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Abstract—In many scientific tasks we are interested in discov-
ering whether there exist any correlations in our data. This raises
many questions, such as how to reliably and interpretably measure
correlation between a multivariate set of attributes, how to do so
without having to make assumptions on distribution of the data
or the type of correlation, and, how to efficiently discover the top-
most reliably correlated attribute sets from data. In this paper
we answer these questions for discovery tasks in categorical data.

In particular, we propose a corrected-for-chance, consistent,
and efficient estimator for normalized total correlation, by which
we obtain a reliable, naturally interpretable, non-parametric
measure for correlation over multivariate sets. For the discovery
of the top-%£ correlated sets, we derive an effective algorithmic
framework based on a tight bounding function. This framework
offers exact, approximate, and heuristic search. Empirical evalua-
tion shows that already for small sample sizes the estimator leads
to low-regret optimization outcomes, while the algorithms are
shown to be highly effective for both large and high-dimensional
data. Through two case studies we confirm that our discovery
framework identifies interesting and meaningful correlations.

I. INTRODUCTION

Most data are multi-dimensional, and identifying lower-
dimensional correlated subsets of features is a fundamental
aspect in many data analysis tasks. Such correlations are useful
in many application, including the discovery of treatments
for diseases, network intrusions, earthquakes etc. [1[]. It is
important that we can measure correlations over multivariate
sets of features, as genes for example may reveal only a weak
correlation with a disease when considered individually, while
the correlation over a group of genes can be very strong [2].
It is also important that our measure is reliable, such that we
do not discover spurious correlations, that it is interpretable,
such that we know what a value means, and non-parametric,
such that we do not need to assume anything about the data
distribution or type of correlation. Last, but not least, as we
need to be able to efficiently discover the top-k most correlated
sets from possibly large quantities of data, we require an
effective search framework for it.

Information theory, with the tools to quantify uncertainty,
offers an attractive framework to do exactly this. We build on
the concept of total correlation, the multivariate extension of
mutual information, which non-parametrically quantifies the
amount of shared information in a set of random variables [3]].
Without appropriate normalization, however, scores over sets of
different cardinalities are not comparable, which is a problem
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Figure 1: Top correlated sets discovered on Tic-tac-toe.
Color indicates the selected cells, with red designating the
inclusion of X7 that corresponds to the binary outcome of the
game. In a nutshell, red and blue correlated sets can be inter-
preted as latent factors for win and loss, respectively. (Sec@

when searching for the top-most correlations [4]], [S]. We hence
consider normalized total correlation, which does not only
address this, but is also interpretable: a score of 0 means the
random variables in a set are statistically independent, and a
score of 1 that there exists a variable that “explains” all others.

Although theoretically sound, in practice normalized total
correlation is unreliable when we estimate it from empirical
data: due to sparsity the plug-in estimator leads to chance-
inflated estimates [6]]. This is particularly bad in our setting,
as the data sparsity induced by the increasingly larger sets of
variables we have to consider during optimization, can lead
to many false discoveries (see Fig. [2| for a demonstration).
Although its scores are comparable, this does not mean that
normalized total correlation is easy to optimize; the score is
neither monotone, nor submodular, and hence the resulting
combinatorial optimization problem for discovering the top
correlated sets is difficult to solve efficiently.

To address each of these issues, we build upon the re-
cent advances on deriving corrected-for-chance information-



theoretic estimators well-suited for optimization [7]], [8]], and
propose a reliable and efficient estimator for normalized total
correlation. The performance of this estimator is not hindered
by data sparsity. Furthermore, we enable effective exhaustive
and heuristic algorithms for the discovery of the top correlated
sets by exploiting various structural properties of the estimator
proposed. Experimental evaluation shows that the estimator
has attractive statistical properties, the algorithms proposed
are indeed effective on a wide range of benchmark data, and
finally, concrete findings in two example applications show that
our framework discovers interesting and sensible information
(see Fig. [[). Our main contributions are the following: we
i) propose a consistent, corrected-for-chance, and efficient
estimator for the normalized total correlation (Sec. ,
ii) provide effective algorithms for exact, approximate, and
heuristic search (Sec. , and finally
iii) perform empirical evaluation on a wide range of real and
synthetic datasets (Sec. [V).

Clearly, we are far from the first to consider mining correlated
sets from categorical data. Existing methods, however, all have
significant drawbacks. Many methods, are primarily defined
for binary data and measure only pairwise associations with
interestingess functions such as x? [9], all-confidence [/10]],
h-confidence [11]], or mutual information [1]. By considering
only pairwise associations, higher-order interactions among the
features are neglected. In addition, data transformations from
categorical attributes to boolean may incur information loss.
Finally, such methods are parameterized with various thresholds,
e.g., minimum all-confidence, leading to an uncontrollable
output size, i.e., they might miss interesting correlations or
receive too many. In a nutshell, we find that correlation mining
methods, although relevant for their own respective applications,
lack a comprehensive formalization of correlation, as well
as parameter-free, single-objective optimization problems for
categorical data like we propose here. Total correlation has been
used in other unsupervised scenarios, such as learning latent rep-
resentations [12]], measuring correlation in real-valued data [4],
[S], and mining high order interactions in binary data [2]].

We start with preliminaries and problem definition in Sec.
propose our estimator in Sec. [IIIl our algorithms in Sec.
and proceed with the evaluation in Sec. [V] We round up with
a concluding discussion in Sec. [VI]

II. PROBLEM DEFINITION

We consider data D,, consisting of n i.i.d. samples from a
set of d categorical random variables Z = {X7,..., X4}, with
joint distribution p(X1,..., X,4), domains Vy,, and domain
sizes Sx, = |Vx,|. We are interested in discovering subsets
X C 7 in D,, that exhibit high correlation/redundancy with
respect to the unsupervised information-theoretic concept of
total correlation introduced by Watanabe [3]].

The total correlation for a set of variables X =

{X1,...,X,,} is defined as
W)=Y (H(X)) —HX) =Y 1A X))
XeXx =2

where X; represents the set {X; € X: j < i < m}, with &)
being the empty set. Here,  denotes the Shannon entropy
defined as H(X) = -3 .y, p(z)logp(r) for random
variable X, and quantifies its uncertainty in bits of information,
assuming logarithm with base 2 [[13]]. Also, H(X | Y") denotes
the conditional entropy of X given another random variable
Y,ie, HX | Y) = ZyGVY p(W)H(X | Y = y), and
quantifies the uncertainty of X conditioned on Y. Lastly,
I(X;Y)=H(X)—H(X|Y) is the mutual information, and
measures the amount of shared information between X and Y.
Total correlation can be expressed as the KL-Divergence be-
tween the joint p(X’) and the product of marginals [ ]y , p(X).
Note that total correlation is order invariant as a function of p.

Essentially, total correlation is a multivariate correla-
tion/redundancy measure quantifying the total amount of
shared information in a set of random variables. It holds that
W(X) > 0, with equality if and only if all variables X € X
are statistically independent, and is monotonically increasing
with the subset relation, i.e., for sets of variables X and X’
with X C X7, it holds that W (X) < W (X").

Total correlation, however, is not suitable for comparing the
degree of correlation between different sets of variables, since
cardinalities, joint and marginal entropies, all vary. In addition,
the monotonicity property implies that larger sets are more
preferable as solutions, even in situations where W(X') =
W(X) + ¢ for sets X C X’. This introduces redundancy and
might hinder next steps of the analysis, such as visualizations.
Finally, total correlation lacks an intuitive and intepretable scale,
e.g., in [0, 1], that would facilitate the process to understand the
results and reason about. These can be resolved by expressing
how far the correlation in a set of variables is from the scenario
of them being maximally correlated. To achieve this, we present
the following proposition.

Proposition 1. Given a set of variables X = {X;, ...
we have that

a) W(X) <3 xex H(X) —maxxex H(X),

b) with equality iff 3X; € X s.t., X; = f(X;), VX, € X.

aXm};

Proof. Let us first recall a few key properties regarding
Shannon entropy (e.g., [14, Ch. 2]). For two random variables
X,Y, we have that H(X|Y) = H(X), if and only if
X UL Y. Moreover, H(X |Y) = 0 if and only if X = f(Y),
in the statistical sense that for all x+ € Vy, there exists
y € Vy such that p(X = z|Y = y) = 1. In addition,
Shannon entropy has the following chain rule decomposition,
H(X)=Y", H(X;|X;_1), and is monotonically increasing
with the subset relation, i.e., if X C &”, then H(X') < H(X").

a) We upper-bound W (X) by lower bounding H(X). Since
Shannon entropy is monotonically increasing with the subset
relation, we have that H(X) > maxxecx H(X), and hence
W(X) <> xexr H(X) —maxxex H(X).

b) Suppose that W (&X') = > . H(X) —maxxex H(X).
Then H(X) = maxxecx H(X) = H(X,) for some g € [1,m].
Using the chain rule, and since this decomposition is order-
invariant, it is clear that H(X; | X,) = 0 for all X; € X. This
is possible if and only if X; = f(X,) for all X; € X.
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Figure 2: Correlation-by-chance. Estimated total correlation
for variable set X' of increasing cardinality. All variables are
uniformly and independently sampled with domain size 4 and
sample size 1000. Population value for total correlation is 0.
Correlation increases when naive estimator I is used, but not
for the corrected-for-chance fo. ( [8]], also defined in Sec.

Conversely, suppose there exists X, € X s.t, X; =
f(X,),VX; € X. Hence, we have that H (X | X,;) = 0 for all
X, € X, and H(X) = H(X,). Now, X, = maxxecx H(X),
i.e., X, must be the variable with the highest entropy, hence
W(X) =3 vexr HX) — maxxex H(X). O

We now define W(X) =Y vy H(X) — maxxex H(X),
and proceed to define the normalized total correlation as

w(X) = W(X)/W(x)

for which it holds that w(X) € [0, 1], with 0 being the case
where all X € X are statistically independent, and 1 when
there exists a variable that “explains” all others By quantifying
the percentage of correlation within X, the score is now better
interpretable, as well as comparable across the different variable
sets with varying joint and marginal entropies.

The data D,, induce an empirical distribution p defined
using the empirical counts of values in D,,, from which
plug-in estimators can be derived for all the aforementioned
quantities, i.e., H ,f , W,zi). These estimators, however, are
known to have biases that depend on the domain sizes
of the variables involved [15]], with mutual information, in
particular, having a positive bias. While it is easier in general to
obtain good estimates for marginal quantities, total correlation
involves mutual information terms that need to be estimated for
increasingly larger sets of variables. This can lead to situations
with arbitrary estimates (see Fig. 2] for a demonstration).

Even if a more suitable estimator was available, the result-
ing combinatorial optimization problem for finding the top
correlated sets X" in D,, is in practice infeasible for naive
solutions. Hence, in order to have an overall useful method for
our task, we need to a) derive a corrected-for-chance estimator
w’ for w, and b) find an effective solution to the optimization
problem by exploiting structural properties of @’. We present
solutions to these in Sec. [[I] and Sec. [V] respectively.

Inote that the bound for total correlation is in general known in the literature,
e.g., [3]. However, a formal proof for the bound is often missing, which we
present here for both self-containment, and to better understand its properties.

III. RELIABLE NORMALIZED TOTAL CORRELATION

In this section we derive a corrected for chance, consistent,
and efficient to compute estimator for the normalized total cor-
relation. The estimator follows the idea of correcting the plug-in
by subtracting values of suited null hypothesis models, leading
to either parametric (e.g., [7[]), or non-parametric solutions (e.g.,
[16]). Unlike the plug-in, such estimators give conservative
estimates for sparse data in high-dimensional spaces, making
them therefore well-suited for reliable optimization.

For the non-parametric case, Mandros et al. [§] propose an
estimator for mutual information defined as

I(X;Y)=1(X;Y) - BEo[I(X;Y)] ,

where Ey[I(X;Y)] is the expected value of I under the
permutation model [17, p. 214], a non-parametric inde-
pendence model for contingency tables that assumes fixed
marginal counts. The expected value under this model is equal
to Eo[[(X;Y)] = oes, [(X:Yo)/n1, where S, denotes the
symmetric group for n, i.e., the set of all bijections from
{1,...,n} to {1,...,n}, and Y, denotes the Y samples
permuted according to a o € .S,,. Exploiting symmetries, this
value can be computed in O(n max{Sx,Sy}) (see [18], [19]
for the computation, and [20]] for the complexity). For the rest
of this paper we denote Eo[I(X;Y)] with mo(X,Y,n).
Following the same non-parametric correction principle,

and assuming we can adequately estimate marginal entropies
H (X), we can define a corrected-for-chance estimator for the
normalized total correlation by plugging Iy and arrive at

Z (I(Xifl; X,L) - m()(Xi,h Xi, TL)) /W(X) .

i=2
However, unlike the plug-in w, this estimator violates the
order-invariance of total correlation since the correction mg
is not a function of p, but rather a function of domain sizes
and marginal counts. To ensure order-invariance, we select the
order of variables that leads to the most conservative estimate
for the normalized total correlation, which translates to the
order that maximizes the correction term, i.e.,

11)0()(') :Zizz 1:()(1—1, Xz)

W(X)

max ZZZQ mO(Xa(ifl) ) Xo’(i)a n)

o€Sm
W(X)
:/LD(X) - to(X, n) )

where X, denotes set X' ordered according to a o € .S,,.
Regarding efficiency, wy is clearly infeasible to compute in
practice. For a set of m variables, there are m — 1 calculations
of the permutation model with each subsequent calculation
having an increased cost (since domain sizes Sx, ,_,, can grow
exponentially with 7), and there are m! possible permutations
to find the maximum correction term, resulting in a total
complexity of O(m?(m — 1)!nSy). We dramatically reduce
this complexity by first replacing the exact calculation of the
expected value mg with an upper bound, and then propose a



relaxation to this bound such that we can efficiently find the
order * € S,, of variables maximizing the correction term.

Proposition 2 ( [16]], Thm. 7). For variables X,Y, with domain
sizes Sx, Sy, and sample size n, it holds that
n+ SxSy —Sx — Sy
n—1 '
We denote this upper bound with mg(X,Y,n), and the
corresponding correction term ¢5(X, n), i.e.,

mO(Xa Ya 7’L) < 10g

(X ’I’L) = max Zmo o(i—1) Xcr(z

oc€eSs m4

n)/W(x) .

Now, while the exact expected values have been replaced
with something more efficient, t5(X', ) as function of the joint
domain sizes Sx,,_,, remains infeasible: for every o € Sy,
and ¢ € [2,m], we need to compute the joint domain size of
Xo(i—1) with X, ;). We proceed to relax this requirement.

Assuming a strictly positive distribution p, i.e., p(X = x) >
0 for all X C 7 and x € Vy, then joint domain sizes can
be written as a product of marginal domain sizes, i.e., Sy =
[Ixcx Sx. Furthermore, a relaxation that considers only the
joint contribution of the variables in X, leads to the bound

n+ ~ Sx)Skx,
m(:)(XiflaXian) = log (HX;)fll ) 7
and to the following correction term
t=( —glelgx Zmo n)/W(X) .

In the following theorem we establish that this quantity is
both a consistent upper bound for ¢5, and efficient to compute
without explicitly considering all permutations o € .S,.

Theorem 1. For set of variables X = {X1,..., X}, it holds

a) t5(X,n) 2 t()(X,n)
c) Yo 2mo( U(Z 1) Xo(i), 1) is maximized for o* € Sp,

With Sx .,y 2 SXjup - 2 Sx

*(1) — o*(m)

Proof. For readability, we drop o as a subscript whenever clear
from the context.

a) We prove this statement by first showing that it holds for

any o € S;,. Given a 0 € S,,,, and any 7 € [2,m], we have

n+ SX1 HXEXL'71 SX

mg(Xi—1, Xj,n) =log

n—1
n+Sx, [I Sx— 1[I Sx—Sx,
XeX; 1 XeX; 1
>log T
n —
n+ SXi—l(SXi - 1) - SXi
> log 1
n —

:m()(Xifla szn) ’

since [[xcx ,Sx > Sx_, and log is a monoton-
ically increasing function. Because this holds for any
o € S, and ¢ € [2,m], then for the o* with

o* = argmax,cg, Z:’;Q mig(Xy(i—1), Xo (i), 1) We have that

> ieo Mg (Xow(im1), Xo= (1), n) is larger.

b) It follows from lim,,_ 10g<2”+‘11§) =0.

¢) Let us consider a o* € S, for which Sy iy 22
SX ,+(m» and any arbitrary o € .S,,,. We prove this statement by
doing a pairwise comparison between mg(Xo(i—1), Xo(i), 1)
and mg(Xo«(i—1), X5 (i), n) for any i € [2,m]. We have

n+ erxa*m Sx

m(:)(‘)(a* (i—1)» XU*(i)a n) - 1Og

n—1
>log nt HXGX;(M Sx
n—

=mg(Xs(i=1), Xo@i),n) ,

where the inequality follows from the fact that [T ¢y, ., Sx
is the product of the ¢ largest domain sizes. Since this
holds for any ¢ € S,, and ¢ € [2,m], then o* =
argmax,cg, 3 ;o M5(Xo(i-1), Xo(i), 1)- U

We now have an efficiently computable correction term
t5(X,n), going from an initial complexity of O(m?(m —
1)!nSy), to that of O(m + mlogm), where mlogm is for
sorting the domain sizes Sy, for X € X. In addition, as
an upper bound to tg, this correction is as conservative with
regards to its estimates, which is a design goal for reliability.
Finally, we arrive at the reliable normalized total correlation

W5 (X) = (X)) — t5(X,n) .

In addition to being very efficient, the consistency of the plug-
in H (see, e.g., [21]]), together with Th. implies that g
is a consistent estimator for the normalized total correlation.

The estimators discussed here are evaluated further for their
statistical properties in Sec. [V-A]

IV. OPTIMIZATION

Here, we provide algorithms for the following optimization
problem: given data D,, consisting of n i.i.d. samples of random
variables Z = {X,..., X4}, as well as a positive integer k,
find the top-k subsets AT, ..., A7 C I with

() = ma{iig (X): () > iy(X), X C T} .

Given the combinatorial nature of the problem, as well as
the recent hardness result for optimizing the reliable mutual
information I, [19], it seems unlikely that the optimization of
wg allows for a polynomial algorithm. While the complexity
of the optimization problem under consideration is an open
question, here we derive two practically efficient algorithms
for exhaustive and heuristic search.

As is common in hard combinatorial problems, we instantiate
the exact algorithm with the branch-and-bound framework (see,
e.g., [22, Chap. 12.4]). To recall the basics, branch-and-bound,
as the name suggests, consists of two main ingredients: a
strategy to enumerate some abstract search space (2, and an
admissible bound for the optimization function f: Q2 — R
at hand. The former is governed by the branch operator, a



function r : P(2) — P(Q2) that non-redundantly generates
the search space from some designated root element 1 € (,
ie., for all w € Q) there must be a unique sequence L =
Wi, ...,w; = w such that w; 41 € r(w;) fori=1,...,1— 1.
An admissible bounding function f, also known as
optimistic estimator, must guarantee the property f(w) >
max{f(w'): v € r*(w)}, where r*(w) denotes the set of all
w’ € Q) that can be generated from w by multiple applications
of r. The value f(w) is called the potential of element w. With
these, a branch-and-bound algorithm enumerates {2 starting
from L, tracks the best solution, and prunes expanding elements
with f that cannot yield an improvement over the best solution.
In addition, the framework provides the option of relaxing the
required result guarantee to that of an a-approximation for
accuracy parameter a € (0, 1]. Therefore, an o < 1 allows to
trade accuracy for efficiency in a principled manner.
Essentially a bounding function is a worse case scenario for
the maximum attainable score w5(X") for supersets of X" in
the enumerated search space. Hence, the ideal one would be

@2 (X) = max{ig(X'): X CX' CT} .

Efficiently computing this function, however, would imply
an efficient algorithm for the original optimization problem.
Instead, we shift our attention into independently deriving
tight bounds for the two terms of wgz(X), i.e., an upper
bound for w(X) and a lower bound for ¢5(X,n), in order
to arrive at a looser, but efficient to compute bounding
function. In our setting, however, it is not possible to both
derive tight bounds and also guarantee their admissibility for
arbitrarily enumerated search spaces. The difficulty stems from
the inability to “predict” their behavior with respect to the
subset relation—both numerators are monotonically increasing
functions, but this property does not extend together with the
normalizer W (X’). For example, for a X’ O X’ it might be that
t5(X’,n) > t5(X, n), but for a different superset X" O X’ that
t5(X",n) < t5(X,n). In other words, anything can happen.

As it turns out, under a more strict partial order we can
induce a certain structure into our problem that allow us to
derive tight, admissible bounds for both terms.

Definition 1. Given Z = {X1,..., X4}, we say that X' C T is
a low entropy extension of a X' C 7, denoted as X' Cpy AX’ ,if
X C X and forall X' € X'\ X, H(X') < minyex H(X).

We can guarantee that this partial order holds in the
enumerated search space by simply considering a decreasing-
entropy branching operator of the form

rg(X) = {XU{X}: H(X) < in H(X'),X e T\X} ,

i.e., it holds that X Cpyx X’ for all X’ € ry(X). We
now proceed with showing that under this partial order, the
correction term ¢ is monotonically increasing. First, we provide
the following required Lemma.

Lemma 1. For two fractions ¢/= and b/y of positive integers,
if /= < b/y, then it holds that o/« < (a+b)/(z+y).

Proof. We have

a b
—<-=ay<br=ay+ar <br+axr=
Yy

x
ay+ax _ ar+bx aly+z) _ xz(a+b)
w(zty) ~xlet+y)  wety) T a(zty)

a_ a+b 7
T x+y
concluding the proof. O

Theorem 2. For subsets X, X' of T with X Cy X', it holds
that t5(X,n) < t5(X',n).

Proof. Let X ={X1,...,Xn} and X' = X U Z, with Z =
{Z1,...,Z,}. Let us assume for simplicity and w.l.o.g. that
X is the variable with the maximum entropy in &X', and that
Sx, >--+> Sx,and Sz > .- > quﬁ In addition, let us
assume for now that minxcy Sx > maxzcz Sz.

Since X Cy X', X is also the largest entropic variable in
X', and because minx ¢y Sx > maxzcz Sz, we can separate
the contributions of & and Z and reformulate ¢5(X’,n) as

ity mg(Xicy, Xin) + 300 mg(X U 251, Z5,m)

it H(Xo) + 305 H(Z;)
Now let us use the notation a = > .-, mg(Xi-1, Xi,n),
b= 1mg(XYUZ1,Z;n), z =30, HX;), y =

Y H(Z;). We need to show that ;‘—Iz > 4,

As X Cy X', we have that Z;I'=1 H(Z;) is a sum of ¢ terms,
smaller than the m — 1 terms of > ., H(X;). In addition, and
by the definition of mj, the quantity 23:1 mg(XUZ;_1,Z;,n)
is a sum of ¢ terms larger than the m — 1 terms of
S, ms(X;—1, X5, n). Hence, the fraction b/y is larger than
that of a/z, and from Lem. , we have that ;—E > %

Now if it were not the case that minxcy Sx > maxzcz Sz,
i.e., there exist variables in Z with domain sizes larger than
those in X, then we could still write the numerator of ¢5(X”)
as two sums a’ and b’ with m — 1 and ¢ terms respectively,
and it would hold that @’ > a and b’ > b, and hence

/ /
a<a—|—b<a+b

—= )

T r+y Tty
concluding the proof. O

Following from the theorem, a trivial bounding function
can be derived using the upper bound 1 for w(X), i.e.,

(X)) (X — t5(2", )
<1- t(:)(X7n) = w(:)mon<X) ’

for all X’ that are low entropy extensions of X. It is clear,
however, that w5, . (X') is not tight: it upper bounds @ (X’) with
the maximum possible value for the normalized total correlation,
without taking into consideration both the correlation in X
so far, nor how “good” it might actually become for X’. We
derive a much tighter upper bound for w by further exploiting

2the former allows us to write the normalizer W (X) as 3™, H(X;), and
the latter to remove the max operator from the numerator of ¢5.



the structure of the enumerated space. We define Ry = {X:
H(X) < minyex H(X'), X € T\ X} to be the set of all
refinement elements of X', and w(X') the quantity

ST (X Xa) + Yxrep, HIXY)
W(X) + Cxreny HX)

i.e., the plug-in @ (X) after adding the marginal entropies of the
refinement elements of X. The following theorem establishes
that @w(X) is an upper bound to w(X’) with respect to Cg.

@(X) =

)

Theorem 3. For a X CT and any X' C T with X Cy X/, it
holds that w(X) > w(X").

Proof. Let X = {X1,..., X} and X' = X U Z, with Z =

{Z1,...,Z,}. We have
w(X,):Z?lszfh )+ X5 A(Xuzj 112;)
( )+Zj:1 ( j)
L Xit I(Xio Xa) + 320, H(Z;)
- W(X) + 325, H(Z))
S (i 17X)+E VH(Z)+ 3 HX)
X'ER
W(X)+ >0 H(Z) + Yxer,, HX)
DI I X+ S, B

W(X) + Xyren, HX)

where the first inequality follows from the fact that /(X;Y) <
min{H (X), H(Y)} for variables X and Y [14, Ch. 2], and
that X Cpr X', ie., [(XUZ;_1; Z;) < H(Z;) forall j € [1,q].
The second inequality follows from Lem. O

We can now define the tighter bounding function
Weper(X) = W(X) — t5(X,n), which has an extra O(|Rx|)
complexity compared to wg,,.(X). Note that in practice we
use both: first evaluate g, that we get for free by caching
t5 after computing g, and then proceed with g, if it fails.

The pseudocode in Algorithm [T] summarizes the resulting
exhaustive method for the discovery of reliable correlated sets.
For simplicity, we present the top-1 formulation. The algorithm
maintains a priority queue Q that holds the search frontier and
a current result set S throughout the search. As long as the
queue is not empty, the search continuous by expanding the
top element (line 5), updating the current result set (line 6),
pruning (line 7), and updating the queue (line 9). For heuristic
search, we consider the standard greedy algorithm, i.e., level-
wise search where only the best candidate is refined, coupled
with ry and g, for pruning.

Regarding practicalities, for branch-and-bound we use a
priority queue based on potential that leads to the best-first
variant. The branching operator r is equivalent to the standard
alphabetical enumeration with r(X) = {¥ U {X;}: ¢ >
max{j: X; € X},i < d} after initially sorting the input
variables in decreasing entropy order. Since w(X’) is undefined
for |X| < 1, we define potential 1 for |X| =1, and a score of

Algorithm 1 BNB: Given a set of input variables Z, function
w5, bounding function g, branching operator rg, and o €
(0,1], the algorithm returns the X* C Z satisfying wg(X™) >
amax{wg(X'): X' C I}

1: function BNB(Q, S)
2: if Q is empty then
3: return &
4 else
5: R =rg(top(Q))
6: X" = argmax{wz(X'): X' € RU{S}}
7: R’ = {X" € R: awg(X') > w5(X*)}
8: Q' =(Q\top(Q)) UR'
9: return BNB(Q', ')
10: X* = BNB({0},0)
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Figure 3: Average regret. Regret (7, pl2 0. 1 0 5]) for sample

sizes n = {10,...,100} and estimators T = {w Wo, Wp, W5 }-

0 for |X'| < 1. Moreover, the enumeration order allows for an
efficient incremental calculation of .

V. EVALUATION

In this section we empirically evaluate the proposed dis-
covery framework for correlated patterns. In particular, we
perform experiments on synthetic data in order to investigate
the performance of the estimators, we use a wide selection of
benchmark data to evaluate the performance of the algorithms
and bounding function wg, as well as provide concrete findings
in example exploratory tasks.

A. Estimator performance

Here we evaluate the performance of the estimators discussed
in this paper, i.e., the corrected-for-chance g, wyp, w5 proposed,
and the plug-in w. For this evaluation, we first create synthetic
data in the following way. We randomly and uniformly sample
joint probability distributions p(*) € P‘i b’ where P denotes
the set of all joint probability dlStI‘lbuthHS with é dependent
random variables and resulting w score in [a, b]. Each random
variable has a domain size of 3. For example, 73[%’0_3] is the
set of probability distributions p(X), X = {X1,..., X4}, with
Sx, =3, and w(X) € [0,0.3]. We augment these distributions
with 3 independent and uniformly distributed random variables,
also of domain size 3. Each p() ¢ Pffzyb] has then its own
set of 273 — 1 marginalized distributions for which we can
compute the w score. Note that due to the varying marginal
entropies H of the normalizer, it is not guaranteed that the full



(original) joint has the highest w, but rather that the maximum
is at least as large.

We consider dimensionalities d = 2, 3,4, and four different
regimes P[C(IJ.170.2)’ P[il).270‘3)’ P[C(l).3,0.4)’ P[‘éA 0.5)° representing
weak, low, medium, and high correlation We sample one
distribution for each combination, resulting in 12 different
distributions p(¥),i = 1,...,12. We consider data sizes n =
{10, 20, 30, ...,100}, and for each p) and n we sample 500
datasets according to p(*) and denote them as DS)J ,J € [1,500].
We pick n = {10, ...,100}, since the probability distributions
we consider are “small” in size. It is expected, given that all
estimators are consistent, that their behavior carries on for
larger sample sizes and distributions.

We choose regret to evaluate the estimators as it is an
accurate summary of essential properties for an estimator,
such as consistency, convergence, and generalization error. The
regret is defined as 7, (7,p") = E[w(X;) — w(X};, )],

2,7,M,T

where X represents the true maximizer of population p),
and X7, the maximizer in DS)J according to an estimator
T = {w, o, Wg, w5}, for which we use exhaustive search to
obtai The expected value is with respect to j € [1, 500]. We
average regrets across the different p(*) to obtain r,, (7, P[Z’;}]),

e.g., ro(T, 79[[02 ’g.]s]) would be the average regret of estimator 7

across all p(*) € 73[?(’)_0_5] and p() € P[%,o&]'

We start with Fig. [3|and plot 7, (7, ’P[[g_’f ’}0_ 5
regret across all p(*). We observe that in general, the corrected
estimators perform much better than the plug-in. They have
a smaller regret across all n, and for some n there is even a
factor of 5 improvement. In addition, they converge faster to
a regret close to 0. Regarding the efficient wg, we see that
despite the necessary relaxations, it has performance that is on
par with both wg and wg.

Next, in Fig. ] we plot the regrets averaged for the
different dimensionalities of the joint probability distribu-
tions, i.e., 7, (7, 77[20.1,05]) (left), 7, (7, 73[%_170'5}) (middle), and
T (T, 73[%_170.5]) (right). Under this different view, we see that
the plug-in estimator w has an increasing difficulty to converge
to 0 regret with respect to dimensionality, while the corrected
estimators do not exhibit this behavior, as expected. Among the
corrected, the differences are more profound for d = 2 with W
having worse performance. This “artifact” can be attributed to
the following behavior. For small n, not all 5 random variables
(2 dependent, 3 independent) get to have samples with domain
size 3, and hence, w5 that penalizes with the product of domain
sizes misses the 2 dependent variables when they are sampled
with domain size 3, but the independent ones with domain
size 2. In addition, for d = 2 the maximum is obtained for
the pair of the dependent variables, with its subsets having a
score of 0 (since they are singletons). We do not observe this

), i.e. the average

3note that randomly sampling joint distributions with high normalized total
correlation, e.g., in [0.5, 1], is in practice hard for increasing dimensionalities
since it requires that all conditional distributions are highly peaked. In addition,
this range is less challenging for estimators as it is easily separated from noise.

4the d + 3 variables are the input variables, the rows are the samples, and
an estimator is used as the function to be optimized

behavior for d = 3,4, for the simple fact that the subsets have
a non-zero score, hence contributing to better regret.

Finally, in Fig. [5] we plot the regrets averaged over two
“strengths” of correlation, low with p(¥) € 7‘”(7',79[274] )

[0.1,0.3)

(left) and relatively high p(®) € 7, (r, p[[g;;fg_ 5)) (right). Again,
the corrected estimators have better regref curves. Since their
correction is based on a null hypothesis model, they are
particularly well-suited for the scenario where the correlation
is low, i.e., closer to independence. The plug-in w on the other
hand, cannot distinguish between the chance effects, and hence,
has an almost flat curve as we can see in the left plot. However,
even where there is better separation with such effects, the
corrected estimators still outperform the plug-in.

Overall, we see that our proposed corrected-for-chance
estimators o, Wy, and wyg, clearly outperform the plug-in,
sometimes even by a factor of 5. In addition, we observe that
the efficiently computable w5 has statistical properties that are
on par with wy and wyg.

B. Optimization performance

In this section we investigate the performance of the
bounding function 5, and algorithms proposed for exhaustive
(BNB) and heuristic search (GREEDY) for the reliable nor-
malized total correlation wj. For the evaluation, we consider
benchmark data from the KEEL data repository [23]], and
particularly all classification datasets with no missing values
and d > 7, resulting in 49 datasets with n € [101, 1025010]
and d € [7,91], summarized in Table [} All metric attributes
are discretized in 5 equal-frequency bins. This experiment is
executed on a Intel Xeon E5-2643 v3 with 256 GB memory.
Our code is online for research purposesE]

We employ the two algorithms in order to retrieve the top
correlated set. For BNB, we set « to be the highest possible
in increments of 0.05 such that it terminates in less than 30
minutes, and report in Table |l| the runtime, the percentage of the
pruned search spaceE] the depth of the solution, the maximum
depth BNB had to selectively reach, and the quality w5 of
the top correlated set. For GREEDY we report runtime and the
difference of the quality for the top result with that from BNB.
We average runtimes over 3 independent executions.

We observe that BNB is highly efficient as it finds the
optimum solution in less than 30 minutes (i.e., o = 1) for 42
out of 49 datasets. In 30 of them, it takes less than a minute. For
all 49, it requires 77 seconds on average. The bounding function
W, 18 very effective in pruning, enabling the discovery of
optimum solutions on datasets such as coil2000 and move.
libras with 86 and 91 attributes, that with exhaustive search
would otherwise be impossible. In addition, an average of 5
maximum depth combined with an average solution size of 2.2,
shows that the synergy of wyg,., and enumerated search space
allows to selectively explore based on the structure of the data,
and not simply by cardinality. That is, it can potentially go to
higher levels for promising candidates.

Shttps://github.com/pmandros/wodiscovery
6defined as 100 — (100 * q)/2%, where q are the nodes BNB explored
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025 — 0.25 {z,0,b} with b denoting an empty cell, and X1 is the binary
~ 2020 & 020 outcome of the game for player with symbol x.
gz 015 s 015 We present in Fig. [T the top-9 results retrieved with 1. The
DE 0.10 0.10 input variables X;, 7 € [1,9] are mapped to their corresponding
= 0.05 0.0 board positions and color indicates the result. Red designates
0.00 0.00 the result set contains X19. We observe that top-1, 2, 8,9 are
all winning configurations, and top-3 has X5 from which the
majority of winning configurations go through. Top-4,5,6,7
Ficure 5: Regret curves averaged over “low” and &€ losing configurations, something that can be validated by

“high” correlation. Average regret r,, (7, P[[g"f ]0 3)) (left), and
[2,4] -
rn (T, P,

03 0_5]) (right), for sample sizes n = {10,...,100}
and estimators 7 = {0, Wy, Wg, W5}

The GREEDY algorithm requires only a couple of seconds
on the majority of the datasets. On average, it terminates after
3 seconds. In addition, the solutions produced by GREEDY
are almost optimal considering that there are only 2 negligible
cases where the two algorithms differ. In general, for a solution
on the second level GREEDY cannot “stray” enough. We do
observe, however, that even for solution cardinalities of 3 and
4, GREEDY solutions are identical to those of BNB.

Overall, both algorithms are very effective with w5, as a
bounding function. The BNB algorithm would be preferable in
scenarios were solution guarantees are required, while GREEDY
when efficiency is more important, e.g., on very large datasets.

C. Example discoveries

Last, we proceed with presenting concrete correlated sets
discovered on two applications: finding correlations associated
with win/loss on Tic-tac-toe, and identifying sets of co-
inhabitant European land mammals together with factors
affecting their coherence.

Tic-tac-toe is a game of two players where each player picks
a symbol from {z,0} and, taking turns, marks his symbol in
an unoccupied cell of a 3 x 3 game board. A player wins the
game if he marks 3 consecutive cells in a row, column, or
diagonal. A game can end in draw if the board configuration
does not allow for any winning move. The dataset consists
of 958 end game, winning configurations, i.e., there are no
draws. There are 10 input variables Z = { X7, ..., X0}, where
Xi,1 € [1,9] represent the cells of the board, taking values in

superimposing, for example, top-1 and top-4. The blue results
also appear to be four rotations of a unique configuration,
indicative of a potential common losing pattern. In a nutshell,
Wy identifies interesting “red” and “blue” correlated sets that
can act as latent factors for win and loss, respectively.

Regarding X;o, we should be expecting correlation with the
losing configurations in a similar manner as the winning ones.
This can be attributed to the fact that the losing configurations
are in general more “random” compared to winning, and this
combined with the small size of the dataset, cannot support a
“losing” top result of size 4.

As a further experiment, we use estimators w, Wy, Wy with
exhaustive search. We report that @ essentially orders the
results according to cardinality, i.e., the top-1 is all the input
variables Z, the next 9 are all subsets of Z with size 9 etc. For
wo and wg there is agreement with the top 4 of wg, but the
next 5 are all supersets of the top 2 with an extra cell. We find
the results of w5 to be more interesting in this case.

Lastly, we note that the nature of this game implies that the
cells are roughly independent, i.e., p(X1, ..., Xg) &~ H? p(X5),
and that subsets of these cells should become dependent the
moment they are conditioned on X;9. However, they can take
any of 3 values and hence, any dependence is expected to
be small. For example, the top-1 of w5 has score 0.08, and
when measured with the plug-in w, has a score of 0.12. These
two values are more indicative for the maximum amount of
correlation we should expect, in contrast to the value 0.36 for
the top-1 retrieved with w. To put it differently, 105 is able to
identify aspects of the “low” signal residing in this dataset.

We now shift our attention into data that contain a lot
more information, and particular the European land mammal
dataset [24]. The dataset contains presence/absence records
of 124 land mammals for a set of 2183 grid cells covering
Europe, where each cell is approximately 50 x 50 km. The



dataset also contains enviromental information, such as tem-
perature, precipitation, and elevation, which we discretize into
2 categories to reflect low and high.

In the top results we mainly recover coherent sets of
mammals that are categorized as small, i.e., in the families of
Insectivora, Rodentia, and Lagomorpha, and are endemic in
southern Europe and the European Alps. For example, the top-1
set with score 0.7 contains the Cretan spiny mouse and the
Cretan shrew, and top-2 with same score the Savi’s pine vole
and Crested porcupine, both rodents inhabiting Italy. Larger
sets include various species of shrews and rodents. Particularly
interesting is the set of the greater white-toothed shrew, the
Canarian shrew, and the Osorio shrew. The latter two appear
mainly in the Canary islands, while the former in central-west
Europe. This set could be used, for example, as an indicator that
Osorio shrew, originally described as a separate species, indeed
belongs to the shrew family [25]. Furthermore, we find that the
coherence of sets with large mammals depends on the presence
of environmental information. As an example, a set with score
0.45 contains two large mammals, moose and Arctic fox, along
with three rodents, wood lemming, Norway lemming, and grey
red-backed vole. All these inhabit Scandinavia. More coherent
sets of large mammals appear together with environmental
information, e.g., the set temperature, moose, European bison,
and wild goat, with score 0.37. We find that our analysis
is to a large extend in sync with that of Heikinheimo et
al., and particular the coherent sets of small mammals in
southern/central Europe, and the environmental effect on the
coherence of sets with large mammals [24].

VI. CONCLUSION

We considered the problem of measuring and efficiently
discovering interpretable correlated sets from data. We adopted
an information theoretic approach, and proposed a reliable and
efficient estimator for normalized total correlation. In addition,
we proposed effective algorithms for exhaustive and heuristic
search, enabled by a tight bounding function.

Regarding future work, we see many possibilities for
extensions and improvements. First, a similar framework could
be derived by finding other suitable estimators, e.g., based
on parametric solutions [7/|], and then developing efficient
algorithms for these estimators. Second, using a conditional
version of normalized total correlation would allow the discov-
ery of correlated sets with respect to control variables, e.g.,
for fairness. As an application, we could control with the top
results discovered in subsequent executions of the algorithm
and retrieve increasingly diverse results.

Regarding the algorithmic part, it could be possible to extend
the NP-Hardness proof of Mandros et al. [[19], and show that
the optimization problem under consideration is also NP-Hard.
Moreover, the recent algorithmic framework of Pennerath [26]
for computing entropic measures, could potentially be applied
here to efficiently discover results for larger & values.
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Table I: Datasets used in Sec together with the results of the experiment. The « values correspond to the maximum
possible approximation guarantee in increments of 0.05 such that branch-and-bound (BNB) finishes in less than 30 minutes.
Maximum search level is the maximum level that BNB had to selectively reach in order to find the solution, while solution
depth is the depth where the solution was found. Pruning percentage is the amount of search space reduced by the bounding
function and BNB. The last two columns correspond to the value of the top solution retrieved by BNB, and the difference with
the value of the top solution by GREEDY, respectively.

search level time(s) wg(X*)
dataset #rows  #attr. o« max sol.  prune% BNB  GREEDY BNB  BNB — GREEDY
abalone 4174 9 1 6 2 48.90 0.5 02 067 0
appendic. 106 8 1 3 2 71.37 0.1 0.1  0.56 0
australian 690 15 1 3 2 99.67 0.1 0.1 097 0
bupa 345 7 1 5 2 15.70 0.1 0.1  0.10 0
car 1728 7 1 5 2 14.87 0.1 0.1  0.20 0
chess 3196 37 1 9 3 99.99 617.4 06 0.64 0
c0il2000 9822 86 1 3 2 99.99 72 6.7 099 0
connect 67557 43 0.8 6 2 99.99  1094.8 1.5 0.62 0
contracept. 1473 10 1 6 2 50.59 0.3 0.1 0.25 0
fars 100968 30 1 2 2 99.99 154 103 0.99 0
flare 1066 12 1 4 2 93.36 0.1 0.1 0.62 0
german 1000 21 1 6 2 98.63 15.8 0.1 0.26 0
glass 214 10 1 5 2 58.57 0.1 0.1  0.19 0
heart 270 14 1 5 2 83.33 0.4 0.1 0.17 0
ionosphere 351 34 1 5 2 99.99 69.8 0.1 0.45 0
kddcup 494020 42 1 4 2 99.99 284.4 735 098 0
kr-vs-k 28056 7 1 5 3 8.26 1.6 03 0.18 0
led7digit 500 8 1 6 2 37.50 0.1 0.1 050 0
letter 20000 17 1 8 2 80.37 390.2 1.2 041 0
lymph. 148 19 1 6 2 99.15 0.5 0.1 0.28 0
magic 19029 11 1 5 2 81.63 2.5 03  0.67 0
monk 432 7 1 4 2 32.23 0.1 0.1 031 0
move. libras 360 91 1 3 2 99.99 12.7 05 092 0
nursery 12690 9 1 4 2 68.19 0.6 02 0.60 0
optdigits 5620 65 0.35 2 2 99.99 33 34 049 0
page 5472 11 1 5 2 71.71 0.8 0.1 0.69 0
penbased 10992 17 1 7 3 85.38 118 0.8 0.51 0
poker 1025010 11 09 8 4 495 1760.8 206  0.02 0
ring 7400 21 0.1 4 2 99.93 4.4 04 0.08 0
saheart 462 10 1 5 2 52.95 0.1 0.1 021 0
satimage 6435 37 0.65 6 4 99.99 632.8 1.6 055 0.004
segment 2310 20 1 5 2 99.71 2.4 0.1 082 0
shuttle 58000 10 1 7 4 57.00 16.2 1.4 0.58 0
sonar 208 61 1 5 2 99.99 1246 02 035 0
spambase 4597 58 1 4 2 99.99 130.6 20 089 0
spectf. 267 45 1 5 2 99.99 331.9 0.1 0.29 0
splice 3190 61 0.25 2 2 99.99 1.4 1.5 025 0
texture 5500 41 1 3 2 99.99 1.4 14 099 0
thyroid 7200 22 1 6 2 99.67 26.5 0.5 040 0
tic-tac-toe 958 10 1 7 4 11.04 0.4 0.1 0.08 0.005
twonorm 7400 21 02 6 2 99.13 84.1 04 0.13 0
vehicle 846 19 1 4 2 99.79 0.4 0.1 087 0
vowel 990 14 1 2 2 99.43 0.1 0.1 095 0
wdbc 569 31 1 4 2 99.99 0.9 02 090 0
wine 178 14 1 4 2 93.19 0.1 0.1 0.48 0
wine-red 1599 12 1 6 2 53.13 2.1 0.1 025 0
wine-white 4898 12 1 7 3 51.29 6.0 03 032 0
yeast 1484 9 1 5 2 64.21 0.1 0.1 0.19 0
700 101 17 1 4 2 99.87 0.1 0.1  0.79 0
avg. 39000 25 092 5 22 77.00 142 3
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