
biomolecules

Review

Cotranslational Folding of Proteins on the Ribosome

Marija Liutkute, Ekaterina Samatova * and Marina V. Rodnina *

Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry,
37077 Göttingen, Germany; mliutku@mpibpc.mpg.de
* Correspondence: esamato@mpibpc.mpg.de (E.S.); rodnina@mpibpc.mpg.de (M.V.R.);

Tel.: +49-551-201-2900 (E.S. & M.V.R.); Fax: +49-551-201-2905 (E.S. & M.V.R.)

Received: 5 December 2019; Accepted: 25 December 2019; Published: 7 January 2020
����������
�������

Abstract: Many proteins in the cell fold cotranslationally within the restricted space of the polypeptide
exit tunnel or at the surface of the ribosome. A growing body of evidence suggests that the ribosome
can alter the folding trajectory in many different ways. In this review, we summarize the recent
examples of how translation affects folding of single-domain, multiple-domain and oligomeric
proteins. The vectorial nature of translation, the spatial constraints of the exit tunnel, and the
electrostatic properties of the ribosome-nascent peptide complex define the onset of early folding
events. The ribosome can facilitate protein compaction, induce the formation of intermediates that are
not observed in solution, or delay the onset of folding. Examples of single-domain proteins suggest
that early compaction events can define the folding pathway for some types of domain structures.
Folding of multi-domain proteins proceeds in a domain-wise fashion, with each domain having its
role in stabilizing or destabilizing neighboring domains. Finally, the assembly of protein complexes
can also begin cotranslationally. In all these cases, the ribosome helps the nascent protein to attain a
native fold and avoid the kinetic traps of misfolding.

Keywords: cotranslational protein folding; ribosome; polypeptide exit tunnel; nascent polypeptides;
translation; protein synthesis

1. Introduction

Proteins are a key class of biological macromolecules that are essential in all cellular processes.
To execute their functions and maintain the cell viability, proteins have to fold into their specific
native three-dimensional structures. Misfolding disturbs the cellular proteostasis, which can result in
debilitating diseases [1–3]. Single amino-acid substitutions can disrupt a protein’s structure in the cell
to cause, for instance, cystic fibrosis [4], sickle cell anemia [5], cataract [6], Huntington’s disease [7],
or retinitis pigmentosa [8]. The molecular pathology of these diseases is a perturbation of the native
three-dimensional structure leading to a misfolded protein that can no longer execute its function
and is prone to aggregation and rapid degradation. Furthermore, mutations in natively disordered
proteins, such as α-synuclein, tau protein or amyloid β-peptide, can cause aggregopathies, such as
Parkinson’s and Alzheimer’s [2].

Many proteins start to fold cotranslationally as they move through the peptide exit tunnel and
emerge from the ribosome (Figure 1). About one third of the E. coli proteome is estimated to fold
cotranslationally [9]. The average rate of protein synthesis is ~20 amino acids/s in E. coli [10] and ~6
amino acids/s in eukaryotic cells [11,12]. In comparison, experimentally measured rates of spontaneous
folding of single-domain globular proteins range from microseconds to hours [13]. In cases where
translation is slower than folding, cotranslational protein folding takes place at quasi-equilibrium
conditions [14]. The ribosome can destabilize nascent folds and delay folding until the entire domain
is exposed [15,16]. The vectorial nature of protein synthesis, as well as the restricted space and the
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physicochemical properties of the exit tunnel [17] can determine the onset of folding and define
the folding landscape, thereby guiding the folding trajectory away from kinetic traps and towards
stable productive conformations. The N-terminus of the emerging nascent peptide can interact
with ribosome-bound chaperones, protein biogenesis factors, cofactors or partners in multi-subunit
complexes, thereby ensuring correct protein localization, activity and preventing erroneous associations
with proteins in the crowded cellular environment [18] (Figure 1).
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Figure 1. Schematic of cotranslational protein folding. Folding begins early inside the polypeptide exit
tunnel. The nascent chain (NC) emerging from the ribosome can interact with chaperones, biogenesis
factors, or other proteins. Small and large ribosomal subunits are shown in light and dark gray,
respectively; the tRNA (green) with the nascent peptide (magenta) is shown as the ribosome moves
along the mRNA (red) and the growing nascent chain moves through the polypeptide exit tunnel (light
yellow). Protein partners interacting with the nascent peptide are depicted in blue.

Early in vitro protein refolding experiments have shown that the amino acid sequence carries all
information required for small globular proteins to fold into their correct native states [19]. However,
cotranslational protein folding can begin when only an N-terminal segment of the protein is available,
before the C-terminal part is synthesized [20] (Figure 1). This raises the question whether the folding
pathway is the same on and off the ribosome. Furthermore, large multi-domain proteins often fail
to refold correctly in solution, resulting in misfolded structures and aggregation. For such proteins,
domain-wise cotranslational folding may reduce the probability for off-pathway and aggregation-prone
conformations [21,22], accelerate folding into the native state or even alleviate the need for chaperone
assistance [20,23–25]. Many proteins are a part of multi-subunit complexes. These proteins not only
have to adopt their individual native structures, but also to find their interaction partners in the
crowded cellular environment. Cotranslational folding also plays an important role in coordinating
the biogenesis of oligomeric proteins [26] (Figure 1), underscoring the importance of cotranslational
events for biogenesis of different types of protein structures. A peptide emerging from the exit tunnel
is monitored by ribosome-associated chaperones and protein biogenesis factors, which control folding
and ensure the correct processing and cellular localization of proteins.

In this review, we summarize current concepts of cotranslational protein folding, focusing on
how the ribosome affects folding and how single-domain, multiple-domain, and oligomeric proteins
fold. Other aspects of co- and post-translational folding, such as the role of chaperones and protein
biogenesis factors, folding of membrane proteins, as well as the link between the rate of translation
and folding, are covered by recent comprehensive reviews [27–30].

2. The Environment of the Peptide Exit Tunnel

The peptide exit tunnel of the ribosome provides a confined space where the nascent chain begins
to fold. The tunnel starts at the peptidyl transferase center (PTC) and extends for ~100 Å through the
large ribosomal subunit before opening into the cytosol [31–34] (Figure 2). The tunnel is composed
mainly of the ribosomal RNA (23S rRNA in bacteria and 28S rRNA in eukaryotes). Two ribosomal
proteins, uL4 and uL22, of the large ribosomal subunit form a constriction of the tunnel ~30 Å away
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from the PTC, which is found in ribosomes from all domains of life. In addition, eukaryotic ribosomes
have a second constriction formed by the extended arm of uL4 protein in the lower part of the exit
tunnel [34] (Figure 2). The tunnel width varies between 10 and 20 Å and becomes wider ~50 Å away
from the PTC. The last 20 Å of the tunnel form the so-called vestibule, which is generally wider than
the rest of the tunnel and is shaped by proteins uL23 and uL24 in bacteria and additionally eL39 in
eukaryotes (Figure 2). Residues lining the exit tunnel are highly conserved in the zone proximal to the
PTC, whereas those in the vestibule have the most variation, with the tunnel in bacteria overall being
wider than in eukaryotes [34]. The tunnel shields about 30–40 amino acids of the nascent peptide in
the upper 80 Å of the tunnel from proteolytic digestion [35,36], although the length of the protected
nascent chain may depend on the extent of cotranslational folding inside the tunnel [37].
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Figure 2. Dimensions of the peptide exit tunnel in ribosomes from prokaryotic and eukaryotic
origin [34,38]. Color visualizes the electrostatic potential within the tunnel.

Molecular dynamics simulations suggest that inside the exit tunnel the water is in a slowly-diffusing
and semi-structured state different from the bulk or tightly bound water [39]. The water properties
inside the exit tunnel may slow down diffusion and favor specific conformations of the nascent
chain [39]. For hydrophobic nascent chains, the layer of water molecules between the nascent chain
and the hydrophilic tunnel walls may drive nascent-chain compaction. By contrast, a polar nascent
chain in this same situation would experience a smaller drive to form helical structures, but would
rather displace the ordered solvent molecules on the surface of the tunnel resulting in close contact
between the nascent chain and the tunnel walls [39]. Biochemical and structural studies suggest that
nascent chains may form helical structures in the upper regions of the tunnel, even though a peptide
with the same amino acid sequence in solution does not form a stable helix [37,40,41].

Aside from restricting the folding space, the peptide exit tunnel provides a characteristic
electrostatic environment. Ribosomal proteins and rRNA that line the tunnel walls contribute
to the global electrostatic potential of the tunnel. On average, the tunnel is more negatively charged
than the cellular matrix [38]. The charge is unevenly distributed and varies from −8 mV to −22 mV
along the length of the tunnel [38] (Figure 2). The lowest potential, −20 mV, is found at the constriction
near the uL4 and uL22 proteins. The high degree of conservation of the rRNA sequence and of the
charged amino acids lining the tunnel walls suggests that the electrostatic properties of the tunnel
are functionally important [34]. In fact, experiments with ribosomal protein S6 as a model nascent
chain suggest that changing the charge distribution along the nascent peptide sequence by introducing
mutations affects the rate of cotranslational folding, and the more positive the net charge of the
protein, the deeper in the exit tunnel it is folded [42]. The combination of the tunnel geometry and
electrostatic potential imposes restrictions that define the size, the complexity, and the timing of folding
intermediates. Perturbations in the shape of the tunnel caused by deleting tunnel-exposed loops of
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uL23 and uL24 shift the onset of cotranslational protein folding, for example of proteins ADR1, R16,
and I27 [43].

Nascent chains can interact with the peptide exit tunnel in specific ways that affect the rate of
translation. Stretches of positively charged residues can slow down [44,45] or even stall [46] translation.
Changes in translation rates can affect the rate of folding and the conformation of the resulting
proteins [47,48]. Some peptides, such as those found in SecM, MifM, VemP, ErmCL, cause programmed
translation arrest, thereby regulating the expression of the respective downstream genes [49]. These
arrest peptides (AP) are usually ~20 amino acids long; they interact with the exit tunnel and distort
the optimal geometry of the PTC [49,50]. In some cases, stalling brings into the PTC a pair of slowly
reacting amino acids, such as proline and glycine that do not react with one another unless the active
conformation of the PTC is induced. The AP of SecM is of particular interest [51–53]. When fully
translated, the 17 amino acid SecM AP inhibits peptidyl transfer until an external force exerted on the
nascent peptide alleviates stalling, allowing the ribosome to resume translation [53]. Cotranslational
folding events can exert mechanical force of up to 8 pN) [54,55] and relieve AP stalling thereby allowing
translation to continue. This is utilized in force-profile assays (FPA) to identify cotranslational folding
events [51–53].

3. Folding Inside the Exit Tunnel

Early experiments using fluorescence resonance energy transfer (FRET) between labels attached at
different positions in the nascent peptide suggested that transmembrane segments can form α-helices
within the exit tunnel in the proximity of the PTC [40]. Biochemical assays based on site-specific
cysteine tagging (pegylation) of the nascent chain helped to establish that the secondary structure
formation can happen in a tunnel zone proximal to the PTC or at the distal end of the tunnel [56–59].
Visualization of nascent chains by cryo-electron microscopy (cryo-EM) shows that α-helices can form
in the upper and lower regions of the tunnel [51,60–62], whereas the space at the constriction is too
narrow to accommodate an α-helix (Figure 3). However, not every polypeptide chain that ultimately
adopts helical conformation starts folding inside the peptide exit tunnel. The overall hydrophobicity,
propensity to form an α-helix, and the element length are the major determinants of α-helix formation
within the tunnel [63]. Indeed, accessibility assays, FRET, and molecular dynamics simulations provide
evidence that transmembrane helices favor early compaction during translation to a much larger extent
than their soluble counterparts [40,63,64].

Nascent chains can also form tertiary interactions within the exit tunnel of the ribosome [59,65]
and molecular dynamics simulations predicted a number of domain structures that could fold in the
tunnel vestibule [66]. FPA reveals that small protein domains with a molecular weight <10 kDa (or ≤70
amino acid residues) of various topologies encompassing α-helices or β-sheets may fold within the first
80 Å of the exit tunnel [42,67]. FPA and cryo-EM show that an entire Zn-finger domain of ADR1 folds
into a native structure deep inside the exit tunnel of the ribosome [51] (Figure 4a). Also, the α-helical
N-terminal domain of HemK forms a compact intermediate deep within the exit tunnel, although
the native fold is attained only upon leaving the ribosome [37]. These examples also show that in
some cases the tertiary interactions formed inside the tunnel can be very similar to the native structure
of the isolated fully folded protein [51], whereas others are strictly cotranslational and not observed
during protein refolding in solution [37]. The onset and trajectory of folding may be determined by
the relative stability of the first accessible folding intermediate, rather than by the specific biophysical
properties of the isolated native protein [16] (Figure 4b).



Biomolecules 2020, 10, 97 5 of 15

Biomolecules 2019, 9, x 4 of 15 

translation. Changes in translation rates can affect the rate of folding and the conformation of the 
resulting proteins [47,48]. Some peptides, such as those found in SecM, MifM, VemP, ErmCL, cause 
programmed translation arrest, thereby regulating the expression of the respective downstream 
genes [49]. These arrest peptides (AP) are usually ~20 amino acids long; they interact with the exit 
tunnel and distort the optimal geometry of the PTC [49,50]. In some cases, stalling brings into the 
PTC a pair of slowly reacting amino acids, such as proline and glycine that do not react with one 
another unless the active conformation of the PTC is induced. The AP of SecM is of particular interest 
[51–53]. When fully translated, the 17 amino acid SecM AP inhibits peptidyl transfer until an external 
force exerted on the nascent peptide alleviates stalling, allowing the ribosome to resume translation 
[53]. Cotranslational folding events can exert mechanical force of up to 8 pN) [54,55] and relieve AP 
stalling thereby allowing translation to continue. This is utilized in force-profile assays (FPA) to 
identify cotranslational folding events [51–53].  

3. Folding inside the Exit Tunnel 

Early experiments using fluorescence resonance energy transfer (FRET) between labels attached 
at different positions in the nascent peptide suggested that transmembrane segments can form α-
helices within the exit tunnel in the proximity of the PTC [40]. Biochemical assays based on site-
specific cysteine tagging (pegylation) of the nascent chain helped to establish that the secondary 
structure formation can happen in a tunnel zone proximal to the PTC or at the distal end of the tunnel 
[56–59]. Visualization of nascent chains by cryo-electron microscopy (cryo-EM) shows that α-helices 
can form in the upper and lower regions of the tunnel [51,60–62], whereas the space at the constriction 
is too narrow to accommodate an α-helix (Figure 3). However, not every polypeptide chain that 
ultimately adopts helical conformation starts folding inside the peptide exit tunnel. The overall 
hydrophobicity, propensity to form an α-helix, and the element length are the major determinants of 
α-helix formation within the tunnel [63]. Indeed, accessibility assays, FRET, and molecular dynamics 
simulations provide evidence that transmembrane helices favor early compaction during translation 
to a much larger extent than their soluble counterparts [40,63,64].  

Nascent chains can also form tertiary interactions within the exit tunnel of the ribosome [59,65] 
and molecular dynamics simulations predicted a number of domain structures that could fold in the 
tunnel vestibule [66]. FPA reveals that small protein domains with a molecular weight <10 kDa (or 
≤70 amino acid residues) of various topologies encompassing α-helices or β-sheets may fold within 
the first 80 Å of the exit tunnel [42,67]. FPA and cryo-EM show that an entire Zn-finger domain of 
ADR1 folds into a native structure deep inside the exit tunnel of the ribosome [51] (Figure 4a). Also, 
the α-helical N-terminal domain of HemK forms a compact intermediate deep within the exit tunnel, 
although the native fold is attained only upon leaving the ribosome [37]. These examples also show 
that in some cases the tertiary interactions formed inside the tunnel can be very similar to the native 
structure of the isolated fully folded protein [51], whereas others are strictly cotranslational and not 
observed during protein refolding in solution [37]. The onset and trajectory of folding may be 
determined by the relative stability of the first accessible folding intermediate, rather than by the 
specific biophysical properties of the isolated native protein [16] (Figure 4b). 

 

Figure 3. Examples of structures of nascent peptides in the polypeptide exit tunnel. Nascent peptides
can interact with the tunnel walls as shown for TnaC [68], MifM [69], SecM [70], and CMV [71],
or form α-helices in the upper and lower regions of the tunnel, as illustrated for VemP [62] and DNA
topoisomerase peptides [61]. An α-helical structure of dipeptidylaminopeptidase B (DPAP-B) and the
AAP peptide in the tunnel are also shown [60,71]. Structures shown on gray background are visualized
using the PDB coordinates (PDB ID left to right: 4UY8; 3J9W; 3JBU; 5NWY; 5NP6). The coordinates of
structures shown on white background are not available as PDB entries and are reproduced from the
respective journals, with permission.

4. Cotranslational Folding of Single Domain Proteins

The ribosome can define a unique folding trajectory of single-domain proteins by inducing
formation of simple folding units/intermediates early during translation. For example, a small globular
N-terminal domain of protein HemK that is a rapid two-state folder in solution undergoes gradual
compaction on the ribosome [37,72,73]. Likewise, spectrin domain, which is a two-state folder in
solution, begins to fold cotranslationally before the C-terminus becomes available and proceeds via an
ensemble of partially structured states [16,74] (Figure 4b). Fluorescent proteins GFP and RFP cannot
fold into the native state while the C-terminus is occluded by the ribosome, but the proteins remain in
a compact folding-competent non-native conformation [75]. The nucleotide binding domain of cystic
fibrosis transmembrane conductance regulator (CFTR) folds through a series of precisely timed and
controlled nascent chain compaction events that are different from its folding trajectory in solution,
which is facilitated by the ribosome through optimized translation kinetics [76]. The binding of its
ligand, ATP, to the N-terminal domain stabilizes an energetically favorable local conformation, thereby
contributing to the folding trajectory [77].

Somewhat surprisingly, alsoβ-stranded domains can initiate folding on the ribosome via pathways
that differ from those in solution. Upon cotranslational folding of the FLN5 filamin domain, the first
intermediate is formed deep inside the exit tunnel, as found by FPA [73], although nuclear magnetic
resonance (NMR) experiments suggest that this compaction is not identical to the final native fold
and the protein appears unfolded. The protein then undergoes a transition to the native state after
emerging from the exit tunnel [78,79] (Figure 4c,d). Proteins containing repeat motifs can also fold
sequentially. FPA reveals that a β-helix pentarepeat protein folds through at least four cotranslational
intermediates, which are attributed to the stepwise compaction of the first several coils, followed
by a compaction when the entire domain emerges from the exit tunnel [80]. In the cases where the
ribosome induces early cotranslational folding, rapid initial compaction of the N-terminal elements
of the nascent chain can form the nucleus for further cotranslational folding. For complex domain
topologies, the establishment of a stable folding nucleus on the ribosome ensures that a protein packs
into conformations that do not lead to misfolding or aggregation [81]. Destabilization of the native
domain in these cases does not change the onset of folding [16,81]. The folding trajectory is defined
by the stability of folded or partially folded states formed on the ribosome, whereas the stability
and folding rates of isolated native proteins are insufficient to predict the cotranslational folding
pathway [16].
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(a) Cryo-electron microscopy (cryoEM) structure of the Zn-finger domain of ARD1 deep inside
the exit tunnel of the ribosome. Figure adapted from [51]. (b) Cryo-EM structure of partially folded
states of the spectrin domain at the exit tunnel vestibule, adapted from [16]. Root-mean-square
deviation (RMSD) indicates the deviation of the native spectrin domain structure (PDB: 1AJ3) from the
cryo-EM density map (EMD-3451) of the domain conformation at the ribosome surface. (c) Nuclear
magnetic resonance (NMR) structures of the disordered FLN6 domain (cyan) and natively folded FLN5
(magenta), with representative conformations of FLN5 on the ribosome; figure adapted from [82].
(d) NMR structures of the native state (left) and an ensemble of intermediate states (right) for FLN5 on
the ribosome [78].

There are also examples where the ribosome prevents folding until a large part of the domain
emerges in the cytoplasm. Some small globular proteins that can rapidly refold from unfolded to native
state in solution remain unfolded during translation and adopt their native-like assembly only when
most of the peptide has emerged from the exit tunnel [83]. NMR studies of truncated SH3 peptides of
various length show that on the ribosome they remain flexible and unstructured, but once the entire
domain sequence emerges out of the tunnel, it folds into a compact, native-like β-sheet assembly [83].
Phi-value analysis [84], which allows one to estimate the contribution of each amino acid residue
to the rate-limiting transition state on the protein folding pathway, suggests that the ribosome does
not change the key contacts required for the transition towards the native structure of all β-sheet Ig
domains of titin I27 [85] or SH3 domain [86]. In some cases the ribosome has no effect on folding.
For example, the intrinsically disordered protein α-synuclein is not perturbed on the ribosome, despite
the interactions established between nascent protein and ribosome [82].

Cotranslational folding intermediates may have biological roles on their own. A structurally unique
cotranslational intermediate of FtsY determines its targeting to the membrane [87]. During translation,
a specific FtsY domain forms an extended helix that reorganizes into the final three-helix bundle only
after the fully translated nascent chain is released from the ribosome. The extended conformation does
not exist in the fully folded native protein, but is thought to facilitate the cotranslational localization of
FtsY [87].
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Coarse grained molecular dynamics simulations of co-translational folding for 5 different globular
proteins suggest that the cooperativity of folding decreases on the ribosome due to the appearance
of partially folded N-terminal intermediates that are not populated in solution. The ribosome
decreases the diversity of the folding routes and increases the probability of folding beginning from
the N-terminus [88]. Monte Carlo simulations of cotranslational folding processes suggest that during
elongation the ribosome may support the progressive establishment of structures that are dominated
by local interactions, whereas protein structures that are governed by more distal interactions do
not fold until the nascent chain is released into solution [89]. Interestingly, there is some structural
evidence that shows that truncated forms of a β-sheet protein in isolation may adopt an α-helical
conformation and undergo a conformational transition to the antiparallel β-sheet topology only when
a sufficient length of the peptide chain is synthesized [90]. Although the latter work was carried out
with protein fragments in solution, rather than with translating ribosomes, it points towards the idea
that short-range interaction may be favored in early cotranslational intermediates, but as the peptide
grows, the structure rearranges to establish the final long-range contacts. Interestingly, interaction
with the translating ribosome may even coordinate the formation of the knot in the so-called knotted
proteins [91,92]. Course grain simulations suggest that the nascent twisted loop sticks to the ribosome
surface and is threated by the C-terminal part of the chain being pushed out of the ribosome, with the
creation of the knot [91].

5. Multidomain Protein Folding

About 30–40% of proteins in prokaryotic and up to 75% in eukaryotic cells are multidomain
proteins [93]. During refolding experiments in solution, multidomain proteins tend to misfold and
form insoluble aggregates [94–96]. In the cell, the ribosome and the chaperones ensure the correct
folding trajectory [97]. Systematic studies of protein coding sequences show that slowly translating
codon clusters frequently occur at domain boundaries [30,48] suggesting that individual domains
might be folding at least partly independently of one another starting from the N-terminal domain
and proceeding in a vectorial fashion as each subsequent domain is synthesized. For example,
the N-terminal domains of HemK and CFTR fold largely independently of the C-terminal part of the
protein [37,98]. Similarly, in mammalian cells folding of multidomain fusion protein rapamycin binding
protein (FRB)-GFP occurs co-translationally and strongly favors a domain-wise folding pathway [99].

There are only a few examples of multidomain proteins for which the cotranslational folding
pathway is known. The only rigorously studied case is EF-G, a five domain translation factor that
binds GTP. In isolation, EF-G refolds very inefficiently, both on the level of individual domains and
of a complete protein, suggesting that the domains can form non-native off-pathway intermediates
that preclude refolding to the native structure [100]. In contrast, in vivo EF-G folds all five of its
domains into a functional conformation. On the ribosome, the N-terminal G domain of EF-G folds
autonomously, but the nascent domain structure remains unstable [100], delaying folding until sufficient
sequence information is available, or the subsequent domain/interaction partner becomes available for
interaction. The folding of the G domain must occur before the folding of the next domain (domain II
of EF-G). The ribosome can either accelerate or decelerate the folding of the G domain, compared to
the rate of folding in solution, depending on how much amino acid sequence has been synthesized.
The maximum folding rate of the nascent G domain is achieved when the nascent chain comprises 386
amino acids; at shorter peptide lengths the ribosome decelerates G domain folding, while for longer
peptides the rates of folding on the ribosome are higher than in solution. The timing of the individual
domain folding is crucial, because the interaction between the folded and unfolded domains in EF-G
can result in unfolding of parts of the structure on the ribosome, thereby further complicating the
cotranslational folding landscape [100,101]. In this case, the ribosome, together with trigger factor
(TF), a cotranslationally acting chaperone, aids early folding steps to establish the correct path for
folding [101]. Notably, in vivo folding of the eukaryotic homolog of EF-G, eEF2, requires the help of
chaperones [102,103]. Interestingly, recent work on the cotranslational folding of domain III of EF-G
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shows that this domain is not stabilized by its N-terminal neighbors (domain G and domain II) and
requires interactions with the C-terminal domains (domains IV and V) to adopt a stable structure [104].
This is probably related to the fact that domains G+II and III+IV+V form the two superdomains of
EF-G that move relative to each other during its function in translocation. These data also imply
that about halfway through synthesizing EF-G, the folding pathway shifts from cotranslational to
post-translational. The high degree of flexibility in domain III is required for EF-G to execute its
function, but this feature leads to an increase in the number of unfolded domains during synthesis
on the ribosome. This illustrates how different biological requirements have to be reconciled during
protein biogenesis [104].

6. The Ribosome Has a Destabilizing Effect on the Nascent Chain

In addition to promoting correct protein folding, the ribosome prevents premature or incorrect
folding. The surface of the ribosome destabilizes the nascent protein packing even after the proteins
have fully emerged from the exit tunnel (Figure 1). The examples of the ribosome acting as a holdase are
during the synthesis of FLN5 [82], RnaseH [105], T4 lysozyme [15], GFP and RFP [75]. Optical-tweezer
experiments on the cotranslational folding of T4 lysozyme show that the nascent protein interacting
with the ribosome surface has a different rate of folding than in solution. Changing the ionic strength
of the buffer affects the protein folding rate on the ribosome, suggesting that electrostatic interactions
between the peptide and the negatively charged ribosome surface are responsible for this effect [15].
In other cases, the ribosome can delay the formation of cotranslational intermediates at the emerging
N-terminus, disfavor the formation of misfolded intermediates and increase the rate of their unfolding
in order to maintain a folding-competent nascent polypeptide [106]. Delaying the compaction of
nascent chains could be advantageous in ensuring that folding into stable conformations does not
occur before the entire sequence is fully accessible. The fine-tuning of the folding window could
be of particular importance for cotranslational folding of multidomain proteins, where interactions
between unstable folding intermediates can derail folding of the entire protein [100,101]. The highly
negative electrostatic charge of the ribosome surface may help in achieving these destabilizing effects.
Modulating the net charge of an intrinsically disordered protein alters the population distribution of
the dynamic nascent chain species on the ribosome: the higher the net negative charge of the nascent
chain, the larger the fraction of the more dynamic population of the nascent chain on the ribosome [107].
Coarse-grained molecular dynamics simulations of several globular proteins attached to the ribosome
by a linker of different length suggest that at the ribosome surface the entropy of the unfolded state
increases and that of the native state decreases, causing destabilization of the nascent protein structure.
The unfolding rates decrease and the folding rates increase linearly with the increasing linker length,
which explains why native folds are stabilized as the protein moves away from the ribosome [88].

7. Cotranslational Subunits Assembly

Prokaryotic genomes are organized in operons where a single mRNA encodes multiple protein
products. The individual subunits of protein complexes tend to be encoded within the same operon,
and the order of genes in an operon is non-random and under selective evolutionary pressure [108].
Recent studies suggest that this may be maintained in part because the assembly of multisubunit
proteins can begin cotranslationally. An elegant study employing the bacterial luciferase LuxAB shows
that when both subunits are synthesized from a single bicistronic mRNA, LuxA binds to the nascent
LuxB before the latter is released from the ribosome [109]. The extensive heterodimer interface between
the two subunits is established as soon as the entire dimerization surface of LuxB emerges from the
exit tunnel. Cotranslational assembly of multisubunit complexes is one of the most effective ways to
ensure rapid and efficient recruitment of partner proteins in the crowded environment of the cell.

A significant fraction of eukaryotic proteins form large protein complexes [110]. mRNAs encoding
the protein subunits of an oligomeric complex in eukaryotic cells are often colocalized [111], possibly
to bring together interacting protein partners. However, even high local protein concentration cannot
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explain the high efficiency of protein complex assembly. Indeed some proteins are by themselves toxic
to the cell [112] or unstable, intrinsically disordered and prone to aggregation [2,113]. Recent studies
suggest that several mammalian nuclear transcription complexes assemble cotranslationally [114].
A systematic study of eukaryotic subunit assembly during translation by selective ribosome profiling
shows that out of 12 hetero-oligomeric complexes studied, nine assembled cotranslationally and
the remainder assembled with chaperone assistance [26]. In most cases, the uni-directionality
of cotranslational assembly is evolutionarily preserved from prokaryotes to eukaryotes and the
onset of subunit interaction coincides with the emergence of the interaction domain of the nascent
peptide. Cotranslational association is favored in those cases where subunits are especially
aggregation-prone [26]. Also yeast protein complexes, such as histone-modifying complexes
methyl-transferase (SET1C) [115] and acetyltransferase (SAGA) assemble cotranslationally [116],
as do cyclin protein complexes [117]. The ribosome may modulate the assembly of protein complexes
by stabilizing individual protein domains or subunits [100] or adjusting the speed of translation [47]
downstream of interaction domain boundaries [30]. This may help to find the optimal time window
for interactions between the protein subunits. The electrostatic charge of the ribosomal surface can
also act in regulating cotranslational subunit assembly. For example, intrinsically disordered proteins
of opposite charge, ACTR and NCBD, form a complex on the ribosome cotranslationally, but only with
ACTR as the nascent chain and NCBD free in solution, and not vice versa. The negatively charged
nascent ACTR is repelled from the negatively charged ribosome surface and thus remains available
for productive binding of its positively charged partner [118]. The repulsion of negatively-charged
nascent chains is consistent with previous observation of increased dynamics of negatively charged
nascent chains on the ribosome [107]. A picture emerges where cotranslational assembly of subunits
depends on multiple features of proteins, ribosome and the cellular environment; it could thus be
subject to regulation on multiple levels to maintain the proteostasis in the cell.

8. Future Perspectives

Recent work has shed new light on the mechanism and relevance of the cotranslational folding
of nascent proteins. The major conclusion is that folding of many proteins is governed by the
ribosome depending on the intrinsic properties of the nascent peptide, such as its type of fold, size,
thermodynamic stability, surface charge, and function. Understanding the physico-chemical rules that
govern cotranslational folding is one of the future challenges towards solving the folding problem.
Because protein synthesis is an energetically costly process, the optimal interplay between translation
kinetics and cotranslational folding can ensure efficient protein production. This makes the ribosome
a key player in maintaining protein homeostasis in the cell, but also raises questions concerning the
links between translation and folding. For example, folding has been suggested to affect the rate of
translation, but experimental evidence for this is scarce. It is known that translation is a non-uniform
process, but the reasons for ribosome pauses, the interaction between adjacent ribosomes in polysomes,
and the understanding of the role of these translational events for protein folding has just started
to emerge. To be able to make generalizations, we need more examples of how multidomain and
oligomeric proteins fold. One puzzling question is how the ribosomes synthesizing the subunits of a
multidomain complex colocalize to start the cotranslational assembly. Growing evidence suggests
that the ribosome acts as a holdase for nascent proteins. However, it is unclear how the interactions
of the downstream effectors, such as chaperones and protein biogenesis factors, shape the nascent
protein-folding trajectory. One can expect that this will be among the major future questions for the
years to come.
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