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Abstract

Considering the use of dynamical systems in practical applications, often only limited re-
gions in the time or frequency domain are of interest. Therefor, it usually pays off to compute
local approximations of the used dynamical systems in the frequency and time domain. In this
paper, we consider a structure-preserving extension of the frequency- and time-limited bal-
anced truncation methods to second-order dynamical systems. We give a full overview about
the first-order limited balanced truncation methods and extend those methods to second-order
systems by using the different second-order balanced truncation formulas from the literature.
Also, we present numerical methods for solving the arising large-scale sparse matrix equations
and give numerical modifications to deal with the problematic case of second-order systems.
The results are then illustrated on three numerical examples.

Keywords: model order reduction, second-order differential equations, linear systems, bal-
anced truncation, frequency-limited balanced truncation, time-limited balanced truncation,
local model reduction, structure-preserving approximation

1 Introduction
The modeling of, e.g., mechanical and electrical systems often leads to linear dynamical systems
containing second-order time derivatives. In this paper, we consider linear second-order input-
output systems of the form

Mẍ+ Eẋ(t) +Kx(t) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t),

(1)

with M,E,K ∈ Rn×n, Bu ∈ Rn×m and Cp, Cv ∈ Rp×n, and u(t) ∈ Rm, the inputs, x(t) ∈ Rn, the
states, and y(t) ∈ Rp, the outputs of the system. In the frequency domain, the input-to-output
relation is directly given as y(s) = H(s)u(s), whereby the so-called transfer function is given by

H(s) = (sCv + Cp)(s2M + sE +K)−1Bu, (2)

with s ∈ C. In applications, the number of differential equations, n, describing the system, can
become very large. This complicates using the model for simulations and controller design due
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to the expensive costs in terms of computational resources as time and memory. Therefor, model
reduction is needed to construct a surrogate system with a much smaller number of equations
r � n, which approximates the input-to-output behavior of (1). To use the surrogate model as
the original one, e.g., applying the same tools, the surrogate needs to have the same structure as
the original system, i.e., the reduced-order model should also have the form

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = B̂uu(t),
ŷ(t) = Ĉpx̂(t) + Ĉv

˙̂x(t),

with the new system matrices M̂, Ê, K̂ ∈ Rr×r, B̂u ∈ Rr×m and Ĉp, Ĉv ∈ Rp×r.
Due to its relevance in a lot of applications, the problem of structure-preserving model reduction

for second-order systems has already been investigated in the literature to quiet an extend. There
are structure-preserving extensions of classical model reduction methods like modal truncation
and dominant pole algorithms [7,38,40], moment matching [2,15,41,42], balanced truncation [16,
33, 37], or for example of the H2-optimal iterative rational Krylov algorithm [47]. Especially, we
want to mention the work of Paul Van Dooren, and co-authors, on the second-order balanced
truncation approach. In [15], he introduced a new balancing idea that is stronger related to the
origins of balanced truncation than the other extensions. Most of the extended methods aim for
a globally good approximation behavior, but very often, only the local system’s behavior in the
frequency or time domain is of actual interest for the application. In case of first-order systems,
the frequency- and time-limited balanced truncation methods, first mentioned in [20], aiming for
such local approximations. Those methods have been extended in the first-order case to large-scale
sparse systems [6, 28] and to system with differential-algebraic equations [22,26].

A first attempt to generalize the limited balanced truncation methods to second-order systems
has been done in [23] for the frequency-limited balanced truncation by making use of some formulas
from [37] and for the time-limited balanced truncation in [24] in the same way. In this paper,
we are extending the frequency- and time-limited balanced truncation methods by using all the
different second-order balanced truncation approaches from the literature [16, 33, 37] and correct
some mistakes that were made in [23, 24] considering the issue of stability preservation. Also, we
are extending the numerical approaches to the large-scale second-order system case and present
strategies to deal with numerical difficulties aligning with second-order systems in general.

The paper has the following structure. Section 2 contains a review of the theory for the classical
and limited balanced truncation methods in the generalized first-order system case; see Section 2.1;
as well as a review of the different second-order balanced approaches and the extensions of the
limited balanced truncation methods to second-order systems in Section 2.2. Afterwards, in Sec-
tion 3, the numerical methods for solving the large-scale sparse matrix equations with function
right hand-side are covered. Also, the α-shift strategy and two-step methods are explained in this
section, which ends with the modified Gramian approach and remarks on the stability preserva-
tion of the methods. Three numerical examples are then given in Section 4 to demonstrate the
applicability of the methods on large-scale sparse second-order systems. Section 5 concludes the
paper.

2 The frequency- and time-limited balanced truncation methods
2.1 First-order system case
In this section, we will remind of the classical balanced truncation technique and give an overview
on the frequency- and time-limited versions of this method for the case of first-order systems.

2.1.1 Classical balanced truncation

We consider here generalized first-order state-space systems of the form

E q̇(t) = Aq(t) + Bu(t),
y(t) = Cq(t),

(3)
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with E ,A ∈ RN×N , B ∈ RN×m, C ∈ Rp×N , and the corresponding transfer function

H(s) = C(sE − A)−1B, (4)

with s ∈ C. For simplicity, we are assuming that E is invertible and the system is c-stable, i.e.,
all eigenvalues of λE − A lie in the open left complex half-plane. The extension of the balanced
truncation method to the descriptor system case (E non-invertible) can be found in [11, 45]. The
system Gramians of (3) are defined as

P∞ = 1
2π

+∞∫

−∞

(jωE − A)−1BBT(−jωE − A)−Tdω =
+∞∫

0

eE
−1AtE−1BBTE−TeA

TE−Ttdt,

Q∞ = 1
2π

+∞∫

−∞

(−jωE − A)−TCTC(jωE − A)−1dω =
+∞∫

0

E−TeA
TE−TtCTCeE

−1AtE−1dt,

(5)

with P∞ the infinite controllability Gramian and ETQ∞E the infinite observability Gramian. Note
that in the infinite case, the frequency and time representations of the Gramians are equal. It can
be shown that those Gramians (5) are the unique, symmetric positive semi-definite solutions of
the following Lyapunov equations

AP∞ET + EP∞AT + BBT = 0,
ATQ∞E + ETQ∞A+ CTC = 0.

(6)

The Hankel singular values are then defined as the positive square-roots of the eigenvalues of
P∞ETQ∞E , which are a measure of how much influence the corresponding states have on the
input-output behavior of the system. The main idea of balanced truncation is to balance the
system such that

P∞ = Q∞ =




σ1
σ2

. . .
σN


 ,

with the Hankel singular values σ1 ≥ σ2 ≥ . . . ≥ σN > 0 and then to truncate states corresponding
to small Hankel singular values [34]. The complete balanced truncation square-root method is
summarized in Algorithm 1.

The balanced truncation method provides an a posteriori error bound in the H∞ norm

‖H − Ĥ‖H∞ ≤ 2
N∑

k=r+1
σ2

k, (7)

where H is the transfer function of the original model (4) and Ĥ the transfer function of the
reduced-order model. The bound (7) depends only on the truncated Hankel singular values, which
allows an adaptive choice of the reduction order. Also, this method preserves the stability of the
original model, i.e., if H was a c-stable model then also Ĥ will be c-stable.

The application of the balanced truncation method to large-scale sparse systems is possible
by approximating the Cholesky factors of the Gramians via low-rank factors P∞ ≈ ZR∞Z

T
R∞

,
Q∞ ≈ ZL∞Z

T
L∞

, with ZR∞ ∈ RN×kR , ZL∞ ∈ RN×kL and kR, kL � N ; see, e.g., [9]. The
approximation of the Gramians is reasonable due to a fast singular value decay arising by the low-
rank right-hand sides [1]. For the computation of those factors, appropriate low-rank techniques
are well developed [10].

2.1.2 Frequency-limited approach

A suitable method to localize the approximation behavior of the balanced truncation method in
the frequency domain is the frequency-limited balanced truncation [20]. The idea is based on the
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Algorithm 1: Balanced Truncation Square-Root Method
Input: System matrices A, B, C, E from (3).
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê .

1 Compute Cholesky factorizations of the Gramians by solving the Lyapunov equations (6)
such that P∞ = R∞RT

∞, Q∞ = L∞LT
∞.

2 Compute the singular value decomposition

LT
∞ER∞ =

[
U1 U2

] [Σ1
Σ1

] [
V T

1
V T

2

]
,

with Σ1 = diag(σ1, . . . , σr) containing the r largest Hankel singular values.
3 Construct the projection matrices

T = R∞V1Σ−
1
2

1 and W = L∞U1Σ−
1
2

1 .

4 Compute the reduced-order model by

Â = WTAT, B̂ = WTB, Ĉ = CT, Ê = WTET = Ir.

frequency representation of the system Gramians (5), such that the frequency-limited Gramians
of (3) are given by

PΩ = 1
2π

∫

Ω

(jωE − A)−1BBT(−jωE − A)−Tdω,

QΩ = 1
2π

∫

Ω

(−jωE − A)−TCTC(jωE − A)−1dω,
(8)

where Ω = [−ω2,−ω1] ∪ [ω1, ω2] ⊂ R is the frequency range of interest. It can be shown that the
left-hand sides in (8) are also given as the unique, symmetric positive semi-definite solutions of the
two Lyapunov equations

APΩET + EPΩAT + BΩBT + BBT
Ω = 0,

ATQΩE + ETQΩA+ CT
ΩC + CTCΩ = 0,

(9)

with new right hand-side matrices BΩ = EFΩB, CΩ = CFΩE containing the matrix functions

FΩ = Re
(
j

π
ln
(
(A+ jω1E)−1(A+ jω2E)

))
E−1

= E−1 Re
(
j

π
ln
(
(A+ jω2E)(A+ jω1E)−1)

)
,

(10)

with ln(.) the principle branch of the matrix logarithm. Note that in case of Ω = [−ω, ω], the
function evaluation (10) simplifies to

FΩ = Re
(
j

π
ln
(
−E−1A− jωIn

))
E−1

= E−1 Re
(
j

π
ln
(
−AE−1 − jωIn

))
.

Also, the frequency-limited Gramians can be extended to an arbitrary number of frequency inter-
vals, i.e., for

Ω =
⋃̀

k=1
([−ω2k, ω2k−1] ∪ [ω2k−1, ω2k]) ,

4



Algorithm 2: Frequency-Limited Balanced Truncation Square-Root Method
Input: System matrices A, B, C, E from (3), frequency range of interest Ω.
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê .

1 Compute Cholesky factorizations of the frequency-limited Gramians by solving the
frequency-limited Lyapunov equations (9) such that PΩ = RΩR

T
Ω, QΩ = LΩL

T
Ω.

2 Follow the steps 2–4 in Algorithm 1.

with 0 < ω1 < . . . < ω`, leads to the following modification of (10)

FΩ = Re
(
j

π
ln
(∏̀

k=1
(A+ jω2k−1E)−1(A+ jω2kE)

))
E−1

= E−1 Re
(
j

π
ln
(∏̀

k=1
(A+ jω2kE)(A+ jω2k−1E)−1

))
.

See [6] for a more detailed discussion of the theory addressed above. The extension of this method
to the large-scale system case can also be found in [6] and an extension to descriptor systems in [26].
The resulting frequency-limited balanced truncation method is summarized in Algorithm 2.

2.1.3 Time-limited approach

The counterpart of the frequency-limited balanced truncation from the previous section in the time
domain is the time-limited balanced truncation [20]. This method aims for the approximation of
the system on a time interval T = [t0, tf ], where 0 ≤ t0 < tf , based on the limitation of the time
domain representation of the Gramians (5). The time-limited Gramians of (3) are then given by

PT =
tf∫

t0

eE
−1AtE−1BBTE−TeA

TE−Ttdt,

QT =
tf∫

t0

E−TeA
TE−TtCTCeE

−1AtE−1dt.

(11)

and it can be shown, that the left-hand sides in (11) are the unique, positive semi-definite solutions
of the two following Lyapunov equations

APTET + EPTAT + Bt0BT
t0
− Btf

BT
tf

= 0,
ATQTE + ETQTA+ CT

t0
Ct0 − CT

tf
Ctf

= 0,
(12)

where the new right hand-side matrices Bt0/f
= EeE−1At0/f E−1B = eAE−1t0/fB and Ct0/f

=
CeE−1At0/f contain the matrix exponential. The right hand-sides of (12) simplify in case of t0 = 0
since B0 = B and C0 = C. A more detailed discussion of the time-limited theory, especially for
the large-scale system case, can be found in [28]. Also, the extension of the theory to the case of
descriptor systems is given in [22]. It can be noted that considering more than one time interval
at once [t0,1, tf,1] ∪ · · · ∪ [t0,`, tf,`] is not practical and usually one cannot guarantee a good ap-
proximation behavior in the single intervals. Instead it is common to take the smallest and largest
time points in the intervals to construct a new overarching time interval [t0,min, tf,max], where
t0,min = min{t0,1, . . . , t0,`} and t0,max = max{tf,1, . . . , tf,`} such that

⋃̀

k=1
[t0,k, tf,k] ⊂ [t0,min, tf,max] = T.

The resulting time-limited balanced truncation method is summarized in Algorithm 3.
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Algorithm 3: Time-Limited Balanced Truncation Square-Root Method
Input: System matrices A, B, C, E from (3), time range of interest T .
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê .

1 Compute Cholesky factorizations of the time-limited Gramians by solving the time-limited
Lyapunov equations (12) such that PT = RTR

T
T , QT = LTL

T
T .

2 Follow the steps 2–4 in Algorithm 1.

2.2 Second-order case
After recapitulating the basic ideas of the classical as well as the frequency- and time-limited
balanced truncation methods for first-order systems, in this section we will extend those methods
to second-order systems (1).

2.2.1 Second-order balanced truncation methods

Over time, there have been many attempts for the generalization of the classical balanced trun-
cation method to the second-order system case [16, 33, 37]. All of them have in common the idea
of linearization, i.e., the second-order system (1) is rewritten as a first-order system. The usual
linearization of choice for (1) is its so-called first companion form

[
J 0
0 M

]

︸ ︷︷ ︸
E

q̇(t) =
[

0 J
−K −E

]

︸ ︷︷ ︸
A

q(t) +
[

0
Bu

]

︸ ︷︷ ︸
B

,

y(t) =
[
Cp Cv

]
︸ ︷︷ ︸

C

q(t),
(13)

where q(t) = [xT(t), ẋT(t)]T is the new combined state vector. The matrix J ∈ Rn×n is an arbitrary
invertible matrix but usually chosen as J = In or J = −K, which can lead to symmetric A and E
matrices in case of mechanical systems.

For system (13), the first-order Gramians are used, as given by (5) or (6), and then partitioned
according to the block structure in (13) such that

P∞ =
[
Pp P12
PT

12 Pv

]
and Q∞ =

[
Qp Q12
QT

12 Qv

]
, (14)

where Pp, Qp are the the position Gramians of (1) and Pv, Qv the velocity Gramians. Due to
P∞ = PT

∞ ≥ 0 and Q∞ = QT
∞ ≥ 0, also the position and velocity Gramians are symmetric positive

semi-definite and can be written in terms of their Cholesky factorizations

Pp = RpR
T
p , Pv = RvR

T
v , Qp = LpL

T
p, Qv = LvL

T
v .

Based on those, the different second-order balanced truncation methods are defined by balancing
certain combinations of the four position and velocity Gramians. For most of the methods, the
resulting balanced truncation is computed as second-order projection method

M̂ = WMT, Ê = WET, K̂ = WKT, B̂u = WBu, Ĉp = CpT, Ĉv = CvT, (15)

where the different choices forW and T can be found in Table 1. There, the different transformation
formulas are summarized and denoted by the type as used in the corresponding references. The
subscript 1 matrices denote the part of the singular value decompositions corresponding to the
largest characteristic singular values.

In contrast to the balancing methods that describe the reduced-order model by (15), the second-
order balanced truncation (so) from [16] computes the reduced-order model by

M̂ = S
(
WT

v MTv

)
S−1, Ê = S

(
WT

v ETv

)
S−1, K̂ = S

(
WT

v KTp

)
,

B̂u = S
(
WT

v Bu

)
, Ĉp = CpTp, Ĉv = CvTvS

−1,
(16)
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Type SVD(s) Transformation Reference

v UΣV T = LT
vMRv W = LvU1Σ−

1
2

1 , T = RvV1Σ−
1
2

1 [37]

fv ∗ΣV T = LT
pJRp W = T, T = RpV1Σ−

1
2

1 [33]

vpm UΣV T = LT
pJRv W = M−TJTLpU1Σ−

1
2

1 , T = RvV1Σ−
1
2

1 [37]

pm UΣV T = LT
pJRp, W = M−TJTLpU1Σ−

1
2

1 , T = RpV1Σ−
1
2

1 [37]

pv UΣV T = LT
vMRp W = LvU1Σ−

1
2

1 , T = RpV1Σ−
1
2

1 [37]

vp
∗ΣV T = LT

pJRv,

U ∗ ∗ = LT
vMRp

W = LvU1Σ−
1
2

1 , T = RvV1Σ−
1
2

1 [37]

p
∗ΣV T = LT

pJRp,

U ∗ ∗ = LT
vMRv

W = LvU1Σ−
1
2

1 , T = RpV1Σ−
1
2

1 [37]

so
UpΣpV

T
p = LT

pJRp,

UvΣvVv = LT
vMRv

Wp = LpUp,1Σ−
1
2

p,1 , Tp = RpVp,1Σ−
1
2

p,1 ,

Wv = LvUv,1Σ−
1
2

v,1 , Tv = RvVv,1Σ−
1
2

v,1
[16]

Table 1: Second-order balanced truncation formulas. (Here, ∗ denotes factors of the SVD not
needed, and thus not accumulated in practical computations.)

Algorithm 4: Second-Order Balanced Truncation Square-Root Method
Input: System matrices M , E, K, Bu, Cp, Cv from (1).
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order system Gramians by solving (6), where
the linearization (13) is used, such that P∞ = R∞RT

∞, Q∞ = L∞LT
∞.

2 Partition the Cholesky factors according to the first-order formulation

R∞ =
[
Rp

Rv

]
and L∞ =

[
Lp

Lv

]
.

3 Compute the singular value decompositions and transformation matrices as in Table 1.
4 Compute the reduced-order model by either (15) for the methods p, pm, pv, vp, vpm, v

and fv or by (16) for so.

where S = WpJTv and the transformation matrices Wp, Wv, Tp, Tv are given in the last line of Ta-
ble 1. This type of balancing can be seen as a projection method for the first-order realization (13)
with a recovering of the second-order structure.

The general second-order balanced truncation square-root method is summarized in Algorithm 4.

Remark 1. In contrast to the first-order balanced truncation described in Section 2.1.1, none of
the second-order balanced truncation methods provides an error bound in the H∞ norm or can
preserve the stability of the original system in the general case. A collection of examples for the
stability issue is given in [37]. In case of symmetric second-order systems, i.e., M = MT, E = ET,
K = KT, Cp = BT

u and Cv = 0, it can be shown that the position-velocity balancing (pv) as well as
the free-velocity balancing (fv) are stability preserving. Note that the position-velocity balancing
also belongs to the class of balanced truncation approaches, which define system Gramians by using
the underlying transfer function structure (2). Those balancing approaches have been generalized
in [14] for systems with integro-differential equations.

7



2.2.2 Second-order frequency-limited approach

The generalization of the frequency-limited balanced truncation method for second-order systems
has been discussed in [23] for the position (p) and position-velocity (pv) balancing from [37]. Here
we will summarize their results and give a more general extension for the frequency-limited second-
order balanced truncation method. The basic idea for the approach comes from the observation
that the block partitioning of the Gramians (14) can be written as

Pp =
[
In 0

]
P∞

[
In

0

]
, Pv =

[
0 In

]
P∞

[
0
In

]
,

Qp =
[
In 0

]
Q∞

[
In

0

]
, Qv =

[
0 In

]
Q∞

[
0
In

]
.

(17)

Therefor, the extension of the existing second-order balanced truncation methods to the frequency-
limited approach can be done by replacing the infinite first-order Gramians P∞ and Q∞ in (17)
by the first-order frequency-limited Gramians PΩ and QΩ from (8) corresponding to the first-order
realization (13). The frequency-limited second-order Gramians are then given by

PΩ,p =
[
In 0

]
PΩ

[
In

0

]
, PΩ,v =

[
0 In

]
PΩ

[
0
In

]
,

QΩ,p =
[
In 0

]
QΩ

[
In

0

]
, QΩ,v =

[
0 In

]
QΩ

[
0
In

]
,

(18)

where PΩ,p and PΩ,v are the frequency-limited position and velocity controllability Gramians, and
JTQΩ,pJ and MTQΩ,vM are the frequency-limited position and velocity observability Gramians.
Note that PΩ and QΩ are given by (9) using the first-order realization (13). As for the infinite
Gramians, one observes that the frequency-limited position and velocity Gramians are symmetric
positive semi-definite.

According to [20, 23, 37], we can now define the corresponding frequency-limited characteristic
values as follows.

Definition 1. (Second-order frequency-limited characteristic singular values.)
Consider the second-order system (1) with the first-order realization (13) and the frequency range
of interest Ω = −Ω ⊂ R.

1. The square-roots of the eigenvalues of PΩ,pJ
TQΩ,pJ are the frequency-limited position singular

values of (1).

2. The square-roots of the eigenvalues of PΩ,pM
TQΩ,vM are the frequency-limited position-

velocity singular values of (1).

3. The square-roots of the eigenvalues of PΩ,vJ
TQΩ,pJ are the frequency-limited velocity-position

singular values of (1).

4. The square-roots of the eigenvalues of PΩ,vM
TQΩ,vM are the frequency-limited velocity sin-

gular values of (1).

Following the observations in the first-order frequency-limited case as well as the second-order
balanced truncation method, those characteristic singular can be interpreted as a measure for
the influence of the corresponding states to the input-output behavior of the system in the fre-
quency range of interest. Anyway, there is no energy interpretation as for the first-order balanced
truncation method.

With (18) and the Definition 1, the resulting second-order frequency-limited balanced truncation
square-root method is written in Algorithm 5.

Remark 2. The second-order frequency-limited balanced truncation method is in general not
stability preserving. Also, the approach from [23] does not necessarily lead to a one-sided projection
as suggested by the authors and also might not produce a stable second-order system in the end.
Even so, we will discuss approaches that can have stability-preserving properties in Section 3.4.
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Algorithm 5: Second-Order Frequency-Limited Balanced Truncation Square-Root Method
Input: System matrices M , E, K, Bu, Cp, Cv from (1), frequency range of interest Ω.
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order frequency-limited Gramians by
solving (9), where the linearization (13) is used, such that PΩ = RΩR

T
Ω, QΩ = LΩL

T
Ω.

2 Follow the steps 2–4 in Algorithm 4.

Algorithm 6: Second-Order Time-Limited Balanced Truncation Square-Root Method
Input: System matrices M , E, K, Bu, Cp, Cv from (1), time range of interest T .
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order time-limited Gramians by solving (12),
where the linearization (13) is used, such that PT = RTR

T
T , QT = LTL

T
T .

2 Follow the steps 2–4 in Algorithm 4.

2.2.3 Second-order time-limited approach

The extension of the time-limited balanced truncation to the second-order system case was first
discussed in [24]. As in the previous section, we are generalizing the ideas from [24] to all second-
order balanced truncation methods. In any case, the same idea as for the frequency-limited case
is applied here. That means, we replace the infinite first-order Gramians in (17) by the first-order
time-limited Gramians from (11) to get

PT,p =
[
In 0

]
PT

[
In

0

]
, PT,v =

[
0 In

]
PT

[
0
In

]
,

QT,p =
[
In 0

]
QT

[
In

0

]
, QT,v =

[
0 In

]
QT

[
0
In

]
,

where again the first-order realization (13) was used. Following the naming scheme of [37], PT,p

and PT,v are the time-limited position and velocity controllability Gramians, and JTQT,pJ and
MTQT,vM the time-limited position and velocity observability Gramians. Note that PT and QT are
given by (12) with the first-order realization (13). As for the infinite Gramians, one observes that
the time-limited position and velocity Gramians are symmetric positive semi-definite. According
to the frequency-limited characteristic singular values, we are giving the following definition for
the time-limited version.

Definition 2. (Second-order time-limited characteristic singular values.)
Consider the second-order system (1) with the first-order realization (13) and the time range of
interest T = [t0, tf ], 0 ≤ t0 < tf .

1. The square-roots of the eigenvalues of PT,pJ
TQT,pJ are the time-limited position singular

values of (1).

2. The square-roots of the eigenvalues of PT,pM
TQT,vM are the time-limited position-velocity

singular values of (1).

3. The square-roots of the eigenvalues of PT,vJ
TQT,pJ are the time-limited velocity-position

singular values of (1).

4. The square-roots of the eigenvalues of PT,vM
TQT,vM are the time-limited velocity singular

values of (1).

As before, the resulting second-order time-limited balanced truncation methods can be obtained
by replacing the Gramians in Algorithm 4, which is summarized in Algorithm 6.

Remark 3. As in the first-order case [28], there is no guarantee of stability preservation for the
second-order time-limited balanced truncation methods. The method suggested in [24] only works
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on the first-order case and does not guarantee the preservation of stability for second-order systems
in general. Approaches that can be more beneficial in terms of preserving stability are discussed
in Section 3.4.

3 Numerical methods
In this section, we will discuss points concerning the numerical implementation of the proposed
second-order frequency- and time-limited balanced truncation methods.

3.1 Matrix equation solvers for large-scale systems
A substantial part of the numerical effort in the computations of the second-order frequency-
and time-limited balanced truncations goes into the solution of the arising matrix equations (9)
and (12). In general it has been shown for the first-order case, that the singular values of the
frequency- and time-limited Gramians are decaying possibly faster than of the infinite Grami-
ans; see, e.g., [6] for the frequency-limited case. That leads to the natural approximation of the
Gramians by low-rank factors, e.g.,

PΩ ≈ ZΩZ
T
Ω, PT ≈ ZTZ

T
T ,

where ZΩ ∈ RN×`1 , ZT ∈ RN×`2 and `1, `2 � N . Those low-rank factors then replace the Cholesky
factors in the balanced truncation algorithms 1–6.

In the following three sections, we will shortly review existing approaches for these problems and
give comments on existing implementations.

3.1.1 Quadrature-based approaches

A natural approach based on the frequency and time domain integral representations of the limited
Gramians (8) and (11) is the use of numerical integration formulas. As used for example in [23,26],
the low-rank factors of the Gramians can be computed by rewriting the full Gramians by quadrature
formulas, e.g.,

PΩ = 1
2π

∫

Ω

(jωE − A)−1BBT(−jωE − A)−Tdω

≈ 1
2π
∑̀

k=1
γk{(jωkE − A)−1BB(−jωkE − A)−T + (−jωkE − A)−1BB(jωkE − A)−T},

where γk are the weights and ωk the evaluation points of a fitting quadrature rule, which can be
again rewritten for the low-rank factors by

ZΩ =
[
Re(B1), Im(B1), . . . Re(B`), Im(B`)

]
,

where Bk = (jωkE − A)−1B. Note that this approach becomes unhandy considering the time-
limited case, since there, for each step of the quadrature rule, an approximation of the matrix
exponential has to be computed.

A different approach was suggested in [6], which writes the right-hand side of the frequency-
limited Lyapunov equations (9) as integral expressions, such that the right-hand side is first ap-
proximated and afterwards the large-scale matrix equation is solved, using one of the approaches in
Section 3.1.2 or 3.1.3. In general it is possible to approximate the right-hand sides of (9) and (12)
with matrix functions by using the general quadrature approach from [25]. We are not aware of
a stable, available implementation of quadrature-based matrix equation solvers for the frequency-
and time-limited Lyapunov equations and, therefor, use the following approaches rather than the
quadrature-based methods.

10



3.1.2 Low-rank ADI method

The low-rank alternating direction implicit (LR-ADI) [8,31] method is a well established procedure
for the solution of large-scale sparse Lyapunov equations. Originally developed for the Lyapunov
equations corresponding to the infinite Gramians (6), the LR-ADI produces low-rank approxima-
tions of the form Z∞,j = [Z∞,j−1, α̂jVj ] by

Vj = (A+ αjE)−1Wj−1, Wj = Wj−1 − 2 Re(αj)Vj ,

where α̂j =
√
−2 Reαj , W0 = B; see [4–6] for more details on this method.

The right-hand sides of the limited Lyapunov equations (9), (12) can be rewritten as

BΩBT + BBT
Ω = B̃

[
0 Im

Im 0

]
B̃T, CT

ΩC + CTCΩ = C̃T
[

0 Ip

Ip 0

]
C̃,

Bt0BT
t0
− Btf

BT
tf

= B̆
[
Im 0
0 −Im

]
B̆T, CT

t0
Ct0 − CT

tf
Ctf

= C̆T
[
Ip 0
0 −Ip

]
C̆

(19)

with B̃ = [BΩ,B], C̃T = [CT
Ω, CT], B̆ = [Bt0 ,Btf

] and C̆T = [CT
t0
, CT

tf
], which shows that the right-

hand side matrices are indefinite. The LR-ADI method can be extended to this case by using an
LDLT-factorization for the right-hand side as well as for the solution [29]. Note that for applying
this method for the solution of the large-scale matrix equations, an approximation of the matrix
functions in the right-hand sides is needed beforehand. It was noted in [6], that the information
used for the approximation of the matrix functions cannot be used in the LR-ADI method. A
stable version of the LR-ADI method in the low-rank and LDLT formats is implemented in [39].
We will use this implementation in case the methods, described in the following section, are failing
to converge for the solution of the matrix equation but give approximations to the function right
hand-sides.

3.1.3 Projection methods

An approach that can be used to approximate the matrix functions in the right-hand sides of the
limited Lyapunov equations, as well as to solve the large-scale matrix equations at the same time,
is given by projection-based methods. Here, low-dimensional subspaces Vk = range(Vk) are used
to obtain the low-rank solutions as, e.g., PΩ ≈ VkP̌ΩV

T
k , where P̌Ω is the solution of the projected

Lyapunov equation

TkP̌Ω + P̌ΩT T
k + B̌ΩB̌T + B̌B̌T

Ω = 0, (20)

Tk = V T
k E−1AVk, B̌Ω = V T

k E−1BΩ and B̌ = V T
k E−1B are the projected matrices of the frequency-

limited controllability Lyapunov equation (9). The equation (20) is now small and dense and can be
solved using established dense solvers. As one can observe, this method gives also the opportunity
to approximate the matrix function right-hand side by the low-dimensional subspace Vk, for which
one can also use dense computation methods [25].

Usually, the low-dimensional subspace Vk is constructed as standard [27], extended [44] or ra-
tional Krylov subspace [17], all of which can be easily computed for large-scale sparse systems.
The implementation of the limited balanced truncation methods for second-order systems [13], we
provide, is also based on rational Krylov subspaces. We refer the reader to [6, Algorithm 4.1] for
the underlying idea of the implementation.

A drawback of the projection-based approach, especially for second-order systems, is that the
projected system matrices Tk are not necessarily c-stable, even if the original first-order realization
of the second-order system was. In fact, the quality and performance of the projection-based solvers
strongly depend on the chosen first-order realization. Therefor, we are going to use the so-called
strictly dissipative realization of second-order systems [36] in our computations. Assuming M,E,K
to be symmetric positive definite, the second-order system (1) can be described by a first-order
realization using the following matrices

E =
[
K γM
γM M

]
, A =

[
−γK K − γE
−K −E + γM

]
, B =

[
γBu

Bu

]
, C =

[
Cp Cv

]
, (21)
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with the parameter 0 < γ < λmin(E(M + 1
4EK

−1E)−1). The advantage of this realization is
that E is symmetric positive definite and A + AT symmetric negative definite. Following that,
projection methods can preserve the stability in the projected matrices Tk if the computations
are made on the corresponding standard state-space realization, obtained by a symmetric state-
space transformation using the Cholesky factors E = LLT, i.e., the algorithms work implicitly on
a realization of the form

˙̃q(t) = L−1AL−Tq̃(t) + L−1Bu(t),
y(t) = CL−Tq̃(t).

Remark 4. Note that the realization (21) is computationally more involved than the classical
first companion form (13) or its second companion form, since it is not possible to make use of
occurring zeros in the block structure.

Also, by changing the first-order realization to (21), the computed Gramians change compared
to the definition of the second-order balancing methods. Therefor, let P̃ and Q̃ be Gramians
computed for the strictly dissipative first-order realization (21) and P and Q be the Gramians
from the first companion form realization (13). Then it holds

P = P̃ and Q = TTQ̃T,

with the transformation matrix

T =
[
K γIn

γM In

]
.

That means we can use the strictly dissipative realization (21) for the solution of the matrix equa-
tions and for the balancing procedure just perform the easy back transformation of the observability
factor.

3.2 Stabilization and acceleration by α-shifts
So far, it was always assumed that the second-order system (1) is c-stable. But in practice, the
eigenvalues of λ2M + λE +K can be very close to the imaginary axis or even on the axis, e.g., in
the case of marginal stability. This makes the usage of the model reduction methods and matrix
equation solvers very difficult. A strategy to overcome those problems has been proposed in,
e.g., [19]. There, a shift in the frequency domain was used to move the spectrum of the pencil
λE − A, which had eigenvalues at zero, away from the imaginary axis to compute the system
Gramians. This approach cannot be used the same way for the first-order realizations (13) or (21)
of second-order systems since it destroys the block structure one can exploit in the numerical
implementations of the solvers or rather the block structure that is used for the second-order
balancing approaches. Therefore, we will transfer the concept of α-shifts to the case of second-
order systems.

Let α ∈ R>0 be a real, strictly positive shift and consider the second-order differential equations
in the frequency-domain

(s2M + sE +K)X(s) = BuU(s), (22a)
Y (s) = (sCv + Cp)X(s), (22b)

where U(s), X(s), Y (s) are the Laplace transforms of the corresponding time domain functions and
s ∈ C the Laplace variable. Now let s = ρ + α, with ρ ∈ C a shifted Laplace variable. Then the
equation (22a) turns into

((ρ+ α)2M + (ρ+ α)E +K)X(s) = (ρ2M + 2αρM + α2M + ρD + αE +K)X(s)
= (ρ2M + ρ(E + 2αM) + (K + αE + α2M))X(s)
= (ρ2M + ρẼ + K̃)X(s)
= BuU(s),
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with Ẽ = E+ 2αM and K̃ = K+αE+α2M . Also, the second equation (22b) can be rewritten as

Y (s) = ((ρ+ α)Cv + Cp)X(s)
= (ρCv + (Cp + αCv))X(s)
= (ρCv + C̃p)X(s),

where C̃p = Cp + αCv. Now, the new system described by (M, Ẽ, K̃, Bu, C̃p, Cv) is used for the
computation of the reduced-order projection matrices W,T ∈ Rn×r. Then, the projected system
(M̂,

̂̃
E,
̂̃
K, B̂u,

̂̃
Cp, Cv) yields the following relations

̂̃
E = Ê + 2αM̂,

̂̃
K = K̂ + αÊ + α2M̂,

̂̃
Cp = Ĉp + αĈv,

where Ê = WTET , K̂ = WTKT and Ĉp = CpT are the transformed non-shifted matrices. Now,
we consider the transformed system again in the frequency domain with the Laplace variable ρ
and using the back-substitution ρ = s− α, such that

ρ2M̂ + ρ
̂̃
E + ̂̃

K = s2M̂ + sÊ + K̂ and ρĈv + ̂̃
Cp = sĈv + Ĉp.

The back-substitution gives the resulting reduced-order model (M̂, Ê, K̂, B̂u, Ĉp, Ĉv). The α-shift
strategy can be interpreted as a structured perturbation in the frequency domain during the
computations. Experiments have shown that such an approach works fine for α small enough. It
has to be noted that there are no theoretical results on the influence of the chosen α concerning
the quality of the reduced-order model or properties like stability preservation and error bounds.

Remark 5. The α-shift approach can also be used either to improve the conditioning of the used
matrix equation solvers by improving the condition number of the shifted linear systems solving
with (σ2M + σẼ + K̃), or to improve the convergence of those solvers by pushing the eigenvalues
of λ2M + λẼ + K̃ further away from the imaginary axis.

3.3 Two-step hybrid methods
The idea of two-step (or hybrid) model reduction methods has been used for quite some time in
different applications [18, 30, 46]. In general, two-step methods are based on the division of the
model reduction process into two phases. First a pre-reduction, which can be easily computed
and gives a very accurate approximation for the system’s behavior. The model resulting from the
pre-reduction is usually of medium-scale dimensions, on which the second reduction step by a more
sophisticated model reduction method is applied. This procedure has the advantage that there is no
necessity of applying difficult approximation methods for the large-scale matrix equations arising
in the balancing related approaches. Instead, the exact methods can be used on the, usually dense,
pre-reduced system.

In order to have a structure-preserving pre-reduction method, we suggest the use of interpolation
by rational Krylov subspaces [2, 41, 42]. This has been shown to be equivalent to the use of shift-
based approximation methods for the large-scale matrix equations in Section 3.1; see [46]. The
second-order rational Krylov subspaces are generated as

V = range
(

(s2
1M + s1E +K)−1Bu, . . . ,

∏̀

k=1
(s2

kM + skE +K)−1Bu

)
,

U = range
(

(s2
1M + s1E +K)−H(Cp + s1Cv)H, . . . ,

∏̀

k=1
(s2

kM + skE +K)−H(Cp + skCv)H

)
,

with sk ∈ C, k = 1, . . . , `, chosen interpolation points. Let V and U be Hermitian bases of the
same size such that V ⊂ range(V ) and U ⊂ range(U), respectively, the pre-reduced model is then
generated by

Mpre = UHMV, Epre = UHEV, Kpre = UHKV,

Bu,pre = UHBu, Cp,pre = CpV, Cv,pre = CvV.
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For preservation of stability and the realness of the system matrices, we choose the interpolation
points to appear in complex conjugate pairs sk and sk, and replace one of the projection matrices
by U = V .

The choice of points sk is crucial for the quality of the pre-reduced model. While there are strate-
gies for an adaptive or optimal choice of sk, we suggest a simple oversampling on the imaginary
axis, which is usually enough as a global pre-reduced model.

Remark 6. For the frequency-limited case, a natural choice for the interpolation points would
be to take jΩ instead of aiming for a global approximation. In this case, the resulting frequency-
limited balanced truncation will very likely not give the same results as the large-scale approach.
This observation comes from the fact, that the frequency-limited balanced truncation still takes
information about the complete system structure into account and the pre-reduced system can be
completely different from the original one, if only a local pre-reduction is performed.

Due to the required accuracy of the pre-reduced model, the dimension of it can be still very
large. Therefore, we suggest an efficient iterative solver for the Lyapunov equations appearing in
the second reduction step. In general, we consider the following stable Lyapunov equations

AX1ET + EX1AT + BQBT = 0,
ATX2E + ETX2A+ CTRC = 0,

(23)

where Q ∈ Rm×m and R ∈ Rp×p are symmetric and possibly indefinite. The solution of (23) can
then be factored in the same way as the right-hand sides, i.e., X1 = Z1Y1Z

T
1 and X2 = Z2Y2Z

T
2 ,

where Y1 and Y2 are also symmetric matrices. For efficiently computing the solutions of (23), we
extend the dual sign function iteration method from [3] for the LDLT-factorization of the solutions.
As a result, we get a sign function iteration, that solves both Lyapunov equations with symmetric
indefinite right hand-sides (23) at the same time; see Algorithm 7.

The implementation of Algorithm 7 as well as dense versions of the second-order frequency- and
time-limited balanced truncation methods can be found in [12].

Remark 7. In Step 4 of Algorithm 7, the memory requirements and operations are doubling in
every step due to the extension of the solution factors. It is suggested to do LDLT column and
row compressions at that point to keep the size of the factors small.

3.4 Modified Gramian approach
A drawback of the frequency- and time-limited balanced truncation methods is the loss of stability
preservation. For the first-order system case, there are different modifications of the methods to
regain the preservation of stability, e.g., the replacement of one of the limited Gramians by the
infinite Gramian [22,26].

A different technique, proposed in [21], is the modified Gramian approach. Therefor, the in-
definite right-hand sides (19) are replaced by definite ones. Using eigenvalue decompositions, the
right-hand sides can be rewritten as

BΩBT + BBT
Ω = UB,ΩSB,ΩU

T
B,Ω, CT

ΩC + CTCΩ = UC,ΩSC,ΩU
T
C,Ω

Bt0BT
t0
− Btf

BT
tf

= UB,TSB,TU
T
B,T , CT

t0
Ct0 − CT

tf
Ctf

= UC,TSC,TU
T
C,T ,

where UB,Ω, UC,Ω, UB,T , UC,T are orthogonal and

SB,Ω = diag(ηB1 , . . . , ηB2m, 0, . . . , 0), SC,Ω = diag(ηC1 , . . . , ηC2p, 0, . . . , 0),
SB,T = diag(µB1 , . . . , µB2m, 0, . . . , 0), SC,T = diag(µC1 , . . . , µC2p, 0, . . . , 0).

Let UB,Ω,1, UC,Ω,1, UB,T,1, UC,T,1 be the parts of the orthogonal matrices, corresponding to the
possible non-zero eigenvalues. The modified frequency- and time-limited Gramians are then given
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Algorithm 7: LDLT-Factored Sign Function Dual Lyapunov Equation Solver
Input: A, B, C, E , Q, R from (23), tolerance τ .
Output: Z1, Y1, Z2, Y2 – solution factors of (23).

1 Set A1 = A, B1 = B, Q1 = Q, C1 = C, R1 = R, k = 1.
2 while ‖Ak + E‖ > τ‖E‖ do
3 Compute the scaling factor for convergence acceleration

ck =
√

‖Ak‖F

‖EA−1
k E‖F

.

4 Compute the next iterates of the solution factors

Bk+1 =
[
Bk, EA−1

k Bk

]
, Qk+1 =

[ 1
2ck

Qk
ck

2 Qk

]
,

Ck+1 =
[

Ck

A−1
k ECk

]
, Rk+1 =

[ 1
2ck

Rk
ck

2 Rk

]
.

5 Compute the next iteration matrix

Ak+1 = 1
2ck

Ak + ck

2 EA
−1
k E

6 Set k = k + 1.
7 end
8 Construct the solution factors

Z1 = 1√
2
E−1Bk, Y1 = Qk, Z2 = 1√

2
E−TCT

k , Y2 = Rk.

as the solutions of the following Lyapunov equations

APmod
Ω ET + EPmod

Ω AT + Bmod
Ω

(
Bmod

Ω
)T = 0,

ATQmod
Ω E + ETQmod

Ω A+
(
Cmod

Ω
)T Cmod

Ω = 0,

APmod
T ET + EPmod

T AT + Bmod
T

(
Bmod

T

)T = 0,

ATQmod
T E + ETQmod

T A+
(
Cmod

T

)T Cmod
T = 0,

with

Bmod
Ω = UB,Ω,1 diag(|ηB1 |, . . . , |ηB2m|), Cmod

Ω = diag(|ηC1 |, . . . , |ηC2p|)UT
C,Ω,1,

Bmod
T = UB,T,1 diag(|µB1 |, . . . , |µB2m|), Cmod

T = diag(|µC1 |, . . . , |µC2p|)UT
C,T,1.

Using those modified Gramians for the limited balanced truncation methods also preserves the
stability in the reduced-order models in the first-order case. There also exists an Hinf error bound
for the modified frequency-limited balanced truncation for first-order systems [6]. Note that the
limited Gramians can also be easily computed using the projection-based matrix equation solvers
with only minor changes in the algorithm [6,28].

Remark 8. Neither the replacement of limited Gramians by the infinite ones nor the modified
Gramian approaches are guaranteed to preserve the stability in the reduced-order model when it
comes to the second-order case. The stability preserving methods in [23,24] are just based on the
assumption, that the same procedure as in the first-order case also works for second-order systems.
This is not the case, since already the classical second-order balanced truncation methods are in
general not stability preserving [37].

15



m1u

κ1

δ1

k1

d1

ki−1

di−1

mi

κi

δi

ki

di

kn−1

dn−1

mn

κn

δn

Figure 1: Setup of the single chain oscillator.

Remark 9. Also, it has been mentioned and shown by numerical examples in [6, 28] that the
modified Gramian approach usually does not pay off since the quality of the reduced-order models
is often the same as for the global approaches, i.e., the local approximation property of the limited
balanced truncation methods gets lost.

4 Numerical examples
In the following, some mechanical systems of second-order form from the literature have been chosen
as benchmark examples. The experiments reported here have been executed on machines with 2
Intel(R) Xeon(R) Silver 4110 CPU processors running at 2.10GHz and equipped with either 192
GB or 384 GB total main memory. The computers are running on CentOS Linux release 7.5.1804
(Core) and using MATLAB 9.4.0.813654 (R2018a). For the computations, the following software
has been used:
• MORLAB version 5.0 [12], for all evaluations in the frequency and time domain, the genera-

tion of the pictures and the dense implementations of the limited model reduction methods
used in the two-step approach,

• the limited balanced truncation for large-scale sparse second-order systems code package [13],
for the computations of the full-order limited Gramians and the implementation of the bal-
ancing formulas from Table 1,

• the M-M.E.S.S. library version 2.0 [39], for computing the full Gramians with already ap-
proximated right hand-sides.

In general, we used the projection-based methods from [13] to approximate the right hand-sides
and the Gramians. But in case that the Gramians did not converge, we used the computed
approximation of the right hand-sides from the projection methods in the ADI method from [39]
to compute a solution to the matrix equation.

For the presentation of the results, the following error measures have been used. In the frequency
domain, the point-wise absolute errors in the plots are computed as ‖H(jω) − Ĥ(jω)‖2 for the
frequency points ω ∈ R and the point-wise relative error as ‖H(jω)−Ĥ(jω)‖2

‖H(jω)‖2
. The corresponding

error tables show as global errors the maximum value of the point-wise errors in the plotted
frequency region, i.e.,

max
ω∈[ωmin,ωmax]

‖H(jω)− Ĥ(jω)‖2 and max
ω∈[ωmin,ωmax]

‖H(jω)− Ĥ(jω)‖2
‖H(jω)‖2

,

where [ωmin, ωmax] is the frequency region as shown in the plots. The local errors are then the
maximum values in the frequency range of interest.

In the time domain, the errors are also point-wise evaluated. The plots show ‖y(t)− ŷ(t)‖2 with
t ∈ R as absolute errors and ‖y(t)−ŷ(t)‖2

‖y(t)‖2
for the relative errors. The corresponding error tables

show again the maximum point-wise error values

max
t∈[tmin,tmax]

‖y(t)− ŷ(t)‖2 and max
t∈[tmin,tmax]

‖y(t)− ŷ(t)‖2
‖y(t)‖2

,
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Figure 2: Frequency-limited ROMs for the single chain oscillator (full-order Gramians).

where [tmin, tmax] is the time frame as shown in the plots or rather the local time range [t0, tf ]
chosen for the time-limited methods.

As criterion for the computed approximation order, the characteristic values from Definition 1
and 2 have been used. Therefore, we truncated all states corresponding to the singular values that
in sum were smaller than the largest singular values multiplied with the tolerance 10−4, i.e.,

10−4σ1 ≥
nmin∑

k=r+1
σk.

4.1 Single chain oscillator
As first example, we consider the single chain oscillator benchmark from [32], where we removed
the holonomic constraint to get a mechanical system without algebraic parts. Figure 1 shows the
basic setup of the system, where the parameters are chosen as in [32], i.e. in our experiments we
have

m1 = . . . = mn = 100,
k1 = . . . = kn−1 = κ2 = . . . = κn−1 = 2,
d1 = . . . = dn−1 = δ2 = . . . = δn−1 = 5,

and κ1 = κn = 4, δ1 = δn = 10. The input and output matrices are chosen to be Bu = e1 and
Cp = [e1, e2, en−1]T, where ei denotes the i-th column of the identity matrix In. Also, we have
chosen n = 12 000 masses for the system. This system doe not have any velocity outputs Cv.

4.1.1 Frequency domain

The frequency range of interest in this example is chosen, just for demonstration reasons, to be
between 1 and 100 Hz. The computations have been done with no α-shift (α = 0). In Figure 2,
the resulting reduced-order models (ROMs) can be seen in terms of their transfer functions (a),
the point-wise absolute error (b) and point-wise relative error (c). The frequency range of interest
is marked as the area between the dashed vertical lines. Table 2 gives an overview for all applied
second-order frequency-limited. It can be noted that all computed ROMs are of order 2, stable
and have absolute and relative errors in the same order of magnitude. Also we note that as
wanted, the errors in the frequency range of interest are significantly smaller than in the overall
considered frequency region. For the two-step approach, we used, on the one hand, a logarithmically
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Figure 3: Absolute and relative errors of time-limited ROMs for the single chain oscillator with
inputs ustep (a), (b) and usin (c), (d) (full-order Gramians).

equidistant sampling of 200 frequency points in the frequency region of interest and, on the other,
for a global approximation logarithmically equidistant points between 10−4 and 104 Hz. After a
rank truncation of the orthogonalized basis, the intermediate ROMs had the dimension 100. Since
no significant differences between the full-order Gramian and two-step approaches could be seen,
we refer the reader also to Figure 2 and Table 2 for the results.

4.1.2 Time domain

In the time domain, we apply two different input signals to test our ROMs

ustep(t) = δ(t− 5) and usin(t) = sin(t)δ(t− 5), (24)

for t ∈ [0, 100] and δ(t) the Heaviside function. As time range of interest, [0, 20] has been chosen.
While Figure 3 shows the results for the time-limited balanced truncation methods in terms of

absolute and relative errors for the two applied input signals (24), in Table 3, the ROM sizes,
absolute and relative errors are given. One can observe that all ROMs are of order 4, stable and
have locally significantly smaller errors than globally.

Again, the result of the two-step approaches are only marginal distinguishable from the results
of the full-order Gramians, where we used the global sampling between 10−4 and 104 Hz to pre-
approximate the system’s behavior. Therefore, those results are also not shown here.

4.2 Crankshaft
The crankshaft is a model from the University Stuttgart, describing the crankshaft of a four-
cylinder engine [35], which is shown in Figure 4. After discretization by the finite element method,
the constraint model is of dimension n = 42 126 with m = p = 35 inputs and outputs. Due to the
rigid elements, coupling the interface nodes, the system has several eigenvalues at zero. Therefore,
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Figure 4: Crankshaft of a four-cylinder engine [35].
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Figure 5: Frequency-limited ROMs for the crankshaft (full-order Gramians).

we apply the shift α = 0.01, as suggested in Section 3.2, to make the system asymptotically stable
during the computations of the matrix equations and low-rank projection matrices.

4.2.1 Frequency domain

In the frequency domain, we are interested in the actual working range of the crankshaft between
4 and 20 kHz. Figure 5 shows the results for using the full-order frequency-limited Gramians. The
frequency range of interest lies again between the two vertical dashed lines. We can see that all
ROMs approximate the frequency region of interest better than the global region. Also Table 4
shows the desired approximation behavior in terms of the errors. In this example, some of the
computed ROMs are unstable as denoted by x-marks in Table 4. It should be noted that even for
the same order some methods might produce unstable models while others do not.

In this example, we also applied the two-step approach with 200 frequency sample points in the
region of interest to generate the intermediate model of order 447. Those results can be seen in
Figure 6. Table 5 shows that the ROMs produced by the two-step approach are slightly larger
in dimension and also partially in errors, while the same methods (pm, vp, vpm, so) as for the
full-order Gramian approach produce unstable models.

4.2.2 Time domain

In the time domain, we consider just the first 0.01 s of using the crankshaft, while the full simulation
runs over a time range of [0, 0.05] s. As test input signals, we apply

ustep(t) = 3000δ(t− 0.005) · 135 and usin(t) = 1500(sin(10πt) + 1)δ(t− 0.005) · 135,
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Figure 6: Frequency-limited ROMs for the crankshaft (two-step methods).

where 135 denotes the ones vector of length 35. The results for the time-limited balanced truncation
with the full-order Gramians can be seen in Figure 7 and Table 6. Only one unstable model (vpm)
was computed, which still gives suitable approximation results, and all ROMs have small enough
errors in the time domain. Even so, we recognize that the local approximation error is only in
some cases a bit smaller than the global one.

For the two-step approach, we computed 200 logarithmically equidistant distributed samples
in the frequency domain between 10−2 and 106 Hz. The intermediate model had the order 876.
Since the resulting ROMs are of the same order as the ones computed via the full-order Gramians,
featuring the same stability properties, and are only slightly worse in terms of the time domain
errors than in Table 6, we skip the additional presentation of those results here.

4.3 Artificial fishtail
The artificial fishtail is a mechanical system, describing the movement of a fishtail-shaped struc-
ture by using the fluid elastomer actuation principle. Figure 8 shows a transparent sketch of the
fishtail model consisting of a carbon beam in the center and a silicon hull around. A more detailed
description of the model as well as a comparison of structure-preserving second-order model re-
duction techniques for this example can be found in [40]. After spatial discretization by the finite
element method, the resulting second-order system has n = 779 232 states describing the model.
By the actuation principle, we have m = 1 input and a sensor is measuring the displacement of the
fishtail’s tip in all spatial dimensions, i.e., we have p = 3 position outputs and no velocity outputs.
The discretized data is available as open benchmark at [43]. The computations were done without
an α-shift (α = 0).

4.3.1 Frequency domain

In the frequency domain, the range of interest for the fishtail model lies between 0 and 20 Hz, since
higher frequencies are physically not realizable. Figure 9 shows the results for the frequency-limited
balanced truncation methods, based on the full-order Gramians. Except for the fv balancing there
is no visible difference between the ROMs and the full-order model. The error plots show that
the approximation reached a sufficiently small error in the region of interest. Table 7 shows the
corresponding maximum absolute and relative error in the local and global frequency regions. It is
remarkable that the methods were able to approximate the original model, having around 780 000
states, by stable order 1 systems in the region of interest. While the absolute errors are comparable
between local and global region, the relative errors show again the strength of the frequency-limited
method.
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Figure 7: Absolute and relative errors of time-limited ROMs for the crankshaft with inputs ustep
(a), (b) and usin (c), (d) (full-order Gramians).

4.3.2 Time domain

In the time domain, the fishtail is simulated from 0 to 2 s. For our time-limited methods we consider
the time range up to 0.5 s and as inputs, the following two signals are considered

ustep(t) = 5000δ(t− 0.1) and usin(t) = 2500(sin(10π(t− 1.35)) + 1)δ(t− 0.1).

Figure 10 and Table 8 show the results. Except for the models generated by pm, vpm and fv,
the computed ROMs have acceptable small errors in the time domain. Also, only the vpm ROM
is unstable. The errors in the local region are sometimes a bit smaller than the global one as we
were aiming for by the method.

The two-step approach here used 200 logarithmically equidistant sample points in the frequency
range from 10−4 to 104 Hz, which gave an intermediate model of order 100. The results of the
ROMs computed by the two-step approach differ a bit from the ones generated by the full-order
Gramians. Those results can be seen in Table 9. There, shown errors are partially smaller or larger
than in Table 8 and also we note that for the two-step approach, the vpm model is also unstable
but still gives usable results for both applied input signals.

5 Conclusions
We extended the frequency- and time-limited balanced truncation methods from first-order systems
to the second-order case by applying the different second-order balancing approaches from the
literature. For the application of the introduced theory, we investigated numerical methods for
approximating the solution of the arising large-scale sparse matrix equations with function right
hand-sides as well as techniques to deal with the difficulties arising from the second-order system
structure. The numerical examples show that the methods work for the purpose of limited model
reduction in the frequency domain and also for some examples in time domain. By comparison of
the different balancing formulas, it was not possible to determine a clear winner or loser. Depending
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Figure 8: Transparent sketch of the artificial fishtail with embedded fluid chambers.
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Figure 9: Frequency-limited ROMs for the artificial fishtail (full-order Gramians).

on the example, different balancing techniques performed better or worse than the others. Also,
stability preservation is still an open problem for this type of model reduction techniques, where
we pointed out that the known modifications from the first-order case are not necessarily stability
preserving for second-order systems.
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[7] P. Benner, P. Kürschner, Z. Tomljanović, and N. Truhar. Semi-active damping optimization
of vibrational systems using the parametric dominant pole algorithm. Z. Angew. Math. Mech.,
96(5):604–619, 2016. doi:10.1002/zamm.201400158.

23

http://dx.doi.org/10.1137/140993867
http://dx.doi.org/10.1137/140993867
http://dx.doi.org/10.1109/CDC.2005.1582501
http://dx.doi.org/10.1002/pamm.201310273
http://dx.doi.org/10.1002/pamm.201310273
http://dx.doi.org/10.1137/15M1030911
http://dx.doi.org/10.1137/15M1030911
http://dx.doi.org/10.1002/zamm.201400158


[8] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov equations,
Riccati equations, and linear-quadratic optimal control problems. 15(9):755–777, 2008. doi:
10.1002/nla.622.

[9] P. Benner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Balanced truncation model reduc-
tion of large-scale dense systems on parallel computers. Math. Comput. Model. Dyn. Syst.,
6(4):383–405, 2000. doi:10.1076/mcmd.6.4.383.3658.

[10] P. Benner and J. Saak. Numerical solution of large and sparse continuous time algebraic
matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen,
36(1):32–52, August 2013. doi:10.1002/gamm.201310003.

[11] P. Benner and T. Stykel. Model order reduction for differential-algebraic equations: A survey.
In Achim Ilchmann and Timo Reis, editors, Surveys in Differential-Algebraic Equations IV,
Differential-Algebraic Equations Forum, pages 107–160. Springer International Publishing,
Cham, March 2017. doi:10.1007/978-3-319-46618-7\_3.

[12] P. Benner and S. W. R. Werner. MORLAB – Model Order Reduction LABoratory (version
5.0), 2019. see also: http://www.mpi-magdeburg.mpg.de/projects/morlab. doi:10.5281/
zenodo.3332716.

[13] P. Benner and S. W. R. Werner. Limited balanced truncation for large-scale sparse second-
order systems (version 2.0), 2020. doi:10.5281/zenodo.3331592.

[14] T. Breiten. Structure-preserving model reduction for integro-differential equations. SIAM J.
Control Optim., 54(6):2992–3015, 2016. doi:10.1137/15M1032296.

[15] V. Chahlaoui, K. A. Gallivan, A. Vandendorpe, and P. Van Dooren. Model reduction of
second-order system. In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, Dimension
Reduction of Large-Scale Systems, volume 45 of Lect. Notes Comput. Sci. Eng., pages 149–172.
Springer-Verlag, Berlin/Heidelberg, Germany, 2005. doi:10.1007/3-540-27909-1_6.

[16] Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, and P. Van Dooren. Second-order balanced
truncation. Linear Algebra Appl., 415(2–3):373–384, 2006. doi:10.1016/j.laa.2004.03.032.

[17] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-scale dynamical
systems. Syst. Cont. Lett., 60(8):546–560, 2011. doi:10.1016/j.sysconle.2011.04.013.

[18] J. Fehr and P. Eberhard. Error-controlled model reduction in flexible multibody dynamics.
J. Comput. Nonlinear Dynam., 5(3):031005–1–031005–8, 2010. doi:10.1115/1.4001372.

[19] F. Freitas, J. Rommes, and N. Martins. Gramian-based reduction method applied to large
sparse power system descriptor models. IEEE Trans. Power Syst., 23(3):1258–1270, August
2008. doi:10.1109/TPWRS.2008.926693.

[20] W. Gawronski and J.-N. Juang. Model reduction in limited time and frequency intervals. Int.
J. Syst. Sci., 21(2):349–376, 1990. doi:10.1080/00207729008910366.

[21] S. Gugercin and A. C. Antoulas. A survey of model reduction by balanced truncation and some
new results. Internat. J. Control, 77(8):748–766, 2004. doi:10.1080/00207170410001713448.

[22] K. Haider, A. Ghafoor, M. Imran, and F. M. Malik. Model reduction of large scale descriptor
systems using time limited Gramians. Asian J. Control, 19(3):1217–1227, 2017. doi:10.
1002/asjc.1444.

[23] K. Haider, A. Ghafoor, M. Imran, and F. M. Malik. Frequency interval Gramians based
structure preserving model reduction for second-order systems. Asian J. Control, 20(2):790–
801, 2018. doi:10.1002/asjc.1598.

[24] K. Haider, A. Ghafoor, M. Imran, and F. M. Malik. Time-limited Gramian-based model order
reduction for second-order form systems. Transactions of the Institute of Measurement and
Control, 00(0):1–9, 2018. doi:10.1177/0142331218798893.

24

http://dx.doi.org/10.1002/nla.622
http://dx.doi.org/10.1002/nla.622
http://dx.doi.org/10.1076/mcmd.6.4.383.3658
http://dx.doi.org/10.1002/gamm.201310003
http://dx.doi.org/10.1007/978-3-319-46618-7_3
http://www.mpi-magdeburg.mpg.de/projects/morlab
http://dx.doi.org/10.5281/zenodo.3332716
http://dx.doi.org/10.5281/zenodo.3332716
http://dx.doi.org/10.5281/zenodo.3331592
http://dx.doi.org/10.1137/15M1032296
http://dx.doi.org/10.1007/3-540-27909-1_6
http://dx.doi.org/10.1016/j.laa.2004.03.032
http://dx.doi.org/10.1016/j.sysconle.2011.04.013
http://dx.doi.org/10.1115/1.4001372
http://dx.doi.org/10.1109/TPWRS.2008.926693
http://dx.doi.org/10.1080/00207729008910366
http://dx.doi.org/10.1080/00207170410001713448
http://dx.doi.org/10.1002/asjc.1444
http://dx.doi.org/10.1002/asjc.1444
http://dx.doi.org/10.1002/asjc.1598
http://dx.doi.org/10.1177/0142331218798893


[25] N. J. Higham. Functions of Matrices: Theory and Computation. Applied Mathematics. SIAM
Publications, Philadelphia, PA, 2008. doi:10.1137/1.9780898717778.

[26] M. Imran and A. Ghafoor. Model reduction of descriptor systems using frequency limited
Gramians. J. Franklin Inst., 352(1):33–51, 2015. doi:10.1016/j.jfranklin.2014.10.013.

[27] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace methods for solving large Lyapunov
equations. SIAM J. Numer. Anal., 31(1):227–251, 1994. doi:10.1137/0731012.
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