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ABSTRACT 

Recent proxy data obtained from ice core measurements, dendrochronology and valley 

glaciers provide important information on the evolution of the regional or local climate. General 

Circulation Models integrated over a long period of time could help to understand the (external 

and internal) forcing mechanisms of natural climate variability. For a systematic interpretation 

of in situ paleo proxy records, a combined method of dynamical and statistical modeling is 

proposed. Local ,paleo records' can be simulated from GCM output by first undertaking a 

model-consistent statistical downscaling and then using a process-based forward modeling 

approach to obtain the behavior of valley glaciers and the growth of trees under specific 

conditions. The simulated records can be compared to actual proxy records in order to 

investigate whether e.g. the response of glaciers to climatic change can be reproduced by 

models and to what extent climate variability obtained from proxy records (with the main focus 

on the last millennium) can be represented. For statistical downscaling to local weather 

conditions, a multiple linear forward regression model is used. Daily sets of observed weather 

station data and various large-scale predictors at 7 pressure levels obtained from ECMWF re- 

analyses are used for development of the model. Daily data give the closest and most robust 

relationships due to the strong dependence on individual synoptic-scale patterns. For some local 

variables, the performance of the model can be further increased by developing seasonal 

specific statistical relationships. The model is validated using both independent and restricted 

predictor data sets. The model is applied to a long integration of a mixed layer GCM experiment 

simulating pre-industrial climate variability. The dynamical-statistical local GCM output within 

a region around Nigardsbreen glacier, Norway is compared to nearby observed station data for 

the period 1868-1993. Patterns of observed variability on the annual to decadal scale and the 

mean temperature change due to pre-industrial climatic conditions are realistically simulated for 

this location. The local output produced by the described method will be used to force a process- 

based model for the production of ,synthetic' proxy data, e.g. the simulation of a valley glacier. 
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1. INTRODUCTION 

Understanding spatio-temporal patterns and mechanisms of natural climate variability as 

well as the anthropogenic impact on climate requires the extension of instrumental records 

further back in time by the usage of paleoclimatic proxy data. Several attempts to reconstruct 

reliable temperature patterns over the last few centuries have been made [e.g. Landsberg et al., 

1978, Groveman et al., 1979, Bradley and Jones, 1993, Barnett et al., 1996, Bradley, 1996; 

Mann et al., 1998]. Proxy records obtained from ice cores [e.g. Thompson, 1982], tree rings 

[e.g. Britta et al., 1992], corals [e.g. Dunbar et al., 1994] as well as historical data [e.g. Pfister, 

1992] and long instrumental records [e.g. Jones and Bradley, 1992] were used to reconstruct 

large-scale or global-scale patterns. Valley glaciers [e.g. Oerlemans, 1992, 1997] can also 

provide important information on the evolution of the regional or local climate. 

How can proxy data best be interpreted? What are the underlying forcing mechanisms? 

Recent interpretation studies [Mann et al., 1998] have investigated the influence of external 

forcings, such as solar irradiance variations and explosive volcanism on northern hemispheric 

temperature variations. Whether pre-industrial climate variations are for the most part due to 

natural internal variations in the climate system can however not be excluded. The characteristic 

variability of a General Circulation Model (GCM) [e.g. Roeckner et al., 1996, Manabe and 

Stouffer, 1996] integrated over a long period of time could help to indicate credible 

explanations. However, a different methodology for a systematic evaluation of paleo proxy data 

is required as will be proposed in this paper. 

The question we would like to address is whether we are able to simulate 'synthetic' paleo 

proxy records from GCM output for comparison with actual in situ proxy data. Our strategy is 

to perform a model-consistent statistical downscaling of the output of a GCM combined with a 

process-based forward modeling approach to simulate, for example, the behavior of valley 

glaciers and the growth of trees under specific conditions. Simulated records can be compared 

to actual in situ proxy records in order to investigate whether for example the response of 

glaciers to climatic change can be reproduced by models and to what extent climate variability 

obtained from proxy records (with the main focus on the last millennium) can be interpreted. 

The growth of a valley glacier is mainly controlled by local temperature and precipitation 

[Paterson, 1981]. Such data are very difficult to obtain from gridpoint-scale GCM output 
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because of very large deviations due to local orographic conditions. As will be shown in this 

paper, a careful statistical model derived from the present climate can provide reliable local data 

which can be used to force the growth of such a valley glacier. A similar approach is required 

and can be developed for the evaluation of dendrochronological data. 

Specific questions to be investigated concern the stability of the statistical model in general, 

as well as its performance on single seasons which are most important for a specific proxy 

indicator. Can we, for example, obtain from a GCM reliable local summer temperatures for the 

growing season of trees and which predictors do we need in order to do so? 

Further questions concern the importance of horizontal GCM resolution and the time 

sampling for the determination of suitable predictors. It is found, for example, that daily data 

sets for the development of the statistical model give the closest and most stable relationships 

due to a strong dependence on individual synoptic patterns. 

2. GENERAL STRATEGY 

The geNeral strategy proposed in this paper is the following (fig. 1). First we develop a 

statistical model between daily large-scale circulation patterns and corresponding local data 

observed by operational weather stations located near a proxy site to be investigated. large-scale 

patterns are represented by daily ECMWF (European Centre for Medium Range Weather 

Forecasts) re-analyses (ERA) for the period 1979-1993. We use daily data in order to include 

synoptic timescale variability and to achieve a physically robust relation. The obtained 

statistical relationships are applied to the daily coarse spatial gridpoint output of a GCM in order 

to achieve local GCM output (statistical downscaling). A forward modeling approach for a 

specific proxy, e.g. a glacier model [Oerlemans, 1996], can then be used to produce 'synthetic ' 

(paleo-) proxy data which finally can be compared to actual in situ proxy data. 
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Fig. 1. General strategy for the interpretation and usage of in situ paleo proxy data. See text for further 

explanations. 
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3. STATISTICAL MODEL 

Yi 

The response of local weather to large-scale flow patterns of the atmosphere has been noted 

for a very long time, not only by meteorologists, but also by laymen interested in weather. The 

most common feature is perhaps the precipitation in mountainous regions which is particularly 

determined by orographic forcing generating enhanced precipitation on the windward and 

reduced precipitation on the leeward side. In most areas the local conditions (topography and 

land surface characteristics) have a major effect not only on precipitation but also on wind and 

temperature as well as on cloudiness and visibility. Bergeron [1930, 1981] proposed that a 

special climatology should be established classifying local climate in terms of the large-scale 

flow. We may notify such an approach as a dynamic climate classification. The significance of 

this approach became obvious as it became possible to predict the synoptic flow by numerical 

models. A dynamic climatology can be produced for any particular local weather parameter 

(predicted), e.g. local precipitation, cloud cover, cloud height, visibility, maximum or 

minimum temperature, by the use of different large-scale predictors, e.g. surface pressure, wind, 

geopotential sickness, vertical velocity, large-scale precipitation. 

For the purpose of this analysis we use a multiple linear forward regression model in order 

to establish relationships between the large-scale flow and local weather parameters. For the 

i =  1, 2, ..., n values of an observed (dependent) quantity Yi (predicted) it takes the form of 

a linear combination 

Boxio + B l x i i  + Bzxiz + + Bpxip + et 

where xi0=1 and Xi1»Xi2= ..., xi are the settings of the p corresponding (independent) 

quantities (predictors), Bo, Be, ..., Be are the regression parameters which are to be estimated 

and go are unknown independent random errors (see for example von Storch and Zwiers 

[1998]). We use least-squares estimation which means that best estimates of the unknown 

regression parameters are calculated by minimizing for each predicted 

k = 1, 2, q . 
However, it is neither necessary nor desirable to include all potential predictors in the data 

set for the prediction of a specific observed local variable. The maximum number of predictors 

that may be used in the model in order to get a ,stable' solution which fits not only the 

developmental sample but works also on independent data sets, is a function of the sample size. 

n 

i =  
2 

Bik 
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Furthermore, some predictors included in the model might be a linear or ,near-linear' 

combination of other predictors (collinearity or ,near-collinearity') which could cause unstable 

results. In order to address these problems we choose the following selection procedure for the 

large daily data set that is used in this study: The model is built up stepwise using an interactive 

forward selection procedure of independent variables. After having chosen a single predictor 

with maximum correlation, the next independent variable providing the best fit in conjunction 

with the first one is added and tested for near-collinearity. In a critical case the user may decide 

whether this variable should be included or not. Further variables are added in a recursive 

fashion until a saturation criteria (the correlation does not improve significantly) is reached. 

4. DATA SETS: ECMWF RE-ANALYSES AND OBSERVED DATA 

The development of the statistical model is based on ECMWF re-analyses (ERA) [Gibson et 

al., 1997] used for an area of about 11 ° x 11° in Norway (covering the proxy site of Nigardsbreen 

glacier at 6l°43'N, 7°08'E to be investigated) and on local observational records for 22 synoptic 

weather stations within that area. 

The ECMWF re-analysis project has produced a validated and reasonably consistent global 

data set of assimilated data for the period 1979-1993 [Gibson et al., l997]. In this study, ERA 

data constitute the potential predictors for the development of the statistical model. We use ERA 

24 hour forecasts for precipitation in order to address the spin-up problem and to have a 

consistent picture of precipitation [Stendel and Arpe, 1997]. For all other surface and pressure 

level variables (Table 1), 6 hourly initialized analysis are taken and daily averaged. We extract 

pressure level variables on the 1000, 925, 850, 700, 500, 400 and 300 hPa levels. In order to 

meet the resolution of the ECHAM GCM runs which we intend to use afterwards, the ERA 

output is interpolated to T30 resolution (~ 3.8° x 3.8°). Additional experiments with original 

T106 (~ 1.1° x 1.1°) resolution are also analyzed. For each location of the operational weather 

stations we compute weighted area means for an area covering roughly 1200 x 1200 km as input 

for the statistical model. 

The predictands of the model consist of observational data for 22 operational weather 

stations (Fig. 2) in the surrounding of the Nigardsbreen glacier for the period 1979-1993. We 

interpolate missing values in the 6 hourly weather data before daily averaging. However, data 
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quality is adequate for most stations in that period and only few data are missing. Table 2 shows 

the available observed parameters which are used as predictands (dependent variables). 

PRESS. LEV_ DATA 
(1000, 925, 850, 700, 

500, 400, 300 hPa) 

COMPOSITED 
PREDICTORS 

Temperature Geopot. 925-1000 hPa 
Dewpoint Temperature Geopot. 850-1000 hPa 
Wind-velocity (u, v) Geopot. 700-1000 hPa 
Vertical velocity Geopot. 500-1000 hPa 
Vorticity Geopot. 500-850 hPa 
Divergence Geopot. 500-700 hPa 
Geopotential height Seasonal cycle: sin(day) 
Relative humidity Seasonal cycle: cos(day) 

SURFACE DATA Seasonal cycle: sin(2day) 
Large scale precise. Seasonal cycle: cos(2day) 

Convective precise. Large-scale+conv. precise. 

Mean sea level press. Sqrt. of total precise. 

Total cloud cover Vertic. integr. liquid water 
Tot. column water vap. Lapse rate (low. Trop.) 

K-Index (George, 1960) 
-J  

I 

Table 1. Potential large-scale predictors from ECMWF re-analyses used as input for the statistical 

model. For the model version excluding near-surface predictors (see text), only potential predictors on 

850, 700, 500, 400 and 300 hPa levels, Mean sea level pressure and the seasonal cycle were used 

(shaded fields). 
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OBSERVED DATA COMPOSITED 
Pressure reduced Sqrt of 24h precipitation 
Wind direction Cube of 24h precipitation 
Wind velocity Fourth root of precise. 
Temperature Logarithm of precise. 
Dewpoint temperature Exponential of precise. 
24h precipitation Sine of wind direction 
Visibility Cosine of wind direction 
Weather code U wind component 
Total cloud amount V wind component 
Low and middle cloud Relative Humidity 
Cloud base 
Low level cloud 
Middle level cloud 
High level cloud 
Snow 

I 

J 

Table 2. Observed parameters from operational weather stations representing the predictands (dependent 

data) of the statistical model. Results only for a selection of these parameters will be shown below. 
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Fig. 2. Location of operational weather stations used for development of the statistical model. We 

anticipate to provide reliable local output for Nigardsbreen valley glacier (triangle at 6l°43'N, 

7°08'E). 
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5. RESULTS OF STATISTICAL MODELING 

The complete data set that can potentially enter the statistical model consists of daily values 

of 82 large-scale potential predictors from the ECMWF re-analyses and 20 local observed 

predictands for the period 1979-1993, which makes about 5500 daily sets of 102 variables for 

each of the 22 stations. 

5.a Role of near-surface Predictors 

In order to investigate the role of near-surface predictors for the statistical model, we choose 

two different model versions. In the first one, we allow all predictors (complete table 1) to 

potentially enter the equations. The predictors which are finally selected by the model represent 

only a small subset of these variables, for local precipitation, for example, usually not more than 

five large-scale predictors play a significant role and are therefore actually used. In the second 

one we only use potential predictors above the 850 hPa level (850, 700, 500, 400, 300 hPa), 

mean sea level pressure and the seasonal cycle (shaded fields in table 1). Here, near-surface 

predictors are excluded in order to be able to get stable results even when the model is applied 

to various GCMs which might differ in the underlying topography and in the representation of 

surface processes. It is found that correlation between observed and predicted variables in this 

model only slightly decreases compared to the first model version which suggests that 

predictors above the 850 hPa level are already sufficient for the prediction of the desired local 

surface variables. The large-scale variability of the synoptic timescale flow is well determined 

from predictors above the 850 hPa level. 

5.b General Model Performance 

Figures 3.a-f show an example of statistical model output for the Norwegian station 

Kvamskogen (60°24'N, 5°55'E, 408 m asl). Here, we perform the statistical model on a daily 

basis with re-analyses at T30 resolution including predictors above 850 hPa only (second model 

version) for the period 1979-l992.The light gray curves show large-scale direct re-analyses for 

the station without statistical modeling, the black curves represent statistically simulated results, 

the dotted curves show observational data. The correlation coefficient r is shown in the top left 

comer of each graph. 

The station is generally characterized by an exceptional high amount of observed 

precipitation (up to 4000 mm/year) which can naturally not be represented by the direct large- 
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scale re-analyses precipitation (about 1300 mm/year). 

In order to achieve the best fit, the statistical model finally selects three large-scale predictors 

for the prediction of local precipitation. These can be found in the upper part of table 3.b 

together with their relative impacts in the final equations. The predictors enter the equations 

such that i) negative vertical velocity (upward air movement at 850 hPa, relative impact 60%), 

ii) positive u-wind velocity (westerly winds at 700 hPa, relative impact 20%) and iii) positive 

vorticity (cyclonic movement at 700 hPa, relative impact 20%) on the large-scale determine an 

increase of local precipitation, which for this station is strongly orographically enhanced. Using 

these three predictors only, the explained variance (12) between the statistical simulation and the 

observed record of precipitation is 47.7% for daily data and for the complete years 1979-1992 

(lower part of table 3.b). Figure 3.a (daily values for February/March 1980) shows an example 

for periods where the model produces too little precipitation (e.g. around March 13th) and 

periods where actually non-existent precipitation is generated (e.g. within Feb 17th to Feb 27th 

no precipitation was observed). However, the explained variance for monthly means of these 

data is as high as 81.7% (fig 3.b for 1980-1983), annual means (fig 3.c) even show a more 

remarkable explained variance of 88.6%. The annual mean precipitation is extremely 

realistically simulated by the statistical model (fig 3.c) on the basis of daily input values. Further 

experiments with monthly and yearly values show that daily values are required to obtain such 

robust and physically reasonable couplings. Local climatic conditions can be modeled well 

using daily large-scale predictors. However, the orographic effect plays an important role and 

is perhaps the easiest to determine, especially in winter time with pronounced synoptic flow. 

Fig. 3.d-f show the model results for annual means of temperature, cloud cover and relative 

humidity respectively. The predictors chosen for local temperature (table 3.a, upper part) are 

large-scale temperature at 850 hPa with the highest relative impact (65%), followed by the 

seasonal cycle (25%) and relative humidity at 850 hPa (10%). The explained variance of 9 l .3% 

for daily data (table 3.a, lower part) is not representative because it includes the seasonal cycle. 

However, monthly data can explain 85% of variance after having removed the seasonal cycle 

and yearly data as much as 91 .9%. The explained variance of annual total cloud cover (67.2%, 

fig 3.e) is also improved compared to the direct large-scale re-analyses. The same is true for 

annual relative humidity (fig 3.f) compared to re-analyses relative humidity on 925 hPa. 

This is just one example out of 22 stations which we use in this study. The statistical model 

may use different optimized predictors for the same observed variable at each station due to its 

local setting. 
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Fig. 3. Results of the statistical model for station Kvamskogen (60°24'N, 5°55'E, 408 m a s ,  see fig. 2). 

Local output for a) daily precipitation l Feb - 19 Mar 1980, b) monthly precipitation Jan 1980 - Dec 

1983, c-1) annual precipitation, temperature, total cloud cover and relative humidity 1979-92. The 

black lines show statistically simulated results, the dotted lines represent observed data, the light gray 

lines are directly interpolated re-analyses without statistical modeling. The correlation coefficient r is 

shown in the top left corner of each graph (see text). 
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Predic- 
tand : 

- 

Expl. 
Var. for 
i) Year 

ii) JJA 
iii) DJF 

b) Local Precipitation 
(for complete years 79-92) 

" 

_88.6 

a) Local Temperature 
(for complete years 79-92) 

Predictors rel. imp. Predictors rel. imp. 
Temp. 850 hPa 
Seas. Cycle 
Rel. Hum. 850hPa 

65 % 
25 % 
10% 

very vol. 850 hPa 
Vorticity 700 hPa 
Zon. Wind 700hPa 

60 % 
20 % 
20 % 

Daily 
Data (A) 

Monthly 
Data (B) 

Annual 
Data (C) 

Daily 
Data (A) 

Monthly 
Data (B) 

Annual 
Data (C) 

(91.3 %) 85.0 % 91.9 % 47.7 % 81.7 % % 
69.8 % 79.4 % 77.5 % 29.6 % 57.2 % 46.0 % 
71.7 % 94.0 % 93.5 % 95.7 % 59.9 % 90.1 % 

Table 3. Predictors selected by the statistical model (upper part of table) and percentage of observed 

variance explained (lower part of table). The predictors are shown with their individual relative 

impact in the final equations for a) local temperature and b) local precipitation for station 

Kvamskogen using daily data for complete years within the period 1979-92. The lower part of the 

table shows the percentage of observed variance explained by the statistical model for i) the whole 

year, ii) JJA only and iii) DJF only each for A) original daily data, B) monthly averaged output of the 

statistical model after removing the seasonal cycle and C) yearly means of statistical model output 

(which means seasonally averaged output in case of JJA and DJF). 

5.c Model Runs for Specific Seasons of the Year 

Is it possible that different predictors may be required for different seasons of the year? The 

simulation of proxy indicators may require realistic local output with a particular interest in 

specific seasons (e.g. the growing season of trees, the melting period of glaciers). In order to 

investigate the seasonal performance of the statistical model, we carried out further experiments 

allowing daily data for single seasons only as input (table 4.a-b). Compared to the model with 

full year daily input (table 3.a-b), the composition of predictors and their relative impacts may 

change. 

1) JJA temperatures: If we restrict the input data to daily values of JJA (table 4.a) then local 

JJA temperatures are determined by large-scale zonal wind at 850hPa (relative impact 17%) and 

vertical velocity at 500hPa (relative impact 12%) in addition to 850 hPa temperature (relative 
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impact 71%). Here, the daily, monthly and seasonal explained variance for JJA is 81%, 91.8% 

and 89.1% respectively (lower part of table 4.a). Compared to the seasonal performance with 

the full year input (69.8%, 79.4% and 77.5%, table 3.a, bottom) the explained variances 

improve significantly and the predictors have changed. 

2) DJF temperatures: The explained variance for northern hemispheric winter (76% in table 

4.b with daily DJF input data only) is slightly improved compared to the full year input (72% 

in table 3.b) whereas monthly and seasonal values remain nearly constant. This means that the 

large-scale flow patterns in winter time are already reasonably well determined by the full year 

input data. 

Experiments with daily data for specific seasons are also carried out for the prediction of 

local precipitation. However, the composition of predictors only slightly changes and the 

explained variance cannot be improved significantly. 

We may conclude that the capability of the statistical model to simulate single seasons can 

be improved when a seasonal specific statistical model is developed for some local observed 

variables (e.g. temperature) as demonstrated above. 

Predic- 
tand: 

Ti) 

Expl. 
Var. for 

JJA 
iii) DJF 

b) Local Temperature 
for DJF only (1979-92) 

. Temp. 

a) Local Temperature 
for JJA only (1979-92) 

Predictors rel. imp. Predictors rel. imp. 
60% 
24% 
1 6 %  

850 hPa 
Rel. Hum. 850 hPa 
Zon. Wind 500hPa 

Temp. 850 hPa 
Zon. Wind 850hPa 
Vent. Vel. 500 hPa 

71 % 
17% 
12% 

Monthly 
Data 

Seas. 
Data 

Seas. 
Data (C) 

Daily 
Data 

Daily 
Data (A) 

Monthly 
Data (B) 

81.0% 91.8% 89.1% 
95.6 % 75.8 % 94.5 % 

Table 4. Predictors selected and performance of the seasonal specific statistical model for local 

temperature. The model was developed with re-analyses and weather station data from a) JJA only 

and b) DJF only within the period 1979-1992 (see text and table 3 for further explanations). The lower 

part of the table shows the percentage of observed variance explained by the statistical model for ii) 

JJA only and iii) DJF only each for A) original daily data, B) monthly averaged output of the 

statistical model after removing the seasonal cycle and C) seasonal means of statistical model output. 
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5.d Model Validation Experiments 

Does the model work on independent data and is it transferable to other time periods with 

different climatic conditions? In order to address these questions two further experiments are 

carried out. 

In the first experiment we develop the model for the second half of the ECMWF re-analyses 

time period (1985-1992) only (fig. 4.a-b). For the purpose of validation, the statistical 

relationship obtained is then applied to an independent validation sample, in this case the first 

half of the re-analyses time period (1979-1984). The annual means of precipitation and 

temperature for this experiment are shown in fig. 4.a-b. Although the model is not developed 

for 1979-1984 (i.e. it does not use any local observation in that period for fitting), it can still 

realistically simulate the local variables for this independent time period. The differences to fig 

3.c-d respectively (where we have used the full time period 1979-1992 for development) are 

insignificant. 

The second experiment addresses the question whether the model can produce realistic 

output for climatic conditions which differ from the conditions it is actually developed for. If 

the model is developed using present-day climatic conditions (represented by ECMWF re- 

analyses), is it then applicable to GCM output for pre-industrial times? The statistical 

distribution of daily local temperatures for station Kvamskogen after statistical modeling of 

ECMWF re-analyses for the period 1979-1992 is shown in fig. 5. The standard experiment (fig 

5.a) includes all occurring temperature events for the development of the model. For the 

validation experiment (fig 5.b) events with temperatures less than -5°C are excluded prior to 

model development and the statistical relationships are calculated the same way. Although this 

model is not developed for events < -5°C it has still realistically simulated them, which can be 

clearly seen in the distribution (fig. 5.b upper graph) and the time series (fig. 5.b lower graph) 

of temperatures. The differences between standard and validation experiment (fig. 5.a and 5.b 

resp.) are insignificant. 

The experiments demonstrate the ability of applying the statistical model to independent data 

sets and they also show that we can produce realistic output for climatic conditions different 

from present-day climate which we use for development of the model. However, the latter 

statement may only be true for climatic conditions which are not fundamentally different in their 

large-scale flow properties. This is to a large extent true for the pre-industrial output of the GCM 
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which we will apply below. Here, the general coupling between the large-scale flow and local 

weather parameters deduced from present-day climate are to a great extent maintained for pre- 

industrial climatic conditions. 

a) Validation Precip. (mm/a) b) Validation Temp. (°c) 
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Fig. 4. Validation experiment for station Kvamskogen a) for local annual precipitation and b) for local 

annual temperature. The model is developed for the 1985-1992 period only (developmental sample). 

The statistical relationship obtained is then applied to independent re-analyses for 1979-1984 

(validation sample). The dashed line shows the statistical model output for the validation sample, 

other lines like in fig. 3. The differences to fig 3.0-d (full time period 1979-1992 used for 

development) are reasonably small. 
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Statistical Distribution of Daily Local Temperatures 
Station Kvamskogen, Stat. Modeled ECMWF Re-Analyses 1979-1992 

a) Standard: All Temp. Included b) Validation: T <-5°C Left out 

/ o o 
/ 

G) 

3 
E 
a> 
D. 
E w 
I- 

200 ll~ -H : I L _ IL.'.; l.l` Alf-.; an-limmrri 200 

_
L

 

U
1 o 

Fr
eq

ue
nc

y 
_

L
 

o o 

50 

20 

15 

10 

5 
0 

-5 

-10 

-15 

I 

T<-5.0 

0 
-15 -10 -5 0 5 10 15 

Temperature (0.5°C bin width) 

I I I . I | I u I 1 I 

150 

100 

20 

50 

l 

I 
l 

| | 

T<-5.0 

I MH 

I | I I | I I 

r 

IH I II he 0 
-15 -10 -5 0 5 10 15 

Temperature (0.5°C bin width) 

4 J-J I _IIHH up it 20 L .HL . 
15 
10 
51 

01 
_51 

-10 | 
-151 II m f ;-FL-,~_;{|'- 

1980 1982 *I§§I"l98€'19a8 1990 1992 
Year 

11 - I - lee 

20 

M | 

1980 1982 1984 1986 1988 1990 1992 
Year 

Fig. S. Statistical distribution (upper graph) of daily local temperatures for station Kvamskogen after 

statistical modeling for the period 1979-1992 and time series of daily temperatures (lower graph) for 

a) all temperature events included for the development of the model and b) events with temperatures 

less than -5°C excluded from model development. Although the model in b) is not developed for 

events < -5°C it has still realistically simulated them, the differences in distribution between a) and b) 

are reasonably small. This gives some support for the assumption that we can produce realistic output 

for climatic conditions which differ from the conditions we use for development of the model. 
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5.e Impact of Spatio-Temporal Resolution of Predictors 

Our intention is to produce reliable local monthly or annual mean output from re-analyses 

and GCMs comparable to corresponding local weather station data. Although we do not aim to 

produce perfect predictions on a daily basis, it turns out that our model requires daily predictor 

data as input in order to achieve the statistically closest and most robust relationships. 

Consequently, the output can best be averaged to monthly or annual means after the statistical 

calculations have been carried out using daily predictor data. 

Monthly means as input are tested as well but the results are more unstable. The model 

sometimes attempts to use near-collinear predictors for least-squares estimation which 

particularly becomes a problem when being applied to independent data. 

However, this also emphasizes the role of synoptic timescale variability in the close 

relationship between local weather and large-scale circulation patterns. Averaging the 

predictors means that this information is partly removed and the correlation therefore weakens. 

The impact of spatial resolution of predictors was tested by producing statistical model 

output both with original re-analyses at T106 resolution (~ 1.l° x 1.l°) and with an interpolated 

data set (T30 res., 3.8° x 3.8°) for comparison. Although the interpolated re-analyses might 

not really represent the output of an actual T30 model it can still give us some hints about the 

impact of model resolution. It is found that summer temperatures (JJA) are most sensitive. For 

the example given in table 3.a the explained variance of monthly data for JJA (seasonal cycle 

removed) is increased from 79.4% (T30 res.) to 84.5% (T106 res.), annual data improves from 

77.5% (T30 res.) to 83.3% (T106 res.). The sensitivity for local precipitation is of the same 

order. Monthly means for JJA increase from 57.2% (table 3.b) to 62.l%, annual means from 

46.0% to 5l.7%. In spite of these improvements, we may conclude that the overall ability to 

produce satisfying statistical model output is already given using T30 predictor resolution, 

which is also the resolution of the ECHAM4 GCM nlns which will be used below. 
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6. APPLICATION TO ECHAM4 GCM: CONTROL AND PRE-INDUSTRIAL RUN 

The statistical relationships derived from re-analyses and local station data are applied to the 

output of the ECHAM4 GCM coupled to a Mixed Layer Ocean developed at the Max-Planck- 

Institut fur Meteorologie (MPI) and the Deutsches Klimarechenzentrum (DKRZ) in Hamburg 

[Roeckner et al., 1996, Roeckner, 1997, Roeckner et al., 1998]. We use a long integration of a 

control run and a run with pre-industrial greenhouse gas forcing for our experiments . 

The control experiment of the 19-layer ECHAM4/MLO GCM lasts for for 600 years at T30 

resolution. A 100-year equilibrium run with pre-industrial greenhouse gas forcing [IPCC, 1995] 

is also used. The global mean surface air temperature for the pre-industrial run is l.0°C lower 

than the control run. Here, we take the daily large-scale pressure level and surface output of 

these models for the area of Nigardsbreen glacier, Norway and apply the statistical relations 

obtained as described above. , 

As an example, we show the statistically downscaled and yearly averaged GCM output of 

surface air temperature deviations for station Ona II (fig. 6). This station is chosen because we 

are able to compare simulated data to a long instrumental observed temperature record for the 

period 1868-1955 which is available from the Global Historical Climatology Network 

temperature data base [Peterson et al., 1997]. Additionally we include weather station data for 

1979-1993 obtained from the SMHI, Sweden (Wesson, pers. comm.) for this station. 

Figure 6 shows the statistically corrected GCM surface air temperature output of the 

equilibrium run with pre-industrial greenhouse gas forcing along with the corrected GCM 

output for 300 years of the control run. For comparison we also show the observed temperature 

relative to the 1979-1993 reference period. 

The first striking feature is the temperature increase of about 0.7°C between the pre- 

industrial GCM mn and the control run for this station, which is about the same as the observed 

temperature difference. This means that the dynamical GCM output in combination with the 

statistical modeling procedure is able to realistically simulate pre-industrial to present-day 

temperature changes for this location. 

Furthermore, it can be clearly seen that the annual variability in GCM output (both control 

and pre-industrial run) resembles very much the observed one and that 10-year running means 

show a comparable or even slightly higher variability than observed. Pronounced low frequency 
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fluctuations with even longer periods are clearly simulated by the downscaled GCM control 

experiment. 

We may conclude that the dynamical-statistical modeling procedure can realistically 

simulate both the patterns of observed variability on the annual to decadal scale as well as 

temperature changes due to different climatic scenarios. 

Temperature Station Ona II 
Statistical-Dynamical GCM Output and Observed Data 
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Fig. 6. Application of the statistical model to GCM output (ECHAM4 T30 L19 Mixed Layer Ocean) for 

station Ona II. Thin lines are annual means, thick lines are 10-year-running means. The left part 

shows the statistically corrected local output from the equilibrium GCM run with pre-industrial GHG 

forcing, the right part represents the 300 year control run of the same model. For comparison, the 

observed temperature relative to the 1979-1993 reference period is shown in the middle (see text). 
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7. CONCLUSIONS 

Local output for temperature, precipitation and other parameters has been produced by a 

General Circulation Model in combination with a statistical downscaling model. Daily 

ECMWF re-analyses using predictors excluding near-surface predictors gave stable and 

physically reasonable relationships for statistical model development. The model showed a high 

performance using large-scale predictors from re-analyses and local surface observations for the 

area of Nigardsbreen glacier, Norway. Analyzing single seasons individually, it became clear 

that for some local surface variables it is useful to develop a specific set of predictors for seasons 

which might be most relevant for a specific proxy indicator (e.g. for the growing season of 

trees). Daily predictor data were required in order to achieve statistically the most stable and 

physically the most reasonable relationships. Satisfying results for the model could be achieved 

using T30 resolution (~ 3.8° x 3.8°) predictor data. We validated the model using separate 

developmental and validation intervals for the re-analysis time period and we carried out a 

validation experiment with a restricted predictor data set. The method has been applied to a long 

control integration of the ECHAM4 / Mixed Layer Ocean GCM and to an equilibrium run with 

pre-industrial greenhouse gas forcing. The output has been compared to patterns of observed 

station data in the area of Nigardsbreen glacier, Norway for the period 1868-1993. Patterns of 

observed variability on the annual to decadal scale and of mean temperature changes due to 

different climatic scenarios have been realistically simulated for this location. 

The proposed dynamical-statistical modeling approach could help to improve a systematic 

interpretation of paleo proxy records and model-data intercomparisons for past climatic 

scenarios. A simulation of the growth of trees and the response of valley glaciers to specific 

climatic conditions is in preparation. 
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