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ABSTRACT
Direct answering of questions that involve multiple entities and
relations is a challenge for text-based QA. This problem is most pro-
nounced when answers can be found only by joining evidence from
multiple documents. Curated knowledge graphs (KGs) may yield
good answers, but are limited by their inherent incompleteness and
potential staleness. This paper presents QUEST, a method that can
answer complex questions directly from textual sources on-the-fly,
by computing similarity joins over partial results from different doc-
uments. Our method is completely unsupervised, avoiding training-
data bottlenecks and being able to cope with rapidly evolving ad
hoc topics and formulation style in user questions. QUEST builds a
noisy quasi KG with node and edge weights, consisting of dynam-
ically retrieved entity names and relational phrases. It augments
this graph with types and semantic alignments, and computes the
best answers by an algorithm for Group Steiner Trees. We evaluate
QUEST on benchmarks of complex questions, and show that it
substantially outperforms state-of-the-art baselines.
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1 INTRODUCTION
1.1 Motivation
Question answering (QA) over the Web and derived sources of
knowledge, has been well-researched [12, 24, 40]. Studies show that
many Web search queries have the form of questions [64]; and this
fraction is increasing as voice search becomes ubiquitous [29]. The
focus of this paper is on providing direct answers to fact-centric ad
hoc questions, posed in natural language, or in telegraphic form [35,
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51]. Earlier approaches for such QA, up to when IBM Watson [25]
won the Jeopardy! quiz show, have mostly tapped into textual
sources (including Wikipedia articles) using passage retrieval and
other techniques [49, 62]. In the last few years, the paradigm of
translating questions into formal queries over structured knowledge
graphs (KGs), also known as knowledge bases (KBs), and databases
(DBs), including Linked Open Data, has become prevalent [18, 59].

QA over structured data translates the terms in a question into
the vocabulary of the underlying KG or DB: entity names, semantic
types, and predicate names for attributes and relations. State-of-
the-art systems [1, 6, 7, 24, 69] perform well for simple questions
that involve a few predicates around a single target entity (or a
qualifying entity list). However, for complex questions that refer
to multiple entities and multiple relationships between them, the
question-to-query translation is very challenging and becomes the
make-or-break point. As an example, consider the question:
“footballers of African descent who played in the FIFA 2018 final and
the Euro 2016 final?”

A high-quality, up-to-date KG would have answers like ‘Samuel
Umtiti’, ‘Paul Pogba’ or ‘Blaise Matuidi’. However, this works only
with a perfect mapping of question terms onto KG-predicates like
bornIn, playedFor, inFinal, etc. This strong assumption is rarely
satisfied for such complex questions. Moreover, if the KG misses
some of the relevant pieces, for example, that a football team played
in a final (without winning it), then the entire query will fail.

1.2 State of the Art and its Limitations
QA over KGs. State-of-the-art work on QA over KGs has several
critical limitations: (i) The question-to-query translation is brittle
and tends to be infeasible for complex questions. (ii) Computing
good answers depends on the completeness and freshness of the
underlying KG, but no KG covers everything and keeps up with
the fast pace of real-world changes. (iii) The generation of good
queries is tied to a specific language (usually English) and style
(typically full interrogative sentences), and does not generalize
to arbitrary languages and language registers. (iv) Likewise, the
translation procedure is sensitive to the choice of the underlying
KG/DB source, and cannot handle ad hoc choices of several sources
that are seen only at QA-execution time.
QA over text. State-of-the-art methods in this realm face major
obstacles: (i) To retrieve relevant passages for answer extraction, all
significant question terms must be matched in the same document,
ideally within short proximity. For example, if a QA system finds
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Figure 1: A quasi KG for our running example question.

players in the 2018 FIFA World Cup Final and the UEFA Euro Cup
2016 Final in different news articles, and information on their birth-
places from Wikipedia, there is no single text passage for proper
answering. (ii) The alternative of fragmenting complex questions
into simpler sub-questions requires syntactic decomposition pat-
terns that break with ungrammatical constructs, and also a way
of stitching sub-results together. Other than for special cases like
temporal modifiers in questions, this is beyond the scope of today’s
systems. (iii) Modern approaches that leverage deep learning criti-
cally rely on training data, which is not easily available for complex
questions, and have concerns on interpretability. (iv) Recent works
on text-QA considered scenarios where a question is given with a
specific set of documents that contain the answer(s).

This paper overcomes these limitations by providing a novel
unsupervised method for combining answer evidence frommultiple
documents retrieved dynamically, joined together via KG-style
relationships automatically gathered from text sources.

1.3 Approach and Contribution
We present a method and system, called QUEST (for “QUEstion
answering with Steiner Trees”), that taps into text sources for an-
swers, but also integrates considerations from the KG-QA (also
referred to as KB-QA) paradigm. QUEST first constructs an ad hoc,
noisy knowledge graph by dynamically retrieving question-relevant
text documents and running Open Information Extraction (Open
IE) [44] on them to produce subject-predicate-object (SPO) triples.
In contrast to a curated KG (like YAGO or Wikidata), these triples
contain names and phrases rather than canonicalized entities and
predicates, and hence exhibit a high degree of noise. Thus, we
additionally compute edges that connect potentially synonymous
names and phrases. We refer to the resulting graph as a quasi KG,
which captures combined cues from many documents and is then
treated as the knowledge source for the QA algorithm (example in
Fig. 1 for the footballer question, with bidirectional dashed edges
denoting potential synonymy among the nodes).

Good answers among the nodes of the quasi-KG should be well-
connected with all nodes that (approximately) match the phrases
from the input question. We refer to these matching nodes as corner-
stones (nodes with thick borders in Fig. 1). This criterion can be cast
into computing Group Steiner Trees (GST) with the cornerstones
as terminals [26]. All non-terminal nodes of the trees are candidate

answers. This computation is carried out over a weighted graph,
with weights based on matching scores and extraction confidences.
Finally, answers are filtered and ranked by whether they are com-
patible with the question’s lexical answer type and other criteria.
In Fig. 1, all red nodes and edges, and all blue nodes and edges, con-
stitute two GSTs, respectively yielding the answers ‘Samuel Umtiti’
and ‘Blaise Matuidi’ (underlined). Unlike most QA systems where
correct entity and relation linking are major bottlenecks for success,
QUEST does not need any explicit disambiguation of the question
concepts, and instead harnesses the effect that GSTs themselves
establish a common context for ambiguous names. Thus, finding
a GST serves as a joint disambiguation step for relevant entities,
relations, and types, as different senses of polysemous concepts are
unlikely to share several inter-connections. Notably, the Steiner
tree provides explainable insights into how an answer is derived.

It is the nature of ad hoc Web questions that dynamically re-
trieved documents contain a substantial amount of uninformative
and misleading content. Instead of attempting to perfectly clean
this input upfront, our rationale is to cope with this noise in the
answer computation rather than through tedious efforts on entity
disambiguation and relation canonicalization in each step.

GST algorithms have been used for keyword search over rela-
tional graphs [8, 13, 71], but they work for a simple class of keyword
queries with the sole condition of nodes being related. For QA, the
problem is much more difficult as the input is a full question that
contains multiple conditions with different entities and predicates.
Contribution. The salient points of this work are:
• QUEST is a novel method that computes direct answers to com-
plex questions by dynamically tapping arbitrary text sources
and joining sub-results from multiple documents. In contrast to
neural QA methods that rely on substantial amounts of training
data, QUEST is unsupervised, avoiding training bottlenecks and
the potential bias towards specific benchmarks.

• QUEST combines the versatility of text-based QA with graph-
structure awareness of KG-QA, overcoming the problems of
incompleteness, staleness, and brittleness of QA over KGs alone.

• We devise advanced graph algorithms for computing answers
from noisy text-based entity-relationship graphs.

• Experiments show the viability of ourmethod and its superiority
over state-of-the-art baselines. To facilitate comparison and
reproducibility, an online demo, and all data, code, and results
from this work are publicly available at the following URL:
http://qa.mpi-inf.mpg.de/quest/.

2 SYSTEM OVERVIEW
Complex questions. Our emphasis is on complex questions that
refer to multiple entities and relationships. There are other notions
of complex questions, for example, those requiring grouping, com-
parison, and aggregation, or when the question involves negations.
These are not considered in this paper.
Answering pipeline. QUEST processes questions in two phases:
(1) on-the-fly construction of the quasi KG for the question, and,
(2) the graph algorithm for computing ranked answers. Together,
these phases comprise the following five steps:
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(1a) Retrieving question-relevant documents from an open corpus
(e.g., the entire Web),

(1b) Extracting proximity-based SPO triples from these documents
using Open IE techniques,

(1c) Building a noisy quasi KG from these triples,
(2a) Computing GSTs on the quasi KG to derive candidate answers,
(2b) Filtering and scoring candidates to produce ranked answers.

Step (1a), document retrieval, is performed using anyWeb search
engine or an IR system. Working with a reasonably-sized pool
of pseudo-relevant documents ensures that the subsequent graph
algorithm is computationally tractable. Preprocessing of documents
includes part-of-speech (POS) tagging, named entity recognition
(NER), and lightweight coreference resolution by linking personal
and possessive pronouns like he, she, him, her, his, and hers, to the
nearest named entity in the preceding text. Sec. 3 and 4 give details
on steps (1b) and (1c) for graph construction and steps (2a) and (2b)
for the graph algorithm, respectively.

3 GRAPH CONSTRUCTION
3.1 Extracting SPO Triples
Answering complex questions often requires evidence from mul-
tiple documents. For our running example, the evidence needs to
comprise born in Africa, being a footballer, playing in the UEFA
Euro 2016 final, and playing in the FIFA World Cup 2018 final. It
is unlikely that all these cues can be found in a single document.
Therefore, we first retrieve a pool of relevant documents from a
search engine (Google or Bing) using the entire question as a key-
word query. To identify cues in the matching documents and to
join them across multiple documents, we apply Open IE [37, 44] to
extract SPO triples.

Popular tools for Open IE include Stanford OpenIE [3], OpenIE
5.0 (previously ReVerb) [44], and ClausIE [14], but each comes with
limitations. Stanford OpenIE focuses on precision, and produces cor-
rect but relatively few triples, thus losing cues from long sentences.
For example, consider the opening sentence from Wikipedia’s arti-
cle on Umtiti: “Samuel Yves Umtiti is a French professional footballer
who plays as a centre-back for Spanish club Barcelona and the French
National Team.” Stanford’s extractor misses the noun-mediated re-
lation ‘centre-back for’, and the information about playing for the
French National Team. While OpenIE 5.0 and ClausIE incorporate
better support for such dependent clauses, they often produce very
long objects from complex sentences, making it difficult to align
them across different triples and rendering subsequent graph con-
struction infeasible (e.g. ‘a French professional footballer who plays
as a centre-back for Spanish club Barcelona and the French National
Team’ and ‘as a centre-back for the French National Team’ are objects
from OpenIE and ClausIE from the sentence above). Therefore, we
devised our own (recall-oriented) IE method with judicious consid-
eration to phrase ordering and term proximities. In contrast to the
other tools, our method produces more noisy triples, but these are
taken care of in the subsequent steps (see Sec. 4).
Pattern-based extraction. We perform POS tagging and NER on
each sentence of the retrieved documents, and subsequently treat
the constituent words of named entities as single tokens. Based on

these annotations, we extract the following SPO triples respecting
phrase ordering:
• Verb-phrase-mediated triples: (X ,V ,Y ) for named entities
(NE) or noun phrases (NP) X and Y such that the sentence has
the form “. . .X . . .V . . .Y . . .”, where V is of the POS pattern
verb (e.g., “plays”) or verb+preposition (e.g., “plays for”), and
no other verb appears in the text span from X to Y .

• Noun-phrase-mediated triples: (X ,N ,Y ) for NEs or NPs X
andY such that the sentence has the form “. . .X . . .N . . .Y . . .”,
where N is of the POS pattern noun+preposition (e.g., “centre-
back for”), and no other phrase of this POS pattern appears in
the text span from X to Y (rules from Yahya et al. [68]).

Auxiliary verbs (is, can, may, ...) are not considered. Sample triples
from QUEST’s noisy extractor for the previous example: (Samuel
Umtiti, centre-back for, Spanish club Barcelona), (Samuel Umtiti,
centre-back for, French National Team) (both correct), and (French
professional footballer, plays as, Spanish club Barcelona) (noisy).
Proximity-based scoring. To associate an SPO triple with a con-
fidence score, we use pairwise distances between the triple’s parts
(S , P , or O) in the document where it stems from. We define the
distance d between two items as the number of intruding words
plus one (to avoid zero distances), and the score is set to 1/d . This
captures the intuition that closer two parts are in text, higher is their
score. As a result, unlike conventional tools [3, 44], S-P and P-O
pairs are allowed to take different scores. When two items co-occur
in more than one sentence {Si }, we use the sum of inverses of their
distances in these sentences {d(Si )} as the score (=

∑
Si 1/d(Si )),

thereby leveraging redundancy of evidence.

3.2 Building the Quasi KG
Quasi KG. The quasi KG consists of:
• nodes corresponding to the S , P , and O arguments of the ex-
tracted triples,

• type nodes corresponding to the S and O arguments,
• directed edges connecting S to P and P to O from the extracted
triples above,

• directed (bidirectional) edges connecting nodes with equal or
highly similar names or phrases, and,

• directed edges connecting S or O nodes to their types.
The quasi KG is the key asset to aggregate evidence frommultiple

documents. Typically, an O node from one triple would have an
edge to an S node from another triple if they refer to the same
entity, or they would be the same node in case they match exactly.
Note, however, that the graph contains only surface forms; there
is no canonicalization of entity names or phrases for S/O nodes –
hence our terminology of quasi KGs. For example, ‘Pogba’, ‘Paul
Pogba’ and ‘Paul Labile Pogba’ co-exist as different nodes in the
graph, but could later be identified as synonyms for the same entity.
This notion of similarity-based equivalence also holds for nodes
that represent P arguments by phrases such as ‘born in’ and ‘comes
from’, and will be harnessed in subsequent steps. Fig. 1 shows an
example of a noisy quasi KG that contains evidence for answers of
our running example. Bidirectional dashed edges denote potential
synonymy between nodes.
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Types of nodes. S , P , andO arguments of extracted triples become
individual nodes. Nodes are typed based on their semantic roles:
• Entity nodes are all nodes corresponding to S orO arguments
(regular rectangular nodes in Fig. 1, e.g. ‘Samuel Umtiti’).

• Relation nodes are all nodes corresponding to P arguments
(rectangular nodes with rounded corners, e.g. ‘centre-back in’).

• Type nodes, explained below, are added by inferring semantic
types for entity nodes (rectangular nodes with snipped corners,
e.g. ‘French professional footballer’).

The distinction into entity and relation nodes is important for an-
swer extraction later, as relations rarely ever serve as final answers.
Usually, KGs represent relations as edge labels; our choice of having
explicit relation nodes is better suited for the graph algorithms that
QUEST runs on the quasi KG.

QUEST creates type nodes connected to entity nodes via Hearst
patterns [30] (e.g., NP1 such as {NP2,}* with POS tag NP for noun
phrases) applied to sentences of the retrieved documents (e.g., “foot-
ballers such as Umtiti, Matuidi and Pogba”). As an alternative or
complement, QUEST can also use type information from curated
KGs by mapping the names in the entity nodes to KG entries by
named entity disambiguation (NED) methods. Like entities and rela-
tions, types are not canonicalized to any taxonomy. We found that
even such free-form text extractions for entity typing is a valuable
asset for QA, as substantiated by our graph ablation experiments.
Types of edges. The quasi KG contains four types of edges:
• Triple edges connect two adjacent arguments of the extracted
triples, i.e., S and P arguments, and P and O arguments from
the same triple (entity-relation solid edges, e.g., between ‘Blaise
Matuidi’ and ‘featured’ and, ‘featured’ and ‘2018 FIFAWC Final’).

• Type edges connect entity nodes and their corresponding type
nodes (e.g., between ‘Blaise Matuidi’ and ‘type’, and ‘type’ and
‘31-year-old footballer’).

• Entity alignment edges connect potentially equivalent entity
nodes, that is, with sufficiently high similarity (dashed edges,
e.g., between ‘Samuel Umtiti’ and ‘Umtiti’).

• Relation alignment edges connect potentially synonymous
relation nodes (dashed edges, e.g., between ‘played’ and ‘starting
line-up of’).

To identify node pairs for alignment edges, we can harness re-
sources like entity-mention dictionaries [31, 52], paraphrase databases
[28, 46], and word/phrase embeddings [45, 47].
Node weights. Node weights are derived from similarity scores
with regard to tokens in the input question. For entity nodes, we
use thresholded similarities from entity-mention dictionaries as ex-
plained in Sec. 5.3. For type nodes and relation nodes, the similarity
of the node label is with regard to the highest-scoring question to-
ken (after stopword removal). In QUEST, this similarity is computed
using word2vec [45], GloVe [47], or BERT [17] embeddings.
Edge weights. For triple edges, confidence scores (see Sec. 3.1) are
used as weights. Having different confidence scores for S-P and P-O
fits in well in this model as weights for the corresponding edges. For
alignment edges, the weight is the similarity between the respective
pair of entity nodes or relation nodes. See Sec. 5.3 for specifics of
these computations. For type edges we set edge weights to 1.0, as
these are the most reliable (relative to the noisier categories).

4 GRAPH ALGORITHM
4.1 Computing Group Steiner Trees
Cornerstones. To find answers in the quasi KG, we first identify
pivotal nodes that we call cornerstones: every node that matches a
word or phrase in the question, with similarity above a threshold,
becomes a cornerstone. For example, ‘FIFA 2018 final’ from the
example question is matched by ‘2018 FIFA WC Final’ and ‘Russia
2018 Final’ (high similarity via lexicons) in the graph. Also, rela-
tion nodes (e.g., ‘born’ and ‘Angolan descent’, with high word2vec
embedding similarity to ‘descent’) and type nodes (e.g., ‘French pro-
fessional footballer’ and ‘31-year-old footballer’ matching question
term ‘footballers’) become cornerstones. All cornerstone nodes for
our running example question have thick borders in Fig. 1. These
nodes are weighted based on the matching or similarity scores.
Group Steiner Trees. The key idea for identifying answer can-
didates is that these nodes should be tightly connected to many
cornerstones. To formalize this intuition, we consider three factors:
(i) answers lie on paths connecting cornerstones, (ii) short paths
are preferred, and (iii) paths with higher weights are better. These
criteria are captured by the notion of a Steiner Tree:
• Given an undirected and weighted graph (V ,E) with nodes V ,
edges E, and weights wi j ≥ 0 (for the edge between nodes i
and j), and given a subset T ⊆ V of nodes called terminals,
compute a tree (V ∗,E∗) where V ∗ ⊆ V ,E∗ ⊆ E that connects
all terminals T and has minimum cost in terms of total edge
weights: min

∑
i j ∈E∗ wi j with T ⊆ V ∗.

For two terminals, the solution is the shortest path, but our applica-
tion comes with many terminals, namely the cornerstones. Moreover,
our terminals are grouped into sets (the cornerstones per token of
the question), and it suffices to include at least one terminal from
each set in the Steiner Tree. This generalized problem is known as
computing a Group Steiner Tree (GST) [20, 26, 41]:
• Given an undirected andweighted graph (V ,E) and given groups
of terminal nodes {T1, . . . ,Tl } with each Tν ⊆ V , compute the
minimum-cost tree (V ∗,E∗) that connects at least one node
from each of {T1, . . . ,Tl }:min

∑
i j ∈E∗ wi j s.t.Tν ∩V ∗ , ϕ, ∀Tν .

Answer candidates for a question are inner nodes of a GST (non-
terminals). For example, the quasi KG of Fig. 1 shows twoGSTs, with
nodes in red and blue, respectively, that contain correct answers
‘Samuel Umtiti’ and ‘Blaise Matuidi’ (underlined). Algorithms for
computing GSTs typically operate on undirected graphs with non-
negative edge weights reflecting costs. Hence, we cast the quasi KG
into an undirected graph by ignoring the orientation of edges, and
we convert the [0, 1]-normalized similarity-score weights into cost
weights by setting cost = 1 − score . Node weights were used for
cornerstone selection and are disregarded for the GST computation.
Algorithm. Steiner trees are among the classical NP-complete
problems, and this holds for the GST problem too. However, the
problem has tractable fixed-parameter complexity when the num-
ber of terminals is treated as a constant [22], and there are also
good polynomial-time approximation algorithms extensively ap-
plied in the area of keyword search over databases [20, 36, 41]. In
QUEST, we build on the exact-solution method by [20], which uses
dynamic programming and has exponential run-time in the length
of the question but hasO(n logn) complexity in the graph size. The
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algorithm works as follows. Starting from each terminal, trees are
iteratively grown by adding least-cost edges from their neighbor-
hoods. Trees are periodically merged when common vertices are
encountered. A priority queue (implemented by a Fibonacci heap)
holds all trees in increasing order of tree costs, and maintains the
set of terminals a specific tree covers. The process stops when a tree
is found that covers all terminals (contains at least one terminal per
group) for the GST problem. This bottom-up dynamic programming
approach using a priority queue ensures optimality of the result.
Relaxation to GST-k. In our setting, we are actually interested in
the top-k trees in ascending order of cost [20, 41]. This is for robust-
ness, as the best tree may be a graph with cornerstones only; then
we cannot read off any answers from the GST. Moreover, comput-
ing several trees provides us with a good way of ranking multiple
candidate answers (see ‘Answer scoring’ below). Therefore, we use
the extended GST-k algorithm of [20], where k is typically small
(≤ 50). The priority-queue-based algorithm naturally supports this
top-k computation (fetch top-k trees instead of the top-1 only).

4.2 Filtering and Ranking Answers
The GSTs may contain several candidate answers, and so it is crucial
to filter and rank the candidates.
Answer filtering. We first remove all candidates that are not en-
tities (i.e., relation and type nodes are not considered). The main
pruning is based on lexical type checking. For a given question,
we infer its expected answer type using lexico-syntactic patterns
from [72]. This expected answer type is then compared to the types
of a candidate answer (type node labels attached to entity candi-
date), using cosine similarity between word2vec embeddings [45].
Similarity between multi-word phrases is performed by first av-
eraging individual word vectors in the phrase [65], followed by
computing the cosine similarity between the phrase embeddings.
Candidates that do not have types with similarity above a threshold
are dropped.
Answer aggregation. Since answers are surface forms extracted
from text, we need to reduce redundancy (e.g. to avoid returning
both ‘Umtiti’ and ‘Samuel Umtiti’ to the user). QUEST aggregates
answers based on (i) token sequences, and (ii) alignments. For (i),
two answers are merged if one is a subsequence (not necessarily
substring) of another (e.g., ‘Paul Labile Pogba’ and ‘Paul Pogba’). For
(ii), two answers are merged if there is an alignment edge between
them. This indicates that they are possibly aliases of the same entity
(e.g., ‘Christiano Ronaldo’ and ‘CR7’).
Answer scoring. After aggregation, answers are scored and ranked
by exploiting their presence in multiple GSTs. However, instead
of simple counts, we consider a weighted sum by considering the
inverses of the tree cost as the weight for a GST. We examine effects
of alternatives like total node weights in these GSTs, and distances
of answers to cornerstones, in our empirical analysis later (Sec. 7).

5 EVALUATION SETUP
5.1 Rationale for Experiments
The key hypotheses that we test in experiments is that QUEST can
handle complex questions that involvemultiple entities and relations,

and can cope with the noise in the quasi KG. Popular QA bench-
marks like WebQuestions [7], SimpleQuestions [10], TREC [2, 19],
QALD [60], or SQuAD [48], are not suitable, as they mostly focus
on answering simple questions or understanding natural language
passages. In contrast, we are interested in computing direct answers
for ad hoc information needs by advanced users, tapping into all
kinds of contents including informal text and Web tables. There-
fore, we adopted the benchmark from [1] for structurally complex
questions, and we compiled a new benchmark of complex questions
from trending topics with questions that stress the dynamic and
ad hoc nature of evolving user interests. Further, questions in both
of these benchmarks indeed require stitching information across
multiple documents for faithful answering, another desideratum for
evaluating the capability of QUEST.

As for baselines against which we compare QUEST, we focus on
unsupervised and distantly supervised methods. The latter include
neural QA models which are pre-trained on large question-answer
collections, with additional input from word embeddings. These
methods are well-trained for QA in general, but not biased towards
specific benchmark collections.We are interested in robust behavior
for ad hoc questions, to reflect the rapid evolution and unpredictabil-
ity of topics in questions on the open Web. Hence this focus on
unsupervised and distantly supervised methods.
5.2 Question Benchmarks
Complex questions from WikiAnswers (CQ-W). This is a set
of 150 complex fact-centric questions [1] paired with answers that
are extracted from a curated WikiAnswers corpus [23]. Questions
in this dataset were specifically sampled to have multiple entities
and/or relations. Unfortunately, baselines in [1] cannot be adopted
here, as they only run over KGs and cannot operate over text.
Complex questions from Trends (CQ-T). To study situations
where KG incompleteness is a major concern, we created a new
benchmark of 150 complex questions using emerging entities from
Google Trends, including entities not having Wikipedia pages at
all. Five students visited https://trends.google.com/trends/, where
‘trending searches’ lists topics of current interest (with USA as lo-
cation). For every trending topic, the students looked at ‘related
queries’ by Google users on this topic. Wherever possible, the stu-
dents then selected a fact-centric information need from these
queries (e.g., “caitlin mchugh engaged” ) and augmented it into a
more complex question (e.g., Q: “Which TV actress was engaged
to John Stamos and had earlier played in the Vampire Diaries?” ;
A: ‘Caitlin McHugh’). The added nugget of complexity is a mix of
conjunctive, compositional, temporal, and other constraints. Finally,
the students provided answers by searching the Web. Each student
contributed 30 (question, answer) pairs.

Wikidata is one of the most popular KGs today: we found that
29% of questions in CQ-T do not have their answer entities in Wiki-
data and 50% do not have Wikidata facts connecting question and
answer entities (as of January 2019). This is often due to relations
like (interviewed, co-appeared in event, married at venue, etc.) which
are of popular interest yet beyond most KGs. This illustrates KG-
incompleteness and motivates our focus on answering from dy-
namically retrieved Web text.

Answers to all 300 questions are manually augmented with
aliases (2.5 aliases per original gold answer on average) to be
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Dataset #Nodes #Edges

Entity Relation Type Triple Alignment Type

CQ-W 501 466 28 1.2k 5.2k 434
CQ-T 472 375 23 1k 13.2k 436

Table 1: Basic properties of quasi KGs, averaged over all questions.
fair to competing systems for extracting correct alternative surface
forms (e.g., ‘Cristiano Ronaldo dos Santos Aveiro’ is expanded with
subsequences ‘Cristiano Ronaldo’, ‘Ronaldo’, etc.). The mean number
of unique gold answers is about 1.42 (243/300 questions have ex-
actly one correct answer). We verified that almost all questions (93%
in CQ-W and 98% in CQ-T) require aggregating multi-document
evidence: there are no single pages in our corpora containing all
the information needed to accurately answer them.

5.3 Text Corpora and Quasi KGs
To decouple system performance from the choice of text corpora,
we experimented with a number of scenarios for sampling pseudo-
relevant documents using Web search results [55]:
• Top-10 documents from Google Web search, where the whole
question was issued as a keyword query;

• To weaken the effect of Google’s (usually high-quality) ranking
from the QA performance, we constructed different settings for
stratified sampling [61] of 10 documents: we take the top-x1%
of documents from the original top-10 ranking, then sample
another x2% of our pool randomly from ranks (0.1 ∗ x1 + 1) to
25, then take the remaining x3% from ranks 26 to 50 (avoiding
duplicates wherever applicable), such that x1 ≥ x2 ≥ x3. We use
the following five configurations of x1−x2−x3, with gradually
“degrading” ranking quality: 60− 30− 10 (Strata 1), 50− 40− 10
(Strata 2), 50 − 30 − 20 (Strata 3), 40 − 40 − 20 (Strata 4), and
40 − 30 − 30 (Strata 5).

These varied choices of strata reduce influence of the underlying
search engine. Stanford CoreNLP [43] was used for POS tagging
and NER on all documents.
Similarities and thresholds. Entity similarity scores for align-
ment edges were computed using the AIDA dictionary [31]. It
consists of a large lexicon (an updated version was obtained from
the authors of [31]) of (entity, mention) pairs, where a mention
refers to the surface form in the text (like our node labels), and a
canonicalized entity is specified by its Wikipedia identifier. The
similarity between two mentions is computed as the Jaccard in-
dex of the sets of entities they refer to. All other similarities, for
relations and types, require soft matching and are computed using
cosine similarities between 300-dimensional word/phrase embed-
dings based on word2vec [45]. All three thresholds are set to 0.5: (i)
cornerstone selection, (ii) alignment edge insertion, and (iii) answer
merging; no tuning is involved. The number of top-k GSTs to use
was set to 50 (effect of this choice is examined later in Sec. 7). Note
that 50 is a very small fraction of all possible trees in the graph
containing the cornerstones (mean = 983, max ≃ 13k). Summary
statistics of our noisy quasi KGs are in Table 1.

5.4 Baselines and Metrics
Neural QA. As a strong neural baseline, we select DrQA [12], a
very recent open-source QA system. DrQA has large-scale training

on SQuAD [48], and is based on recurrent neural networks and
multitask learning. It was designed for reading comprehension,
but it can select relevant documents from a corpus and extract the
best answer span from these documents. DrQA and other baselines
run on the same set of input documents that QUEST is exposed to.
Specifically, DrQA has two components DocumentRetriever and
DocumentReader, which are both run on the top-10 and stratified
corpora from Google Web search.
Graph-based algorithms. As a competitor to the GST algorithm
of QUEST, we adapted the breadth-first search (BFS) phase of the
STAR algorithm [38] for entity relatedness in curated KGs. The full
STAR method can only work in the presence of a taxonomic back-
bone in the KG, which is inapplicable in our case. The BFS baseline
runs graph-traversal iterators from each terminal node, invoked
in a round-robin manner. As soon as the iterators meet, a result
is constructed. To respect sets of cornerstones, we require only
one iterator from each group of terminals to meet for a candidate
answer. Results are ranked in descending order of their weighted
distances from the cornerstones in the BFS tree.

To examine the importance of the optimal subgraph identified
by the GST, we also compare results using shortest paths as follows.
We compute shortest paths in the graph between every pair of
terminals, where each node in a pair is from a different cornerstone
group. Every non-terminal that lies on any shortest path is a can-
didate answer. An answer is scored by the numbers of different
shortest paths that it lies on, and ranked in descending order of
these scores. For both BFS and ShortestPaths, for fairness, answers
are post-processed by the same type-based filtering and aggregation
as in QUEST, before applying respective answer ranking strategies.
Metrics. We use the Mean Reciprocal Rank (MRR) as the main
metric.We also report other keymetrics for QA: Precision@1 (P@1),
which measures the fraction of times a correct answer was obtained
at rank 1, and Hit@5, which is 1 when one of the top-5 results is a
gold answer and 0 otherwise.

6 MAIN RESULTS AND INSIGHTS
Wepresent ourmain results in Table 2, and discuss key insights from
these comparisons. Our main experiments test the postulates:
• QUEST outperforms its neural and graph baselines;
• Performance of QUEST is robust to corpus perturbations;
• Multi-document evidence is vital for retrieving correct answers;
• Group Steiner Trees are key to locating answers in quasi KGs.

Systematic improvement over state-of-the-art. Looking at the
“Top” and “Strata” columns (Sec. 5.3) for both benchmarks, we find
that QUEST significantly and consistently outperforms the neural
baseline DrQA, and other graph-based methods, at almost all set-
tings. This performance of QUEST is clearly robust to variations in
the underlying corpus. We attribute the success of the proposed
method to its unique ability to stitch facts from more than one
source, and the powerful GST algorithm that discovers answers
in the large and very noisy quasi KGs. The task of fetching crisp
text answers to complex questions directly over Web corpora is
generally a very difficult one; this is reflected by relatively low
values of MRR (best numbers of 0.355 for CQ-W and 0.467 for CQ-T
in top-10 corpora).
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Method Metric ComplexQuestions from WikiAnswers (CQ-W) ComplexQuestions from Trends (CQ-T)

Top Strata-1 Strata-2 Strata-3 Strata-4 Strata-5 Top Strata-1 Strata-2 Strata-3 Strata-4 Strata-5

QUEST

MRR

0.355* 0.380* 0.340* 0.302* 0.356* 0.318* 0.467* 0.436* 0.426* 0.460* 0.409* 0.384*
DrQA [12] 0.226 0.237 0.257 0.256 0.215 0.248 0.355 0.330 0.356 0.369 0.365 0.380
BFS [38] 0.249 0.256 0.266 0.212 0.219 0.254 0.287 0.256 0.265 0.259 0.219 0.201
ShortestPaths 0.240 0.261 0.249 0.237 0.259 0.270 0.266 0.224 0.248 0.219 0.232 0.222

QUEST

P@1

0.268* 0.315 0.262 0.216 0.258* 0.216 0.394* 0.360* 0.347* 0.377* 0.333* 0.288
DrQA [12] 0.184 0.199 0.221 0.215 0.172 0.200 0.286 0.267 0.287 0.300 0.287 0.320
BFS [38] 0.160 0.167 0.193 0.113 0.100 0.147 0.210 0.170 0.180 0.180 0.140 0.130
ShortestPaths 0.147 0.173 0.193 0.140 0.147 0.187 0.190 0.140 0.160 0.160 0.150 0.130

QUEST

Hit@5

0.376 0.396 0.356 0.344 0.401 0.358 0.531 0.496* 0.510 0.500 0.503 0.459
DrQA [12] 0.313 0.315 0.322 0.322 0.303 0.340 0.453 0.440 0.473 0.487 0.480 0.480
BFS [38] 0.360 0.353 0.347 0.327 0.327 0.360 0.380 0.360 0.370 0.360 0.310 0.320
ShortestPaths 0.347 0.367 0.387 0.327 0.393 0.340 0.350 0.320 0.340 0.310 0.330 0.290

Table 2: Performance comparison of methods on top-10 and stratified search results from the Web. For every metric, the best value per
column is in bold. “∗” denotes statistical significance of QUEST over DrQA, with p-value ≤ 0.05 for a one-tailed paired t-test.

Benchmark CQ-W CQ-T

GST Ranks Avg. #Docs #Q’s with Avg. #Docs #Q’s with
in GST A in GST in GST A in GST

01 − 10 2.637 48 3.139 52
11 − 20 2.789 56 3.156 53
21 − 30 2.778 54 3.245 55
31 − 40 2.833 54 3.267 54
41 − 50 2.882 57 3.278 51

#Docs in GST Avg. Rank #Q’s with Avg. Rank #Q’s with
of GST A in GST of GST A in GST

1 24.525 12 22.124 7
2 27.003 37 24.216 23
3 25.777 53 27.165 50
4 27.064 36 27.069 49
5 29.291 25 26.554 29

Table 3: Effect of multi-document evidence shown via edge contri-
butions by distinct documents to GSTs (on top-10 corpora).

Effect of corpus variations. Exact reliance on Google’s top-10
Web search results is not a prerequisite: we show this by weakening
the search ranking with stratified sampling (as discussed in Sec. 5.3)
by intentionally introducing controlled amounts of noisy pages in
the pseudorelevant corpora. Results are in columns labeled “Strata-
1” through “Strata-5” in Table 2. The key observation is the across-
the-board superiority of QUEST, and that it was able to cope well
with this injected noise. Note that Google’s ranking may not always
be perfect, as the stratified configuration 60 − 30 − 10 (Strata 1)
resulted in slightly better performance than the top-10 (e. g. MRR of
0.380 vs. 0.355 on CQ-W forQUEST). We also experimented with the
setting where search was restricted to Google News, and observed
similar trends (0.261MRR for QUEST vs. 0.227 for DrQA on top-10,
aggregated over CQ-W and CQ-T). Google search over Wikipedia
only turned out in favor of DrQA (0.244 MRR vs. 0.189 for QUEST,
top-10). This is due to the low redundancy of facts in Wikipedia,
that hurts QUEST (explained shortly), and the Wikipedia-specific
training of DrQA.
Usage ofmulti-document evidence.QUEST improved overDrQA
on both benchmarks (MRR of 0.355 vs. 0.226 on CQ-W; 0.467 vs.
0.355 on CQ-T, top-10), even though the latter is a supervised deep

learning method trained on the large SQuAD dataset. This is be-
cause reading comprehension (RC) QA systems search for the best
answer span within a passage, and will not work well unless the pas-
sage matches the question tokens and contains the answer. While
DrQA can additionally select a good set of documents from a col-
lection, it still relies on the best document to extract the answer
from. QUEST, by joining fragments of evidence across documents
via GSTs, thus improves over DrQA without any training or tuning.
QUEST benefits from multi-document evidence in two ways:
• Confidence in an answer increases when all conditions for cor-
rectness are indeed satisfiable (and found) only when looking
at multiple documents. This increases the answer’s likelihood
of appearing in some GST.

• Confidence in an answer increases when it is spotted in multiple
documents. This increases its likelihood of appearing in the top-
k GSTs, as presence in multiple documents increases weights
and lowers costs of the corresponding edges.

A detailed investigation of the use of multi-document information
is presented in Table 3. We make the following observations: (i)
Looking at the “Avg. #Docs in GST” columns in the upper half, we
see that considering the top-50 GSTs is worthwhile as all the bins
combine evidence from multiple (2+ on average) documents. This
is measured by labeling edges in GSTs with documents (identifiers)
that contribute the corresponding edges. (ii) Moreover, they also
contain the correct answer uniformly often (corresponding “#Q’s
with A in GST” columns; 48 − 57 for CQ-W, 51 − 55 for CQ-T).
(iii) The bottom half of the table inspects the inverse phenomenon,
and finds that considering only the top few GSTs is not sufficient
for aggregating multi-document evidence. (iv) Finally, there is a
sweet spot for GSTs aggregating nuggets from multiple documents
to contain correct answers, and this turns out to be around three
documents (see corresponding “#Q’s with A in GST” columns). This,
however, is an effect of our questions in our benchmarks, that are
not complex enough to require stitching evidence across more than
three documents.

Deep-learning-based RC methods over text can handle syntactic
complexity very well, but are typically restricted to identifying
answer spans from a single text passage. DrQA could not properly
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Questions from CQ-W (P@1 = 1)

Q:“which actor is married to kaaren verne and played in casablanca?”
A: ‘Peter Lorre’
Q:“what river flows through washington and oregon?”
A: ‘Columbia River’

Q: “what movie did russell crowe and denzel washington work on together?”
A: ‘American Gangster’

Questions from CQ-T (P@1 = 1)

Q: “where did sylvie vartan meet her future husband johnny hallyday?”
A: ‘Paris Olympia Hall’

Q: “which aspiring model split with chloe moretz and is dating lexi wood?”
A: ‘Brooklyn Beckham’

Q:“which japanese baseball player was contracted for los angeles angels
who also played for hokkaido nippon-ham fighters?”
A: ‘Shohei Ohtani’

Table 4: Examples of correctly answered questions by QUEST but
not by any of the baselines (on top-10 corpora).

tap the answer evidence that comes from combining cues spread
across multiple documents.
Impact of Steiner Trees. Observing the graph-based methods,
QUEST is clearly better than both BFS and ShortestPaths, obtaining
correct answers at better ranks. This demonstrates that computing
cost-optimal GSTs is indeed crucial, and cannot be easily approxi-
mated by simpler methods. It is not simply the connectivity alone
that qualifies a node as a good answer, which is why the simpler
ShortestPathsmethod substantially loses against QUEST. Computing
the GST can be viewed as a joint disambiguation for all the semantic
items in the question, like entities and predicates in a KG.
Anecdotal results. To highlight the complexity of questions that
are within our reach, Table 4 shows representatives where QUEST
had the correct answer at the very first rank, but all the baselines
failed. Note that some of the questions refer to long-tail entities
not covered yet by KGs like Wikidata, and also have predicates like
met, split, and dated, which are beyond the scope of KGs.

7 ANALYSIS AND DISCUSSION
Graph ablation experiments. The noisy graph is the backbone
of QUEST and has several components working in tandem. We sys-
tematically analyzed this interplay of components by deactivating
each separately (Table 5). The key insight is that type nodes and
edges are essential to the success of QUEST; removing them results
in degraded performance. Next, using informative edge weights
driven by document proximity and alignment levels, are another
vital element (MRR drops with degenerate edge weights). Removing
alignment edges also adversely affects performance.
Answer ranking variants. Our answer ranking strategy is moti-
vated by considering a weighted (with reciprocal of tree cost) sum
for exploiting answer presence in multiple GSTs. Nevertheless, we
explored various alternatives to this choice, and observed (Table 5):
(i) just counting GSTs in which an answer is present is not enough;
(ii) reusing node weights for scoring trees with answers does not
really help; (iii) There is no additional benefit in zooming in to
consider the position of an answer within a GST ; nodes that are
the closest to cornerstones are not necessarily the best answers.

However, differences between the first four choices are not very
high: hence, QUEST is robust to slight ranking variants as long as
answer evidence across multiple GSTs is considered.
Error analysis. Failure cases for QUEST, and corresponding oc-
currences are shown in Table 5. We treat a case as an error when
QUEST cannot locate any correct answer in the top-5 (Hit@5= 0).
The first case suggests use of a better retrieval model, consider-
ing semantic matches. The second is a key reason for failure, and
demands an Open IE extractor with better fact recall. The third sce-
nario is mostly caused by matching wrong groups of cornerstones.
For example, matching relation ‘born’ in question with ‘lived’ in
the quasi KG; or ‘play’ (drama) intended as a noun, matching a
relation node ‘played’ (role). This can be improved with better NER,
lexicons, and similarity functions. Case (iv) happens due to pruning
by type mismatch. This calls for more informed prediction and
matching of expected answer types, and improving type extraction
from documents. Situation (v) indicates that improving the ranking
function is the most worthwhile effort for improving performance.
Effect of Open IE. QUEST’s noisy triple extractor results in quasi
KGs that contain the correct answer 85.2% of the times for CQ-W
(82.3% for CQ-T). If we use triples from Stanford OpenIE [3] to build
the quasi KG instead, the answer is found only 46.7% and 35.3%
times for CQ-W and CQ-T, respectively. Thus, in the context of QA,
losing information with precision-oriented, fewer triples, definitely
hurts more than the adding potentially many noisy ones.
Answering simple questions. On the popular WebQuestions
benchmark [7], QUEST was able to find a correct answer 54% of
the time, which is respectable in comparison to the best QA sys-
tems specifically trained for this setting of simple questions. GSTs
are augmented with 1-hop neighbors of terminals to handle two-
cornerstone (single-entity single-relation) questions.
Effect of threshold variations. There are three parameters in
QUEST: Number of GSTs k , the alignment edge insertion threshold
on node-node similarity, and cornerstone selection thresholds on
node weight. Variation of these parameters are shown with MRR at
cut-off ranks r = 1, 3, 5 in Fig. 2. We observe that: (i) going beyond
the chosen value of k = 50 gives only diminishing returns; (ii)
Fig. 2b shows that having several alignment edges in the graph
(corresponding to a very low threshold), actually helps improve
performance though apparently inviting noise; (iii) QUEST is not
really sensitive to cornerstone selection thresholds – the dark zone,
indicating good performance, is towards the interiors of the grid, but
broadly spread out: so most choices of non-extreme thresholds will
work out fine. The white zone in the top right corner corresponds
to setting both thresholds to very high values (no cornerstones
chosen, resulting in zero performance).
Run-time. QUEST computes answers with interactive response
times: the median run-time for computing GSTs was 1.5 seconds
(with a mean of about five seconds). All experiments were per-
formed with Java 8 on a Linux machine (RHEL-v6.3) using an Intel
Xeon E5 CPU with 256 GB RAM.

8 RELATEDWORK
QA over text. Classical approaches [49] extracted answers from
passages that matched most cue words from the question followed
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Graph configuration CQ-W CQ-T Answer ranking criterion CQ-W CQ-T Error scenario CQ-W CQ-T

Full configuration 0.355 0.467 Wted. sum of GSTs (inv. tree cost sum) 0.355 0.467 Ans. not in corpus 1% 7%
No types 0.321 0.384* Wted. sum of GSTs (node wt. sum) 0.318* 0.426* Ans. in corpus but not in quasi KG 23% 30%
Degenerate edge weights 0.282* 0.377* Count of GSTs 0.334 0.432* Ans. in quasi KG but not in top-50 GSTs 10% 6%
No entity alignment 0.329* 0.413* Wted. dist. to cornerstones 0.321* 0.417* Ans. in top-50 GSTs but not in candidates 1% 7%
No predicate alignment 0.337 0.403* Unwted. dist. to cornerstones 0.257* 0.372* Ans. in candidates but not in top-5 66% 49%

Table 5: Understanding QUEST’s mechanism with top-10 corpora. Left: Graph ablation (MRR); Middle: Answer ranking (MRR); Right:
Error analysis (Hit@5 = 0). Highest column values in the first two sections in bold. Significant drops from these values are shown with *.

0.15

0.20

0.25

0.30

0.35

1 5 10 50 100 500 All

Number of GSTs

M
et

ri
c 

V
al

ue

MRR@1
MRR@3
MRR@5

(a) No. of GSTs (k )

0.15

0.20

0.25

0.30

0.35

0 0.2 0.4 0.6 0.8 1

Alignment Edge Insertion Threshold

M
et

ri
c 

V
al

ue

MRR@1
MRR@3
MRR@5

(b) Alignment edge insertion threshold

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Relation Cornerstone Threshold

E
nt

ity
 C

or
ne

rs
to

ne
 T

hr
es

ho
ld

0.28

0.30

0.32

0.34

MRR@5

(c) Cornerstone selection thresholds

Figure 2: Robustness of QUEST to various system configuration parameters, on CQ-W with top-10 corpora (similar trends on CQ-T).

by statistical scoring. TREC ran a QA benchmarking series from
1999 to 2007, recently revived it as the LiveQA track. IBM Wat-
son [25] extended this paradigm by combining it with learned
models for special question types.
QA over KGs. The advent of large knowledge graphs like Free-
base [9], YAGO [53], DBpedia [4] and Wikidata [63] has given rise
to QA over KGs (overviews in [18, 59]). The goal is to translate
a natural language question into a structured query, typically in
the Semantic Web language SPARQL, that directly operates on the
entities and predicates of the underlying KG [18, 59]. Early work
on KG-QA built on paraphrase-based mappings and query tem-
plates that cover simple forms of questions that involve a single
entity predicate [7, 11, 23, 58, 67]. This line was further advanced
by [1, 5, 6, 24, 32], including the learning of templates from graph
patterns in the KG. However, reliance on templates prevents such
approaches from robustly coping with arbitrary syntactic formula-
tions. This has motivated deep learning methods with CNNs and
LSTMs [21, 33, 57, 66, 69]. These have been most successful on
benchmarks like WebQuestions [7] and QALD [60]. However, all
these methods critically build on sufficient amounts of training data
in the form of question-answer pairs. In contrast, QUEST is fully
unsupervised and neither needs templates nor training data.
QA over hybrid sources. Limitations of QA over KGs has led
to a revival of considering textual sources, in combination with
KGs [50, 54, 66]. Some methods like PARALEX [23] and OQA [24]
supported noisy KGs in the form of triple spaces compiled via
Open IE [27, 44] on Wikipedia articles or Web corpora. TupleInf [39]
extended and generalized PARALEX to complex questions, but is
limited to multiple-choice answer options and is thus inapplicable
for our task. TAQA [70] is another generalization of Open-IE-based
QA, by constructing a KG of n-tuples from Wikipedia full-text and
question-specific search results. Unfortunately this method is re-
stricted to questions with prepositional and adverbial constraints

only. [56] addressed complex questions by decomposing them into
a sequence of simple questions, but relies on training data obtained
via Amazon Mechanical Turk. Some methods start with KGs as a
source for candidate answers and use text corpora like Wikipedia
or ClueWeb as additional evidence [15, 54, 66], or start with answer
sentences from text corpora and combine these with KGs for entity
answers [50, 55]. Most of these are based on neural networks, and
are only designed for simple questions like those in the WebQues-
tions, SimpleQuestions, or WikiMovies benchmarks. In contrast,
QUEST can handle arbitrary kinds of complex questions and can con-
struct explanatory evidence for its answers – an unsolved concern
for neural methods.
Reading comprehension. This is a QA variation where a question
needs to be answered from a given text paragraph [34, 48]. This is
different from the fact-centric answer-finding task considered here,
with input from dynamically retrieved documents. Nevertheless,
we compared with, and outperformed, the state-of-the-art system
DrQA [12], which can both select relevant documents and extract
answers from them. Traditional fact-centric QA over text, and multi-
document reading comprehension are recently emerging as a joint
topic referred to as open-domain question answering [16, 42].

9 CONCLUSION
We presented QUEST, an unsupervised method for QA over dynam-
ically retrieved text corpora based on Group Steiner Trees. QUEST
substantially outperforms DrQA, a strong deep learning baseline,
on challenging benchmarks. As noisy content is unavoidable with
Web content and ad hoc questions for which extensive training
is infeasible, QUEST deliberately allows noise in its computational
pipeline, and copes with it using cross-document evidence, smart
answer detection, and graph-based ranking strategies. Adapting
QUEST to work over combinations of text-based quasi KGs and
curated KGs will be the focus of future studies.
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