S4b).

|   | ascaroside | [M + NH <sub>4</sub> ] <sup>+</sup>              | [M + NH <sub>4</sub> ] <sup>+</sup> | [M + NH <sub>4</sub> ] <sup>+</sup> | [M-agylcone] <sup>+</sup>                       | [dimer-C≡O]⁺    |                                                | [monomer-                                      | [agylcone]⁺     |
|---|------------|--------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------------|-----------------|
|   | trimer     |                                                  |                                     |                                     |                                                 |                 |                                                | C≡O]⁺                                          |                 |
|   |            |                                                  |                                     | obs. <i>m/z</i>                     | obs. <i>m/z</i>                                 | obs. <i>m/z</i> | obs. <i>m/z</i>                                | obs. <i>m/z</i>                                | obs. <i>m/z</i> |
|   |            | formula                                          |                                     |                                     | C <sub>30</sub> H <sub>51</sub> O <sub>13</sub> | C24H41O10       | C <sub>18</sub> H <sub>31</sub> O <sub>8</sub> | C <sub>12</sub> H <sub>21</sub> O <sub>5</sub> | C6H11O2         |
|   |            |                                                  | calc. <i>m/z</i>                    |                                     | 619.3324                                        | 489.2694        | 375.2013                                       | 245.1384                                       | 115.0754        |
| 1 | C6C6C4     | C34H62NO16                                       | 740.3912                            | 740.4063                            | 619.3302                                        | 489.2664        | 375.2019                                       | 245.1370                                       | 115.0761        |
| 2 | C6C6C5     | C35H64NO16                                       | 754.4069                            | 754.4220                            | 619.3254                                        | 489.2693        | 375.2023                                       | 245.1380                                       | 115.0758        |
| 3 | C6C6C6     | C <sub>36</sub> H <sub>66</sub> NO <sub>16</sub> | 768.4281                            | 768.4376                            | 619.3292                                        | 489.2732        | 375.2037                                       | 245.1367                                       | 115.0769        |

## • Supplementary NMR Spectra

| Figure |                                                                                                                                                    | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| S12    | <i>dqf</i> -COSY of a RP-C18 SPE fraction enriched in 4'-(asc-C4)-asc-C5 ( <b>5</b> ) from <i>C. remanei</i> PB4641                                | S39  |
| S13    | <i>dqf</i> -COSY of a RP-C18ec SPE fraction highly enriched in 4'-(asc-C4)-asc-C5 ( <b>5</b> ) from <i>C. remanei</i> PB4641                       | S40  |
| S14    | dqf-COSY of isolated 4'-(asc-C4)-asc-C5 (5) from C. remanei PB4641                                                                                 | S41  |
| S15    | <sup>1</sup> H NMR of natural 4'-(asc-C4)-asc-C5 ( <b>5</b> ) from <i>C. remanei</i> PB4641                                                        | S42  |
| S16    | <sup>1</sup> H NMR of natural 4'-(asc-C4)-asc-C5 ( <b>5</b> ) from <i>C. remanei</i> PB4641                                                        | S43  |
| S17    | dqf-COSY of natural 4'-(asc-C4)-asc-C5 (5) from <i>C. remanei</i> PB4641                                                                           | S44  |
| S18    | HSQC of natural 4'-(asc-C4)-asc-C5 (5) from C. remanei PB4641                                                                                      | S45  |
| S19    | HMBC of natural 4'-(asc-C4)-asc-C5 (5) from C. remanei PB4641                                                                                      | S46  |
| S20    | <sup>1</sup> H NMR of natural asc-C8 with minor amounts of 2'-(asc-C5)-asc-C5 ( <b>6</b> )<br>from <i>C. nigoni</i> JU1422                         | S47  |
| S21    | <i>dqf</i> -COSY of natural asc-C8 with minor amounts of 2'-(asc-C5)-asc-C5 ( <b>6</b> ) from <i>C. nigoni</i> JU1422                              | S48  |
| S22    | <sup>1</sup> H NMR of natural asc-ΔC9 with minor amounts of 2'-(asc-C6)-asc-C5 ( <b>7</b> ) from <i>C. nigoni</i> JU1422                           | S49  |
| S23    | <i>dqf</i> -COSY of natural asc-ΔC9 with minor amounts of 2'-(asc-C6)-asc-C5 ( <b>7</b> ) from <i>C. nigoni</i> JU1422                             | S50  |
| S24    | <sup>1</sup> H NMR of natural 2'-(asc-C6)-asc-C6 (8) from <i>C. nigoni</i> JU1422                                                                  | S51  |
| S25    | dqf-COSY of natural 2'-(asc-C6)-asc-C6 (8) from <i>C. nigoni</i> JU1422                                                                            | S52  |
| S26    | <sup>1</sup> H NMR of (3 <i>R</i> )-3-[(2,4-di- <i>O</i> -benzoyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-<br>osyl)oxy]-1-butene ( <b>10a</b> ) | S53  |
| S27    | <sup>13</sup> C NMR of (3 <i>R</i> )-3-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-<br>osyl)oxy]-1-butene ( <b>10a</b> )         | S54  |
| S28    | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-<br>osyl)oxy]-1-pentene ( <b>10b</b> )         | S55  |
| S29    | <sup>13</sup> C NMR of (4 <i>R</i> )-4-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-<br>osyl)oxy]-1-pentene ( <b>10b</b> )        | S56  |

| Figure |                                                                                                                                                                                                                                                                                                | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| S30    | <sup>1</sup> H NMR of (3 <i>R</i> )-3-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-butene                                                                                                                                                                                           | S57  |
| S31    | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-pentene                                                                                                                                                                                          | S58  |
| S32    | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-<br>2-pentenoate ( <b>11a</b> )                                                                                                                                                 | S59  |
| S33    | <sup>13</sup> C NMR of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)-<br>oxy]-2-pentenoate ( <b>11a</b> )                                                                                                                                               | S60  |
| S34    | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> hexopyranosyl)oxy]-<br>2-hexenoate ( <b>11b</b> )                                                                                                                                                   | S61  |
| S35    | <sup>13</sup> C NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)-<br>oxy]-2-hexenoate ( <b>11b</b> )                                                                                                                                                | S62  |
| S36    | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldi-methylsilyl-3,6-dideoxy-<br>α-L- <i>arabino</i> -hexopyranosyl)oxy]-2-hexenoate                                                                                                                      | S63  |
| S37    | <i>dqf</i> -COSY of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldi-methylsilyl-3,6-di-<br>deoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-2-hexenoate                                                                                                                       | S64  |
| S38    | <sup>13</sup> C NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldi-methylsilyl-3,6-dideoxy-<br>α-L- <i>arabino</i> -hexopyranosyl)oxy]-2-hexenoate                                                                                                                     | S65  |
| S39    | HSQC of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldi-methylsilyl-3,6-dideoxy-α-<br>L- <i>arabino</i> -hexopyranosyl)oxy]-2-hexenoate.                                                                                                                                   | S66  |
| S40    | <sup>1</sup> H NMR of (5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-hexanoic acid ( <b>12</b> ).                                                                                                                         | S67  |
| S41    | <i>dqf</i> -COSY of (5 <i>R</i> )-5-[(2,4-di-O- <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L-<br><i>arabino</i> -hexopyranosyl)oxy]-hexanoic acid ( <b>12</b> ).                                                                                                                            | S68  |
| S42    | HSQC of (5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino-</i><br>hexopyranosyl)oxy]-hexanoic acid ( <b>12</b> ).                                                                                                                                        | S69  |
| S43    | <sup>1</sup> H NMR of trimeric Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2,4-di- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di-<br><i>O-tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-<br>oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate      | S70  |
| S44    | <i>dqf</i> -COSY of trimeric Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2,4-di- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-<br>1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate. | S71  |

| Fiure |                                                                                                                                                                                                                                                                                         | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| S45   | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[[3,6-dideoxy-2-O-[(5 <i>R</i> )-5-[(2,4-di-O- <i>tert</i> -butyl-<br>dimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-<br>L- <i>arabino</i> -hexopyranosyl]oxy]-2-pentenoate.                  | S72  |
| S46   | <i>dqf</i> -COSY of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-osyl)oxy]-1-oxo-hexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-pentenoate.         | S73  |
| S47   | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[[3,6-dideoxy-4-O-[(5 <i>R</i> )-5-[(2,4-di-O- <i>tert</i> -butyl-<br>dimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-<br>L- <i>arabino</i> -hexopyranosyl]oxy]-2-pentenoate.                  | S74  |
| S48   | <i>dqf</i> -COSY of Benzyl (2 <i>E</i> ,4 <i>R</i> )-4-[[3,6-dideoxy-4-O-[(5 <i>R</i> )-5-[(2,4-di-O- <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-osyl)oxy]-1-oxo-hexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-pentenoate.                           | S75  |
| S49   | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyl-<br>dimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-<br>L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate. | S76  |
| S50   | <i>dqf</i> -COSY of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-osyl)oxy]-1-oxo-hexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate.          | S77  |
| S51   | <sup>1</sup> H NMR of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyl-<br>dimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-<br>L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate. | S78  |
| S52   | <i>dqf</i> -COSY of Benzyl (2 <i>E</i> ,5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethylsilyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyran-osyl)oxy]-1-oxo-hexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-2-hexenoate.          | S79  |
| S53   | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethyl-<br>silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L-<br><i>arabino</i> -hexopyranosyl]oxy]-pentanoic acid.                  | S80  |
| S54   | <i>dqf</i> -COSY of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethyl-silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-pentanoic acid.                           | S81  |
| S55   | HSQC of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethylsilyl-<br>3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -<br>hexopyranosyl]oxy]-pentanoic acid.                                | S82  |
| Figure |                                                                                                                                                                                                                                                                        | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| S56    | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O</i> - <i>tert</i> -butyldimethyl-<br>silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L-<br><i>arabino</i> -hexopyranosyl]oxy]-pentanoic acid. | S83  |
| S57    | <i>dqf</i> -COSY of (4 <i>R</i> )-4-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethyl-silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-pentanoic acid.                   | S84  |
| S58    | HSQC of (4 <i>R</i> )-4-[[3,6-dideoxy-4-O-[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethylsilyl-<br>3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -<br>hexopyranosyl]oxy]-pentanoic acid.                                 | S85  |
| S59    | <sup>1</sup> H NMR of (5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethyl-<br>silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L-<br><i>arabino</i> -hexopyranosyl]oxy]-hexanoic acid.           | S86  |
| S60    | <i>dqf</i> -COSY of (5 <i>R</i> )-5-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethyl-silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-hexanoic acid.                    | S87  |
| S61    | HSQC of (5 <i>R</i> )-5-[[3,6-dideoxy-2-Ο-[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethylsilyl-<br>3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -<br>hexopyranosyl]oxy]-hexanoic acid                                   | S88  |
| S62    | <sup>1</sup> H NMR of (5 <i>R</i> )-5-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethyl-<br>silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L-<br><i>arabino</i> -hexopyranosyl]oxy]-hexanoic.                | S89  |
| S63    | <i>dqf</i> -COSY of (5 <i>R</i> )-5-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethyl-silyl-3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-hexanoic.                         | S90  |
| S64    | HSQC of (5 <i>R</i> )-5-[[3,6-dideoxy-4-Ο-[(5 <i>R</i> )-5-[(2,4-di- <i>O-tert</i> -butyldimethylsilyl-<br>3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -<br>hexopyranosyl]oxy]-hexanoic.                                       | S91  |
| S65    | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (2'-(asc-C6)-asc-C5) ( <b>7</b> ).                  | S92  |
| S66    | <i>dqf</i> -COSY of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (2'-(asc-C6)-asc-C5) ( <b>7</b> ).                        | S93  |

| Figure |                                                                                                                                                                                                                                                        | Pae  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| S67    | HSQC of (4 <i>R</i> )-4-[[3,6-dideoxy-2- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (2'-(asc-C6)-asc-C5) ( <b>7</b> ).                | S94  |
| S68    | <sup>1</sup> H NMR of (4 <i>R</i> )-4-[[3,6-dideoxy-4-O-[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (4'-(asc-C6)-asc-C5) ( <b>13a</b> ).         | S95  |
| S69    | <i>dqf</i> -COSY of (4 <i>R</i> )-4-[[3,6-dideoxy-4-O-[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (4'-(asc-C6)-asc-C5) ( <b>13a</b> ).               | S96  |
| S70    | HSQC of (4 <i>R</i> )-4-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>pentanoic acid (4'-(asc-C6)-asc-C5) ( <b>13a</b> ).              | S97  |
| S71    | <sup>1</sup> H NMR of (5 <i>R</i> )-5-[[3,6-dideoxy-2-O-[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>hexanoic acid (2'-(asc-C6)-asc-C6) ( <b>8</b> ).            | S98  |
| S72    | <i>dqf</i> -COSY of (5 <i>R</i> )-5-[[3,6-dideoxy-2-O-[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-hexanoic acid (2'-(asc-C6)-asc-C6) ( <b>8</b> ).                      | S99  |
| S73    | HSQC of (5 <i>R</i> )-5-[[3,6-dideoxy-2-O-[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>hexanoic acid (2'-(asc-C6)-asc-C6) ( <b>8</b> ).                          | S100 |
| S74    | <sup>1</sup> H NMR of (5 <i>R</i> )-5-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>hexanoic acid (4'-(asc-C6)-asc-C6) ( <b>13b</b> ). | S101 |
| S75    | <i>dqf</i> -COSY of (5 <i>R</i> )-5-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -hexopyranosyl]oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-hexanoic acid (4'-(asc-C6)-asc-C6) ( <b>13b</b> ).           | S102 |
| S76    | HSQC of (5 <i>R</i> )-5-[[3,6-dideoxy-4- <i>O</i> -[(5 <i>R</i> )-5-[(3,6-dideoxy-α-L- <i>arabino</i> -<br>hexopyranosyl)oxy]-1-oxohexyl]-α-L- <i>arabino</i> -hexopyranosyl]oxy]-<br>hexanoic acid (4'-(asc-C6)-asc-C6) ( <b>13b</b> ).               | S103 |



Figure S12: *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of a RP-C18 SPE fraction enriched in 4'-(asc-C4)-asc-C5 (5) from *C. remanei* PB4641.

**Figure S13:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of a RP-C18ec SPE fraction highly enriched in 4'-(asc-C4)-asc-C5 (**5**) from *C. remanei* PB4641.





Figure S14: dqf-COSY (400 MHz, CD<sub>3</sub>OD) of isolated 4'-(asc-C4)-asc-C5 (5) from C. remanei PB4641.



Figure S15: <sup>1</sup>H NMR (500 MHz, CD<sub>3</sub>OD) of natural 4'-(asc-C4)-asc-C5 (5) from *C. remanei* PB4641.



Figure S16: <sup>1</sup>H NMR (700 MHz, CD<sub>3</sub>OD) of natural 4'-(asc-C4)-asc-C5 (5) from *C. remanei* PB4641.



Figure S17: dqf-COSY (700 MHz, CD<sub>3</sub>OD) of natural 4'-(asc-C4)-asc-C5 (5) from C. remanei PB4641.



Figure S18: HSQC (700 MHz, CD<sub>3</sub>OD) of natural 4'-(asc-C4)-asc-C5 (5) from *C. remanei* PB4641.



Figure S19: HMBC (700 MHz, CD<sub>3</sub>OD) of natural 4'-(asc-C4)-asc-C5 (5) from *C. remanei* PB4641.



Figure S20: <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of natural asc-C8 with minor amounts of 2'-(asc-C5)-asc-C5 (6) from *C. nigoni* JU1422.



Figure S21: dqf-COSY (400 MHz, CD<sub>3</sub>OD) of natural asc-C8 with minor amounts of 2'-(asc-C5)-asc-C5 (6) from C. nigoni JU1422.



**Figure S22:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of natural asc-ΔC9 with minor amounts of 2'-(asc-C6)-asc-C5 (**7**) from *C. nigoni* JU1422.



Figure S23: *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of natural asc-∆C9 with minor amounts of 2'-(asc-C6)-asc-C5 (7) from *C. nigoni* JU1422.



**Figure S24:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of natural 2'-(asc-C6)-asc-C6 (**8**) from *C. nigoni* JU1422.



Figure S25: dqf-COSY (400 MHz, CD<sub>3</sub>OD) of natural 2'-(asc-C6)-asc-C6 (8) from C. nigoni JU1422.



**Figure S26:** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of (3*R*)-3-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-butene (**10a**).



**Figure S27:** <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) of (3*R*)-3-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-butene (**10a**).



**Figure S28:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-pentene (**10b**).



Figure S29: <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[(2,4-di-O-benzoyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-pentene (**10b**).



**Figure S30:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (3*R*)-3-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-butene.



**Figure S31:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-1-pentene.



**Figure S32:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**11a**).



**Figure S33:** <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-pentenoate (**11a**).



**Figure S34:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-hexenoate (**11b**).



**Figure S35:** <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-2-hexenoate (**11b**).



**Figure S36:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-2-hexenoate.



**Figure S37:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-2-hexenoate.



**Figure S38:** <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(2,4-di-*O-tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-2-hexenoate.



**Figure S39:** HSQC (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-2-hexenoate.



**Figure S40:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[(2,4-di-*O-tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-hexanoic acid (**12**).



**Figure S41:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[(2,4-di-*O-tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl)oxy]-hexanoic acid (**12**).



**Figure S42:** HSQC (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-hexanoic acid (**12**).

**Figure S43:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[[3,6-dideoxy-2,4-di-*O*-[(5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]-α-L-*arabino*-hexopyranosyl]oxy]-2-hexenoate.









**Figure S45:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]-α-L-*arabino*-hexopyranosyl]oxy]-2-pentenoate.
**Figure S46:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-2-pentenoate.



**Figure S47:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]-α-L-*arabino*-hexopyranosyl]oxy]-2-pentenoate.



**Figure S48:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-2-pentenoate.





**Figure S49:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]-α-L-*arabino*-hexopyranosyl]oxy]-2-hexenoate.

**Figure S50:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-2-hexenoate.



3.31 CD3OD -850 3.95
3.80
3.72 0.09 0.08 0.08 7.37 7.36 7.32 7.07 5.98 5.19 4.64 4.68 4.53 2.46 2.27 2.02 1.82 1.76 1.19 1.17 1.10 1.07 0.92 0.90 800 510 21555 - 750 - 700 -650 TBSO, **\_**OTBS 111. **,**OBn - 600 ۱ ٥ 111. 0.  $\cap$ ~′′O 0 II - 550 Ċ ″он - 500 С - 450 - 400 -350 - 300 - 250 200 150 100 - 50 0 7.1 3.3 3.1 ∰ 11.2 ∰ 11.9 ∰ **T T** Ч ۲ 7777 アマイ 씨년 친구나 14.9<sub>-1</sub> 1.0 3.3 2.5 -50 1.0 oυ004− 1.0 1.0.1 5.2  $\sim$ Ň *← α ← ← α ∓* 4.0 3. f1 (ppm) .0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

**Figure S51:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy-α-L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]-α-L-*arabino*-hexopyranosyl]oxy]-2-hexenoate.

**Figure S52:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of Benzyl (2*E*,5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-*O-tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-2-hexenoate.





**Figure S53:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.

**Figure S54:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.



**Figure S55:** HSQC (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.





**Figure S56:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.

**Figure S57:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.



**Figure S58:** HSQC (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid.





**Figure S59:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-*O*-[(5*R*)-5-[(2,4-di-*O*-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid.

**Figure S60:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid.



**Figure S61:** HSQC (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid.





**Figure S62:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic.

**Figure S63:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic.





**Figure S64:** HSQC (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(2,4-di-O-*tert*-butyldimethylsilyl-3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic.

**Figure S65:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1- oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid (2'-(asc-C6)-asc-C5) (7).



**Figure S66:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid 2'-(asc-C6)-asc-C5) (7).





**Figure S67:** HSQC (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl] - $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid (2'-(asc-C6)-asc-C5) (**7**).



**Figure S68:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid (4'-(asc-C6)-asc-C5) (**13a**).

**Figure S69:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid (4'-(asc-C6)-asc-C5) (**13a**).





**Figure S70:** HSQC (400 MHz, CD<sub>3</sub>OD) of (4*R*)-4-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl] - $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-pentanoic acid (4'-(asc-C6)-asc-C5) (**13a**).



**Figure S71:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1- oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (2'-(asc-C6)-asc-C6) (**8**).

**Figure S72:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (2'-(asc-C6)-asc-C6) (**8**).





**Figure S73:** HSQC (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-2-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl] - $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (2'-(asc-C6)-asc-C6) (**8**).



**Figure S74:** <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (4'-(asc-C6)-asc-C6) (**13b**).

**Figure S75:** *dqf*-COSY (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl)oxy]-1-oxohexyl]- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (4'-(asc-C6)-asc-C6) (**13b**).





**Figure S76:** HSQC (400 MHz, CD<sub>3</sub>OD) of (5*R*)-5-[[3,6-dideoxy-4-O-[(5*R*)-5-[(3,6-dideoxy- $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-1-oxohexyl] - $\alpha$ -L-*arabino*-hexopyranosyl]oxy]-hexanoic acid (4'-(asc-C6)-asc-C6) (**13b**).

## • References

[1] a) Kiontke, K. C.; Félix, M. A.; Ailion, M.; Rockman, M. V.; Braendle, C.; Pénigault J. B.; Fitch, D. H. A. *BMC Evol. Biol.* 2011, *11*, 339; b) Félix, M. A.; Braendle, C.; Cutter, A. D. *PLoS One* 2014, 9, e94723; c) Slos, D.; Sudhaus, W.; Stevens, L.; Bert, W.; Blaxter, M. *BMC Zool.* 2018, *2*, 4.