Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improving artificial photosynthesis in carbon nitride by gas-liquid-solid Interface management for full light-induced CO2 reduction to C1-C2 fuels and O2

MPG-Autoren
/persons/resource/persons222674

Xiao,  Kai
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons230732

Cao,  Shaowen
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Xia, Y., Xiao, K., Cheng, B., Yu, J., Jiang, L., Antonietti, M., et al. (2020). Improving artificial photosynthesis in carbon nitride by gas-liquid-solid Interface management for full light-induced CO2 reduction to C1-C2 fuels and O2. ChemSusChem. doi:10.1002/cssc.201903515.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-9B97-2
Zusammenfassung
The activity and selectivity of simple photocatalysts for CO2 reduction were still limited by the insufficient photophysics of the catalysts, but also the low solubility and slow mass transport of gas molecules in/through aqueous solution. Herein, we present a way to overcome these limitation by constructing a triphase photocatalytic system, in which polymeric carbon nitride (CN) is immobilized onto a hydrophobic substrate, and the photocatalytic reduction reaction occurs at a gas-liquid-solid (CO2-water-catalyst) triple connection. It is found that the CN anchored onto the surface of a hydrophobic substrate exhibits an about 7.2-fold enhancement in the total CO2 conversion, with a rate of 415.50 ?mol m-2 h-1 under simulated solar light irradiation. This value corresponds to an overall photosynthetic efficiency for full water-CO2 conversion of 0.33%, i.e. very close to biological systems. Meanwhile, a remarkable enhancement of direct C2 hydrocarbon production, as well as a high CO2 conversion selectivity of 97.7% was observed. Going from water oxidation to phosphate oxidation, the quantum yield can be even increased to 1.28%.