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We analyze the role of boundary geometry in viscous electronic hydrodynamics. We address
the twin questions of how boundary geometry impacts flow profiles, and how one can engineer
boundary conditions – in particular the effective slip parameter – to manipulate the flow in a
controlled way. We first propose a micropatterned geometry involving finned barriers, for which we
show by an explicit solution that one can obtain effectively no-slip boundary conditions regardless
of the detailed microscopic nature of the channel surface. Next we analyse the role of mesoscopic
boundary curvature on the effective slip length, in particular its impact on the Gurzhi effect. Finally
we investigate a hydrodynamic flow through a circular junction, providing a solution, which suggests
an experimental set-up for determining the slip parameter. We find that its transport properties
differ qualitatively from the case of ballistic conduction, and thus presents a promising setting for
distinguishing the two.

I. INTRODUCTION

The field of electronic transport phenomena has been
greatly enriched by the idea that for sufficiently strong
electron-electron scattering, a description in terms of an
effectively viscous hydrodynamics becomes appropriate.
This studies the flow of conserved quantities such as
mass, charge or energy (heat). Proposed a long time ago
by Gurzhi in1,2, only recently a family of samples clean
enough to observe a wide range of hydrodynamic effects
(such as negative local resistance, superballistic flow or
a modification of the Hall effect3–10) has been subjected
to a systematic study. For a review of the field of viscous
electronics see11.

One of the important aspects of hydrodynamics as
an effective transport theory is its inherently mesoscopic
character due to the fact that the solutions of the trans-
port equations strongly depend on the boundary condi-
tions. The so-called Maxwell boundary conditions, a one
parameter family of consistent boundary conditions for
hydrodynamics, read

uti
∣∣
B

= ξ nj
∂uti
∂xj

∣∣∣∣
B

. (I1)

The parameter ξ is called the slip length. This boundary
condition involves the tangent velocity ut at the bound-
ary of flow domain and its normal (with respect to inward
pointing vector nj) derivative.

In many every-day uses of hydrodynamics, the slip
length is negligibly small, encoded by the no-slip bound-
ary condition that prohibits the fluid from having any
tangent velocity at the domain’s boundary. How-
ever, there are situations, like in liquid helium or
microfluidics12,13, where a nonzero slip length cannot be
neglected.

Recent experiments failing to observe the Gurzhi effect
in a long graphene channel6, as well as theoretical insights
on the dependence of slip length ξ on temperature14, sug-
gest that a similar situation may exist for viscous elec-
tronics. In that case the question of determining and

correctly treating the boundary condition becomes cru-
cial for both further theoretical developments and possi-
ble practical applications of the field.

Whereas the microscopic1 slip in viscous electronic sys-
tems has been investigated in detail14, there is another
aspect of the boundary condition I1 associated with the
geometry of the boundary, studied by Einzel, Panzer and
Liu12. If the boundary of a channel is not flat but has
some curvature, it modifies the boundary condition by
replacing the microscopic slip length ξ by an effective pa-
rameter ξeff that is a function of the local curvature. For
a mesoscopic sample the curvature can be either meso-
scopic (i.e. of order of characteristic system size) or sub-
mesoscopic (i.e. much smaller than system size yet bigger
than momentum conserving scattering mean free path).
To our knowledge, this aspect of boundary conditions has
not been analysed in the context of viscous electronics.

In this work we address a group of issues concerning
boundary conditions of viscous electronic flow relating
to their nature, observability, and tunability. We start in
section II with answering a practical question: can one,
independently of the nature of microscopic boundary con-
dition, perform some micro-structuring of the boundary
that would effectively yield a well controlled boundary
condition? The answer to that question turns out to
be affirmative as a relatively simple boundary patterning
turns out to mimic the classical no-slip boundary condi-
tion. Then, in section III we discuss the EPL (Einzel-
Panzer-Liu) boundary condition. We present modifica-
tions of the basic (Hagen-)Poiseuille flow to account for
effective geometric slips on the boundaries. The corre-

1 To avoid confusion with length scale description, let us stress here
that when we write about microscopic effects, we mean atomic-
scale effects; mesoscopic will denote scales around the microm-
eter scale, and by macroscopic we mean things measurable at
everyday length-scales, e.g. temperature. We also sometimes use
the word sub-mesoscopic to denote intermediate scales between
micro- and mesoscopic, i.e. larger than atomic, but smaller than,
e.g., typical sample dimensions.
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sponding conductance for a couple of test parameters is
presented. Since the results obtained in that section indi-
cate a possible breakdown of the theory, we perform also
a linear stability analysis of those viscous flow solutions
which, as technically involved, is relegated to Appendix
B.

The next section, IV, is devoted to studying the ef-
fects of nonzero slip in a flow through a circular junc-
tion – a set-up that was previously investigated in the
framework of ballistic transport in semiconductors15–17.
We present qualitative differences between ballistic and
hydrodynamic transport in such a set-up and propose
a measurement protocol that allows one to directly ac-
cess the slip length. The local conductivity is a non-
monotonic function of that parameter and, in turn, also
of temperature. We close the main text with conclusions
and a discussion. Due to multiplicity of techniques used
in this work we supplement the text with a couple ap-
pendices in which we elaborate on the technical side of
our computations.

II. BOUNDARY CONDITION ENGINEERING

Recent theoretical analysis14 suggests that the micro-
scopic slip length exhibits strong temperature depen-
dence, and is divergent when T → 0. This result, imply-
ing that for low temperatures slip length can be of order
of the sample size, is backed up by some experimental
data6.

One can ask: why is the issue of boundary conditions
so important? The answer stems from the fact that the
viscous force is proportional to the gradient of velocity
so, in any set-up where a flow is locally parallel to the
boundary, any nonzero slip length will substantially re-
duce the local resistance. Probably the simplest example
of such a situation is a Hagen-Poiseuille flow through a
channel with an arbitrary slip length, where the average
velocity is proportional to the slip length. In particular,
the velocity turns infinite in the no-stress limit where the
slip length diverges.
This situation can be regularised if one takes into ac-
count weak momentum relaxation due to momentum-
non-conserving impurities, phonons and Umklapp scat-
tering. In order to do that one adds an Ohmic term
proportional to velocity to the Navier-Stokes equation.
In that case, however, the conductivity is dominated by
the Ohmic rather than the viscous effects for large slip.
This leads us to the question if one can somehow slow
down the fluid near the boundary to make the viscous
effects more pronounced.

Our simple proposal is to slow down the fluid near
the walls by introducing a series of small obstacles on
the boundary (Fig. 1). The mechanism guaranteeing
efficiency of that method takes up an idea by Moffatt,18

who noteced that an arbitrary viscous flow outside of
a cavity will drive a vortical flow inside (see also19–21

for a discussion of this effect in various set-ups). Later

Wang22 constructed a solution for a Stokes flow with no-
slip boundary conditions in a channel with perpendicular
barriers equally spaced on the channel boundaries. He
observed Moffatt vortices appearing inside the cavities
below a critical distance between barriers.
Crucially, the induced vortices are typically tiny – the
flow velocity around such a vortex is orders of magnitude
smaller that in the main driving flow. Thus, in general
the fluid inside the cavity flows with a relatively small
velocity compared to flow in the middle of the channel,
thus mimicking the no-slip boundary.

To test this idea, we conduct a series of simulations
of an infinite channel with a periodic array of obstacles
on the boundary (see Fig. 1). We calculate flow profiles
with arbitrary slip parameters and deduce that for some
range of obstacle lengths and spacings, there is no strong
dependence of the flow profile on the slip parameter, and
indeed the flow in the center of the channel resembles a
standard no-slip parallel Poiseuille flow. To additionally
check our results, we repeat the simulations for a period-
ically driven AC flow, and observe the development of a
boundary layer in the high frequency regime. That phe-
nomenon, like the Gurzhi effect, is characteristic of the
viscous flow regime23, but it is absent in parallel flows
with no-stress boundary condition.

(0,0)
y

x

2b
a

h = 2

FIG. 1: Flow geometry with a series of obstacles forming
cavities on the boundaries

In our computation, which is performed for two-
dimensional systems, it is convenient to use a stream
function formulation of the flow. The most general time-
dependent case is governed by the following equation

∂t ∆Ψ− η∆2 Ψ + γ∆Ψ = 0. (II1)

Here η is the viscosity and γ the coefficient of the Ohmic
term. We concentrate first on the time-independent (DC)
case. The equation can be simplified

∆2 Ψ− Γ∆Ψ = 0, Γ =
γ(h/2)2

η
. (II2)
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FIG. 2: Left panel: Flow velocity cuts at the edge of the
unit cell, x = 1/10, for different Ohmic coefficients. The
three plots correspond to no-slip boundary conditions and
parameters σ = 1/2, β = 1/10 (see text). Red line Γ = 1
(hydrodynamic), blue line Γ = 100 (crossover) and purple
line Γ = 1000 (ohmic). Right panel: Profile of the flow
velocity along a unit cell for no-stress boundary conditions,
both plots correspond to β = 1/10, while σ = 1/4 (top) and
σ = 1/2 (bottom).

In the equation above, the spatial variables are
dimension-less. In order to study the behavior of the
flow through the finned channel, we define parameters

σ ≡ 2a

h
and β ≡ 2b

h
, (II3)

σ being a fraction of the channel in which the fluid is
blocked, so in the middle we have a free ’channel’ of width
h(1 − σ), while β measures the aspect ratio of the unit
cell.

In Fig. 2 (left panel), the x-component of the velocity
along the line x = 1/10, for a unit cell with β = 1/10
and σ = 1/2, is plotted for different Ohmic coefficients.
It can be seen that it looks parabolic for small Ohmic dis-
sipation, resembling hydrodynamic behavior. For higher
values of the Ohmic coefficient the flow profile becomes
flat. This result is for no-slip boundary condition and is
in correspondence with9.

More interestingly, if the no-stress boundary condition
is implemented, the flow through the middle aperture
of the channel still resembles a parabolic flow, as can
be seen from the right panel of Fig. 2. This is our first
central result.

To investigate the similarity of the flow with the
Poiseuille case in detail, we fix the dimensionless Ohmic
coefficient Γ = 1, which places it in an experimentally
feasible range6,7,24. In Fig. 3 we plot how the velocity
profile in the middle of the channel changes with respect
to the parameter β for both no-slip and no-stress bound-
ary conditions. All plots are for fixed σ = 1/2, therefore
we also plot the velocity for the Poiseuille flow on a flat
channel of width equals one for comparison.

FIG. 3: Flow velocity cuts at the center of the unit cell, x = 0,
for no-slip (left) and no-stress (right) boundary conditions.
The black lines correspond to Poiseuille flows for an effective
center channel of width h̃ = 1/2 = 1 − σ. Recall that we
are in the low dissipation regime, Γ = 1. Note the similarity
between the actual flow and the Poiseuille flow.

Given the similarity of the obtained profiles with the
parabolic flow, we define an effective channel in the mid-
dle of our sample. Along this effective central channel,
the fluid behaves as if the boundary condition on its
walls were no-slip, regardless of the actual boundary
conditions on the full finned channel.

How small can the obstacles be made for the flow
along the effective channel to be effectively parabolic?
This is addressed in Fig. 4, which depicts the evolution
of the velocity profile for different values of β, and as
a function of the aperture parameter σ. In the top
and middle panels of Fig. 4, the spatial dependence of
the flow velocity is plotted for different parameters β
and σ, concentrating particularly on small obstacles.
For some combinations of these parameters the flow
closely resembles the parabolic no-slip flow. Other
combinations of parameters, corresponding to distantly
spaced obstacles, yield flows differing considerably from
classical Poiseuille.

In Fig. 4 (bottom panel), the velocity on the no-stress
wall is plotted in red as a function of σ for β fixed. We see
that when the velocity at the wall is not zero (or near to
zero), the flow profile in the middle of the channel differs
qualitatively from the parabolic Poiseuille flow. We use
this to propose a criterion indicating when the effective
flow in the middle channel resembles a parabolic flow.
The analysis of numerical data suggests, that in order to
ensure that the velocity in the cavity is negligibly small
the following condition needs to hold

β . σ,

i.e. it is important that the obstacles are not too far away
from each other – the distance between them should be
of order of obstacle length or smaller.

Note for example that for β = 1/10 (the parameter
of the plots in Fig. 2), there is a large range of values
of the σ parameter for which the velocity at the walls is
very close to zero despite the no-stress boundary condi-
tion. This supports the idea that a series of obstacles can
effectively change the slip parameter in a channel.

Also, note that mimicking no-slip boundary conditions
reproduces more than just the simplest effects (such as
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β = 1/2 β = 1/4 β = 1/6
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FIG. 4: Top: Velocity profiles along the channel for the cor-
responding values of β and σ = 1/5, corresponding to small
obstacles in comparison with the height of the channel. Mid-
dle: Velocity profiles along the channel for the corresponding
values of β and σ = 1/20, corresponding to very small ob-
stacles in comparison with the height of the channel, h = 2
in our units. Bottom: Value of the flow velocity at the top
wall, coordinates (x, y) = (0, 1), of a unit channel cell as a
function of σ and for three values of β.

FIG. 5: Spatiotemporal velocity cut profiles at x = 0, for
high frequency driving over one period, t ∈ [0, 2π]. No-stress
boundary conditions on walls and obstacles. Parameters: Λ =
500 i+ 1, h = 2, σ = 1/2 and β = 1/10.

parabolic Poiseuille flow). To confirm that fact, we repeat
the above simulation in a time-dependent (AC) scenario
with a periodic forcing.

The Stokes boundary layers emerge above a certain
forcing frequency (see Fig. 5). This phenomenon, previ-
ously described for a flat channel23, is also tied to the no-
slip boundary condition, in the following way. For large

frequencies, the fluid ”cannot follow” the drive, and stops
to be in phase with the rapidly oscillating force. The fluid
in the middle of the channel oscillates uniformly, and
only close to the boundary does the viscosity become
important. This has to do with the frequency of forc-
ing being too big for the viscosity to efficiently transport
the momentum through the whole channel. As a conse-
quence, a strong gradient is created near the boundary,
on a distance that corresponds to the effective ’range’ of
viscous interaction under periodic driving. This gradient
of course only emerges if the fluid sticks to the boundary,
i.e the velocity there is close to zero.

Since in parallel to the flow in channels without bar-
riers, fast forcing in our set-up results in the maximal
velocity at some distance from the center, we conclude
that the structured boundary indeed does mimic a no-
slip boundary quite well. Apart from that, this analysis
supplements existing literature on time dependent elec-
tronic flows25–27.

III. FLOWS WITH CURVED BOUNDARY

A. Boundary conditions on curved geometry

The behavior of a fluid flow at the interface with other
bodies (i.e. on the boundary of the sample) is a com-
plicated one that crucially influences the solutions of the
theory. Plenty of non-trivial physical phenomena gov-
erning this behavior are contained in effective descrip-
tions in terms of a proper boundary condition12,28–32.
Indeed, various characteristics of our system modify the
slip length. They include temperature and parameters
related to the wall material and fluid composition, as
well as mesoscopic and sub-mesoscopic components, in
particular the wall curvature33. A quantitative under-
standing of the wall curvature in terms of an effective
slip value was given by Einzel, Panzer and Liu12:

ξeff =

(
1

ξ0
− 1

R

)−1

, (III1)

where R is the curvature radius measured in such a way,
that it is positive if the fluid domain is convex and neg-
ative otherwise, see Fig. 6. For an explanation of this
condition see Appendix E. The fact that the boundary
curvature modifies the slip parameter has a direct influ-
ence on solutions on more complicated domains. On top
of that one needs to consider sub-mesoscopic roughness
of the boundary, too big to directly influence boundary
scattering of individual carriers, but not small enough to
be approximated with a straight line on the scale of a sys-
tem. Instead the roughness modifies the slip length with
an effective curvature contribution30. In this section we
focus on the effective description of curvature effects in
the context of electronic fluids.

Having introduced how the boundary condition gets
modified, we proceed to test experimental implications
in a couple of set-ups.
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Fluid domain

R > 0R < 0

FIG. 6: The conventions on boundary curvatue used in III1.
R > 0 for convex domain boundary, R < 0 for concave.

B. Flow in a channel with mesoscopic boundary
curvature

The analysis above shows that geometric effects can
have crucial impact on the slip-length. In materials like
graphene, the sample production process may yield a
boundary that is rough not only on the microscopic scale
but at scales up to the sample size, in which case the
boundary curvature needs to be taken into account. As
a simple, yet very instructive example, we take a channel
that is almost flat. More precisely, we study the curva-
ture radii on both sides of the sample R1 and R2 which
are much bigger than the channel width w. If the micro-
scopic slip length is also large compared to that scale, we
can approximately use the flat channel parallel flow so-
lution in which the curvature effects manifest themselves
in the modified slip length ξeff. We then have to solve
the Stokes equation

η
∂2ux
∂y2

= − e

m

∂φ

∂x
, (III2)

where η is the viscosity coefficient and φ is the electro-
chemical potential. The most general situation allows the
curvature radii to be different on the two boundaries of
the channel:

uti
∣∣
B1

= ξ1 nj
∂uti
∂xj

∣∣∣∣
B1

, (III3)

uti
∣∣
B2

= ξ2 nj
∂uti
∂xj

∣∣∣∣
B2

, (III4)

where the boundaries are located at {−w/2, w/2}. The
above boundary conditions lead to the following velocity
profile

ux(y) =
1

8η(w + ξ1 + ξ2)
U(y)

e

m

∂φ

∂x
, (III5)

where

U(y) = w3 − 4wy(y + ξ1) + 4w(y + 2ξ1)ξ2 (III6)

+ 3w2(ξ1 + ξ2)− 4y2(ξ1 + ξ2).

Integrating this expression we obtain the total current

I =

∫ w/2

−w/2
dyux(y) (III7)

=
w2[w2 + 12ξ1ξ2 + 4w(ξ1 + ξ2)]

8η(w + ξ1 + ξ2)

e

m

∂φ

∂x
.

We see that the Gurzhi effect corresponds to an idealised
situation, with zero slip, legitimate only in set-ups where
both the microscopic contribution to the slip-length as
well as the geometric component are much smaller than
the width of the channel.

Since we are interested in the role of slip on the elec-
tronic flow, we use this solution to investigate geomet-
ric contributions to the current. The importance of this
analysis stems from the fact that in most experimental
samples the flat channel serves as a theoretical bench-
mark, and the boundary conditions are an important
missing ingredient for a more comprehensive theoretical
understanding.

In our set-up we distinguish three situations: the cur-
vature is positive on both boundaries, the curvature is
negative on both boundaries, and one boundary has pos-
itive and the other has negative curvature. We start with
two boundaries with negative curvature (i.e. the channel
is thinner in the middle). In this case

ξ1 =

(
1

ξ0
+

1

R1

)−1

, ξ2 =

(
1

ξ0
+

1

R2

)−1

, (III8)

where ξ0 is the microscopic slip-length. Note, that ob-
taining the formal no-stress limit requires not only micro-
scopic slip ξ0 but also curvature radius R to be infinite for
positive curvature. We plot the corresponding curvature
on Fig. 7.

200 400 600 800 1000
Slip - length

10
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50
Conductance

FIG. 7: Conductance as a function of the slip-length for
boundaries with positive curvature with η = 1, R1 = 110,
R2 = 100

The next example we consider is when the boundaries
have both negative curvature
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FIG. 8: Conductance as a function of the slip-length for
boundaries with negative curvature with η = 1, R1 = 110,
R2 = 100

ξ1 =

(
1

ξ0
− 1

R1

)−1

, ξ2 =

(
1

ξ0
− 1

R2

)−1

. (III9)

The conductance that follows changes character as can
be seen on Fig. 8. The negative contribution from geom-
etry results in a special point where the microscopic and
geometric slip-lengths are equal and an infinite jump of
ξ1 and ξ2 happens. This is, however, not physical as in
effect it leads to conductance having infinite jump with a
sign change, yielding the negative conductance for some
parameters. Therefore, the boundary condition (I1) is
certainly unphysical when the curvature radius becomes
comparable with the microscopic slip length.

This problem also arises if only one side has negative
curvature.

The main message of this section is that the bound-
ary curvature changes many flow characteristics in fluids,
which naturally have non-negligible slip-length. The re-
sulting solution possesses a richer structure, which does
not fall into two categories of either flat or parabolic flow
profiles. The conductance that follows depends on two
slip parameters, which contain the geometric character-
istic of the boundaries. As a result it has neither a linear
scaling with the channel width as in the ballistic regime,
nor the quadratic scaling in the Hagen-Poiseuille regime.
More precisely one can see that by looking at the solution
(III5), which has a form of the ratio of two polynomials
and depends on two parameters. The choice of param-
eters can affect both shape and symmetry of the flow
profile.

As we mentioned before, in the cases with a negative
slip-length, the solution turns unphysical yielding infi-
nite jump of the flow velocity. Hence we need to ask a
question: does the hydrodynamic theory itself provide
some mechanism of resolving this infinity? One of the
possible mechanisms of such a regularisation would be if
the Poiseuille-type solution itself becomes unstable. Hy-
drodynamic instability means that the solution, although
mathematically correct, is fragile and can be easily de-
stroyed. On a more formal level, it means that there are

some perturbations that, once introduced in the system,
grow in time ultimately completely altering the nature of
solution.
To check that possibility, we perform a linear stability
analysis of the solution III5. The analysis is based on
the Orr-Sommerfeld equation for linear perturbations of
a parallel flow34–36. This analysis is technically involved
so we describe it in detail in Appendix B. Let us just re-
mark, that such an analysis yields values of parameters
(like Reynolds number Re) for which some linearised per-
turbation(s) around the base solution grow in time rather
than decay or oscillate, and therefore fall under the defi-
nition of unstable perturbations.

It turns out that while positive slip stabilises the
solution37, a negative value of the slip parameter renders
a very unstable flow. In a channel with w = 2 and the
boundary slip lengths ξ1 = ξ2 = −0.55, the flow is unsta-
ble even for extremely low Reynolds numbers Re=5. We
conclude that the parallel flow approximation we employ
becomes unreliable when thes microscopic slip length is
large. This happens as a large microscopic slip length
in combination with even slightly curved boundary (or a
sub-mesoscopic roughness of the sample edge) can yield
a negative effective slip that destabilises solutions drasti-
cally. The importance of this result stems form the fact
that the parallel channel is often used as a benchmark ge-
ometry for hydrodynamic effects. Our result shows, that
in viscous electronics where slip lengths may be large, re-
sults obtained in such a set-up must be approached with
caution.

IV. FLOW THROUGH A CIRCULAR
JUNCTION

A. Flow profiles

Boundaries can modify the effective slip. Beyond the
weak curvature considered above we next study systems
in which the curvature radius is smaller than the system
size. In general, to extract the geometric contribution to
slip, the solutions corresponding to any but the simplest
set-ups become complicated and the resulting effect is not
transparent. Therefore we investigate the flow through
a circular junction. In such a set-up, the only geometric
length scale is the circle radius, which is at the same
time the radius of curvature of the boundary to be used
in the effective slip III1. Technically, the high degree of
symmetry allows one to separate variables and Fourier
decompose the angular dependence.

Finally, this set-up was also investigated in the bal-
listic regime, both experimentally and theoretically15–17.
A striking feature that emerges in the ballistic regime
is that the conductance exhibits characteristic irregular
fluctuations as a function of Fermi momentum.

Our setup is a disc-shaped sample with two narrow
contacts of width ε. The radial coordinate has range
r ∈ (0, 1]. The setup is presented in Fig. 9
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FIG. 9: Inflow/outflow problem into a circular contact

The problem of a fluid flowing into a circular domain
through a boundary and then flowing out at some other
boundary point has a long history in fluid literature.
The solution can be constructed as a series expansion
of the stream function38–42. We relegate the details to
Appendix IV.

Junctions possess a big advantage over the channels,
namely that a relatively simple theoretical analysis may
be possible in both ballistic and hydrodynamic regimes
unveiling the distinctive features. The hydrodynamic
flow through a confined geometry is smooth due to
electron-electron interactions. To illustrate this fact (see
Fig. 10) we plot a stream pattern for two configu-
rations of contacts. In one configuration the contacts
are separated by an angle π/2 in the second by π/8.
Note that the former configuration was studied in the
ballistic regime, both semi-classically17 and quantum-
mechanically16. One can see that the flow profile is
smooth. Moreover, the closer the contacts are to each
other, the less regions away from them participate in the
flow.

In the ballistic regime only discrete values of the Fermi
momentum, corresponding to the classical trajectories
between the entry and the exit, contribute to the con-
ductance. This is attributed to the fact that for some,
’resonant’, values of the Fermi momentum of the injected
electrons, there exist families of trajectories connecting
source and sink contacts in a direct way. Existence of
those trajectories sharply increases conductivity. As a
result, the conductance, as a function of the Fermi mo-
mentum, jitters and has a form of plateaus with oscillat-
ing peaks at particular values of the Fermi momentum.

Combining these two behaviors would presumably lead

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

FIG. 10: Top: Streamlines in a circular cavity between two
contacts separated by an angle π/2 (α = 0, β = π/2). See
9 for the conventions on angles α, β. Bottom: Streamlines
between two contacts separated by an angle π/8 (α = 0, β =
π/8).

to the disappearance of the plateaus and the suppres-
sion of oscillating peaks at a cross-over, which, in prin-
ciple, could be observable experimentally. This set-up
can serve as an exemplification of interaction enhanced
conduction9.

B. Slip Length extraction

The circular junction set-up has one additional attrac-
tive feature: the curvature term and the microscopic slip-
length in III1 have opposite signs, which in the previously
presented case of parallel flow leads to peculiar and prob-
ably unphysical behavior. So, we are led to expect dis-
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tinctive effects when the microscopic slip is of order of
the sample radius2. It turns out that one observable in
which such an effect is visible is the boundary electro-
chemical potential profile, which can be computed from
the stream function (see Appendix C). This observable
describes the local voltage drop along the boundary of
the sample φ(θ). In our case its measurement may allow
us to directly access the slip length experimentally.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0 �1�2

FIG. 11: Experimental set-up proposed to extract the value of
the microscopic slip-length. The current flows between a pair
of contacts on opposite sides of circle diameter, and the elec-
trochemical potential difference φ2 − φ1 is measured between
two points

The set-up we propose is the one presented on Fig.
9 with α = 0, β = π. For computational convenience
we also take contact sizes ε = ε

′ → 0, so we inject cur-
rent by point-like contacts. Remarkably, in this set up,
the Fourier series can be summed up analytically and ex-
pressed in form of a rather complicated combination of
hypergeometric functions for an arbitrary slip length.

A salient feature of the boundary potential profile is
that the curves are not too distinct for no-stress and no-
slip conditions, but have pronouncedly smaller derivative
at an intermediate value of the slip length (numerically
found to be ξ/R ≈ 0.36). This is displayed in Fig. 12
(a), which shows the value of angular derivative of the po-

2 Let us, however, stress, that the unphysical effects of the pre-
vious section originated in imposed simplifications, namely the
assumption that the flow is strictly parallel even in a channel
with (slightly) curved boundaries, so in the present case we do
not expect such pathologies to occur.

(a)
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FIG. 12: The proposed observable, boundary potential drop
around π/2, is characterised by a strongly non-monotonic be-
haviour. Top (a): the observable as a function of a slip to
radius ratio, keeping all the other parameters fixed. The plot
is normalised to its no-slip value. Bottom (b): predicted
values of the observable times temperature squared (to ac-
count for the thermal dependence of viscosity43) for doped
graphene with various chemical potentials µ. In the given
range of dopings, the temperatures at which peaks occur lie in
the hydrodynamic regime for graphene6, which makes it fea-
sible to measure the effect. The values of parameters used to
generate the plot coincide with14, all the plots are normalised
by the room-temperature value of the observable (T = 293K).
The sample radius is 5µm

tential precisely in the middle between two contacts as
a function of microscopic slip. This quantity undergoes
significant changes (around 50%) upon changing micro-
scopic slip from zero to infinity. So, we propose an ex-
perimental to measure the slip length would be to add
to the set-up two measurement contacts located on the
boundary around point θ = π/2 (See fig. 11). Then one
would vary external conditions such as temperature or
background chemical potential and observe the values of
potential at the probe contacts φ1, φ2. Such a set-up
would effectively measure the angular derivative of the
boundary electrochemical potential φ′(π/2).

Panel (b) of Fig 12 presents the predicted behavior
of our observable as a function of temperature, assum-
ing the slip length temperature dependence calculated
in14. We consider a case of doped graphene at different
chemical potentials. It should be noted here, that the
Stokes equations which we solve to obtain those results,
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are strictly speaking valid only in the Fermi liquid regime,
i.e if the background chemical potential is much larger
than the temperature. The main simplification in that
regime is that thermal effects are suppressed, i.e. local
temperature is no longer a relevant degree of freedom for
the dynamics, and the electric charge current is propor-
tional to the particle number current. That in turn limits
the number of independent variables and equations, thus
allowing for a simple description. The results discussed
above, for doped samples, should be directly comparable
to experiment3. It follows from the plots that the tem-
perature dependence of the slip length can be measured
using a series of such circular devices with different radii:
for every radius R there should be a temperature in which
potential difference between the electrodes (divided or
multiplied by T 2 for charge neutral and doped cases re-
spectively, to get rid of thermal viscosity dependence) is
maximal. Then, the slip length is approximately equal
0.36R at this temperature.

V. CONCLUSIONS AND DISCUSSION

In this paper we investigated the role of barriers on
the channel walls as a tool to control boundary condi-
tions in electronic flows. Through a numerical analysis
we showed that in a system with large slip length, allow-
ing in principle large velocities on the flow boundaries, we
can nonetheless effectively realize a no-slip flow by intro-
ducing perpendicular barriers. The main motivation for
this comes from the fact that large slip at the boundary
hinders the hydrodynamic nature of the flow. As a re-
sult in graphene, where the slip velocity is believed to be
large, the flow profile should depart from the parabolic
Poiseuille profile. Engineering the no-slip boundary con-
dition should facilitate the experimental observation of
viscous hydrodynamics.

In a more general context the message is that the prop-
erties of the surface affect the slip on the boundary. We
have shown that the analysis of boundary conditions in
the context of electronic fluid flow has to be modified to
account for a mesoscopic boundary curvature and rough-
ness as well as the boundary shape. As a result the ef-
fective slip velocity is not given purely by microscopics
but rather a combination of the microscopic slip-length
an sub-mesoscopic as well as mesoscopic curvature. We
have constructed an explicit solution and the correspond-
ing charge current under a general assumption of differ-
ent effective slip-lengths at the boundaries of the two-
dimensional flow.

The contribution of the curvature is not limited to
mesoscopic radii, in fact a sub-mesoscopically rough sur-
face will also contribute to the effective slip. The con-

3 See appendix D for a more detailed discussion of the employed
approximations

sequences of this contribution have been ignored so far.
A question that arises is when this is a legitimate thing
to do. The answer is that we can ignore the microscopic
roughness for boundaries which are characterized by a
very diffuse scattering. One example may be the case of
delafossite metals, where the samples are produced from
flux-grown single crystals by focused ion beam etching.
Ion beams produce boundaries which are diffuse. The
microscopic slip-length contribution dominates over the
geometric component and is well approximated by a no-
slip condition. On the other hand bilayer graphene de-
vices are prepared using lithography and a subsequent
etching processes. The boundary scattering is not effi-
cient in dissipating momentum, which results in a large
microscopic slip-length – which may be comparable to
the system size. In this case the mesoscopic, geometric
contribution, being of the same order of magnitude, is
important and should not be ignored.

Finally we studied a flow of electrons through a cir-
cular junction - a system with a fixed mesoscopic curva-
ture. We found that, in analogy with the flow through
a constriction, the hydrodynamic scenario provides for
uniformly efficient transport. On the other hand, bal-
listic transport exhibits resonances attributed to special
trajectories inside a junction corresponding to classical
paths from the entrance to the exit of the junction. In
hydrodynamics, because of frequent collisions between
particles, the flow through the constriction is smooth.

To sum up, the set-ups with curved boundaries posses
theoretical and practical advantages over their straight-
bounded counterparts for studying viscous electronic
flow. They may provide crisp signatures of viscous-
to-ballistic crossover (resonant conductance in ballistic
regime vs smooth in hydro) and they offer a possibil-
ity to directly experimentally access the microscopic slip
length. As such, they call for more experimental atten-
tion then they have received so far.
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Appendix A: Solution in a channel with
perpendicular obstacles

Following the procedure developed in21, we introduce
the ansatz Ψ(x, y, t) = Ψ̂(x, y) ei ω t, from which we ob-
tain an equation for the spatial part of the stream func-
tion

∆2 Ψ̂ = Λ ∆ Ψ̂, (A1)

with Λ = (iω+γ)(h/2)2

η . Note that for zero frequency Λ =

Γ is used in main text. This is the non-homogeneous
biharmonic equation for the complex function Ψ̂. We

are interested in the real (physical) part of the complete
stream function, which is given by

Re[Ψ] = Re[Ψ̂] cos(ω t)− Im[Ψ̂] sin(ω t). (A2)

We solve equation (A1) for different values of the slip
parameter and in different driving frequency regimes. In
order to do so, we use the method of eigenfunction ex-
pansion and point match22. Based on the symmetries
that the geometry of the channel imposes on the stream
function, we define α = nπ

b and β = nπ and propose an
ansatz solution of the form

Ψ(x, y) =
sinh

(√
Λ y
)
−
√

Λ cosh
(√

Λ
)
y

sinh
(√

Λ
)
−
√

Λ cosh
(√

Λ
) +A0

y − sinh
(√

Λy
)

sinh
(√

Λ
)
 (A3)

+

∞∑
n=1

An cos(αx)Pn(y) +

∞∑
n=1

[Bn sin(βy)Qn(x) + xCn sin(βy)Tn(x)] .

The first term corresponds to the solution for a flat
channel14 and the second term introduces a possible cor-

rection due to the presence of the obstacles. The func-
tions Pn(y), Qn(x) and Tn(x) are given by

Pn(y) =
[
e
√
α2+Λ (y−1) − e−

√
α2+Λ (y+1)

]
− 1− e−2

√
α2+Λ

1− e−2α

[
eα(y−1) − e−α(y+1)

]
.

Qn(x) = e
√
β2+Λ (x−b) + e−

√
β2+Λ (x+b), Tn(x) = e−β(x+b) − eβ(x−b).

We impose a fixed value for the stream function on the
top and bottom walls and on the obstacles, ψ(x,±h/2) =
±1. Additionally we impose the slip boundary condi-
tion exactly on the top and bottom walls of the chan-
nel. For x = b we choose N equally-spaced points
along this line and impose the boundary conditions there.
Next, we truncate the series in the stream function up
to N terms, so that the problem reduces to solving a
(3N + 1) × (3N + 1) resulting linear system. Once the
coefficients An, Bn and Cn are obtained, the streamlines
indicate the direction of the electron flow.

Appendix B: Stability

We want to analyze how the geometric contribution
to the slip-length influences the stability of a flow. For
negative curvature we expect that the flow will be sta-
bilised as this case corresponds to a previously studied37

case of positive small slip-lengths. However, the case of
positive curvatures, which can result in negative efective
slip, has not been investigated and it may destabilise
the Hagen-Poiseuille flow. To address this problem we
employ linear stability analysis. In order to do so we
find it convenient to use the stream function formula-
tion of the Navier-Stokes equations and write down the
Orr-Sommerfeld problem for linear perturbations34–36

Ψ = ψ0 + ψ. (B1)

This is an eigenvalue equation describing the linear two-
dimensional modes of disturbance to a viscous parallel
flow. The perturbation has a wave-like structure

ψ = exp[iα(y − ct)]. (B2)

The frequency ω = αc is in general a complex number.
Its imaginary part determines the stability of the flow
– if it is positive for some values of wave-number α or
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FIG. 13: Dispersion curves of the Poiseuille flow for various
Reynolds numbers. Green corresponds to Re = 5000, blue to
Re = 8000, and red to Re = 10000 with η = 1, ξ1 = ξ2 =
−0.08. We plot the dispersion relations for the modes which
have the biggest imaginary part of frequency – the dominant
modes.

Reynolds number, Re, it indicates the existence of an un-
stable mode. This, once excited, will exponentially grow
in time, ultimately destroying the solution. The flow
is unstable if one or more eigenvalues c have a positive
imaginary part. Therefore, our goal is to check if such
unstable modes are present, given the geometric contri-
bution to the effective slip. The Orr-Sommerfeld equa-
tion for perturbations around the basic Hagen-Poiseuille
flow reads

1

iαRe

(
d2

dy2
− α2

)2

ψ − U
(
d2

dy2
− α2

)
ψ + U ′′ψ =

(B3)

− c
(
d2

dy2
ψ − α2

)
ψ,

where U is the basic flow solution around which we per-
turb and U ′′ is the second y derivative of U . We dis-
cretize the above equation using Chebyshev polynomi-
als. The eigenfunctions are expanded in a basis defined
on an interval {−1, 1} and we require that the equation
(B3) is satisfied at the Gauss-Lobatto collocation points
yj = cos(πj/N). The final result is a generalized eigen-
value problem of the form

Aa = cBa. (B4)

Because the channel width is not the same as before,
we need to construct the Poiseuille profile with the slip
boundary conditions (III3) at {−1, 1}. The solution
reads

U(y) =
1

2η
Ũ(y)

∂p

∂x
, (B5)

where

Ũ(y) = 1− y2 +

(
2ξ2 − 2ξ1

2 + ξ1 + ξ2

)
+

(
2ξ2 + 2ξ1 + 4ξ1ξ2

2 + ξ1 + ξ2

)
.

(B6)
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FIG. 14: Dispersion curves of the Poiseuille flow for Re = 5,
with η = 1, ξ1 = ξ2 = −0.55
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FIG. 15: Dispersion curves of the Poiseuille flow for vari-
ous Reynolds numbers. Magenta corresponds to Re = 960,
dark blue to Re = 1000, and red to Re = 1500 with η = 1,
ξ1 = −0.1, ξ2 = 0.1. We plot the dispersion relation of the
dominant modes.

Our equation is fourth order in the derivatives, hence,
we need to supplement two boundary conditions ψ(1) =
ψ(−1) = 0. Following the standard procedure we remove
the first and the last two rows of the discretised equation
to add boundary conditions and use N = 100 collocation
points. When both our slip-lengths are zero we recover
the usual instability around α = 1 for Re = 10000. If
both slips-lengths are small, and positive, they stabilise
the flow in accordance with previous studies37. How-
ever, negative slip-lengths have a destabilising effect: the
instability is more pronounced the higher the absolute
value of negative slip-lengths. The same phenomenon is
present if one boundary has a negative curvature, when
even for quite low Reynolds numbers the flow becomes
unstable.
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Appendix C: Inflow/outflow problem in a circular
junction

We consider the hydrodynamic flow inside a disc of
unit radius. We construct a Fourier series solution from

fundamental solutions of the biharmonic equation44

Ψ(r, θ) = a0 + b0r
2 +

∞∑
n=1

(anr
n + bnr

n+2) cos(nθ) +

∞∑
n=1

(cnr
n + dnr

n+2) sin(nθ). (C1)

The coefficients a0, b0, an, bn, cn, dn are determined
from the boundary conditions. In the problem of a flow
through a disc, the boundary conditions are of the form

Ψ(1) = f(θ), (C2)

∂2Ψ

∂r2

∣∣∣∣
r=1

=
ξ − 1

ξ

∂Ψ

∂r

∣∣∣∣
r=1

, (C3)

Ψ(0) = 0. (C4)

We use the slip boundary condition (I1) with the slip
parameter depending on the curvature radius. Function
f(θ) is fixed based on the number of inflow and outflow
channels and the angular separation between them. For
one inflow and one outflow contact corresponding to slit
widths ε and ε′ the function f(θ) is given by

f(θ) =


1 + θ−α

ε′ , α− ε′ < θ < α+ ε′

2, α+ ε′ < θ < β − ε
1 + β−θ

ε , β − ε < θ < β + ε

0, β + ε < θ < 2π + α− ε′.

(C5)

In the following we impose the condition that the inflow
and outflow contacts have equal widths ε = ε′. Imposing
the derivative condition on the boundary fixes

bn = an
n(1− nξ)

(n+ 2)[(n+ 2)ξ − 1]
, (C6)

dn = cn
n(1− nξ)

(n+ 2)[(n+ 2)ξ − 1]
. (C7)

The condition (C5) allows one to determine an and cn
using the orthogonality condition45

an = − (n+ 2)[(n+ 2)ξ − 1] sin(nε)[sin(αn)− sin(βn)]

πn2ε[2(n+ 1)ξ − 1]
,

(C8)

cn =
(n+ 2)[(n+ 2)ξ − 1] sin(nε)[cos(αn)− cos(βn)]

πn2ε[2(n+ 1)ξ − 1]
.

(C9)

Finally the condition at the origin fixes a0 = 0. We note
that for the most symmetric configurations with α =
0, β = π an = bn = 0.

Appendix D: Stream function formulation and
electrochemical potential

In the hydrodynamic regime, the ensemble of elec-
trons is described in terms of the following equations:
the Stokes equation

∂tu
i − η∆ui + γui =

e

m
∇iχ− 1

m
∇iδµ, (D1)

and the continuity equation

∂ju
j = 0. (D2)

χ is the electric potential and δµ is the local variation of
the chemical potential giving rise to effective pressure46,
m, e are the mass and electric charge of a carrier respec-
tively. In principle, the electric potential above should
be not only the external driving potential but also should
contain, even at the linearized level, a self-consistent term
stemming from variations of a local carrier density47 that
would make the equations non-local. However, since the
electric potential enters in the equations in a special way,
we can avoid this difficulty. First, we define the so-called
electrochemical potential

φ = χ− 1

e
δµ, (D3)

which combines both scalar functions in the Stokes equa-
tion into a single one. Real life experiments are usu-
ally sensitive to the electrochemical potential rather than
electric voltage or chemical potential alone11,46. Taking
that into account, the Stokes equation D1 is effectively
incompressible, and the gradient of electrochemical po-
tential can be decoupled from the system. To do this
we introduce the stream function formulation of a vis-
cous equation, in which one acts with antisymmetrized
derivative on the Stokes equation to get rid of the gradi-
ent term. The electrochemical potential can be computed
a posteriori from the solution.
The procedure to do so is the following: we use the stream
function definition

ui = εij∇jΨ (D4)
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in combination with Stokes equation sourced by the elec-
trochemical potential D3

∂tu
i − η∆ui + γui =

e

m
∇iφ. (D5)

Then we solve the resulting equation

∇iφ =
m

e

(
∂tε

ij∇jΨ− η∆εij∇jΨ + γεij∇jΨ
)
, (D6)

which can be done by simple integration as now Ψ is
known solution. The function φ is the observed electro-
chemical potential.

Appendix E: EPL slip deriviation

Let us present the basic idea behind the EPL bound-
ary condition. The discussion is based on30. The origin
of the modification of the microscopic slip length is the
following: the force acting on surface of fluid element due
to friction (drag) on a boundary is

dF j = (βtiu
i)tj , (E1)

with β being the drag coefficient, and t the normal vector,
tangent to the boundary, provided that the boundary is
at rest. This has to equal the viscous force acting on the
fluid surface, given by

dF k = dSΠk
i n

i (E2)

where dS is the surface area of our element. Balancing
those two forces yields

(βtiu
i)tj = dSΠk

i n
i. (E3)

Taking into account that

Πij = η̃ (∂iuj + ∂jui)

(where η̃ = ηρ is the dynamic viscosity) and project-
ing the above on the transverse direction to get a scalar
equation we obtain:

uiti
∣∣
B

= ξ0t
inj (∂iuj + ∂jui)

∣∣
B
, (E4)

where the microscopic constants β, dS, η are collected
into a new one – the (microscopic) slip length ξ0, and
the subscript B means that the fields are evaluated on
the boundary. u is the velocity, n is the inward pointing
normal, and t is the unit tangent vector to surface. Now,
one can express ti and ni by the means of the parametric
description of the boundary as a plane curve x(s)

t =
1

v

d

ds
x, (E5)

1

R
n =

1

v

d

ds
t, (E6)

with v being the norm, i.e v = | ddsx|, and R(s) the local

curvature radius4 to obtain the result

uT = ξ0
[
nj∂juT + uT /R

]
(E7)

with uT = uiti. The latter expression can be re-arranged
into the familiar form I1 upon defining

ξeff =

(
1

ξ0
− 1

R

)−1

. (E8)

We emphasize that the conventions for curvature radius
are such that for convex domains R > 0 and for concave
ones R < 0.

The modification of the slip can also be thought of
as coming directly from the tensorial form of boundary
condition E4 in any curvilinear coordinate system. If one
wants to write it in arbitrary coordinates, it takes form

(
uiti −

ξ0
η

Πijt
inj
)∣∣∣∣

B

= 0, (E9)

where the shear stress tensor Π is now given in terms of
velocity

Πij = 2η∇(iuj), (E10)

with ∇ being the covariant derivative5. Now, let us use
polar coordinates {r, θ} as an example. Let the domain
boundary be a circle of radius R. The normal and tan-

gent vectors are then basis vectors r̂ and θ̂ respectively
so the boundary condition turns into

uθ − ξ0Πrθ = 0 (E11)

The viscous stress tensor evaluated on a boundary of
curved domain is given by

Πrθ = η

(
∂uθ
∂r
− uθ
R

)
. (E12)

Plugging this expression back to (E11) allows us to define
an effective slip-length (III1). So we see how the curva-
ture enters the boundary condition and modifies slip.
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