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1. Introduction

The modeling of, e.g., mechanical and electrical systems often leads to linear dynam-
ical systems containing second-order time derivatives. In this paper, we consider linear 
second-order input-output systems of the form

Mẍ + Eẋ(t) + Kx(t) = Buu(t),

y(t) = Cpx(t) + Cvẋ(t),
(1)

with M, E, K ∈ Rn×n, Bu ∈ Rn×m and Cp, Cv ∈ Rp×n, and u(t) ∈ Rm, the inputs, 
x(t) ∈ Rn, the states, and y(t) ∈ Rp, the outputs of the system. In the frequency 
domain, the input-to-output relation is directly given as y(s) = H(s)u(s), whereby the 
so-called transfer function is given by

H(s) = (sCv + Cp)(s2M + sE + K)−1Bu, (2)

with s ∈ C. In applications, the number of differential equations, n, describing the 
system states, can become very large. This complicates using the model for simulations 
and controller design due to the expensive costs in terms of computational resources as 
time and memory. Therefore, model reduction is needed to construct a surrogate system 
with a much smaller number of equations r � n, which approximates the input-to-
output behavior of (1). To use the surrogate model as the original one, e.g., applying the 
same tools, the surrogate needs to have the same structure as the original system, i.e., 
the reduced-order model should also have the form

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = B̂uu(t),

ŷ(t) = Ĉpx̂(t) + Ĉv ˙̂x(t),

with the new system matrices M̂, Ê, K̂ ∈ Rr×r, B̂u ∈ Rr×m and Ĉp, Ĉv ∈ Rp×r.
Due to its relevance in a lot of applications, the problem of structure-preserving model 

reduction for second-order systems has already been investigated in the literature to 
quite an extend. There are structure-preserving extensions of classical model reduc-
tion methods like modal truncation and dominant pole algorithms [8,40,42], moment 
matching [2,16,43,44], balanced truncation [17,34,39], or for example of the H2-optimal 
iterative rational Krylov algorithm [49]. Especially, we want to mention the work of Paul 
Van Dooren, and co-authors, on the second-order balanced truncation approach. In [16], 
he introduced a new balancing idea that is stronger related to the origins of balanced 
truncation than the other extensions. Most of the methods, extended to the second-
order system case, aim for a globally good approximation behavior, but very often, only 
the local system’s behavior in the frequency or time domain is of actual interest for the 
application. In case of first-order systems, the frequency- and time-limited balanced trun-
cation methods, first mentioned in [21], are aiming for such local approximations. Those 
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methods have been extended in the first-order case to large-scale sparse systems [7,29]
and to systems with differential-algebraic equations [23,27].

A first attempt to generalize the limited balanced truncation methods to second-
order systems has been done in [24] for the frequency-limited balanced truncation by 
making use of some formulas from [39] and for the time-limited balanced truncation 
in [25] in the same way. In this paper, we are extending the frequency- and time-limited 
balanced truncation methods by using all the different second-order balanced truncation 
approaches from the literature [17,34,39] and correct some mistakes that were made 
in [24,25] considering the issue of stability preservation. Also, we are extending the 
numerical approaches to the large-scale second-order system case and present strategies 
to deal with numerical difficulties aligning with second-order systems in general.

The paper has the following structure. Section 2 contains a review of the theory 
for the classical and limited balanced truncation methods in the generalized first-order 
system case; see Section 2.1; as well as a review of the different second-order balanced 
approaches and the extensions of the limited balanced truncation methods to second-
order systems in Section 2.2. Afterwards, in Section 3, the numerical methods for solving 
the large-scale sparse matrix equations with function right-hand sides are covered. Also, 
the α-shift strategy and two-step methods are explained in this section, which ends with 
the modified Gramian approach and remarks on the stability preservation of the methods. 
Three numerical examples are then given in Section 4 to demonstrate the applicability of 
the methods on large-scale sparse second-order systems. Section 5 concludes the paper.

2. The frequency- and time-limited balanced truncation methods

2.1. First-order system case

In this section, we will remind of the classical balanced truncation technique and give 
an overview on the frequency- and time-limited versions of this method for the case of 
first-order systems.

2.1.1. Classical balanced truncation
We consider here generalized first-order state-space systems of the form

E q̇(t) = Aq(t) + Bu(t),

y(t) = Cq(t),
(3)

with E , A ∈ RN×N , B ∈ RN×m, C ∈ Rp×N , and the corresponding transfer function

H(s) = C(sE − A)−1B, (4)

with s ∈ C. For simplicity, we are assuming that E is invertible and the system is c-stable, 
i.e., all eigenvalues of λE − A lie in the open left complex half-plane. The extension of 
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the balanced truncation method to the descriptor system case (E non-invertible) can be 
found in [12,47]. The system Gramians of (3) are defined as

P∞ = 1
2π

+∞∫
−∞

(jωE − A)−1BBT(−jωE − A)−Tdω =
+∞∫
0

eE
−1AtE−1BBTE−TeA

TE−Ttdt,

Q∞ = 1
2π

+∞∫
−∞

(−jωE − A)−TCTC(jωE − A)−1dω =
+∞∫
0

E−TeA
TE−TtCTCeE−1AtE−1dt,

(5)

with P∞ the infinite controllability Gramian and ETQ∞E the infinite observability 
Gramian. Note that in the infinite case, the frequency and time representations of the 
Gramians are equal. It can be shown that those Gramians (5) are the unique, symmetric 
positive semi-definite solutions of the following Lyapunov equations

AP∞ET + EP∞AT + BBT = 0,

ATQ∞E + ETQ∞A + CTC = 0.
(6)

The Hankel singular values are then defined as the positive square-roots of the eigenvalues 
of P∞ETQ∞E , which are a measure of how much influence the corresponding states have 
on the input-output behavior of the system. The main idea of balanced truncation is to 
balance the system such that

P∞ = ETQ∞E =

⎡⎢⎢⎣
σ1

σ2
. . .

σN

⎤⎥⎥⎦ ,
with the Hankel singular values σ1 ≥ σ2 ≥ . . . ≥ σN > 0 and then to truncate states 
corresponding to small Hankel singular values [35]. The complete balanced truncation 
square-root method is summarized in Algorithm 1.

The balanced truncation method provides an a posteriori error bound in the H∞ norm

‖H − Ĥ‖H∞ ≤ 2
N∑

k=r+1

σ2
k, (7)

where H is the transfer function of the original model (4) and Ĥ the transfer function 
of the reduced-order model. The bound (7) depends only on the truncated Hankel sin-
gular values, which allows an adaptive choice of the reduction order. Also, this method 
preserves the stability of the original model, i.e., if H was a c-stable model then also Ĥ
will be c-stable.
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Algorithm 1: Balanced truncation square-root method.
Input: System matrices A, B, C, E from (3).
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê.

1 Compute Cholesky factorizations of the Gramians by solving the Lyapunov equations (6) such that 
P∞ = R∞RT

∞, Q∞ = L∞LT
∞.

2 Compute the singular value decomposition

LT
∞ER∞ = [U1 U2 ]

[Σ1
Σ1

] [V T
1

V T
2

]
,

with Σ1 = diag(σ1, . . . , σr) containing the r largest Hankel singular values.
3 Construct the truncation matrices

T = R∞V1Σ
− 1

2
1 and W = L∞U1Σ

− 1
2

1 .

4 Compute the reduced-order model by
Â = W

TAT, B̂ = W
TB,Ĉ = CT, Ê = W

TET = Ir.

The application of the balanced truncation method to large-scale sparse systems is 
possible by approximating the Cholesky factors of the Gramians via low-rank factors 
P∞ ≈ ZR∞ZT

R∞
, Q∞ ≈ ZL∞ZT

L∞
, with ZR∞ ∈ RN×kR , ZL∞ ∈ RN×kL and kR, kL � N ; 

see, e.g., [10]. The approximation of the Gramians is reasonable due to a fast singular 
value decay arising by the low-rank right-hand sides [1]. For the computation of those 
factors, appropriate low-rank techniques are well developed [11].

2.1.2. Frequency-limited approach
A suitable method to localize the approximation behavior of the balanced truncation 

method in the frequency domain is the frequency-limited balanced truncation [21]. The 
idea is based on the frequency representation of the system Gramians (5), such that the 
frequency-limited Gramians of (3) are given by

PΩ = 1
2π

∫
Ω

(jωE − A)−1BBT(−jωE − A)−Tdω,

QΩ = 1
2π

∫
Ω

(−jωE − A)−TCTC(jωE − A)−1dω,
(8)

where Ω = [−ω2, −ω1] ∪ [ω1, ω2] ⊂ R is the frequency range of interest. It can be shown 
that the left-hand sides in (8) are also given as the unique, symmetric positive semi-
definite solutions of the two Lyapunov equations

APΩET + EPΩAT + BΩBT + BBT
Ω = 0,

ATQΩE + ETQΩA + CT
ΩC + CTCΩ = 0,

(9)

with new right-hand side matrices BΩ = EFΩB, CΩ = CFΩE containing the matrix 
functions
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Algorithm 2: Frequency-limited balanced truncation square-root method.
Input: System matrices A, B, C, E from (3), frequency range of interest Ω.
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê.

1 Compute Cholesky factorizations of the frequency-limited Gramians by solving the 
frequency-limited Lyapunov equations (9) such that PΩ = RΩRT

Ω, QΩ = LΩLT
Ω.

2 Follow the steps 2–4 in Algorithm 1.

FΩ = Re
(
j

π
ln
(
(A + jω1E)−1(A + jω2E)

))
E−1

= E−1 Re
(
j

π
ln
(
(A + jω2E)(A + jω1E)−1)) ,

(10)

with ln(.) the principle branch of the matrix logarithm. Note that in case of Ω = [−ω, ω], 
the function evaluation (10) simplifies to

FΩ = Re
(
j

π
ln
(
−E−1A− jωIn

))
E−1 = E−1 Re

(
j

π
ln
(
−AE−1 − jωIn

))
;

see [7,38]. Also, the frequency-limited Gramians can be extended to an arbitrary number 
of frequency intervals, i.e., for

Ω =
�⋃

k=1

([−ω2k, ω2k−1] ∪ [ω2k−1, ω2k]) ,

with 0 < ω1 < . . . < ω�, leads to the following modification of (10)

FΩ = Re
(
j

π
ln
(

�∏
k=1

(A + jω2k−1E)−1(A + jω2kE)
))

E−1

= E−1 Re
(
j

π
ln
(

�∏
k=1

(A + jω2kE)(A + jω2k−1E)−1

))
.

See [7] for a more detailed discussion of the theory addressed above. The extension of 
this method to the large-scale system case can also be found in [7] and an extension to 
descriptor systems in [27]. The resulting frequency-limited balanced truncation method 
is summarized in Algorithm 2.

2.1.3. Time-limited approach
The counterpart of the frequency-limited balanced truncation from the previous sec-

tion in the time domain is the time-limited balanced truncation [21]. This method 
aims for the approximation of the system on a finite time interval T = [t0, tf ], where 
0 ≤ t0 < tf , based on the limitation of the time domain representation of the Grami-
ans (5). The time-limited Gramians of (3) are then given by
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Algorithm 3: Time-limited balanced truncation square-root method.
Input: System matrices A, B, C, E from (3), time range of interest T .
Output: Matrices of the reduced-order system Â, B̂, Ĉ, Ê.

1 Compute Cholesky factorizations of the time-limited Gramians by solving the time-limited 
Lyapunov equations (12) such that PT = RTRT

T , QT = LTLT
T .

2 Follow the steps 2–4 in Algorithm 1.

PT =
tf∫

t0

eE
−1AtE−1BBTE−TeA

TE−Ttdt,

QT =
tf∫

t0

E−TeA
TE−TtCTCeE−1AtE−1dt,

(11)

and it can be shown, that the left-hand sides in (11) are the unique, positive semi-definite 
solutions of the two following Lyapunov equations

APTET + EPTAT + Bt0BT
t0 − BtfBT

tf
= 0,

ATQTE + ETQTA + CT
t0Ct0 − CT

tf
Ctf = 0,

(12)

where the new right-hand side matrices Bt0/f = EeE−1At0/f E−1B = eAE−1t0/fB and 

Ct0/f = CeE−1At0/f contain the matrix exponential. The right-hand sides of (12) simplify 
in case of t0 = 0 since B0 = B and C0 = C. A more detailed discussion of the time-
limited theory, especially for the large-scale system case, can be found in [29]. Also, 
the extension of the theory to the case of descriptor systems is given in [23]. It can be 
noted that considering more than one time interval at once [t0,1, tf,1] ∪ · · · ∪ [t0,�, tf,�] is 
not practical and usually one cannot guarantee a good approximation behavior in the 
single intervals. Instead it is common to take the smallest and largest time points in 
the intervals to construct a new overarching time interval [t0,min, tf,max], where t0,min =
min{t0,1, . . . , t0,�} and t0,max = max{tf,1, . . . , tf,�} such that

�⋃
k=1

[t0,k, tf,k] ⊂ [t0,min, tf,max] = T.

The resulting time-limited balanced truncation method is summarized in Algorithm 3.

2.2. Second-order case

After recapitulating the basic ideas of the classical as well as the frequency- and 
time-limited balanced truncation methods for first-order systems, in this section we will 
extend those methods to second-order systems (1).
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Table 1
Second-order balanced truncation formulas. (Here, ∗ denotes factors of the SVD not needed, and thus not 
accumulated in practical computations.)

Type SVD(s) Transformation Reference

v UΣV T = LT
vMRv W = LvU1Σ

− 1
2

1 , T = RvV1Σ
− 1

2
1 [39]

fv ∗ΣV T = LT
pJRp W = T, T = RpV1Σ

− 1
2

1 [34]

vpm UΣV T = LT
pJRv W = M−TJTLpU1Σ

− 1
2

1 , T = RvV1Σ
− 1

2
1 [39]

pm UΣV T = LT
pJRp, W = M−TJTLpU1Σ

− 1
2

1 , T = RpV1Σ
− 1

2
1 [39]

pv UΣV T = LT
vMRp W = LvU1Σ

− 1
2

1 , T = RpV1Σ
− 1

2
1 [39]

vp
∗ΣV T = LT

pJRv,

U ∗ ∗ = LT
vMRp

W = LvU1Σ
− 1

2
1 , T = RvV1Σ

− 1
2

1 [39]

p
∗ΣV T = LT

pJRp,

U ∗ ∗ = LT
vMRv

W = LvU1Σ
− 1

2
1 , T = RpV1Σ

− 1
2

1 [39]

so
UpΣpV

T
p = LT

pJRp,

UvΣvVv = LT
vMRv

Wp = LpUp,1Σ
− 1

2
p,1 , Tp = RpVp,1Σ

− 1
2

p,1 ,

Wv = LvUv,1Σ
− 1

2
v,1 , Tv = RvVv,1Σ

− 1
2

v,1

[17]

2.2.1. Second-order balanced truncation methods
Over time, there have been many attempts for the generalization of the classical 

balanced truncation method to the second-order system case [17,34,39]. All of them have 
in common the idea of linearization, i.e., the second-order system (1) is rewritten as a 
first-order system. The usual linearization of choice for (1) is its so-called first companion 
form [

J 0
0 M

]
︸ ︷︷ ︸

E

q̇(t) =
[

0 J
−K −E

]
︸ ︷︷ ︸

A

q(t) +
[

0
Bu

]
︸ ︷︷ ︸

B

,

y(t) = [Cp Cv ]︸ ︷︷ ︸
C

q(t),
(13)

where q(t) = [xT(t), ẋT(t)]T is the new combined state vector. The matrix J ∈ Rn×n is 
an arbitrary invertible matrix but usually chosen as J = In or J = −K, which can lead 
to symmetric A and E matrices in case of mechanical systems.

For system (13), the first-order Gramians are used, as given by (5) or (6), and then 
partitioned according to the block structure in (13) such that

P∞ =
[
Pp P12
PT

12 Pv

]
and Q∞ =

[
Qp Q12
QT

12 Qv

]
, (14)



76 P. Benner, S.W.R. Werner / Linear Algebra and its Applications 623 (2021) 68–103
where Pp, JTQpJ are the position Gramians of (1) and Pv, MTQvM the velocity Grami-
ans. Due to P∞ = PT

∞ ≥ 0 and Q∞ = QT
∞ ≥ 0, also the position and velocity Gramians 

are symmetric positive semi-definite and can be written in terms of their Cholesky fac-
torizations

Pp = RpR
T
p , Pv = RvR

T
v , Qp = LpL

T
p , Qv = LvL

T
v .

Based on those, the different second-order balanced truncation methods are defined by 
balancing certain combinations of the four position and velocity Gramians. For most of 
the methods, the resulting balanced truncation is computed as second-order projection 
method

M̂ = WMT, Ê = WET, K̂ = WKT,

B̂u = WBu, Ĉp = CpT, Ĉv = CvT,
(15)

where the different choices for W and T can be found in Table 1. There, the different 
transformation formulas are summarized and denoted by the type as used in the cor-
responding references. The subscript 1 matrices denote the part of the singular value 
decompositions corresponding to the largest characteristic singular values.

In contrast to the balancing methods that describe the reduced-order model by (15), 
the second-order balanced truncation (so) from [17] computes the reduced-order model 
by

M̂ = S
(
WT

v MTv
)
S−1, Ê = S

(
WT

v ETv
)
S−1, K̂ = S

(
WT

v KTp
)
,

B̂u = S
(
WT

v Bu
)
, Ĉp = CpTp, Ĉv = CvTvS

−1,
(16)

where S = WpJTv and the transformation matrices Wp, Wv, Tp, Tv are given in the 
last line of Table 1. This type of balancing can be seen as a projection method for the 
first-order realization (13) with a recovering of the second-order structure.

The general second-order balanced truncation square-root method is summarized in 
Algorithm 4.

Remark 1. In contrast to the first-order balanced truncation described in Section 2.1.1, 
none of the second-order balanced truncation methods provides an error bound in the 
H∞ norm or can preserve the stability of the original system in the general case. A 
collection of examples for the stability issue is given in [39]. In case of symmetric second-
order systems, i.e., M = MT, E = ET, K = KT, Cp = BT

u and Cv = 0, it can be shown 
that the position-velocity balancing (pv) as well as the free-velocity balancing (fv) are 
stability preserving. Note that the position-velocity balancing also belongs to the class of 
balanced truncation approaches, which define system Gramians by using the underlying 
transfer function structure (2). Those balancing approaches have been generalized in [15]
for systems described by integro-differential equations.
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Algorithm 4: Second-order balanced truncation square-root method.
Input: System matrices M , E, K, Bu, Cp, Cv from (1).
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order system Gramians by solving (6), where the 
linearization (13) is used, such that P∞ = R∞RT

∞, Q∞ = L∞LT
∞.

2 Partition the Cholesky factors according to the first-order formulation

R∞ =
[
Rp
Rv

]
and L∞ =

[
Lp
Lv

]
.

3 Compute the singular value decompositions and transformation matrices as in Table 1.
4 Compute the reduced-order model by either (15) for the methods p, pm, pv, vp, vpm, v and fv or 

by (16) for so.

2.2.2. Second-order frequency-limited approach
The generalization of the frequency-limited balanced truncation method for second-

order systems has been discussed in [24] for the position (p) and position-velocity (pv) 
balancing from [39]. Here we will summarize their results and give a more general ex-
tension for the frequency-limited second-order balanced truncation method. The basic 
idea for the approach comes from the observation that the block partitioning of the 
Gramians (14) can be written as

Pp = [In 0]P∞

[
In
0

]
, Pv = [0 In ]P∞

[
0
In

]
,

Qp = [In 0]Q∞

[
In
0

]
, Qv = [0 In ]Q∞

[
0
In

]
.

(17)

Therefore, the extension of the existing second-order balanced truncation methods to the 
frequency-limited approach can be done by replacing the infinite first-order Gramians P∞
and Q∞ in (17) by the first-order frequency-limited Gramians PΩ and QΩ from (8) corre-
sponding to the first-order realization (13). The frequency-limited second-order Gramians 
are then given by

PΩ,p = [In 0]PΩ

[
In
0

]
, PΩ,v = [0 In ]PΩ

[
0
In

]
,

QΩ,p = [In 0]QΩ

[
In
0

]
, QΩ,v = [0 In ]QΩ

[
0
In

]
,

(18)

where PΩ,p and PΩ,v are the frequency-limited position and velocity controllability 
Gramians, and JTQΩ,pJ and MTQΩ,vM are the frequency-limited position and veloc-
ity observability Gramians. Note that PΩ and QΩ are given by (9) using the first-order 
realization (13). As for the infinite Gramians, one observes that the frequency-limited 
position and velocity Gramians are symmetric positive semi-definite.

According to [21,24,39], we can now define the corresponding frequency-limited char-
acteristic values as follows.
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Algorithm 5: Second-order frequency-limited balanced truncation square-root 
method.

Input: System matrices M , E, K, Bu, Cp, Cv from (1), frequency range of interest Ω.
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order frequency-limited Gramians by solving (9), 
where the linearization (13) is used, such that PΩ = RΩRT

Ω, QΩ = LΩLT
Ω.

2 Follow the steps 2–4 in Algorithm 4.

Definition 1. (Second-order frequency-limited characteristic singular values.)
Consider the second-order system (1) with the first-order realization (13) and the fre-
quency range of interest Ω = −Ω ⊂ R.

1. The positive square-roots of the eigenvalues of PΩ,pJ
TQΩ,pJ are the frequency-limited 

position singular values of (1).
2. The positive square-roots of the eigenvalues of PΩ,pM

TQΩ,vM are the frequency-
limited position-velocity singular values of (1).

3. The positive square-roots of the eigenvalues of PΩ,vJ
TQΩ,pJ are the frequency-limited 

velocity-position singular values of (1).
4. The positive square-roots of the eigenvalues of PΩ,vM

TQΩ,vM are the frequency-
limited velocity singular values of (1).

Following the observations in the first-order frequency-limited case as well as the 
second-order balanced truncation method, those characteristic singular can be inter-
preted as a measure for the influence of the corresponding states to the input-output 
behavior of the system in the frequency range of interest. Anyway, there is no energy 
interpretation as for the classical first-order balanced truncation method.

With (18) and the Definition 1, the resulting second-order frequency-limited balanced 
truncation square-root method is written in Algorithm 5.

Remark 2. The second-order frequency-limited balanced truncation method is in general 
not stability preserving. Also, the approach from [24] does not necessarily lead to a 
one-sided projection as suggested by the authors and also might not produce a stable 
second-order system in the end. Even so, we will discuss an approach that is potentially 
advantageous in terms of stability preservation in Section 3.4.

2.2.3. Second-order time-limited approach
The extension of the time-limited balanced truncation to the second-order system 

case was first discussed in [25]. As in the previous section, we are generalizing the ideas 
from [25] to all second-order balanced truncation methods. In any case, the same idea 
as for the frequency-limited case is applied here. That means, we replace the infinite 
first-order Gramians in (17) by the first-order time-limited Gramians from (11) to get
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Algorithm 6: Second-order time-limited balanced truncation square-root method.
Input: System matrices M , E, K, Bu, Cp, Cv from (1), time range of interest T .
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations of the first-order time-limited Gramians by solving (12), where 
the linearization (13) is used, such that PT = RTRT

T , QT = LTLT
T .

2 Follow the steps 2–4 in Algorithm 4.

PT,p = [In 0]PT

[
In
0

]
, PT,v = [0 In ]PT

[
0
In

]
,

QT,p = [In 0]QT

[
In
0

]
, QT,v = [0 In ]QT

[
0
In

]
,

where again the first-order realization (13) was used. Following the naming scheme of [39], 
PT,p and PT,v are the time-limited position and velocity controllability Gramians, and 
JTQT,pJ and MTQT,vM the time-limited position and velocity observability Gramians. 
Note that PT and QT are given by (12) with the first-order realization (13). As for the 
infinite Gramians, one observes that the time-limited position and velocity Gramians 
are symmetric positive semi-definite. According to the frequency-limited characteristic 
singular values, we are giving the following definition for the time-limited version.

Definition 2. (Second-order time-limited characteristic singular values.)
Consider the second-order system (1) with the first-order realization (13) and the time 
range of interest T = [t0, tf ], 0 ≤ t0 < tf .

1. The positive square-roots of the eigenvalues of PT,pJ
TQT,pJ are the time-limited 

position singular values of (1).
2. The positive square-roots of the eigenvalues of PT,pM

TQT,vM are the time-limited 
position-velocity singular values of (1).

3. The positive square-roots of the eigenvalues of PT,vJ
TQT,pJ are the time-limited 

velocity-position singular values of (1).
4. The positive square-roots of the eigenvalues of PT,vM

TQT,vM are the time-limited 
velocity singular values of (1).

As before, the resulting second-order time-limited balanced truncation methods can be 
obtained by replacing the Gramians in Algorithm 4, which is summarized in Algorithm 6.

Remark 3. As in the first-order case [29], there is no guarantee of stability preservation 
for the second-order time-limited balanced truncation methods. The method suggested 
in [25] only works on the first-order case and does not guarantee the preservation of 
stability for second-order systems in general. An approach that is potentially beneficial 
in terms of preserving stability is discussed in Section 3.4.
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3. Numerical methods

In this section, we will discuss points concerning the numerical implementation of the 
proposed second-order frequency- and time-limited balanced truncation methods.

3.1. Matrix equation solvers for large-scale systems

A substantial part of the numerical effort in the computations of the second-order 
frequency- and time-limited balanced truncations goes into the solution of the arising 
matrix equations (9) and (12). In general it has been shown for the first-order case, that 
the singular values of the frequency- and time-limited Gramians are decaying possibly 
faster than of the infinite Gramians; see, e.g., [7] for the frequency-limited case. That 
leads to the natural approximation of the Gramians by low-rank factors, e.g.,

PΩ ≈ ZΩZ
T
Ω, PT ≈ ZTZ

T
T ,

where ZΩ ∈ RN×�1 , ZT ∈ RN×�2 and �1, �2 � N . Those low-rank factors then replace 
the Cholesky factors in the balanced truncation Algorithms 1–6.

In the following three sections, we will shortly review existing approaches for these 
problems and give comments on existing implementations.

3.1.1. Quadrature-based approaches
A natural approach based on the frequency and time domain integral representations 

of the limited Gramians (8) and (11) is the use of numerical integration formulas. As 
used for example in [24,27], the low-rank factors of the Gramians can be computed by 
rewriting the full Gramians by quadrature formulas, e.g.,

PΩ = 1
2π

∫
Ω

(jωE − A)−1BBT(−jωE − A)−Tdω

≈ 1
2π

�∑
k=1

γk{(jωkE − A)−1BB(−jωkE − A)−T + (−jωkE − A)−1BB(jωkE − A)−T},

where γk are the weights and ωk the evaluation points of a fitting quadrature rule, which 
can be again rewritten for the low-rank factors by

ZΩ = [Re(B1), Im(B1), . . . Re(B�), Im(B�)] ,

where Bk = (jωkE −A)−1B. Note that this approach becomes unhandy considering the 
time-limited case, since there, for each step of the quadrature rule, an approximation of 
the matrix exponential has to be computed.
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A different approach was suggested in [7], which writes the right-hand side of the 
frequency-limited Lyapunov equations (9) as integral expressions, such that the right-
hand side is first approximated and afterwards the large-scale matrix equation is solved, 
using one of the approaches in Section 3.1.2 or 3.1.3. In general it is possible to approx-
imate the right-hand sides of (9) and (12) with matrix functions by using the general 
quadrature approach from [26]. We are not aware of a stable, available implementation of 
quadrature-based matrix equation solvers for the frequency- and time-limited Lyapunov 
equations and, therefore, use the following approaches rather than the quadrature-based 
methods.

3.1.2. Low-rank ADI method
The low-rank alternating direction implicit (LR-ADI) method [9,32] is a well estab-

lished procedure for the solution of large-scale sparse Lyapunov equations. Originally 
developed for the Lyapunov equations corresponding to the infinite Gramians (6), the 
LR-ADI produces low-rank approximations of the form Z∞,j = [Z∞,j−1, α̂jVj ] by

Vj = (A + αjE)−1Wj−1, Wj = Wj−1 − 2 Re(αj)Vj ,

where α̂j =
√
−2 Reαj , W0 = B; see [5–7] for more details on this method.

The right-hand sides of the limited Lyapunov equations (9), (12) can be rewritten as

BΩBT + BBT
Ω = B̃

[
0 Im
Im 0

]
B̃T, CT

ΩC + CTCΩ = C̃T
[

0 Ip
Ip 0

]
C̃,

Bt0BT
t0 − BtfBT

tf
= B̆
[
Im 0
0 −Im

]
B̆T, CT

t0Ct0 − CT
tf
Ctf = C̆T

[
Ip 0
0 −Ip

]
C̆,

(19)

with B̃ = [BΩ, B], C̃T = [CT
Ω, CT], B̆ = [Bt0 , Btf ] and C̆T = [CT

t0 , CT
tf

], which shows that the 
right-hand side matrices are indefinite. The LR-ADI method can be extended to this case 
by using an LDLT-factorization for the right-hand side as well as for the solution [30]. 
Note that for applying this method for the solution of the large-scale matrix equations (9)
and (12), an approximation of the matrix functions in the right-hand sides is needed 
beforehand. It was noted in [7], that the information used for the approximation of the 
matrix functions cannot be used in the LR-ADI method. A stable version of the LR-ADI 
method in the low-rank and LDLT formats is implemented in [41]. We will use this 
implementation in case the methods, described in the following section, are failing to 
converge for the solution of the matrix equation but give approximations to the function 
right-hand sides.

3.1.3. Projection methods
An approach that can be used to approximate the matrix functions in the right-

hand sides of the limited Lyapunov equations, as well as to solve the large-scale matrix 
equations at the same time, is given by projection-based methods. Here, low-dimensional 
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subspaces Vk = range(Vk) are used to obtain the low-rank solutions as, e.g., PΩ ≈
VkP̌ΩV

T
k , where P̌Ω is the solution of the projected Lyapunov equation

TkP̌Ω + P̌ΩT T
k + B̌ΩB̌T + B̌B̌T

Ω = 0, (20)

and Tk = V T
k E−1AVk, B̌Ω = V T

k E−1BΩ and B̌ = V T
k E−1B are the projected matrices 

of the frequency-limited controllability Lyapunov equation (9). The equation (20) is 
now small and dense and can be solved using established dense solvers. As one can 
observe, this method gives also the opportunity to approximate the matrix function 
right-hand side by the low-dimensional subspace Vk, for which one can then also use 
dense computation methods [26].

Usually, the low-dimensional subspace Vk is constructed as standard [28], extended [46]
or rational Krylov subspace [18], all of which can be easily computed for large-scale sparse 
systems. The implementation of the limited balanced truncation methods for second-
order systems [14], we provide, is also based on rational Krylov subspaces. We refer the 
reader to [7, Algorithm 4.1] for the underlying idea of the implementation.

A drawback of the projection-based approach, especially for second-order systems, is 
that the projected system matrices Tk are not necessarily c-stable, even if the orig-
inal first-order realization of the second-order system was. In fact, the quality and 
performance of the projection-based solvers strongly depend on the chosen first-order 
realization. Therefore, we are going to use the so-called strictly dissipative realization 
of second-order systems [37] in our computations. Assuming M, E, K to be symmetric 
positive definite, the second-order system (1) can be described by a first-order realization 
using the following matrices

E =
[
K γM
γM M

]
, A =

[
−γK K − γE
−K −E + γM

]
,

B =
[
γBu
Bu

]
, C = [Cp Cv ] ,

(21)

with the parameter 0 < γ < λmin(E(M+ 1
4EK−1E)−1). The advantage of this realization 

is that E is symmetric positive definite and A +AT symmetric negative definite. Following 
that, projection methods can preserve the stability in the projected matrices Tk if the 
computations are made on the corresponding standard state-space realization, obtained 
by a symmetric state-space transformation using the Cholesky factors E = LLT, i.e., the 
algorithms work implicitly on a realization of the form

˙̃q(t) = L−1AL−Tq̃(t) + L−1Bu(t),

y(t) = CL−Tq̃(t).

Remark 4. Note that the realization (21) is computationally more involved than the 
classical first companion form (13) or its second companion form (see, e.g., [4]), since it 
is not possible to make use of occurring zeros in the block matrix structures.
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Also, by changing the first-order realization to (21), the computed Gramians change 
compared to the definition of the second-order balancing methods. Therefore, let P̃ and 
Q̃ be Gramians computed for the strictly dissipative first-order realization (21) and P
and Q be the Gramians from the first companion form realization (13). Then it holds

P = P̃ and Q = TTQ̃T,

with the transformation matrix

T =
[
K γIn
γM In

]
.

That means we can use the strictly dissipative realization (21) for the solution of the ma-
trix equations and for the balancing procedure just perform the easy back transformation 
of the observability factor.

3.2. Stabilization and acceleration by α-shifts

So far, it was always assumed that the second-order system (1) is c-stable. But in 
practice, the eigenvalues of λ2M + λE + K can be very close to the imaginary axis or 
even on the axis, e.g., in the case of marginal stability. This makes the usage of the model 
reduction methods and matrix equation solvers very difficult. A strategy to overcome 
those problems has been proposed in, e.g., [20]. There, a shift in the frequency domain 
was used to move the spectrum of the pencil λE − A, which had eigenvalues at zero, 
away from the imaginary axis to compute the system Gramians. This approach cannot 
be used the same way for the first-order realizations (13) or (21) of second-order systems 
since it destroys the block structure one can exploit in the numerical implementations 
of the solvers or rather the block structure that is used for the second-order balancing 
approaches. Therefore, we will transfer the concept of α-shifts to the case of second-order 
systems.

Let α ∈ R>0 be a real, strictly positive shift and consider the second-order differential 
equations in the frequency-domain

(s2M + sE + K)X(s) = BuU(s), (22a)

Y (s) = (sCv + Cp)X(s), (22b)

where U(s), X(s), Y (s) are the Laplace transforms of the corresponding time domain 
functions and s ∈ C the Laplace variable. Now let s = ρ + α, with a shifted Laplace 
variable ρ ∈ C. Then the equation (22a) turns into

((ρ + α)2M + (ρ + α)E + K)X(s) = (ρ2M + 2αρM + α2M + ρD + αE + K)X(s)

= (ρ2M + ρ(E + 2αM) + (K + αE + α2M))X(s)
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= (ρ2M + ρẼ + K̃)X(s)

= BuU(s),

with Ẽ = E + 2αM and K̃ = K + αE + α2M . Also, the second equation (22b) can be 
rewritten as

Y (s) = ((ρ + α)Cv + Cp)X(s)

= (ρCv + (Cp + αCv))X(s)

= (ρCv + C̃p)X(s),

where C̃p = Cp + αCv. Now, the new system described by (M, Ẽ, K̃, Bu, C̃p, Cv) is used 
for the computation of the reduced-order projection matrices W, T ∈ Rn×r. Then, the 

projected system (M̂, ̂̃E, ̂̃K, B̂u, 
̂̃
Cp, Cv) yields the following relations

̂̃
E = Ê + 2αM̂,

̂̃
K = K̂ + αÊ + α2M̂,

̂̃
Cp = Ĉp + αĈv,

where Ê = WTET , K̂ = WTKT and Ĉp = CpT are the transformed non-shifted 
matrices. Now, we consider the transformed system again in the frequency domain with 
the Laplace variable ρ and using the back-substitution ρ = s − α, such that

ρ2M̂ + ρ
̂̃
E + ̂̃K = s2M̂ + sÊ + K̂ and ρĈv + ̂̃Cp = sĈv + Ĉp.

The back-substitution gives the resulting reduced-order model (M̂, Ê, K̂, B̂u, Ĉp, Ĉv). 
The α-shift strategy can be interpreted as a structured perturbation in the frequency 
domain during the computations. Experiments have shown that such an approach works 
fine for α small enough. It has to be noted that there are no theoretical results on the 
influence of the chosen α concerning the quality of the reduced-order model or properties 
like stability preservation and error bounds.

Remark 5. The α-shift approach can also be used either to improve the conditioning of 
the used matrix equation solvers by improving the condition number of the shifted linear 
systems solving with (σ2M + σẼ + K̃), or to improve the convergence of those solvers 
by pushing the eigenvalues of λ2M + λẼ + K̃ further away from the imaginary axis.

3.3. Two-step hybrid methods

The idea of two-step (or hybrid) model reduction methods has been used for quite some 
time in different applications [19,31,48]. In general, two-step methods are based on the 
division of the model reduction process into two phases. First a pre-reduction, which can 
be easily computed and gives a very accurate approximation for the system’s behavior. 
The model resulting from the pre-reduction is usually of medium-scale dimensions, on 
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which the second reduction step by a more sophisticated model reduction method is 
applied. This procedure has the advantage that there is no necessity of applying difficult 
approximation methods for the large-scale matrix equations arising in the balancing 
related approaches. Instead, the exact methods can be used on the, usually dense, pre-
reduced system.

In order to have a structure-preserving pre-reduction method, we suggest the use of 
structured interpolation by rational Krylov subspaces [2,43,44]. This has been shown 
to be equivalent to the use of shift-based approximation methods for the large-scale 
matrix equations in Section 3.1; see [48]. The second-order rational Krylov subspaces are 
generated as

V = range
(

(s2
1M + s1E + K)−1Bu, . . . ,

�∏
k=1

(s2
kM + skE + K)−1Bu

)
,

U= range
(

(s2
1M + s1E + K)−H(Cp + s1Cv)H,

. . . ,

�∏
k=1

(s2
kM + skE + K)−H(Cp + skCv)H

)
,

with sk ∈ C, k = 1, . . . , �, chosen interpolation points. Let V and U be Hermitian bases 
of the same size such that V ⊂ range(V ) and U ⊂ range(U), respectively, the pre-reduced 
model is then generated by

Mpre = UHMV, Epre = UHEV, Kpre = UHKV,

Bu,pre = UHBu, Cp,pre = CpV, Cv,pre = CvV.

For preservation of stability and the realness of the system matrices, we choose the 
interpolation points to appear in complex conjugate pairs sk and sk, and replace one of 
the projection matrices by U = V .

The choice of points sk is crucial for the quality of the pre-reduced model. While there 
are strategies for an adaptive or optimal choice of sk, we suggest a simple oversampling 
on the imaginary axis, which is usually enough as a global pre-reduced model.

Remark 6. For the frequency-limited case, a natural choice for the interpolation points 
would be to take jΩ instead of aiming for a global approximation. In this case, the 
resulting frequency-limited balanced truncation will very likely not give the same results 
as the large-scale approach. This observation comes from the fact, that the frequency-
limited balanced truncation still takes information about the complete system structure 
into account and the pre-reduced system can be completely different from the original 
one, if only a local pre-reduction is performed.
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Algorithm 7: LDLT-factored sign function dual Lyapunov equations solver.
Input: A, B, C, E, Q, R from (23), tolerance τ .
Output: Z1, Y1, Z2, Y2 – solution factors of (23).

1 Set A1 = A, B1 = B, Q1 = Q, C1 = C, R1 = R, k = 1.
2 while ‖Ak + E‖ > τ‖E‖ do
3 Compute the scaling factor for convergence acceleration

ck =
√

‖Ak‖F

‖EA−1
k E‖F

.

4 Compute the next iterates of the solution factors 
Bk+1 =

[
Bk, EA−1

k Bk

]
, Qk+1 =

[ 1
2ck

Qk
ck

2 Qk

]
,

Ck+1 =
[

Ck

A−1
k ECk

]
, Rk+1 =

[ 1
2ck

Rk
ck

2 Rk

]
.

5 Compute the next iteration matrix
Ak+1 = 1

2ck
Ak + ck

2 EA−1
k E.

6 Set k = k + 1.
7 end
8 Construct the solution factors 

Z1 =
1√
2
E−1

Bk, Y1 = Qk, Z2 =
1√
2
E−T

C
T
k , Y2 = Rk.

Due to the required accuracy of the pre-reduced model, the dimension of it can be still 
very large. Therefore, we suggest an efficient iterative solver for the Lyapunov equations 
appearing in the second reduction step. In general, we consider the following stable 
Lyapunov equations

AX1ET + EX1AT + BQBT = 0,

ATX2E + ETX2A + CTRC = 0,
(23)

where Q ∈ Rm×m and R ∈ Rp×p are symmetric and possibly indefinite. The solution 
of (23) can then be factored in the same way as the right-hand sides, i.e., X1 = Z1Y1Z

T
1

and X2 = Z2Y2Z
T
2 , where Y1 and Y2 are also symmetric matrices. For efficiently com-

puting the solutions of (23), we extend the dual sign function iteration method from [3]
for the LDLT-factorization of the solutions. As a result, we get a sign function iteration, 
that solves both Lyapunov equations with symmetric indefinite right-hand sides (23) at 
the same time; see Algorithm 7.

The implementation of Algorithm 7 as well as dense versions of the second-order 
frequency- and time-limited balanced truncation methods can be found in [13].

Remark 7. In Step 4 of Algorithm 7, the memory requirements and operations are dou-
bling in every step due to the extension of the solution factors. It is suggested to do 
LDLT column and row compressions at that point to keep the size of the factors small.

3.4. Modified Gramian approach

A drawback of the frequency- and time-limited balanced truncation methods is the loss 
of stability preservation. For the first-order system case, there are different modifications 
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of the methods to regain the preservation of stability, e.g., the replacement of one of the 
limited Gramians by the corresponding infinite Gramian [23,27].

A different technique, proposed in [22], is the modified Gramian approach. There-
fore, the indefinite right-hand sides (19) are replaced by definite ones. Using eigenvalue 
decompositions, the right-hand sides can be rewritten as

BΩBT + BBT
Ω = UB,ΩSB,ΩU

T
B,Ω, CT

ΩC + CTCΩ = UC,ΩSC,ΩU
T
C,Ω,

Bt0BT
t0 − BtfBT

tf
= UB,TSB,TU

T
B,T , CT

t0Ct0 − CT
tf
Ctf = UC,TSC,TU

T
C,T ,

where UB,Ω, UC,Ω, UB,T , UC,T are orthogonal matrices and

SB,Ω = diag(ηB1 , . . . , ηB2m, 0, . . . , 0), SC,Ω = diag(ηC1 , . . . , ηC2p, 0, . . . , 0),

SB,T = diag(μB
1 , . . . , μ

B
2m, 0, . . . , 0), SC,T = diag(μC

1 , . . . , μ
C
2p, 0, . . . , 0).

Let UB,Ω,1, UC,Ω,1, UB,T,1, UC,T,1 be the parts of the orthogonal matrices, corresponding 
to the possible non-zero eigenvalues. The modified frequency- and time-limited Gramians 
are then given as the solutions of the following Lyapunov equations

APmod
Ω ET + EPmod

Ω AT + Bmod
Ω
(
Bmod

Ω
)T = 0,

ATQmod
Ω E + ETQmod

Ω A +
(
Cmod
Ω
)T Cmod

Ω = 0,

APmod
T ET + EPmod

T AT + Bmod
T

(
Bmod
T

)T = 0,

ATQmod
T E + ETQmod

T A +
(
Cmod
T

)T Cmod
T = 0,

with

Bmod
Ω = UB,Ω,1 diag(|ηB1 |, . . . , |ηB2m|) 1

2 , Cmod
Ω = diag(|ηC1 |, . . . , |ηC2p|)

1
2UT

C,Ω,1,

Bmod
T = UB,T,1 diag(|μB

1 |, . . . , |μB
2m|) 1

2 , Cmod
T = diag(|μC

1 |, . . . , |μC
2p|)

1
2UT

C,T,1.

Using those modified Gramians for the limited balanced truncation methods also pre-
serves the stability in the reduced-order models in the first-order case. There exists 
an H∞ error bound for the modified frequency-limited balanced truncation for first-
order systems [7]. Note that the limited Gramians can also be easily computed using 
the projection-based matrix equation solvers with only minor changes in the algo-
rithms [7,29].

Remark 8. In general, neither the replacement of limited Gramians by the infinite ones 
nor the modified Gramian approach are guaranteed to preserve the stability in the 
reduced-order model when it comes to the second-order case. The stability preserv-
ing methods in [24,25] are just based on the assumption, that the same procedure as in 
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Fig. 1. Setup of the single chain oscillator.

the first-order case also works for second-order systems. This is not the case, since al-
ready the classical second-order balanced truncation methods are in general not stability 
preserving [39].

Despite there is no general guarantee for stability preservation as mentioned in Re-
mark 8, the modified Gramians are a potentially useful alternative to the fully limited 
balanced truncation approaches. It is mentioned in [7,29] for the first-order systems 
case that the local approximation quality attained by the modified Gramian approach 
lies between the limited Gramians and the infinite Gramians while enforcing stability 
preservation. With respect to the structure-preserving version of the limited balanced 
truncation approaches, this motivates the use of modified Gramians in cases where the 
fully limited approaches fail to produce stable reduced-order models by a still localized 
approximation while having the chance for the construction of stable reduced-order mod-
els. The actual approximation quality of the modified Gramians compared to the infinite 
and fully limited ones as well as special cases in which this approach can guarantee for 
stable reduced-order models need to be investigated in future work.

4. Numerical examples

In the following, some mechanical systems of second-order form from the literature 
have been chosen as benchmark examples. The experiments reported here have been 
executed on machines with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at 
2.10 GHz and equipped with either 192GB or 384 GB total main memory. The computers 
are running on CentOS Linux release 7.5.1804 (Core) and using MATLAB 9.4.0.813654 
(R2018a). For the computations, the following software has been used:

• MORLAB version 5.0 [13], for all evaluations in the frequency and time domain, 
the generation of the pictures and the dense implementations of the limited model 
reduction methods used in the two-step approach,

• the limited balanced truncation for large-scale sparse second-order systems code 
package [14], for the computations of the full-order limited Gramians via projection 
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methods (see Section 3.1.3) and the implementation of the balancing formulas from 
Table 1,

• the M-M.E.S.S. library version 2.0 [41], for computing the full Gramians with already 
approximated right-hand sides.

In general, we used the projection-based methods from [14] to approximate the right-
hand sides and the Gramians. But in case that the Gramians did not converge, we used 
the computed approximation of the right-hand sides from the projection methods in the 
ADI method from [41] to compute a solution to the matrix equation.

For the presentation of the results, the following error measures have been used. 
In the frequency domain, the point-wise absolute errors in the plots are computed as 
‖H(jω) − Ĥ(jω)‖2 for the frequency points ω ∈ R and the point-wise relative error as 
‖H(jω)−Ĥ(jω)‖2

‖H(jω)‖2
. The corresponding error tables show as global errors the maximum value 

of the point-wise errors in the plotted frequency region, i.e.,

max
ω∈[ωmin,ωmax]

‖H(jω) − Ĥ(jω)‖2 and max
ω∈[ωmin,ωmax]

‖H(jω) − Ĥ(jω)‖2

‖H(jω)‖2
,

where [ωmin, ωmax] is the frequency region as shown in the plots. The local errors are 
then the maximum values in the frequency range of interest.

In the time domain, the errors are also point-wise evaluated. The plots show 
‖y(t) − ŷ(t)‖2, with t ∈ R, as absolute errors and ‖y(t)−ŷ(t)‖2

‖y(t)‖2
for the relative errors. 

The corresponding error tables show again the maximum point-wise error values

max
t∈[tmin,tmax]

‖y(t) − ŷ(t)‖2 and max
t∈[tmin,tmax]

‖y(t) − ŷ(t)‖2

‖y(t)‖2
,

where [tmin, tmax] is the time frame as shown in the plots or rather the local time range 
[t0, tf ] chosen for the time-limited methods.

As criterion for the computed approximation order, the characteristic values from 
Definitions 1 and 2 have been used. Therefore, we truncated all states corresponding to 
the singular values that in sum were smaller than the largest singular value multiplied 
with the tolerance 10−4, i.e.,

σ1 · 10−4 ≥
nmin∑

k=r+1

σk.

4.1. Single chain oscillator

As first example, we consider the single chain oscillator benchmark from [33], where 
we removed the holonomic constraint to get a mechanical system without algebraic 
equations. Fig. 1 shows the basic setup of the system, where the parameters are chosen 
as in [33], i.e., in our experiments we have
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Fig. 2. Frequency-limited ROMs for the single chain oscillator (full-order Gramians).

m1 = . . . = mn = 100,

k1 = . . . = kn−1 = κ2 = . . . = κn−1 = 2,

d1 = . . . = dn−1 = δ2 = . . . = δn−1 = 5,

and κ1 = κn = 4, δ1 = δn = 10. The input and output matrices are chosen to be Bu = e1

and Cp = [e1, e2, en−1]T, where ei denotes the i-th column of the identity matrix In. Also, 
we have chosen n = 12 000 masses for the system. This system doe not have any velocity 
outputs Cv. The computations were done with no α-shift (α = 0).

4.1.1. Frequency domain
The frequency range of interest in this example is chosen, just for demonstration 

reasons, to be between 1 and 100Hz. In Fig. 2, the resulting reduced-order models 
(ROMs) can be seen in terms of their transfer functions (a), the point-wise absolute error
(b) and point-wise relative error (c). The frequency range of interest is marked as the area 
between the dashed vertical lines. Table 2 gives an overview for all applied second-order 
frequency-limited methods. It can be noted that all computed ROMs are of order 2, stable 
and have absolute and relative errors in the same order of magnitude. Also we note that, 
as desired, the errors in the frequency range of interest are significantly smaller than in the 
overall considered frequency region. For the two-step approach, we used, on the one hand, 
a logarithmically equidistant sampling of 200 frequency points in the frequency region 
of interest and, on the other, for a global approximation logarithmically equidistant 
points between 10−4 and 104 Hz. After a rank truncation of the orthogonalized basis, 
the intermediate ROMs had the dimension 100. Since no significant differences between 
the full-order Gramians and two-step approaches could be seen, we refer the reader also 
to Fig. 2 and Table 2 for the results.
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v fv so
2 2 2
✓ ✓ ✓

1.011e-01 1.012e-01 1.012e-01
7.439e-11 4.276e-11 7.439e-11

2.888e-01 2.889e-01 2.889e-01
3.072e-07 1.766e-07 3.072e-07

v fv so
4 4 4
✓ ✓ ✓

04 9.393e-04 9.880e-04 9.568e-04
06 1.445e-06 8.597e-07 1.170e-06
03 4.611e-03 4.853e-03 4.697e-03
05 4.634e-05 4.953e-05 4.503e-05

05 5.079e-05 5.350e-05 5.208e-05
07 9.638e-07 9.471e-07 9.263e-07
02 8.026e-02 8.465e-02 8.231e-02
04 3.284e-04 3.526e-04 3.214e-04
Table 2
Frequency-limited ROMs for the single chain oscillator (full-order Gramians).

p pm pv vp vpm
ROM sizes 2 2 2 2 2
Stability ✓ ✓ ✓ ✓ ✓

Global absolute errors 1.011e-01 1.011e-01 1.011e-01 1.011e-01 1.011e-01
Local absolute errors 4.276e-11 4.277e-11 4.276e-11 7.439e-11 7.439e-11

Global relative errors 2.888e-01 2.888e-01 2.888e-01 2.888e-01 2.888e-01
Local relative errors 1.766e-07 1.766e-07 1.766e-07 3.072e-07 3.072e-07

Table 3
Time-limited ROMs for the single chain oscillator (full-order Gramians).

p pm pv vp vpm
ROM sizes 4 4 4 4 4
Stability ✓ ✓ ✓ ✓ ✓

ustep Global absolute errors 9.621e-04 1.020e-03 9.619e-04 9.401e-04 9.985e-
Local absolute errors 7.953e-07 6.408e-07 7.980e-07 1.456e-06 2.866e-
Global relative errors 4.724e-03 5.014e-03 4.723e-03 4.616e-03 4.910e-
Local relative errors 4.204e-05 1.256e-05 4.217e-05 4.617e-05 1.384e-

usin Global absolute errors 5.232e-05 5.215e-05 5.231e-05 5.081e-05 5.045e-
Local absolute errors 8.600e-07 4.580e-07 8.619e-07 9.591e-07 4.961e-
Global relative errors 8.275e-02 8.066e-02 8.273e-02 8.030e-02 7.827e-
Local relative errors 3.053e-04 1.150e-04 3.062e-04 3.264e-04 1.261e-
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Fig. 3. Absolute and relative errors of time-limited ROMs for the single chain oscillator with inputs ustep
(a), (b) and usin (c), (d) (full-order Gramians).

4.1.2. Time domain
In the time domain, we apply two different input signals to test our ROMs

ustep(t) = δ(t− 5) and usin(t) = sin(t)δ(t− 5), (24)

for t ∈ [0, 100] and δ(t) the Heaviside function. As time range of interest, [0, 20] seconds 
has been chosen.

While Fig. 3 shows the results for the time-limited balanced truncation methods in 
terms of absolute and relative errors for the two applied input signals (24), in Table 3, 
the ROM sizes, maximum absolute and maximum relative errors are given. One can 
observe that all ROMs are of order 4, stable and have locally significantly smaller errors 
than globally.

Again, the results of the two-step approaches are only marginal distinguishable from 
the results of the full-order Gramians, where we used the global sampling between 10−4

and 104 Hz to pre-approximate the system’s behavior. Therefore, those results are also 
not shown here.

4.2. Crankshaft

The crankshaft is a model from the University Stuttgart, describing the crankshaft 
of a four-cylinder engine [36], which is shown in Fig. 4. After discretization by the finite 
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Fig. 4. Crankshaft of a four-cylinder engine [36].

Fig. 5. Frequency-limited ROMs for the crankshaft (full-order Gramians).

element method, the constraint model is of dimension n = 42 126 with m = p = 35
inputs and outputs. Due to the rigid elements, coupling the interface nodes, the system 
has several eigenvalues at zero. Therefore, we apply the shift α = 0.01, as suggested in 
Section 3.2, to make the system asymptotically stable during the computations of the 
matrix equations and low-rank projection matrices.

4.2.1. Frequency domain
In the frequency domain, we are interested in the actual working range of the 

crankshaft between 4 and 20 kHz. Fig. 5 shows the results for using the full-order 
frequency-limited Gramians. The frequency range of interest lies again between the two 
vertical dashed lines. We can see that all ROMs approximate the frequency region of 
interest better than the global region. Also Table 4 shows the desired approximation be-
havior in terms of the errors. In this example, some of the computed ROMs are unstable 
as denoted by x-marks in Table 4. It should be noted that even for the same order some 
methods might produce unstable models while others do not.
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v fv so
69 77 77
✓ ✓ ✗

9.265e-05 9.361e-05 9.345e-05
4.413e-10 1.011e-10 2.818e-10

4.718e+00 3.963e+00 2.652e+00
4.261e-04 9.759e-05 2.722e-04

v fv so
70 84 70
✓ ✓ ✗

2.138e-04 1.065e-04 9.057e-05
3.846e-09 1.297e-09 1.774e-09

9.393e+00 3.565e+00 2.865e+00
1.810e-03 1.252e-03 1.713e-03
Table 4
Frequency-limited ROMs for the crankshaft (full-order Gramians).

p pm pv vp vpm
ROM sizes 77 77 65 88 88
Stability ✓ ✗ ✓ ✗ ✗

Global absolute errors 9.367e-05 3.237e-04 9.280e-05 1.141e-04 9.601e-05
Local absolute errors 1.588e-09 1.816e-08 9.855e-10 5.497e-09 4.978e-08

Global relative errors 4.627e+00 2.082e+01 2.353e+00 1.439e+01 4.682e+00
Local relative errors 1.327e-03 1.754e-02 8.237e-04 5.117e-03 4.807e-02

Table 5
Frequency-limited ROMs for the crankshaft (two-step methods).

p pm pv vp vpm
ROM sizes 84 84 67 93 93
Stability ✓ ✗ ✓ ✗ ✗

Global absolute errors 1.405e-04 3.945e-04 1.026e-04 1.204e-04 1.364e-04
Local absolute errors 2.037e-09 2.569e-08 8.225e-10 7.911e-09 3.709e-08

Global relative errors 2.041e+00 1.400e+01 5.712e+00 7.743e+00 9.187e+00
Local relative errors 1.967e-03 2.481e-02 6.874e-04 7.775e-03 3.462e-02
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Fig. 6. Frequency-limited ROMs for the crankshaft (two-step methods).

In this example, we also applied the two-step approach with 200 frequency sample 
points in the region of interest to generate the intermediate model of order 447. Those 
results can be seen in Fig. 6. Table 5 shows that the ROMs produced by the two-step 
approach are slightly larger in dimension and also partially in errors, while the same 
methods (pm, vp, vpm, so) as for the full-order Gramian approach produce unstable 
models.

4.2.2. Time domain
In the time domain, we consider just the first 0.01 seconds of using the crankshaft, 

while the full simulation runs over a time range of [0, 0.05] seconds. As test input signals, 
we apply

ustep(t) = 3000δ(t− 0.005) · 135 and usin(t) = 1500(sin(10πt) + 1)δ(t− 0.005) · 135,

where 135 denotes the ones vector of length 35. The results for the time-limited balanced 
truncation with the full-order Gramians can be seen in Fig. 7 and Table 6. Only one 
unstable model (vpm) was computed, which still gives suitable approximation results, 
and all ROMs have small enough errors in the time domain. Even so, we recognize that 
the local approximation error is only in some cases a bit smaller than the global one.

For the two-step approach, we computed 200 logarithmically equidistant distributed 
samples in the frequency domain between 10−2 and 106 Hz. The intermediate model 
had the order 876. Since the resulting ROMs are of the same order as the ones com-
puted via the full-order Gramians, featuring the same stability properties, and are only 
slightly worse in terms of the time domain errors than in Table 6, we skip the additional 
presentation of those results here.
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v fv so
59 58 59
✓ ✓ ✓

-06 7.733e-06 1.884e-04 2.669e-05
-06 7.733e-06 1.554e-04 2.467e-05
-04 4.103e-04 1.078e-02 1.731e-03
-04 4.103e-04 9.845e-03 1.731e-03

-06 4.472e-06 1.089e-04 2.664e-05
-07 4.472e-06 8.980e-05 1.547e-05
-04 4.103e-04 9.189e-03 1.610e-03
-04 4.103e-04 8.605e-03 1.610e-03

v fv so
1 1 1
✓ ✓ ✓

4.409e-07 1.172e-04 4.409e-07
8.964e-08 1.172e-04 1.045e-07

9.181e+00 1.596e+01 9.182e+00
1.150e-02 9.557e-01 1.132e-02
Table 6
Time-limited ROMs for the crankshaft (full-order Gramians).

p pm pv vp vpm
ROM sizes 58 58 37 132 132
Stability ✓ ✓ ✓ ✓ ✗

ustep Global absolute errors 9.442e-06 8.765e-05 2.331e-04 4.771e-06 1.567e
Local absolute errors 9.442e-06 8.765e-05 2.331e-04 4.771e-06 1.567e
Global relative errors 5.573e-04 8.707e-03 4.803e-02 7.460e-04 1.039e
Local relative errors 5.573e-04 8.707e-03 4.803e-02 7.460e-04 1.039e

usin Global absolute errors 5.459e-06 7.231e-05 1.349e-04 3.345e-06 1.233e
Local absolute errors 5.459e-06 5.245e-05 1.349e-04 2.760e-06 9.133e
Global relative errors 5.559e-04 8.707e-03 4.803e-02 7.460e-04 1.028e
Local relative errors 5.559e-04 8.707e-03 4.803e-02 7.460e-04 1.028e

Table 7
Frequency-limited ROMs for the artificial fishtail (full-order Gramians).

p pm pv vp vpm
ROM sizes 1 1 1 1 1
Stability ✓ ✓ ✓ ✓ ✓

Global absolute errors 4.409e-07 4.409e-07 4.409e-07 4.409e-07 4.409e-07
Local absolute errors 1.046e-07 1.538e-07 1.043e-07 8.975e-08 1.558e-07

Global relative errors 9.182e+00 9.176e+00 9.182e+00 9.181e+00 9.174e+00
Local relative errors 1.132e-02 1.200e-02 1.132e-02 1.150e-02 1.219e-02
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Fig. 7. Absolute and relative errors of time-limited ROMs for the crankshaft with inputs ustep (a), (b) and 
usin (c), (d) (full-order Gramians).

Fig. 8. Transparent sketch of the artificial fishtail with embedded fluid chambers.

4.3. Artificial fishtail

The artificial fishtail is a mechanical system, describing the movement of a fishtail-
shaped structure by using the fluid elastomer actuation principle. Fig. 8 shows a trans-
parent sketch of the fishtail model consisting of a carbon beam in the center and a 
silicon hull around. A more detailed description of the model as well as a comparison 
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Fig. 9. Frequency-limited ROMs for the artificial fishtail (full-order Gramians).

of structure-preserving second-order model reduction techniques for this example can 
be found in [42]. After spatial discretization by the finite element method, the resulting 
second-order system has n = 779 232 states describing the model. By the actuation prin-
ciple, we have m = 1 input and a sensor is measuring the displacement of the fishtail’s 
tip in all spatial dimensions, i.e., we have p = 3 position outputs and no velocity outputs. 
The discretized data is available as open benchmark at [45]. The computations were done 
without an α-shift (α = 0).

4.3.1. Frequency domain
In the frequency domain, the range of interest for the fishtail model lies between 0

and 20Hz, since higher frequencies are physically not realizable. Fig. 9 shows the results 
for the frequency-limited balanced truncation methods, based on the full-order Grami-
ans. Except for the fv balancing there is no visible difference between the ROMs and 
the full-order model. The error plots show that the approximation reached a sufficiently 
small error in the region of interest. Table 7 shows the corresponding maximum absolute 
and relative error in the local and global frequency regions. It is remarkable that the 
methods were able to approximate the original model, having around 780 000 states, by 
stable order 1 systems in the region of interest. While the absolute errors are compara-
ble between local and global region, the relative errors show again the strength of the 
frequency-limited method.

4.3.2. Time domain
In the time domain, the fishtail is simulated from 0 to 2 seconds. For our time-limited 

methods we consider the time range up to 0.5 seconds and as inputs, the following two 
signals are considered:
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Fig. 10. Absolute and relative errors of time-limited ROMs for the artificial fishtail with inputs ustep (a), (b)
and usin (c), (d) (full-order Gramians).

ustep(t) = 5000δ(t− 0.1) and usin(t) = 2500(sin(10π(t− 1.35)) + 1)δ(t− 0.1).

Fig. 10 and Table 8 show the results. Except for the models generated by pm, vpm and
fv, the computed ROMs have acceptable small errors in the time domain. Also, only the
vpm ROM is unstable. The errors in the local region are sometimes a bit smaller than 
the global ones as we were aiming for by the method.

The two-step approach here used 200 logarithmically equidistant sample points in the 
frequency range from 10−4 to 104 Hz, which gave an intermediate model of order 100. 
The results of the ROMs computed by the two-step approach differ a bit from the ones 
generated by the full-order Gramians. Those results can be seen in Table 9. There, the 
shown errors are partially smaller or larger than in Table 8 and also we note that for the 
two-step approach, the vpm model is also unstable but still gives usable results for both 
applied input signals.

5. Conclusions

We extended the frequency- and time-limited balanced truncation methods from first-
order systems to the second-order case by applying the different second-order balancing 
approaches from the literature. For the application of the introduced theory, we in-
vestigated numerical methods for approximating the solution of the arising large-scale 
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m v fv so
4 4 4
✓ ✓ ✓

3.049e-05 4.650e-04 6.087e-06
3.049e-05 4.650e-04 6.087e-06
2.799e-03 1.489e+00 8.162e-03
2.799e-03 1.489e+00 8.162e-03

1.681e-05 2.898e-05 6.237e-07
1.681e-05 2.846e-05 6.129e-07
3.089e-03 1.489e+00 8.162e-03
1.192e-03 1.489e+00 8.162e-03

v fv so
4 4 4
✓ ✓ ✓

-03 6.649e-05 2.229e-04 7.206e-06
-03 6.649e-05 2.229e-04 7.206e-06
-01 2.253e-02 9.866e-01 4.656e-03
-01 2.253e-02 9.866e-01 4.656e-03

-04 2.309e-05 9.389e-07 9.808e-07
-04 2.316e-05 9.389e-07 9.899e-07
+00 1.152e-01 9.866e-01 4.656e-03
-01 3.076e-02 9.866e-01 4.656e-03
Table 8
Time-limited ROMs for the artificial fishtail (full-order Gramians).

p pm pv vp vp
ROM sizes 4 4 2 6 6
Stability ✓ ✓ ✓ ✓ ✗

ustep Global absolute errors 5.523e-06 5.277e-03 2.320e-04 7.032e-06 ∞
Local absolute errors 5.523e-06 4.282e-03 2.320e-04 7.032e-06 ∞
Global relative errors 9.961e-03 4.577e-01 1.524e-01 4.127e-04 ∞
Local relative errors 9.961e-03 4.577e-01 1.524e-01 4.127e-04 ∞

usin Global absolute errors 6.103e-07 6.845e-04 8.434e-05 3.878e-06 ∞
Local absolute errors 6.094e-07 6.278e-04 8.434e-05 3.850e-06 ∞
Global relative errors 9.961e-03 1.525e+01 2.819e-01 6.047e-03 ∞
Local relative errors 9.961e-03 1.549e+00 1.224e-01 8.350e-04 ∞

Table 9
Time-limited ROMs for the artificial fishtail (two-step methods).

p pm pv vp vpm
ROM sizes 4 4 2 9 9
Stability ✓ ✓ ✓ ✓ ✗

ustep Global absolute errors 5.506e-06 1.306e-03 2.308e-04 6.210e-06 1.394e
Local absolute errors 5.506e-06 1.306e-03 2.308e-04 6.210e-06 1.137e
Global relative errors 1.088e-02 2.335e+00 1.517e-01 2.461e-03 2.321e
Local relative errors 1.088e-02 2.335e+00 1.517e-01 2.461e-03 2.321e

usin Global absolute errors 9.836e-07 9.156e-04 8.371e-05 5.547e-07 3.619e
Local absolute errors 9.885e-07 9.156e-04 8.371e-05 5.560e-07 3.887e
Global relative errors 1.088e-02 2.335e+00 2.775e-01 2.613e-03 4.312e
Local relative errors 1.088e-02 2.335e+00 1.218e-01 1.585e-03 6.518e
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sparse matrix equations with function right-hand sides as well as techniques to deal with 
the difficulties arising from the second-order system structure. The numerical examples 
show that the methods work for the purpose of limited model reduction in the frequency 
domain and also for some examples in time domain. By comparison of the different bal-
ancing formulas, it was not possible to determine a clear winner or loser. Depending on 
the example, different balancing techniques performed better or worse than the others. 
Also, stability preservation is still an open problem for this type of model reduction tech-
niques, where we pointed out that the known modifications from the first-order case are 
not necessarily stability preserving for second-order systems but might be alternatives 
to the fully limited balanced truncation approaches in terms of the construction of local 
and possibly stable approximations.
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