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Abstract  

Background. Reward-based decision-making is impaired in patients with schizophrenia 

(PSZ) as reflected by increased choice switching. The underlying cognitive and 

motivational processes as well as associated neural signatures remain unknown. 

Reinforcement Learning (RL) and hierarchical Bayesian learning account for choice 

switching in different ways. We hypothesized that enhanced choice switching, as seen in 

PSZ during reward-based decision-making, relates to higher-order beliefs about 

environmental volatility and examined the associated neural activity.  

Methods. 46 medicated PSZ and 43 healthy controls (HC) performed a reward-based 

decision-making task requiring flexible responses to changing action-outcome 

contingencies during functional Magnetic Resonance Imaging (fMRI). Detailed 

computational modeling of choice data was performed, including RL and the hierarchical 

Gaussian filter (HGF). Trajectories of learning from computational modeling informed the 

analysis of fMRI data.  

Results. A three-level HGF accounted best for the observed choice data. This model 

revealed a heightened initial belief about environmental volatility and a stronger influence 

of volatility on lower-level learning of action-outcome contingencies in PSZ as compared 

to HC. This was replicated in an independent sample of non-medicated PSZ. Beliefs 

about environmental volatility were reflected by higher activity in dorsolateral prefrontal 

cortex of PSZ as compared to HC.  

Conclusions. Our study suggests that PSZ inferred the environment as overly volatile, 

which may explain increased choice switching. In PSZ, activity in dorsolateral prefrontal 

cortex was more strongly related to beliefs about environmental volatility. Our 

computational phenotyping approach may provide useful information to dissect clinical 

heterogeneity and could improve prediction of outcome.  
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Introduction  

Cognitive and motivational deficits are important characteristics of patients with 

schizophrenia (PSZ) associated with clinical and social outcome1-5. Reward-based 

learning and decision-making require the integration of cognition and motivation and are 

impaired in PSZ6, 7. These impairments are present at the onset of the disorder, are 

independent of lower general IQ, remain stable over time8, 9 and have been proposed as 

neurocognitive markers with potential clinical utility10. However, the mechanisms and 

associated neural signatures remain to be identified.  

Flexible reward-based learning and decision-making can be probed via variants of 

reversal learning (e.g.11). In such tasks, PSZ show increased switching between choice 

options8, 12-17. The mechanisms of this instable behavior remain unknown but can be 

targeted by computational modeling18. In Reinforcement Learning (RL19), choices are 

selected based on expected values, which are learned by weighting reward prediction 

errors (RPEs) with a learning rate. RPEs closely align with phasic dopamine20, 21. 

Considering enhanced presynaptic dopamine synthesis capacity in striatum of PSZ22, 23, 

this could translate into enhanced phasic dopamine in PSZ, which in turn might result in 

increased learning rates24. This could theoretically account for instable behavior in PSZ, 

but increased learning rates were not found (for review see 18, 24,  25).  

Theories of predictive coding26 and hierarchical Bayesian inference hypothesize that 

symptoms of PSZ27-29 are a consequence of false inference about the world due to 

altered precision attributed to beliefs at different hierarchical levels. Dysfunction at higher 

levels, which are thought to extract and represent general and stable features of the 

environment, might lead to experiencing the world as being more or less volatile. With 

regard to positive symptoms30, this is supported by empirical evidence (e.g.31). When 

applying this framework to reward-based decision-making, beliefs about the probability of 

rewards are formed at lower levels but are also determined by learning about the 

volatility of reward probabilities32. This environmental volatility is related to learning from 

lower-level RPEs in that it scales the belief update. Thus, a belief in high environmental 
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volatility can induce rapid updates of lower-level beliefs about reward probabilities and 

promote enhanced choice switching in PSZ.  

Striatal and prefrontal activity is reduced during reward anticipation and receipt in PSZ33-

35. Reduced striatal RPE activity was observed in non-medicated17 but not in medicated 

PSZ15, 36. Neural correlates of hierarchical Bayesian learning were demonstrated in 

functional Magnetic Resonance Imaging (fMRI) studies in healthy individuals37, 38 linking 

volatility and uncertainty to activity in fronto-striatal circuits32, 39. While neural correlates of 

hierarchical Bayesian learning were successfully used to distinguish between individuals 

with and without hallucinations and PSZ with and without psychosis31, this has not yet 

facilitated an understanding of the cognitive and motivational processes underlying 

impairments in flexible reward-based decision-making.  

Here, we used a reward-based reversal-learning task during fMRI in PSZ and healthy 

controls (HC). Computational modeling was applied to the behavioral data by comparing 

RL and a hierarchical Bayesian learning model, the Hierarchical Gaussian Filter (HGF)40, 

41. We hypothesized that enhanced choice switching in PSZ relates to higher-order 

beliefs about the volatility of the environment and examined the associated neural 

activity as measured by fMRI.  
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Materials and Methods  

Participants and instruments. 46 medicated PSZ and 43 HC were included (see S-Table 

1). Measures used to characterize participants are summarized in S-Table 1 and 

supplementary material. Written informed consent was obtained from all participants. 

The study was performed in accordance with the Declaration of Helsinki and approved 

by the local ethics committee of Charité Universitätsmedizin.  

 

Task. Participants performed a task requiring flexible decision-making during fMRI42-44. 

The task had 160 trials, each with a choice between two cards (Figure 1A). The selected 

card resulted in a monetary win or a monetary loss of 10 Eurocents. One card was 

initially assigned with a reward probability of 80% and a loss probability of 20% (vice 

versa for the other card). The task had a simple higher-order structure (Figure 1B): an 

anti-correlation between the reward probabilities; whenever one card was associated 

with a probability of 80%, the other card would be associated with a probability of 20%. 

Reward contingencies were stable for the first 55 trials (‘pre-reversal’) and for the last 35 

trials (‘post-reversal’). During the ‘reversal’ phase, contingencies changed four times, 

after 15 or 20 trials, respectively. For more details, see supplementary material.  

 

Analysis of choice behavior. Performance was quantified by ‘correct’ choices of the 

stimuli with high (80%) reward probability and analyzed using repeated-measures 

ANOVA with the between-subject factor ‘group’ and the within-subject factor ‘phase’ 

(pre-reversal, reversal, post-reversal). Repeated-measures ANOVA was used to test the 

effect of feedback on subsequent choices (‘win-stay’ and ‘lose-stay’).  

 

Computational models of learning. In RL, the difference between received rewards and 

expectations, the RPE, is used to update expectations for the chosen stimulus (weighted 

by the learning rate !). For comparison with previous work17, 42-44, we included RL with 

separate learning rates for reward and loss trials (RL1, RL2).  
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The HGF describes learning as a process of inductive inference under uncertainty. It 

considers hierarchically organized states, in which learning at a higher-level state 

determines learning at a lower-level state by dynamically adjusting the lower level’s 

learning rate. In our case, the top level represents environmental volatility (how likely a 

change in action-outcome contingencies is to occur). This top-level estimate is 

dynamically coupled with learning at the lower level (see Figure 2). Trial-by-trial updates 

of posterior means at each level are proportional to the prediction error (PE) from the 

level below weighted by a precision ratio. See supplementary material for equations. We 

were particularly interested in environmental volatility (!!) and its coupling with the lower 

level (!) and thus inferred subject-specific parameters. We included a two-level variant 

(HGF2) to test whether the representation of volatility in the three-level HGF3 made it 

superior in explaining behavior.  

HGF and RL provide different ways to learn expectations about rewards and both update 

expectations of the chosen card only (“single-update”, SU). Based on the anti-correlated 

task structure, we implemented a variant of each model updating values (RL) or posterior 

means (HGF) of the unchosen card simultaneously, i.e. an increase of the chosen card 

implies a decrease of the unchosen card (“double-update”, DU). For equations, see 

supplementary material. SU and DU variants of each model (RL1, RL2, HGF2, HGF3) 

were fit to the choice data (Table 1).  

 

Decision models. Values (RL) or posterior means (HGF) were transformed to choice 

probabilities by using the softmax (logistic sigmoid) function (see supplementary 

material). In binary choice tasks with anti-correlated reward-probabilities such as ours, 

there is choice perseveration independent of learning or inference that differs between 

win and loss trials. We captured this by estimating parameters for win and loss trials that 

reflect this difference in choice perseveration (ρ!"#, ρ!"##). Models which included inverse 

decision noise β as a free parameter had lower evidence (see supplementary material) 

than models where this was fixed to unity (β = 1.) We also tested the possibility that 
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volatility is directly linked to choice probabilities by letting third-level trial-by-trial volatility 

(HGF3) serve as the inverse decision noise (see supplementary material). Because this 

introduced a volatility scale anchored in observed behavior (switching or staying), it 

allowed for estimating the mean of the subjective a priori belief about initial volatility at 

the third level, µ!
(!), as a parameter of HGF3. This cannot be applied to RL or HGF2 

because they do not feature inference on volatility. This led to two additional models 

(HGF3-SU-V or HGF3-DU-V), resulting in a total of ten models. For model fitting, see 

supplementary material.  

 

Model selection. The negative variational free energy (an approximation to the log model 

evidence) was used for random-effects Bayesian Model Selection (BMS)45. The 

protected exceedance probability (PXP) governed our model selection which protects 

against the “null” possibility that there are no differences in the likelihood of models 

across the population46. We also examined whether the models explained the data better 

than chance17, 47. A subject was classified as ‘not fit better than chance’ in case the log-

likelihood of the data relative to the number of trials did not significantly differ from 

chance (see supplementary methods). Simulations of the task were run using the 

inferred parameters to reproduce the observed data.  

 

Model parameters. Parameters of the winning model were compared between groups 

using t-tests or the non-parametric Mann-Whitney-U-Test if assumptions of normality 

were violated (Kolmogorov-Smirnov Test). Bonferroni-correction was applied according 

to the number of parameters.  

 

Statistical analysis of fMRI data. Using the general linear model approach in SPM8, an 

event-related analysis was applied. On the first level, one regressor spanned the entire 

trial from cue to outcome as in a previous study38. We added the following five modeling-

based trajectories as parametric modulators (not orthogonalized) to best capture 
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different aspects of the hierarchical inference process: second- and third-level precision-

weighted PEs (ε2, ε3), which were time-locked to the outcome, and precision weights (ψ2, 

ψ3) as well as the third level volatility (µ3). All regressors spanned the entire trial and 

changed at outcome accordingly to PE updates identical to 38. Regressors were 

convolved with the canonical hemodynamic response function in SPM8 and its temporal 

derivative (see supplementary methods). For second-level analysis, a random-effects 

ANOVA model including contrast images of the five modeling-based trajectories 

(precision-weighted PEs (ε2, ε3), precision weights (ψ2, ψ3) and the third-level volatility 

(µ3) and the factor group was estimated.  
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Results  

Behavioral data. Repeated-measures ANOVA on “correct” choices showed that 

performance differed between phases (dropping in the reversal phase, main effect phase 

F=23.74, p<0.001). PSZ chose the better card less frequently irrespectively of task 

phases (Figure 1C, main effect group F=14.52, p<0.001, phase x group F=1.87, p=0.16). 

The factor phase was dropped from further analyses.  

Repeated-measures ANOVA on the probability of choice repetition showed that all 

participants stayed more with the previous action after rewards compared to losses 

(main effect feedback F=369.80, p<0.001) and that PSZ switched more, independently of 

feedback from the previous trial (Figure 1D, main effect group F=27.77, p<0.001, 

feedback x group F=0.02, p=0.89).  

 

Computational modeling: model selection. Random-effects BMS45 revealed a three-level 

HGF with double-updating and third-level environmental volatility linked to decision noise 

(Figure 2) as the most plausible model (HGF3-DU-V, PXP=99.5%, for PXPs of all 

models, see Table 1). This model (HGF3-DU-V) was superior in HC (PXP=100%, Bayes 

omnibus risk [BOR] = 0) and remained first-ranking in PSZ (PP=21.4%, XP=74.0%). In 

PSZ, there was no convincing evidence that models performed differently from each 

other (BOR=1, all PXP = 10.0%).  

15 PSZ and 1 HC were not fit better than chance by any model (Figure 3A). Neither 

when considering all PSZ (= PSZ-fit + PSZ-nofit) nor PSZ-fit alone did BMS reveal a 

clearly superior model (both times BOR=1, Table 1). However, the identification of PSZ-

fit ensures that individuals included in further modeling-based analyses are fit better than 

chance by every model (i.e., equally ‘good’ instead of equally ‘poor’ models).  

 

Revisiting behavioral data. Based on this heterogeneity in PSZ regarding absolute model 

fit, we revisited choice data with respect to three groups (HC, PSZ-fit, PSZ-nofit). There 

was a main effect of group on “correct” choices (Figure 3B, F=32.63, p<0.001). PSZ-nofit 
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showed performance around chance levels (Figure 3B, HC vs. PSZ-nofit, t=7.04, p<.001, 

PSZ-fit vs. PSZ-nofit t=6.90, p<0.001), while PSZ-fit had performance comparable to HC 

(Figure 3B, t=1.51, p=0.14). The analysis of win-stay and lose-stay behavior revealed a 

group x feedback interaction (F=20.68, p<.001). This resulted from a pronounced 

reduction of win-stay behavior in PSZ-nofit only (PSZ-fit vs. PSZ-nofit, t=10.74, p<0.001, 

Figure 3C), while reduced lose-stay was not significantly different between PSZ-fit and 

PSZ-nofit (t=0.01, p=0.99, Figure 3D). A group x feedback interaction was also 

significant when comparing only HC and PSZ-fit (F=6.79, p=0.01), next to significant 

main effects of feedback (F=636.30, p<0.001) and group (F=10.22, p=0.01). This 

difference between HC and PSZ-fit was driven by switching after loss (Figure 3C & D).  

In an exploratory analysis of six cognitive tests, only measures of verbal memory and 

working memory differed between the two groups of PSZ, i.e. were more impaired in 

PSZ-nofit compared to PSZ-fit (see supplementary results). This suggests that PSZ-fit 

and PSZ-nofit mapped on distinct cognitive profiles. Because poor fit hinders the 

interpretation of modeling-based behavioral and neuroimaging analyses in the PSZ-nofit 

subgroup, all subsequent modeling-based results are reported based on HC (n=42) and 

PSZ-fit (n=31) only.  

 

Computational modeling: parameters. Comparison of parameters of HGF3-DU-V (Table 

2, Figure 4) revealed that the estimated mean of the a priori belief about initial 

environmental volatility µ!
(!) was higher in PSZ (z=3.15, p<0.01, Figure 4A). Trial-by-trial 

environmental volatility was more strongly coupled with lower-level updating, as 

demonstrated by higher ! in PSZ (z=2.51, p<0.01, Figure 4B). The evolution rate of 

environmental volatility !! did not differ significantly between groups (z=0.73, p=0.47). 

To illustrate the effects of differences in parameters on behavior after losses (when PSZ-

fit showed increased switching), we analyzed the trajectory of µ3 in a mixed-effects 

regression model with group and feedback as predictors. This revealed higher µ3 in PSZ-

fit overall. Across groups, µ3 was higher after losses compared to rewards, which was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/227967doi: bioRxiv preprint 

https://doi.org/10.1101/227967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deserno, Boehme et al.: Volatility and choice switching in schizophrenia 

 

 
 

11 

more pronounced in PSZ (resulting from enhanced coupling between higher and lower 

levels !). For statistics, see supplementary results (S-Figure 2).  

 

Computational modeling: reproducing observed behavior. Simulating data based on the 

inferred parameters of HGF3-DU-V (42 HC, 31 PSZ-fit, 10 simulations per subject) 

showed that PSZ-fit switched more than HC (main effect of group, F=11.17, p<0.001) 

and showed a pronounced tendency to switch after losses (group x feedback F=7.68, 

p=0.01). Between-group findings on behavioral data were fully reproduced, which yields 

an important validation of the model’s ability to capture the observed data.  

 

Computational modeling: replication in non-medicated PSZ. We tested our model 

(HGF3-DU-V) in an independent sample of non-medicated PSZ (n=24) and HC (n=24), 

who performed another reversal-learning task17. This replicated between-group findings 

and remained significant when excluding participants not fit better than chance (23 HC, 

13 PSZ). For statistics, see Table 2.  

 

Relation to symptoms. We explored the relation between the two parameters that 

differed between groups with different measures of cognition (n=6) and clinical measures 

(n=7) within PSZ (S-Table 1) applying Bonferroni-correction (p<0.0083). In PSZ, a higher 

initial belief about volatility µ!
(!) was associated with reduced executive functioning and 

cognitive speed (TMT B: r=-0.56, p=<0.001; DSST: r=-0.56, p<0.001, S-Table 3, S-

Figure 3). These correlations were not present in the healthy control group. For all 

explorative correlations, see supplementary material (S-Table 3).  

 

FMRI – task effects (pooled across groups). Activity related to ε2 (a precision-weighted 

RPE) peaked in bilateral ventral striatum and ventromedial PFC among other regions (p-

FWEwholebrain<0.05, Figure 5A, S-Table 4) including the midbrain (p-FWEmidbrain-voi<0.05, S-

Table 9), a well-known network associated with RPEs. In contrast, third-level precision-
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weighted PE (ε3) was associated with activity in prefrontal, parietal and left insular 

regions (Figure 5A, S-Table 5). Environmental volatility (µ3) co-varied with activation in 

bilateral insula, cingulate cortex, parietal cortex, middle temporal gyrus, globus pallidus, 

thalamus as well as superior, middle and inferior frontal gyrus (Figure 6A, S-Figure 5, S-

Table 8). For more details on group-level fMRI effects including activity specific for each 

group outside the effect of each regressor combined for HC and PSZ, please see 

supplementary results.  

 

FMRI – between-group effects. We conducted between-group comparison of the 

covariance between the modelling regressors derived from the best-fitting model and 

BOLD response within SPM. For the regressor of environmental volatility µ3, a group 

difference between HC and PSZ was found in right dlPFC (F-contrast, using a mask 

representing the average effect of µ3 over all participants for correction of multiple 

comparison, [x=34, y=44, z=24], F=19.89, z=4.24, pFWE=0.04, Figure 6B). Post-hoc 

analysis revealed stronger activity related to volatility in dlPFC of PSZ compared to HC 

(t=4.46, z=4.4, pFWE=0.02, Figure 6C). There was no significant difference between 

groups for any other regressor.  
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Discussion  

To the best of our knowledge, this is the first study to apply hierarchical Bayesian 

learning to choice and fMRI data of PSZ during reward-based decision-making. We 

present two main findings: Firstly, our modeling suggests that medicated PSZ acted 

under an a priori enhanced higher-level belief about initial environmental volatility and 

increased coupling between higher and lower levels of learning, which leads to 

enhanced lower-level belief updating about action-outcome contingencies. This provides 

a computational account of choice switching as previously observed in PSZ8, 12-17. Using 

parameters of the winning model to simulate new data, we fully reproduced observed 

patterns in the behavioral data, and, we replicated our findings on parameters in an 

independent cohort of non-medicated PSZ. Secondly, medicated PSZ displayed higher 

dlPFC activity related to environmental volatility, which points towards a prominent role 

of this region in promoting instable behavior in PSZ.  

 

As reported previously8, 12-17, PSZ showed enhanced choice switching and we 

demonstrate a possible underlying mechanism: an enhanced initial belief about the 

environmental volatility and a stronger coupling of volatility and lower-level learning of 

action-outcome contingencies. This has two consequences. Firstly, PSZ had an overall 

stronger tendency to switch (enhanced initial belief about volatility). Secondly, lower-level 

beliefs fluctuated more strongly and led to increased choice switching particularly after 

(irrelevant) losses. Thus, PSZ inferred more contingency changes in this dynamic task 

environment, which are putatively signaled through losses. Enhanced estimates of 

changes in context probabilities wer also found in PSZ in the non-reward domain48. In 

contrast to our finding of enhanced initial belief about volatility, Powers et al. (2017) 

probed conditioned hallucinations and reported stronger lower-level priors about 

perceptual inputs combined with reduced evolution of volatility in hallucinating 

participants. A possible explanation may be that alterations of volatility estimates differ 

with regard to the investigated functional domain, potentially related to different symptom 
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dimensions. As suggested by our finding, cognitive beliefs about the structure of the 

environment appear to be more unstable, while perceptual beliefs about sensory inputs 

appear to be overly stable and not appropriately adjusted following changes in the 

environment31.  

Because our model revealed consistent results in medicated und non-medicated PSZ, 

elevated beliefs about environmental volatility may represent an important mechanism of 

impaired flexible decision-making. In a similar vein, an inability to stabilize behavior 

according to an internal model of action-outcome contingencies was found after 

administration of ketamine in healthy controls49, which is in line with the assumption that 

reduced (prefrontal) NMDA receptor functioning27, 50, may lead to aberrant cortical 

information processing51. In line with this idea, we found a stronger association in PSZ 

than in HC of beliefs about volatility with BOLD activity in dlPFC. However, in our fMRI 

study we cannot not infer about involved neurochemical systems. On the behavioral 

level, beliefs about higher volatility, in our model directly linked to decision noise, can 

lead to more stochastic behavior (in our task overall more choice switching). We 

therefore suggest, that heightened neural representation of volatility may generate more 

stochastic behavior, although in our correlational and cross-sectional study we cannot 

ascertain a causal link. We found a negative correlation of the initial belief about volatility 

with independent neuropsychological measures of executive functioning and cognitive 

speed in PSZ, thereby emphasizing its dysfunctional character, while these association 

were not observed in the healthy control group.  

PSZ’s heightened belief about volatility may render a system (hyper-)sensitive to any 

new input51, 52, thereby impeding the detection of regularities in probabilistic 

environments and leading to (hyper-)flexible updating in response to (irrelevant) 

information. Meta-analyses showed reduced prefrontal activity in PSZ compared to HC 

for (‘relevant’) task vs. (‘irrelevant’) conditions across multiple cognitive measures53, 54. 

On the one hand, prefrontal dysfunction in PSZ may contribute to an enhanced higher-

level belief about volatility (e.g., by impairing the detection of higher-level regularities) 
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and such beliefs about volatility might be assigned with enhanced precision (potentially 

in a compensatory manner). On the other hand, lower-level beliefs may be more 

unstable and presumably assigned with lower precision leading to distinct aberrant 

experiences and behaviors depending on the tested domain with so far most evidence 

coming from perceptual processing55.  

Aberrant cortical processing was theorized, at least in non-medicated PSZ, to increase 

striatal dopamine turnover27, 50, which might interfere with striatal and midbrain RPE 

signals. Indeed, in non-medicated PSZ striatal RPE activity was found to be reduced17, 56. 

In RL accounts24, enhanced spontaneous phasic dopamine transients could highlight 

irrelevant stimuli and disturb the signaling of (relevant) RPEs. In our medicated sample 

of PSZ, no significant differences in striatal activations to RPEs were observed, which is 

in line with reports of absent differences in striatal RPEs in medicated PSZ14, 15. This 

suggests medication status as an important factor relating to striatal RPE signaling 

similar to medication effects on striatal reward anticipation in PSZ57-59. In hierarchical 

Bayesian learning, representation of lower-level PEs may be similar in patients and 

controls but potentially reduced precision of lower-level beliefs might highlight irrelevant 

inputs (e.g. resulting in choice switching). This could, at least in theory, result from a 

common aberrant prefrontal process, as discussed above, but also from an effect of 

antipsychotic D2 receptor antagonists in the striatum29. However, we did not observe 

group differences in midbrain and striatum for precision weights and precision-weighted 

PEs. While our data indicate a disrupted higher-level process with evidence from 

behavioral modeling and fMRI, disturbed lower level processes are supported by our 

behavioral modeling but not by the presented fMRI data.  

 

Limitations. Firstly, the lack of clear superiority of any model for the data from PSZ, as 

well as the substantial number of PSZ in which no model fitted better than chance needs 

to be considered. Excluding these patients from further modeling-based analyses can be 

considered restrictive and may reduce the generalization of results. However, two 
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subgroups were identified with (task-independent) different cognitive profiles which 

contributes to disentangling heterogeneity across schizophrenia patients -- a 

fundamental challenge for psychiatric research60. By controlling whether subjects’ 

performance can actually be interpreted as assumed by the theories, we eliminated a 

potential key confound. Nevertheless, it remains problematic if clinical groups differ in 

how well they are described by models of interest, as observed in our study because 

parameters are conditional on the model. This impedes the interpretation of differences 

in parameters across groups (see 61 for a discussion of this problem). In principle, 

Bayesian model averaging62 can help, but this is not established for non-nested models 

as used here. Future studies might implement tasks with adaptive difficulty to reduce the 

number of patients whose behavior cannot be explained by any model potentially due to 

excessive cognitive demands. Furthermore, the relation between different Bayesian 

modeling approaches such as the HGF and active inference models should be 

explored63.  

Secondly, we suggest that overestimating volatility is one possible explanation for choice 

switching. However, in our model, volatility partly determines decision noise. This limits 

the differentiation between the concepts of volatility and exploration and limits 

interpretability of volatility estimates to some extent. The finding that this model performs 

best is an indication that our data do not fully support a strong distinction between 

volatility and exploration. Additional task-based manipulations would be required to 

overcome this37, which will most likely involve longer tasks than our patient-friendly fMRI 

task (<15min, 160 trials). The formulation of our response model suggests that results 

are still informative. We control for overall differences in stickiness with two parameters 

that change the shape of the decision function differently for wins and losses and exert a 

bias towards repeating or switching responses, irrespectively of learned expectations 

(see supplementary material). Therefore, decision noise is not only determined by trial-

wise volatility but also by subject-specific traits that are expressed in a condition-specific 

fashion. This disentangles volatility and decision noise to some degree.  
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Thirdly, this is a case-control study which fundamentally limits the inferences that can be 

drawn from the results, e.g. the development of inappropriately high initial beliefs about 

volatility over the course of illness, its stability over time and its relation to broader 

cognitive deficits consistently found in PSZ.  

 

In summary, we present a computational mechanism putatively underlying instable 

behavior in PSZ: a stronger coupling of heightened beliefs about environmental volatility 

with lower-level learning, which was present in medicated und non-medicated PSZ. In 

medicated PSZ, this was accompanied by enhanced activity related to environmental 

volatility in dlPFC. Future studies should aim to test specificity of the presented results 

for PSZ and overcome the limitation of the lack of longitudinal clinical data. 

Computational modeling may aid in the identification of subgroups of PSZ64 and 

potentially inform the prediction of treatment response to antipsychotic drugs by aiming 

to dissect the important biological heterogeneity and inter-individual differences among 

patients65. These steps towards clinically useful procedures will require carefully 

designed prospective studies in the framework of Computational Psychiatry29, 66-68.  
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Table 1 Bayesian Model Selection (BMS). BMS was governed by protected 

exceedance probabilities (PXP) to protect against the risk that differences in model 

evidences occur by chance. In this table we also report exceedance probabilities (PX) 

and expected posterior probabilities (PP), also compare supplementary material. PX 

describes the probability of a model to exceed all other models in the comparison set, 

the probability that expected PPs differ; HC = healthy controls, PSZ = patients with 

schizophrenia, RL = Reinforcement Learning with one learning rate (1) or separate 

learning rates for rewards and losses (2). HGFX = Hierarchical Gaussian Filter with 2 or 

3 levels, SU = single update, DU = double update, HGF3-**-V = three-level HGF with 

environmental volatility linked to decision noise with either SU or DU.  

    RL1-SU RL1-DU RL2-SU RL2-DU HGF2-SU HGF2-DU HGF3-SU HGF3-DU HGF3-SU-V HGF3-DU-V 

HC+PSZ 
all n=89 

PP 9.4 5.1 7.4 3.0 3.1 7.0 3.3 7.7 5.3 48.8 
XP 0 0 0 0 0 0 0 0 0 100 
PXP 0 0 0 0 0 0 0 0 0 99.9 

HC 
all n=43 

PP 4.4 4.7 4.4 3.8 2.7 5.1 2.7 5.3 5.8 61.1 
XP 0 0 0 0 0 0 0 0 0 100 
PXP 0 0 0 0 0 0 0 0 0 100 

PSZ 
all n=46 

PP 11.8 7.1 11.6 4.75 8.3 10.0 9.3 10.9 4.9 21.4 
XP 6.9 .7 6.21 .1 1.4 3.4 2.5 4.6 .2 74.0 
PXP 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 

   

HC+PSZ 
fit n=73 

PP 9.4 5.1 7.4 3.0 3.2 6.9 3.3 7.7 5.3 48.8 
XP 0 0 0 0 0 0 0 0 0 100 
PXP 0 0 0 0 0 0 0 0 0 100 

HC 
fit n=42 

PP 4.5 4.5 4.5 3.8 2.8 5.3 2.8 5.5 5.8 60.5 
XP 0 0 0 0 0 0 0 0 0 100 
PXP   0 0 0 0 0 0 0 100 

PSZ 
fit n=31 

PP 11.6 8.2 11.3 4.9 7.9 9.7 8.9 10.4 4.9 22.3 
XP 5.5 1.1 4.8 .1 1.0 2.5 1.7 3.3 .1 80.0 
PXP 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.1 
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Table 2. Between-group comparisons of model parameters using t-tests or the non-

parametric Mann-Whitney-U-Test if assumptions of normality were violated. Bonferroni-

correction was applied according to the number of parameters (5, p<0.01). HC = healthy 

controls, PSZ = patients with schizophrenia.  

 

 HC (n=42) PSZ (n=31) Test statistic 

Learning model 

µ3 -0.84 ± 0.49 -0.47 ± 0.48 z=3.15, p<.01 

κ 0.87± 0.60 1.35 ± 1.12 z=2.51, p<.01 

ω3 -6.00 ± 0.02 -5.99 ± 0.05 z=0.73, p=0.47 

Decision model 

ρwin 0.97 ± 0.57 1.08 ± 0.49 z=0.88, p=0.38 

ρloss 0.08 ± 0.31 -0.12 ± 0.44 z=2.37, p=0.02 

 

Replication sample: Schlagenhauf et al. 2014  

 HC (n=24) non-medicated PSZ (n=24)  

Learning model 

µ3 -1.17 ± .61 -.43 ± .70 z=3.88, p<.01 

κ .61 ± .58 1.56 ± 1.21 z=3.46, p<.01 

ω3 -6.09 ± .02 -5.99 ± .06 z=1.35, p=.18 

Decision model 

ρwin .70 ± .74 .43 ± .66 z=1.35, p=.18 

ρloss -.07 ± 0.59 -.28 ± .77 z=1.05, p=.30 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/227967doi: bioRxiv preprint 

https://doi.org/10.1101/227967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deserno, Boehme et al.: Volatility and choice switching in schizophrenia 

 

 
 

25 

 
Figure 1. (A) Trial sequence from the decision-making task. (B) Reward probabilities of 

both choice options were perfectly anti-correlated and were stable for the first 55 trials 

(‘pre-reversal’), changed four times, after 15 or 20 trials, in the ‘reversal’ phase and 

remained stable for the last 35 trials (‘post-reversal’). (C) Percent choices of the stimulus 

with 80% reward probability was significantly lower in the PSZ group (main effect of 

group F=14.52, p<0.001). (D) PSZ were less likely to repeat the previous action 

independent of feedback received in the previous trial (main effect of group F=27.77, 

p<0.001, feedback x group interaction F=0.02, p=0.89).  
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Figure 2. Model graph. The HGF deploys hierarchically organized states, in which 

learning about environmental volatility at a higher-level state x3 determines lower-level 

learning about reward probabilities x2. The lowest level, x1, is binary and corresponds to 

a choice being rewarded (x1=1) or not (x1=0) at a given trial. The probability of a choice 

being rewarded is a logistic sigmoid function of x2: p(x1=1) = s(x2). y represents the 

response of the subject. Shaded quantities are observed. Solid lines indicate 

dependence in the generative model. Dashed lines indicate dependence on inferred 

quantity (the generative model for y depends on µ2 and µ3, the inferred values of x2 and 

x3). The constant step size ω3 is the evolution rate of environmental volatility. κ reflects 

the coupling between the levels. The best-fitting model was a three-level implementation 

(HGF3-DU-V) with double-updating (not illustrated) together with a decision model 

capturing choice repetition separately after rewards and losses (ρ), third-level 

environmental volatility determining decision noise, and the initial belief about 

environmental volatility µ3 as an additional parameter inferred from the data.  
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Figure 3. (A) Classification above (black dots) and beIow (red crosses) chance and its 

influence on overall choice performance (B). There was a main effect of group (F=32.63, 

p<0.001). PSZ-nofit (red) showed overall poor performance, (panel B, HC vs. PSZ-nofit, 

t=7.04, p<0.001, PSZ-fit vs. PSZ-nofit, t=6.90, p<0.001), while PSZ-fit (green) performed 

comparably to HC (blue, Figure 2B, t=1.51, p<0.14). Analysis of win-stay (C) and lose-

stay (D) behavior showed a group x feedback interaction (F=20.68, p<0.001). There was 

a pronounced reduction of win-stay behavior in PSZ-nofit only (C, PSZ-fit vs. PSZ-nofit, 

t=10.74, p<0.001), while reduced lose-stay behavior characterized both groups of PSZ 

(D, PSZ-fit vs. PSZ-nofit, t=0.01, p=0.99, (D) This group x feedback interaction was also 

significant when comparing only HC and PSZ-fit.  

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/227967doi: bioRxiv preprint 

https://doi.org/10.1101/227967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deserno, Boehme et al.: Volatility and choice switching in schizophrenia 

 

 
 

28 

 
 
Figure 4. (A) The initial estimate of environmental volatility is significantly higher in PSZ-

fit (n=31) as compared to HC. (B) The coupling between the third level (environmental 

volatility) and the second level is significantly stronger in PSZ-fit (n=31) compared to HC.  
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Figure 5. BOLD signal across all participants related to (A) precision-weighted prediction 

errors from the second (red) and third (blue) level and (B) to precision weight from the 

second (red) and third (green) level, overlap in yellow. Both at p-FWEwholebrain<0.05, k=10.  
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Figure 6. (A) Across all participants, BOLD signal related to volatility estimate from the 

third level at p-FWE<0.05 for the whole brain, k=10. (B) µ3-related BOLD signal in the 

dorsolateral prefrontal cortex (dlPFC) differs between PSZ-fit (n=31) and HC (F-contrast 

displayed at p<.001 uncorrected; corrected for main effect of µ3 over all participants, 

[x=34, y=44, z=24], F=19.89, z=4.24, p=0.038). (C) A post-hoc analysis of regression 

parameter estimates at the peak of the group difference [x=34, y=44, z=24] showed that 

this was driven by heightened activation related to environmental volatility in dlPFC of 

PSZ-fit (n=31) compared to HC (t=4.46, z=4.4, p=0.019).  
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Supplemental Methods  

Participants and instruments. Handedness was assessed with the Edinburgh 

Handedness Inventory. Cognitive functioning was examined with six subscales selected 

from the Wechsler Adult Intelligence Scale1. Symptoms were assessed with the Positive 

and Negative Syndrome Scale (PANSS) and with delusion and anhedonia items from the 

Scale for the Assessment of Positive Symptoms and Negative Symptoms (SAPS/SANS). 

Dosage of antipsychotics was standardized by chlorpromazine equivalents2.  

 

Task. Participants performed a task requiring flexible decision-making3-5 (Figure 1A). In 

160 trials, individuals decided between two cards each showing a different visual 

stimulus. The right or left location of stimuli was randomized over trials. After left or right 

button press (max. 1.5s), the selected card was highlighted and a monetary win (10 

Eurocent coin) or a monetary loss (crossed 10 Eurocent coin) was shown for .5s. In the 

inter-trial interval (exponentially distributed jitter, range 1s-12.5s), a fixation cross was 

presented. If no response occurred in time, the message “too slow” appeared. One of 

two cards was initially assigned with a reward probability of 80% and a loss probability of 

20% and vice versa for the other card. The task had a simple higher-order structure 

(Figure 1B): an anti-correlation between the reward probabilities; whenever one card was 

associated with a probability of 80%, the other card would be associated with a 

probability of 20%. Reward contingencies were stable for the first 55 trials (‘pre-reversal’) 

and for the last 35 trials (‘post-reversal’). During the ‘reversal’ phase, contingencies 

changed four times, after 15 or 20 trials, respectively.  

Before MRI, participants were informed that one card had a superior chance of winning 

money. They were told that depending on their choice they could either win or lose 0.10€ 

per trial and to win as much as possible as the total gain was paid out. 20 training trials 

were performed with different cards and without reversal. After training, participants were 

instructed that reward probabilities could change and to track such changes to win as 
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much as possible. No other information on reversals or the anti-correlated task structure 

was given.  

 

Computational models of learning. Models of learning comprised RL and the HGF. In all 

models, RPE δ is used to update expectations for the chosen stimulus:  

(1) !!!
(!) =  !(!) − !!(!) 

Using the notation of RL, !!(!) represents the expectation for receiving reward or loss by 

choosing the card c in trial !. R denotes the received outcome. RPE δ reflects the 

difference between received rewards and expectations. The update of !!(!)is equal to the 

RPE !!!
(!) weighted by the learning rate !:  

(2) !!(!!!) − !!(!) = !!!!
(!)  

Learning rate ! ∈ [0, 1] reflects a constant weight on RPE determining the change in 

values throughout trials !. With learning rates close to 1, prediction errors (PEs) strongly 

affect expectations, while learning rates close to 0 lead to little influence of PEs on 

expectations.  

In the generative model underlying the HGF, the evolution of states x! (with i indexing the 

level) is defined as a Gaussian random walk (except for ! = 1, where !! represents the 

binary outcome of the trial: reward or loss). The change in each !! can be inferred using 

the HGF’s update equations. These provide trial-wise inference on states !!, represented 

by the posterior mean µ!  and variance σ!  at each level. It is important in this context to 

distinguish between the underlying generative model (containing states !!) and the HGF 

properly (i.e, the inference process containing state representations µ!  and σ! ). In our 

implementation, action-outcome contingencies !!  evolved as a Gaussian random walk; 

the probability for a choice being rewarded (i.e., !! = 1) at a given trial ! is p !!
(!) =

1 = s !!
(!) , where s(∙) is the logistic sigmoid function. The step size of the Gaussian 

random walk of !! depends on the next higher level !!:  
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 (3) ! !!
(!) !!

(!!!), !!
(!) = ! !!

(!); !!!!! , exp (!!!!! + !!)  

The variance of this conditional distribution is parameterized by !! and !. The term !!!
(!) 

couples the third-level environmental volatility !!
(!) with the second level. !!

(!) evolves in 

the same manner, except that the variance of the Gaussian is a constant !! (because 

there is no higher level):  

 (4) ! !!! !!!!!,! = ! !!
(!);  !!!!! , exp !!  

In our implementation, !! was fixed at the second level because we were particularly 

interested in inferring the parameters that influenced subject-specific estimates of 

environmental volatility at the third level (!!) and its coupling with the lower level (!). 

Variational inversion of this generative model results in the HGF. This inversion shows 

that trial-by-trial updates of posterior means at each level ! are proportional to the PE 

from the level below weighted by a precision ratio (compare equation 2 for the RL 

equivalent), where precision !!
(!) is defined as inverse variance !!

(!) = 1/!!
(!).  

(5) !!
(!) − !!

(!!!) ∝ !!!!
(!)

!!
(!) !!!!

(!)  

For an exact derivation of precision weights and precision-weighted PEs, we refer to 

previous methodological papers6, 7. In addition to the three-level HGF (HGF3), we also 

included a simpler two-level variant (HGF2) to test whether the full representation of 

volatility in the HGF3 was superior in explaining behavior.  

In these models, HGF and RL update expectations of the chosen card only (“single-

update”, SU) and the expectation about the unchosen card remains unchanged.  

(6) !!"(!!!) = !!"(!) 

Correspondingly, for the HGF:  

(7) !!!!,!"
(!) = !!!!,!"

(!!!)  

Based on the anti-correlated task structure, we implemented a variant of each learning 

model updating values (RL, equation 8) or posterior means (HGF, equation 9) of the 

unchosen card simultaneously (“double-update”, DU), which can be written as:  
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(8) !!"(!) = 1 − !!(!) 

(9) !!!!,!"
(!) = 1 − !!!!,!

(!)  

 

Decision models. For each trial !, Q(!) (RL) or µ!!!
(!)  (HGF) were transformed to choice 

probabilities by using the softmax model:  

(10) p t, a = !"# !! !,! !!∗!"#(!!!!)
!"# !! !,!! !!∗!"#(!!!!)

 

In binary choice tasks with correlated reward-probabilities, there is strong autocorrelation 

of choices (perseveration). In our decision model (equation 10), this is captured by a 

parameter ρ. This parameter changes the inflection point of the sigmoid function, biasing 

choice predictions towards an overall tendency to stay or switch irrespectively of the 

learned expectations. We used separate parameters  ρ!"# and ρ!"## to reflect differences 

in choice perseveration after rewards and losses separately. This is in line with previous 

observations that choice perseveration differs strongly after rewards and losses. Note 

that this implementation of capturing choice perseveration is equivalent to fitting 

parameters for rewards and losses as part of the learning model (cf. previous work8, 9), 

which changes the asymptote of expectations in the learning model instead of the 

inflection point of the sigmoid decision model. We name these decision models ‘REP’. In 

each of the ten models reported in the main manuscript the parameter β was fixed to 1 to 

avoid overparameterization. In addition, we also estimate all learning models with a 

decision model with no such repetition parameters but β as a free parameter (‘BETA’). 

The parameter β captures the steepness of the sigmoid and thereby reflects (inverse) 

decision noise by determining how tightly choice probabilities follow learned reward 

expectations. The ten learning models with β capturing inverse decision noise provided 

an overall inferior account of the data when performing a family comparison (REP 

XPall=.8550, BETA XPall=.1450; REP XPHC=.8579, BETA XPHC=.1421; REP XPSZ=.7316 

BETA XPSZ = .2684, [XP: exceedance probability]).  
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We also tested the possibility that the parameter β was directly influenced by trial-by-trial 

environmental volatility from the third-level of HGF3 by introducing a trial-wise β(!) =

exp(−µ!
(!)). Because this equates the inverse decision temperature to the inverse of the 

exponentiated log-volatility, it amounts to letting the volatility serve as the decision 

temperature.  

 

Model fitting. HGF toolbox 3.15 http://www.translationalneuromodeling.org/tapas/; 40, 41 

with a quasi-Newton optimization algorithm was used for model fitting. For prior means 

and variances of parameters, see S-Table 2.  

 

Model selection. Using random-effects Bayesian Model Selection (BMS)10, which 

accounts for heterogeneity across subjects by treating the model as a random variable in 

the population, a posterior model probability (PP) is provided for each model, i.e., the 

probability that the data from a randomly chosen subject are best explained by this 

model. The certainty about this probability is quantified by the exceedance probability 

(XP), i.e. the probability that this model is more likely than any other model considered. 

One can protect against the “null” possibility that there are no differences in the likelihood 

of models across the population11; this yields the protected exceedance probability 

(PXP), which was the metric that governed our model selection.  

 

Classification of subjects not fit better than chance. In choice tasks like ours, a subject 

can be classified as fit better than chance when the geometric mean likelihood per trial  

(given by exp(log-likelihood/ntrials)) significantly exceeded 0.5 , which corresponds to 

p<0.05 when performing a binomial test. This procedure was applied to all individuals to 

avoid the possibility that between-group differences in model parameters are confounded 

by differences in model fit4, 8, 12-14. An alternative would be to capture (undirected) noise 

with a parameter in the decision model, as suggested previously15. While this is an 

elegant way to formulate the problem, it is less straightforward to identify subjects whose 
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behavior cannot be sufficiently explained by non-random mechanisms (in the models 

considered). Here, we remove such individuals from statistical comparisons and treat 

them separately in the analyses of choice data.  

 

Functional Magnetic Resonance Imaging. Functional Magnetic Resonance Imaging 

(fMRI) imaging was performed using a 3 Tesla Siemens Trio scanner to acquire gradient 

echo T2*-weighted echo-planar images with blood oxygenation level dependent contrast. 

Covering the whole brain, 36 slices were acquired in oblique orientation at 20° to AC-PC 

line in ascending order with 2.5-mm thickness, 3x3mm² in-plane voxel resolution, 0.5-

mm gap between slices, TR=2s, TE=22ms and a flip angle α=90°. Prior to functional 

scanning, a field map was collected to account for individual homogeneity differences of 

the magnetic field. T1-weighted structural images were also acquired (TR=1300ms, 

TE=3.46ms, flip=10°, matrix=240×256, voxel size: 1×1×1mm, slices=170).  

 

Analysis of fMRI data. FMRI data were analyzed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). For preprocessing, images were 

corrected for delay of slice time acquisition. Voxel-displacement maps were estimated 

based on field maps. All images were realigned to correct for motion and were also 

corrected for distortion and the interaction of distortion and motion. The images were 

spatially normalized into the Montreal Neurological Institute (MNI) space using the 

normalization parameters generated during the segmentation of each subject’s 

anatomical T1 scan; spatial smoothing was applied with an isotropic Gaussian kernel of 

6mm full width at half maximum. Prior to first-level statistical analysis, data were high-

pass filtered with a cutoff of 128s. In the first level model, missed choices were modeled 

separately. The six movement parameters were included in the model as regressors of 

no interest as well as the first derivative of translational movement with respect to time. 

An additional regressor was included censoring scan-to-scan movement >1 mm.  
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Supplemental Results  

Clinical distinction between subgroups. When further exploring the subgroups, SZ-nofit 

did not significantly differ from SZ-fit in any of the seven measures of positive and 

negative symptoms (all p’s>.3910). Interestingly, SZ-nofit showed significantly lower 

performance when compared to SZ-fit in terms of certain domains of cognitive 

functioning such as verbal memory (word list p=.0329), working memory (digit span 

p=.0271) but not verbal IQ (p=.1024), attention (TMT A p=.5158) or cognitive speed 

(DSST p=.3091) but trend-wise with respect to executive functioning (TMT B p=.0697). 

However, this analysis should be considered exploratory as none of the effects reached 

correction for multiple comparisons for the 6 cognitive tests (p<.0083).  

 

Computational modeling: parameters. In the decision model, choice repetition after 

rewards did not significantly differ between groups (z=0.88, p=0.38) while staying after 

losses was significantly lower in schizophrenia (z=2.37, p=0.02) but did not survive 

Bonferroni-correction for the model’s five parameters. To illustrate effects of parameters 

that differed between groups on the third-level environmental volatility, mixed-effects 

regression were estimated in R. The trial-wise posterior mean !!
(!)  of inferred 

environmental volatility per subject was the dependent variable while group and 

feedback were included as independent variables. This model showed a significant main 

effect of group (t=3.22, p=0.01) due to higher estimates of volatility in PSZ and a main 

effect of feedback (t=16.124, p<.001) due to higher estimates of volatility after losses 

compared to rewards. Of most interest, there was also a group x feedback interaction 

(t=2.50, 0.02). This was driven by a larger difference in environmental volatility after 

having received losses versus rewards in PSZ as compared to HC (S-Figure 2).  

 

Computational modeling: recovery of parameters. In addition to showing that data 

generated from the inferred parameters reproduces the behavioural results (see main 

manuscript), an additional step is to recover parameters by refitting the generated data.  
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After having done so, we tested parameters, as inferred from generated data, between 

groups and found the same between-group differences as when inferring the parameters 

from the observed data (µ3: HC -1.46 ± 0.60, PSZ -1.04 ± 0.55, z=3.09, p<.01; κ: HC 

0.61 ± 0.30, PSZ 0.73 ± 1.12, z=2.15, p=.03; υ: HC -6.00 ± 0.02, PSZ -6.00 ± 0.02, 

z=1.40, p=0.16; ρwin: HC 1.04 ± 0.60, PSZ 1.28 ± 0.62, z=1.68, p=0.10; ρloss: HC 0.19 ± 

0.27, PSZ 0.01 ± 0.38, z=2.40, p=0.02). We also correlated parameters inferred from 

observed data with parameters inferred from generated data. This resulted in the 

following correlations coefficient: rρwin =.73, rρloss =.78, rµ3 =.87, rκ =.56, rυ =-03.  

 

Relation to symptoms. When exploring the relation of the two parameters that differed 

between groups with measures of cognition (n=6) and psychopathology (n=7) within 

PSZ, we found were negative correlations between the prior belief about volatility µ!
(!) 

and measures of executive functioning and cognitive speed surviving Bonferroni-

correction (p<0.0083, TMT B: r=-0.56, p=<0.001; DSST: r=-0.56, p<0.001, S-Table 3, S-

Figure 3). Correlations did not reach significance between cognition and ! nor between 

the two parameters and any of the seven symptom scales. The strongest, albeit non-

significant, correlations were observed between κ and delusions (r=0.30, p =0.10) and 

between µ!
(!)  and anhedonia (r=0.32, p =0.09). For all explorative correlations, see 

supplementary material (S-Table 3).  

 

FMRI – task effects pooled across groups. In conjunction analysis, ε2 and RPE from RL 

largely overlapped (S-Table 9; S-Figure 4). Significant BOLD responses related to 

second-level precision weight (ψ2) were found in bilateral insula, dorsolateral prefrontal 

cortex (dlPFC), cingulate cortex, parietal cortex, caudate and thalamus (Figure 4B, S-

Table 6). Interestingly, activation associated with third-level precision weight (ψ3) 

estimates was largely (but not entirely) overlapping with that associated with second-

level precision weight ψ2 (Figure 4B, S-Table 7).  
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Task effects unique for either HC or PSZ. In order to identify neural correlates engaged 

in the task that are unique to PSZ or HC, we report areas that are significantly activated 

for either HC or PSZ and which are outside the effect of each regressor (both 

threshholded at p<0.05, FWE-corrected on the whole brain level, clustersize k = 10). For 

the PSZ group, we found a unique activation for ε2 in the left motor cortex (S-Table 4), 

for Ψ3 bilaterally in the cerebellum (S-Table 7) and for µ3 in the right dlPFC (S-Table 8). 

For the HC group, we found a unique activation for µ3 in the medial PFC and in the left 

inferior frontal gyrus (S-Table 8).  

 

Neural correlates of reward prediction errors based on Reinforcement Learning. As in 

previous studies8, we also explored correlates of prediction errors using a regressor of 

reward prediction errors from the RL model. As previously, we found that BOLD signal 

covaried with RPEs in the ventral and dorsal striatum, posterior cingulate cortex, 

dorsolateral and lateral PFC, parietal cortex, hippocampus, amygdala and the 

cerebellum (S-Table 9, S-Figure 3A). There was no significant difference between the 

groups. However, this signal largely overlapped with the precision-weighted PE at the 

second level of the HGF (Figure 3A, S-Table 4, S-Figure 3B), which represents, in the 

case of our tasks, a precision-weighted RPE.  
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S-Table 1 Sample Characteristics. Group means with standard deviations and range in 
brackets are reported; PSZ=Patients with schizophrenia, HC=healthy controls, 
CPZ=chlorpromazine equivalents; for group comparisons two-sample t-test or χ2 tests 
were used. *=Bonferroni-corrected  
 

 PSZ 

(N=46) 

HC 

(N=43) 

Sig. 

Age (years) (46/43) 35.07 ± 7.596 (22-52) 34.40 ± 8.24 (22-51) .69 

Gender (46/43)  14 female / 32 male  13 female / 30 male .98 

Handedness (44/40) 38r 4l 2b  32r 2l 6b .22 

EHI (44/40) 70.71 ± 53.13 (-100-100) 71.68 ± 47.55 (-100-100) .93 

Smoking (44/39) 35 smoking, 9 non-smoking 15 smoking, 24 non-smoking <.01 

Cognitive measures   

Verbal Intelligence (45/42)  98.22 ± 11.83 (70-115) 103.81 ± 8.03 (80-115) .01 

Word list (46/42) 8.72 ± 1.60 (4-10) 9.26 ± 1.38 (4-10) .09 

Working memory (46/42)  6.46 ± 2.14 (4-13) 7.48 ± 2.36 (3-14) .04 

TMT A (45/41) 36.67 ± 14.69 (16-80) 26.12 ± 8.98 (10-50) <.01* 

TMT B (45/41) 87.50 ± 50.49 (37-304) 59.44 ± 21.51 (29-122) <.01* 

Processing speed (46/42) 63.70 ± 19.10 (29-111) 76.69 ± 11.32 (49-99) <.01* 

Clinical measures   

PANSS Positive (46) 20.83 ± 6.83 (7-39) / / 

PANSS Negative (46) 22.17 ± 7.64 (8-38) / / 

PANSS GP (46) 40.50 ± 11.41 (16-62) / / 

PANSS Total (46) 83.57 ± 22.31 (33-134) / / 

SAPS Delusion (45) 21.18 ± 10.70(0-48) / / 

SANS Anhedonia (45) 12.11 ± 4.97 (4-21) / / 

CPZ (44) in mg 380.27 ± 194.11 (33.25-1020) / / 
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S-Table 2. Prior means and variances of parameters in computational models. α was 
estimated in logit-space, ! and !! were estimated in log space.  

 
 Prior Mean Prior Variance 

Decision Model for all learning models 

Softmax 

ρ rew 1 1 

ρpun 0 1 

Learning models 

RL 

!  .5 1 

!win  .6 1 

!loss  .4 1 

HGF 

! (HGF2+3) -1.5 0 

! (HGF3) 1 1 

!! (HGF3) -6 1 

µ!(!) (HGF3-V) 0 1 
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S-Table 3. Explorative correlations (Spearman’s rank correlation coefficient) between 

model parameters that differed between groups and measures of cognitive functioning 

as well as symptom domains within patients fit better than chance by the model (n=31).  

* indicates significance surviving Bonferroni-correction for six cognitive tests. For 

completeness, we also report correlations between these two parameters and 

independent cognitive measures in HC.  

 
 µ!(!) ! 
 r p r p 
Cognitive measures (in PSZ)    
Verbal Intelligence (31)  -.35 .06 -.26 .17 
Word list (31)  -.18 .33 -.15 .43 
Working memory (31)  -.22 .23 -.25 .18 
TMT A (30)  -.46 .01 -.33 .08 
TMT B (30)  -.56* <.001* -.37 .05 
Processing speed (31)  .-56* <.001* -.22 .23 
Clinical measures (in PSZ)   
PANSS Positive (31)  .25 .17 .26 .16 
PANSS Negative (31)  .24 .19 .06 .75 
PANSS GP (31)  .28 .12 .30 .10 
PANSS Total (31)  .31 .09 .21 .25 
SAPS Delusion (30)  .16 .39 .30 .22 
SANS Anhedonia (30)  .32 .09 .07 .72 
CPZ in mg (30)  .11 .57 .31 .09 
Cognitive measures (in HC)    
Verbal Intelligence (41)  .09 .57 .09 .57 
Word list (41)  .08 .60 .17 .29 
Working memory (41)  .04 .80 .11 .48 
TMT A (40)  -.11 .49 -.09 .57 
TMT B (40)  -.04 .79 .09 .59 
Processing speed (41)  .-.08 .61 -.16 .33 
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S-Table 4. ε2 related activation in all participants, p-FWEwholebrain<0.05, k=10 

 
Region Cluster  Coordinates T p (FWE) 

Medial Frontal Gyrus 1539 L -2 52 -4 7.33 <0.001 

  -16 64 8 6.54  

  0 66 18 6.30  

  0 -12 52 6.17  

  0 -18 54 6.03  

  0 -24 52 5.86 0.001 

  -4 40 -18 5.54 0.003 

  -2 62 28 5.44 0.005 

Cingulate Gyrus  R 2 -36 36 8.22 <0.001 

   2 2 34 6.97  

  L -4 -18 44 6.78  

   -6 -46 36 6.64  

   -2 -8 42 5.84 0.001 

   -10 -32 40 5.47 0.004 

Posterior Cingulate  L -6 -52 14 6.55 <0.001 

   -2 -52 22 6.07  

  R 4 -52 22 6.11  

   6 -52 14 5.87 0.001 

Paracentral Lobule  R 6 -34 50 6.07 <0.001 

  L -2 -30 48 6.16  

Precuneus  L -10 -38 44 5.06 0.024 

Nucleus accumbens 1441 L -12 10 -10 10.94 <0.001 

  R 14 8 -12 10.38  

   30 -12 6 7.11  

Putamen  R 26 -2 -8 6.33  

   24 4 4 5.35 0.007 

  L -30 -18 6 6.82 <0.001 

   -30 -14 -4 6.35  

   -28 -6 10 6.20  

   -30 -8 -4 6.19  

Amygdala  L -26 -6 -12 6.59  

  R 20 -8 -14 6.16  

  L -16 -8 -12 5.88  

Hippocampus  L -24 -18 -16 6.69  

   -32 -20 -18 5.96  

   -30 -10 -20 5.50 0.003 

   -28 -28 -12 5.06 0.024 

Anterior Cingulate 1138 R 6 30 -10 5.49 0.004 

   6 34 -4 4.99 0.033 

  L -4 42 4 5.37 0.006 

Medial Frontal Gyrus  R 4 50 -10 8.00 <0.001 

   4 38 -16 7.86  
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Middle Temporal Gyrus 549 L -58 -54 -2 7.25 <0.001 

   -62 -42 -10 6.05  

   -56 -44 -4 6.04  

   -50 -66 26 5.61  

   -46 -64 20 5.41 0.005 

Superior Temporal Gyrus  L -54 -62 12 5.05 0.026 

Precuneus   -38 -74 42 6.49 <0.001 

Inferior Parietal Lobule   -40 -70 38 7.04  

Middle Frontal Gyrus 214 L -34 36 -10 6.87 <0.001 

   -38 38 -10 6.60  

   -22 32 -16 6.34  

Inferior Frontal Gyrus  L -46 34 -10 5.74 0.001 

Middle Frontal Gyrus 158 L -18 30 46 5.03 0.027 

Superior Frontal Gyrus  L -16 34 54 6.03 <0.001 

   -14 42 46 5.93  

   -12 50 40 5.72 0.001 

   -14 52 36 5.72 0.001 

Middle Frontal Gyrus 101 R 34 36 -12 6.45 <0.001 

Middle Temporal Gyrus 72 R 56 -2 -18 6.20 <0.001 

Precentral Gyrus 63 R 16 -26 62 5.38 0.006 

   24 -28 64 5.31 0.008 

   28 -24 56 5.30  

   24 -24 58 5.19 0.014 

   36 -28 62 4.97 0.036 

Hippocampus 41 R 26 -16 -18 6.02 <0.001 

Inferior Frontal Gyrus 35 L -44 38 6 5.53 0.003 

   -50 32 6 5.01 0.03 

Middle Temporal Gyrus 31 R 56 -42 -10 6.09 <0.001 

Inferior Temporal Gyrus  R 64 -12 -20 5.59 0.002 

Inferior Parietal Lobule 21 R 50 -68 38 5.97 <0.001 

Putamen 17 L -26 6 -2 5.58 <0.001 

Claustrum 16 L -38 -2 2 5.97 <0.001 

Effects unique to HC 
 

- - - - - 
- - - 

Effects unique to PSZ 
 

Motor Cortex 25 L -38 -26 
64 5.92 <0.001 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/227967doi: bioRxiv preprint 

https://doi.org/10.1101/227967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deserno, Boehme et al.: Volatility and choice switching in schizophrenia, Supplementary Material 

 

 
 

17 

S-Table 5. ε3 related activation in all participants, p-FWEwholebrain<0.05, k=10 

 
Region  Clust

er 
 Coordinates T p (FWE) 

Inferior Frontal Gyrus 84 R 44 12 26 6.44 <0.001 

Inferior Parietal Lobule 28 L -42 -38 40 5.69 0.001 

Middle Frontal Gyrus 26 L -30 2 60 5.48 0.004 

Precuneus 20 L -32 -50 50 5.17 0.015 

Inferior Frontal Gyrus 19 L -50 4 36 5.30 0.009 

Precuneus 7 R 10 -72 44 5.30 0.009 

Insula 5 L -40 8 24 5.46 0.004 

Superior Frontal Gyrus 4 L -4 10 54 5.03 0.027 

Precuneus 3 L -30 -74 28 5.22 0.012 

Putamen 2 L -14 10 -12 4.96 0.036 

Inferior Parietal Lobule 2 L -40 -48 44 4.92 0.044 

Effects unique to HC 
 

- - - - - 
- - - 

Effects unique to PSZ 
 

- - - - - 
- - - 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2019. ; https://doi.org/10.1101/227967doi: bioRxiv preprint 

https://doi.org/10.1101/227967
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deserno, Boehme et al.: Volatility and choice switching in schizophrenia, Supplementary Material 

 

 
 

18 

S-Table 6. Ψ2 related activation in all participants, p-FWEwholebrain<0.05, k=10 

 
Region Cluster  Coordinates T p (FWE) 

Cingulate Gyrus 564  6 28 38 7.77 <0.001 

   10 18 42 7.32  

  L -6 24 38 6.27  

Anterior Cingulate  R 4 38 28 5.34 0.007 

Inferior Frontal Gyrus 348 L -28 24 -6 7.87 <0.001 

Claustrum   -30 20 8 6.61  

   -32 18 2 6.46  

Insula   -40 16 8 6.09  

Inferior Frontal Gyrus 332 R 30 24 -8 8.45 <0.001 

Middle Frontal Gyrus 180 R 36 40 24 6.01 <0.001 

   42 30 30 5.91 0.001 

   36 24 34 5.57 0.002 

   36 50 18 5.12 0.019 

Inferior Parietal Lobule 125 R 52 -46 38 6.26 <0.001 

   44 -36 40 5.51 0.003 

Inferior Parietal Lobule 118 L -42 -58 52 5.51 0.003 

   -42 -52 44 5.45 0.004 

   -46 -52 54 5.33 0.008 

   -48 -50 50 5.07 0.024 

Middle Frontal Gyrus 111 L -38 56 12 6.65 <0.001 

   -40 54 -2 5.85 0.001 

   -46 48 -8 5.15 0.016 

Cerebellum 109 L -32 -58 -30 7.36 <0.001 

Cerebellum 92 R 36 -62 -28 7.24 <0.001 

   46 -66 -26 5.44 0.005 

Middle Frontal Gyrus 86 L -36 28 30 5.77 0.001 

Inferior Frontal Gyrus 53 L -36 4 32 6.01 <0.001 

Middle Frontal Gyrus   -42 10 36 5.49 0.004 

Red Nucleus 52 L  -6 -24 -4 7.47 <0.001 

Globus Pallidus 41 L -14 2 -2 6.03 <0.001 
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Thalamus   -12 -10 0 5.29 0.009 

Inferior Parietal Lobule 40 L -46 -38 42 6.32 <0.001 

Thalamus 29 R 12 -6 8 5.68 0.001 

Precentral Gyrus 24 R 44 2 38 5.21 0.013 

Superior Frontal Gyrus 27 L -6 12 54 5.78 0.001 

Middle Frontal Gyrus   -34 -2 48 5.67 0.002 

Cingulate Gyrus   -4 14 46 5.01 0.030 

Caudate 20 R 14 12 8 5.80 0.001 

Inferior Parietal Gyrus 14 L -32 -48 38 5.2 0.013 

Inferior Frontal Gyrus 11 R 48 22 10 5.53 0.003 

Middle Temporal Gyrus 11 L -56 -30 -10 5.25 0.010 

Insula 10 R 44 16 4 5.54 0.003 

Effects unique to HC  

- - - - - - - - 

Effects unique to PSZ  

- - - - - - - - 
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S-Table 7. Ψ3 related activation in all participants, p-FWEwholebrain<0.05, k=10 

 
Region Cluster  Coordinates T p (FWE 

Medial Frontal Gyrus 126 R 6 26 40 6.01 <0.001 

Cingulate Gyrus  R 10 18 42 6.15  

   8 12 46 5.89 0.001 

Insula  L -32 20 10 5.57 0.002 

   -36 18 10 5.52 0.003 

  R 34 22 6 5.56  

Claustrum  L -28 24 4 5.49 0.004 

Inferior Frontal Gyrus 104 R 30 24 -8 6.34 <0.001 

Inferior Frontal Gyrus 97 L -28 24 -6 5.90 0.001 

Claustrum 86 R 36 -62 -28 6.53 <0.001 

   32 -68 -22 5.65 0.002 

 44 L -32 -56 -30 6.28 <0.001 

Red nucleus 12 L -6 -24 -4 5.91 <0.001 

Inferior Frontal Gyrus 11 L -36 4 32 5.35 0.007 

Anterior Cingulate 11 R 8 28 30 5.39 0.006 

  L -6 30 30 5.36  

Cingulate Gyrus   -8 22 38 5.34 0.007 

Effects unique to HC        

- - - - - - - - 

Effects unique to PSZ        

Cerebellum 
13 R 36 -64 -22 5.25 0.007 

   38 -56 -26 5.2 0.009 

 11 L -38 -58 -30 5.1 0.012 
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S-Table 8. µ3 related activation in all participants, p-FWEwholebrain<0.05, k=10  
Region Cluster  Coordinates T p (FWE) 

Middle Frontal Gyrus 1829 R 38 40 26 7.90 <0.001 

   42 30 30 7.44  

   36 58 14 7.07  

   38 24 34 7.03  

   40 50 20 6.99  

   40 6 58 6.91  

   34 4 54 6.75  

   46 26 42 6.46  

   40 58 6 6.16 0.001 

   26 4 46 5.99 <0.001 

   46 52 0 5.75 0.001 

Inferior Frontal Gyrus   38 8 30 5.56 0.003 

   44 10 24 5.36 0.007 

Superior Frontal Gyrus   32 58 -2 5.96 <0.001 

   36 54 16 7.05  

Precentral Gyrus   42 6 36 6.55  

Inferior Parietal Lobule 1463 R 50 -46 40 8.37 <0.001 

   50 -46 46 7.83  

   52 -42 52 7.59  

   50 -38 42 7.50  

   38 -46 42 7.18  

   38 -58 40 7.03  

   46 -50 54 6.64  

   36 -64 50 6.30  

   42 -34 38 6.29  

Superior Parietal Lobule   42 -64 50 6.62  

Middle Frontal Gyrus 1164 L -38 56 12 8.75 <0.001 

   -46 26 34 6.83  

   -28 50 12 6.70  

   -46 50 -6 6.52  

   -34 30 24 6.46  

   -40 10 34 6.27  

   -42 32 40 6.17  

   -44 34 24 6.08  

   -38 26 30 5.91 0.001 

   -40 40 20 5.28 0.009 

Inferior Frontal Gyrus   -46 50 2 6.93 <0.001 

   -34 6 34 6.23  

   -40 2 28 5.01 0.030 

Superior Frontal Gyrus   -38 48 28 5.49 0.004 

Medial Frontal Gyrus 1007 R 6 26 40 8.19 <0.001 

   4 24 44 7.94  

Superior Frontal Gyrus  L -4 12 54 7.20 <0.001 
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Cingulate Gyrus  R 8 16 46 8.64 <0.001 

  L -2 22 46 7.69  

Anterior Cingulate   -6 30 30 5.83 0.001 

Inferior Parietal Lobule 926 L -34 -50 40 7.64 <0.001 

   -44 -50 42 7.57  

   -48 -40 44 7.09  

   -46 -52 54 6.27  

   -42 -58 52 6.05  

   -32 -64 42 5.61 0.002 

        

Superior Parietal Lobule   -34 -66 50 5.43 0.005 

Cerebellum 615 L -34 -58 -30 8.50 <0.001 

   -14 -80 -22 6.98  

   -8 -80 -30 6.10  

   -26 -74 -24 6.00  

Claustrum 519 L -30 24 -2 8.55  

   -30 20 8 7.22  

Insula   -36 18 4 6.99  

   -40 16 2 6.89  

Inferior Frontal Gyrus   -48 18 -4 5.50 0.003 

Insula 449 R 32 20 8 6.54 <0.001 

Inferior Frontal Gyrus   30 24 -6 8.36  

   44 22 -10 6.18  

   48 20 -6 5.94  

   40 20 -4 5.88 0.001 

Cerebellum 176 R 34 -64 -28 9.15 <0.001 

Thalamus 105 R 12 -4 8 6.58 <0.001 

Middle Temporal Gyrus 102 R 62 -30 -10 6.22 <0.001 

   54 -28 -12 5.21 0.013 

Globus Pallidus 94 L -14 0 0 6.69 <0.001 

Thalamus   -10 -12 2 5.71 0.001 

Brainstem 65 L  -6 -24 -4 7.92 <0.001 

Middle Frontal Gyrus 31 L -26 2 48 5.47 0.004 

Globus Pallidus 29 R 16 2 -2 6.13 <0.001 

Cerebellum 25 R 16 -82 -20 5.35 0.007 

Middle Frontal Gyrus 22 R 24 46 -12 5.83 0.001 

  21 L -48 12 46 5.70 0.001 

 17 R 46 44 -8 5.5 0.003 

Effects unique to HC  

Medial PFC 15  0 36 38 5.56 0.003 

Inferior Frontal Gyrus 18 L -44 20 2 5.25 0.01 

   -52 18 2 5.18 0.14 

Effects unique to PSZ  

Dorsolateral PFC 
10 R 34 8 30 5.31 0.008 
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S-Table 9. Reward prediction error related activation (RPE δ from reinforcement learning 
model), over all participants, FWE corrected p < 0.05, k = cluster size (>=10).  

Region Cluster  Coordinates T p (FWE) 

Superior Frontal Gyrus 3908 L -16 36 52 9.07 <0.001 

   -14 54 30 7.84  

  R 14 54 36 7.32  

   18 36 54 7.31  

Medial Frontal Gyrus  L -2 64 8 8.61  

   -4 58 4 8.34  

   -8 56 -12 7.36  

  R 2 66 20 8.54  

   6 56 -4 8.40  

   2 64 24 8.01  

   2 42 -14 7.96  

   4 36 -12 7.74  

   2 62 28 7.64  

Middle Frontal Gyrus   30 34 -14 7.33  

Anterior Cingulate  L -6 40 -8 8.40  

  R 4 40 -8 7.72  

Cingulate  L -2 -48 32 7.81  

   -6 -46 34 7.74  

   -10 -48 36 7.25  

   -10 -32 40 6.10 0.002 

   0 -2 36 6.05  

   -4 -8 44 5.92 0.004 

  R 2 -34 36 9.29 <0.001 

   2 -10 38 6.67  

   4 -14 36 6.35 0.001 

Posterior Cingulate   -8 -56 16 8.66 <0.001 

 1845 L -2 -52 22 9.50 <0.001 

Paracentral Lobule  R 6 -34 48 5.39 0.025 

Putamen 1218 L -14 8 -10 9.56 <0.001 

   -28 -6 4 9.14  

   -30 -6 -6 8.19  

   -26 8 2 6.71  

Nucleus accumbens  L -8 12 -10 9.25  

Amygdala   -26 -8 -18 9.47  

Hippocampus   -28 -20 -18 8.42  

Claustrum   -34 -6 -2 8.64  

   -38 0 4 6.85  

Globus Pallidus   -14 -8 -10 6.16 0.001 

Middle Frontal Gyrus 1039 L -42 38 2 8.42 <0.001 

   -36 38 -10 7.46  

   -40 34 -14 7.33  

   -42 50 -4 6.98  
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   -46 44 -4 6.84  

   -22 34 -14 6.64  

Inferior Frontal Gyrus   -50 38 8 7.54  

   -46 38 -10 7.20  

   -40 26 -16 6.94  

   -26 30 -16 6.71  

   -50 32 -8 6.41 0.001 

   -54 32 0 6.40  

   -52 30 8 6.37  

   -46 48 8 5.93 0.003 

Putamen 1013 R 30 -14 2 8.78 <0.001 

   26 2 4 8.09  

   28 -4 0 7.82  

   30 -2 -10 6.03 0.002 

Nucleus accumbens   12 10 -10 9.89 <0.001 

Amygdala   24 -6 -18 6.67  

   26 -6 -26 6.21 0.001 

Hippocampus   30 -12 -20 7.40 <0.001 

   28 -20 -16 7.00  

Claustrum   34 2 2 6.43 0.001 

Middle Temporal Gyrus 769 L -50 -66 26 8.31 <0.001 

Angular Gyrus   -52 -68 30 8.26  

Precuneus   -40 -68 36 7.77  

Superior Parietal Lobule   -42 -64 50 6.20 0.001 

   -36 -74 48 6.09 0.002 

Cerebellum 502 L  -40 -76 -32 9.35 <0.001 

   -36 -80 -28 7.99  

   -46 -70 -32 7.68  

   -14 -86 -28 7.60  

   -26 -76 -30 7.08  

   -24 -80 -28 7.01  

   -28 -82 -24 6.62  

   -6 -84 -28 6.62  

   -32 -70 -34 6.41 0.001 

   -18 -72 -32 6.03 0.002 

   -34 -64 -34 5.31 0.033 

Inferior Temporal Gyrus 387 L -56 -16 -18 7.21 <0.001 

   -62 -10 -20 6.97  

   -62 -16 -20 6.84  

   -60 -54 -8 6.02 0.002 

Middle Temporal Gyrus 387 L -64 -48 -4 7.05 <0.001 

   -60 -34 -10 7.02  

   -54 -36 -14 5.91 0.004 

   -58 -50 -12 5.74 0.007 

Inferior Parietal Lobule 318 R 54 -60 42 6.61 <0.001 
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   52 -66 36 6.50  

   46 -66 40 6.15 0.001 

   44 -72 42 6.09 0.002 

   44 -68 46 6.03  

Superior Parietal Lobule   42 -64 50 5.82 0.005 

   50 -58 26 5.36 0.028 

   46 -60 28 5.30 0.034 

   54 -60 24 5.29 0.036 

Cerebellum 160 R 20 -42 -24 7.02 <0.001 

   16 -46 -22 6.91  

   22 -54 -24 6.57  

   28 -48 -26 6.05 0.002 

Middle Temporal Gyrus 144 R 62 -38 -14 7.07 <0.001 

   64 -30 -14 6.75  

   64 -42 -4 6.32 0.001 

   58 -42 -12 6.13 0.002 

Cerebellum 113 R 26 -82 -22 6.53 <0.001 

   20 -74 -22 5.81 0.005 

   22 -86 -28 5.70 0.008 

   10 -84 -26 5.38 0.026 

Thalamus 89 R 14 -6 14 6.44 0.001 

Caudate   18 -2 22 6.25  

 69 L -14 -10 18 6.36 0.001 

Thalamus   -8 -4 16 5.97 0.003 

Middle Frontal Gyrus 57  34 30 52 6.51 <0.001 

Inferior Temporal Gyrus 44 R 50 -8 -22 5.73 0.007 

   60 -14 -22 5.71 0.008 

Middle Temporal Gyrus   62 -8 -14 6.01 0.003 

   56 -20 -20 5.39 0.025 

Medial Frontal Gyrus 39 L 0 -12 52 6.10 0.002 

Cerebellum 30 R 44 -74 -28 6.98 <0.001 

 22 L -22 -56 -20 6.14 0.002 

 17 L -26 -42 -30 6.2 0.001 

Superior Parietal Lobule 14  -26 -40 56 6.03 0.002 

Culmen 13 L -18 -38 -24 5.57 0.013 

Insula 11 R 36 2 22 6.29 0.001 

Inferior Parietal Lobule 10 L -64 -36 24 5.65 0.010 
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S-Table 10. Small volume corrections for region of interests (ROI) in midbrain and 

ventral striatum. Bilateral ROIs were used for midbrain as in Iglesias et al. 2016 based 

on a study by Bunzeck and Düzel (2006) and for ventral striatum as in Schlagenhauf et 

al. (2014)8, 16, 17.  
Region   Coordinates T/F p (FWE) 

Second level precision-weighted prediction error ε2 

Midbrain ROI  All HC and SZ, T L -8 -18 -10 3.94 .01 

HC vs SZ, F  R 12 -18 -14 12.97 .08 

Ventral striatum ROI  All HC and SZ, T FWEwholebrain<.05, see S-Table 3 

HC vs SZ, F R 16 2 -6 6.23 .35 

Reward prediction error from reinforcement learning model δ 

Midbrian ROI All HC and SZ, T L -6 -14 -10 4.03 .02 

HC vs SZ, F R 14 -18 -12 11.60 .17 

Ventral striatum ROI All HC and SZ, T FWEwholebrain<.05, see S-Table 8 

HC vs SZ, F L -14 4 -4 9.49 .12 
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S-Figure 1. Example trajectories of one healthy control and one patient with the initial 

belief over mu3 and kappa close to the group mean illustrating the differences in learning 

on the second and the third level of the HGF.  
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S-Figure 2. Analysis of trial-wise posterior means µ!! of inferred environmental volatility 

in a mixed-effects regression model with group and feedback as predictors revealed a 

significant main effect of group (t=3.22, p=0.01) due to higher estimates of volatility in 

PSZ and a main effect of feedback (t=16.124, p<.001) due to higher estimates of 

volatility after losses compared to rewards. A group x feedback interaction (t=2.50, 0.02) 

was also significant and driven by a larger difference in environmental volatility after 

having received losses versus rewards in PSZ as compared to HC (S-Figure 2).  
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S-Figure 3. Bonferroni-corrected significant correlations between µ!
(!)  and z-scored 

measures of executive functioning (TMT B) and cognitive speed (DSST) in patients fit 

better than chance by the model (n=31), Spearman rank correlation coefficient -.56, 

p<.001 for TMT B and -.56, p<.001 for DSST.  
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S-Figure 4. A) PE-related signals based on RL model, p-FWEwholebrain<0.05, k=10, [7 -8]; 

B) Overlay of RRE from RL model in blue and second-level precision weighted RPE from 

HGF model in red, p-FWEwholebrain<0.05, k=10, [7 -8];  
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S-Figure 5. A) BOLD signal related to third-level precision, p-FWEwholebrain<0.05, k=10, [8 

26 -4]; B) overlay of second-level (red) and third-level precision (blue), p-

FWEwholebrain<0.05, k=10; C) overlay of second-level (red) and third-level precision (blue),  

environmental volatility (turqoise) at [8 26 -4] and [34 44 24], p-FWEwholebrain<0.05, k=10;  
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