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Abstract
Many forms of inductive logic programming (ILP) usemetarules, second-orderHorn clauses,
to define the structure of learnable programs and thus the hypothesis space. Deciding which
metarules to use for a given learning task is a major open problem and is a trade-off between
efficiency and expressivity: the hypothesis space grows given more metarules, so we wish
to use fewer metarules, but if we use too few metarules then we lose expressivity. In this
paper, we study whether fragments of metarules can be logically reduced to minimal finite
subsets. We consider two traditional forms of logical reduction: subsumption and entailment.
We also consider a new reduction technique called derivation reduction, which is based
on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP
and theoretically show whether these reduced sets are reductions for more general infinite
fragments. We experimentally compare learning with reduced sets of metarules on three
domains: Michalski trains, string transformations, and game rules. In general, derivation
reduced sets of metarules outperform subsumption and entailment reduced sets, both in
terms of predictive accuracies and learning times.

Keywords Inductive logic programming · Meta-interpretive learning · Logical reduction ·
Program induction · Inductive programming

1 Introduction

Many forms of inductive logic programming (ILP) (Albarghouthi et al. 2017; Campero et al.
2018; Cropper and Muggleton 2019; Emde et al. 1983; Evans and Grefenstette 2018; Flener
1996; Kaminski et al. 2018; Kietz and Wrobel 1992; Muggleton et al. 2015; De Raedt and
Bruynooghe 1992; Si et al. 2018; Wang et al. 2014) use second-order Horn clauses, called
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metarules.1 as a form of declarative bias (De Raedt 2012). Metarules define the structure
of learnable programs which in turn defines the hypothesis space. For instance, to learn the
grandparent/2 relation given the parent/2 relation, the chain metarule would be suitable:

P(A, B) ← Q(A,C), R(C, B)

In thismetarule2 the letters P , Q, and R denote existentially quantified second-order variables
(variables that can be bound to predicate symbols) and the letters A, B and C denote univer-
sally quantified first-order variables (variables that can be bound to constant symbols). Given
the chain metarule, the background parent/2 relation, and examples of the grandparent/2
relation, ILP approaches will try to find suitable substitutions for the existentially quanti-
fied second-order variables, such as the substitutions {P/grandparent, Q/parent, R/parent} to
induce the theory:

grandparent(A, B) ← parent(A,C), parent(C, B)

However, despite the widespread use of metarules, there is little work determining which
metarules to use for a given learning task. Instead, suitable metarules are assumed to be given
as part of the background knowledge, and are often used without any theoretical justification.
Deciding which metarules to use for a given learning task is a major open challenge (Cropper
2017; Cropper and Muggleton 2014) and is a trade-off between efficiency and expressivity:
the hypothesis space grows given more metarules (Cropper and Muggleton 2014; Lin et al.
2014), so we wish to use fewer metarules, but if we use too few metarules then we lose
expressivity. For instance, it is impossible to learn the grandparent/2 relation using only
metarules with monadic predicates.

In this paper, we study whether potentially infinite fragments of metarules can be logically
reduced tominimal, or irreducible, finite subsets, where a fragment is a syntactically restricted
subset of a logical theory (Bradley and Manna 2007).

Cropper and Muggleton (2014) first studied this problem. They used Progol’s entailment
reduction algorithm (Muggleton 1995) to identify entailment reduced sets ofmetarules,where
a clause C is entailment redundant in a clausal theory T ∪ {C} when T |� C . To illustrate
entailment redundancy, consider the following first-order clausal theory T1, where p, q , r ,
and s are first-order predicates:

C1 = p(A, B) ← q(A, B)

C2 = p(A, B) ← q(A, B), r(A)

C3 = p(A, B) ← q(A, B), r(A), s(B,C)

In T1 the clauses C2 and C3 are entailment redundant because they are both logical con-
sequences of C1, i.e. {C1} |� {C2,C3}. Because {C1} cannot be reduced, it is a minimal
entailment reduction of T1.

Cropper andMuggleton showed that in some cases as few as twometarules are sufficient to
entail an infinite fragment of chained3 second-order dyadic Datalog (Cropper andMuggleton
2014). They also showed that learning with minimal sets of metarules improves predictive

1 Metarules are also called program schemata (Flener 1996), second-order schemata (De Raedt and
Bruynooghe 1992), and clause templates (Albarghouthi et al. 2017), amongst many other names.
2 The fully quantified rule is ∃P∃Q∃R∀A∀B∀C P(A, B) ← Q(A,C), R(C, B).
3 A chained dyadic Datalog clause has the restriction that every first-order variable in a clause appears in
exactly two literals and a path connects every literal in the body of C to the head of C. In other words,
a chained dyadic Datalog clause has the form P0(X0, X1) ← P1(X0, X2), P2(X2, X3), . . . , Pn(Xn , X1)
where the order of the arguments in the literals does not matter.

123



Machine Learning

accuracies and reduces learning times compared to non-minimal sets. To illustrate how a
finite subset of metarules could entail an infinite set, consider the set of metarules with only
monadic literals and a single first-order variable A:

M1 = P(A) ← T1(A)

M2 = P(A) ← T1(A), T2(A)

M3 = P(A) ← T1(A), T2(A), T3(A)

. . .

Mn = P(A) ← T1(A), T2(A), . . . , Tn(A)

. . .

Although this set is infinite it can be entailment reduced to the single metarule M1 because
it implies the rest of the theory.

However, in this paper, we claim that entailment reduction is not always the most appro-
priate form of reduction. For instance, suppose you want to learn the father/2 relation given
the background relations parent/2, male/1, and female/1. Then a suitable hypothesis is:

father(A, B) ← parent(A, B),male(A)

To learn such a hypothesis one would need a metarule of the form P(A, B) ←
Q(A, B), R(A). Now suppose you have the metarules:

M1 = P(A, B) ← Q(A, B)

M2 = P(A, B) ← Q(A, B), R(A)

Running entailment reduction on these metarules would remove M2 because it is a logical
consequence of M1. However, it is impossible to learn the intended father/2 relation given
only M1. As this example shows, entailment reduction can be too strong because it can
remove metarules necessary to specialise a clause, where M2 can be seen as a specialisation
of M1.

To address this issue, we introduce derivation reduction, a new form of reduction based
on derivations, which we claim is a more suitable form of reduction for reducing sets of
metarules. Let � represent derivability in SLD-resolution4 (Kowalski 1974), then a Horn
clause C is derivationally redundant in a Horn theory T ∪ {C} when T � C . A Horn theory
is derivationally irreducible if it contains no derivationally redundant clauses. To illustrate
the difference between entailment and derivation reduction, consider the metarules:

M1 = P(A, B) ← Q(A, B)

M2 = P(A, B) ← Q(A, B), R(A)

M3 = P(A, B) ← Q(A, B), R(A, B)

M4 = P(A, B) ← Q(A, B), R(A, B), S(A, B)

Running entailment reduction on these metarules would result in the reduction {M1} because
M1 entails the rest of the theory. Likewise, running subsumption reduction (Plotkin 1971)
(described in detail in Sect. 3.5) would also result in the reduction {M1}. By contrast, running
derivation reduction would only remove M4 because it can be derived by self-resolving M3.
The remaining metarules M2 and M3 are not derivationally redundant because there is no
way to derive them from the other metarules.

4 We use � to represent derivability of both first-order and second-order clauses. In practice we reason about
second-order clauses using first-order resolution via encapsulation (Cropper and Muggleton 2014), which we
describe in Sect. 3.3.
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1.1 Contributions

In the rest of this paper, we study whether fragments of metarules relevant to ILP can be
logically reduced to minimal finite subsets. We study three forms of reduction: subsumption
(Robinson 1965), entailment (Muggleton 1995), and derivation (Cropper and Tourret 2018).
We also study how learning with reduced sets of metarules affects learning performance.
To do so, we supply Metagol (Cropper and Muggleton 2016b), a meta-interpretive learning
(MIL) (Cropper and Muggleton 2016a; Muggleton et al. 2014, 2015) implementation, with
different reduced sets of metarules and measure the resulting learning performance on three
domains: Michalski trains (Larson and Michalski 1977), string transformations, and game
rules (Cropper et al. 2019). In general, using derivation reduced sets ofmetarules outperforms
using subsumption and entailment reduced sets, both in terms of predictive accuracies and
learning times. Overall, our specific contributions are:

– We describe the logical reduction problem (Sect. 3).
– We describe subsumption and entailment reduction, and introduce derivation reduction,

the problem of removing derivationally redundant clauses from a clausal theory (Sect. 3).
– We study the decidability of the three reduction problems and show, for instance, that

the derivation reduction problem is undecidable for arbitrary Horn theories (Sect. 3).
– We introduce two general reduction algorithms that take a reduction relation as a param-

eter. We also study their complexity (Sect. 4).
– We run the reduction algorithms on finite sets of metarules to identify minimal sets

(Sect. 5).
– We theoretically show whether infinite fragments of metarules can be logically reduced

to finite sets (Sect. 5).
– We experimentally compare the learning performance of Metagol when supplied with

reduced sets of metarules on three domains: Michalski trains, string transformations, and
game rules (Sect. 6).

2 Related work

This section describeswork related to this paper,mostlywork on logical reduction techniques.
We first, however, describe work related to MIL and metarules.

2.1 Meta-interpretive learning

Although the study of metarules has implications for many ILP approaches (Albarghouthi
et al. 2017; Campero et al. 2018; Cropper and Muggleton 2019; Emde et al. 1983; Evans and
Grefenstette 2018; Flener 1996; Kaminski et al. 2018; Kietz and Wrobel 1992; Muggleton
et al. 2015; De Raedt and Bruynooghe 1992; Si et al. 2018; Wang et al. 2014), we focus on
meta-interpretive learning (MIL), a form of ILP based on a Prolog meta-interpreter.5 The
key difference between a MIL learner and a standard Prolog meta-interpreter is that whereas
a standard Prolog meta-interpreter attempts to prove a goal by repeatedly fetching first-order
clauses whose heads unify with a given goal, a MIL learner additionally attempts to prove
a goal by fetching second-order metarules, supplied as background knowledge (BK), whose
heads unify with the goal. The resulting meta-substitutions are saved and can be reused in

5 Although the MIL problem has also been encoded as an ASP problem (Kaminski et al. 2018).
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later proofs. Following the proof of a set of goals, a logic program is formed by projecting
the meta-substitutions onto their corresponding metarules, allowing for a form of ILP which
supports predicate invention and learning recursive theories.

Most existing work onMIL has assumed suitable metarules as input to the problem, or has
used metarules without any theoretical justification. In this paper, we try to address this issue
by identifying minimal sets of metarules for interesting fragments of logic, such as Datalog,
from which a MIL system can theoretically learn any logic program.

2.2 Metarules

McCarthy (1995) and Lloyd (2003) advocated using second-order logic to represent knowl-
edge. Similarly,Muggleton et al. (2012) argued that using second-order representations in ILP
provides more flexible ways of representing BK compared to existing methods. Metarules
are second-order Horn clauses and are used as a form of declarative bias (Nédellec et al.
1996; De Raedt 2012) to determine the structure of learnable programs which in turn defines
the hypothesis space. In contrast to other forms of declarative bias, such as modes (Muggle-
ton 1995) or grammars (Cohen 1994), metarules are logical statements that can be reasoned
about, such as to reason about the redundancy of sets of metarules, which we explore in this
paper.

Metarules were introduced in the Blip system (Emde et al. 1983). Kietz andWrobel (1992)
studied generality measures for metarules in the RDT system. A generality order is necessary
because the RDT system searches the hypothesis space (which is defined by the metarules) in
a top-down general-to-specific order. A key difference between RDT andMIL is that whereas
RDT requires metarules of increasing complexity (e.g. rules with an increasing number of
literals in the body), MIL derives more complex metarules through SLD-resolution. This
point is important because this ability allows MIL to start from smaller sets of primitive
metarules. In this paper we try to identify such primitive sets.

Using metarules to build a logic program is similar to the use of refinement operators in
ILP (Nienhuys-Cheng and de Wolf 1997; Shapiro 1983) to build a definite clause literal-by-
literal.6 As with refinement operators, it seems reasonable to ask about completeness and
irredundancy of a set of metarules, which we explore in this paper.

2.3 Logical redundancy

Detecting and eliminating redundancy in a clausal theory is useful in many areas of computer
science. In ILP logically reducing a theory is useful to remove redundancy from a hypothesis
space to improve learning performance (Cropper and Muggleton 2014; Fonseca et al. 2004).
In general, simplifying or reducing a theory often makes a theory easier to understand and
use, and may also have computational efficiency advantages.

2.3.1 Literal redundancy

Plotkin (1971) used subsumption to decide whether a literal is redundant in a first-order
clause. Joyner (1976) independently investigated the same problem, which he called clause
condensation, where a condensation of a clause C is a minimum cardinality subset C ′ of

6 MIL uses example driven test incorporation for finding consistent programs as opposed to the generate-and-
test approach of clause refinement.
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C such that C ′ |� C . Gottlob and Fermüller (1993) improved Joyner’s algorithm and also
showed that determining whether a clause is condensed is co-NP-complete. In contrast to
removing redundant literals, we focus on removing redundant clauses.

2.3.2 Clause redundancy

Plotkin (1971) introduced methods to decide whether a clause is subsumption redundant in
a first-order clausal theory. This problem has also been extensively studied in the context of
first-order logic with equality due to its application in superposition-based theorem proving
(Hillenbrand et al. 2013;Weidenbach andWischnewski 2010). The same problem, and slight
variants, has been extensively studied in the propositional case (Liberatore 2005, 2008).
Removing redundant clauses has numerous applications, such as to improve the efficiency
of SAT (Heule et al. 2015). In contrast to these works, we focus on reducing theories formed
of second-order Horn clauses (without equality), which to our knowledge has not yet been
extensively explored. Another difference is that we additionally study redundancy based on
SLD-derivations.

Cropper andMuggleton (2014) used Progol’s entailment-reduction algorithm (Muggleton
1995) to identify irreducible sets of metarules. Their approach removed entailment redundant
clauses from sets of metarules. They identified theories that are (1) entailment complete for
certain fragments of second-order Horn logic, and (2) irreducible. They demonstrated that
in some cases as few as two clauses are sufficient to entail an infinite theory. However, they
only considered small and highly constrained fragments of metarules. In particular, they
focused on an exactly-two-connected fragment of metarules where each literal is dyadic and
each first-order variable appears exactly twice in distinct literals. However, as discussed in
the introduction, entailment reduction is not always the most appropriate form of reduction
because it can remove metarules necessary to specialise a clause. Therefore, in this paper, we
go beyond entailment reduction and introduce derivation reduction. We also consider more
general fragments of metarules, such as a fragment of metarules sufficient to learn Datalog
programs.

Cropper and Tourret (2018) introduced the derivation reduction problem and studied
whether sets of metarules could be derivationally reduced. They considered the exactly-two-
connected fragment previously considered by Cropper and Muggleton and a two-connected
fragment in which every variable appears at least twice, which is analogous to our singleton-
free fragment (Sect. 5.3). They used graph theoretic methods to show that certain fragments
could not be completely derivationally reduced. They demonstrated on the Michalski trains
dataset that the partially derivationally reduced set of metarules outperforms the entailment
reduced set. In similar work Cropper and Tourret elaborated on their graph theoretic tech-
niques and expanded the results to unconstrained resolution (Tourret and Cropper 2019).

In this paper, we go beyond the work of (Cropper and Tourret 2018) in several ways.
First, we consider more general fragments of metarules, including connected and Datalog
fragments.We additionally consider fragments with zero arity literals. In all cases we provide
additional theoretical results showing whether certain fragments can be reduced, and, where
possible, show the actual reductions. Second, Tourret and Cropper (2019) focused on deriva-
tion reduction modulo first-order variable unification, i.e. they considered the case where
factorisation (Nienhuys-Cheng and de Wolf 1997) was allowed when resolving two clauses,
which is not implemented in practice in current MIL systems. For this reason, although Sec-
tion 5 in Tourret and Cropper (2019) and Sect. 5.1 in the present paper seemingly consider
the same problem, the results are opposite to one another. Third, in addition to entailment and
derivation reduction, we also consider subsumption reduction. We provide more theoretical
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results on the decidability of the reduction problems, such as showing a decidable case for
derivation reduction (Theorem 4). Fourth, we describe the reduction algorithms and discuss
their computational complexity. Finally, we corroborate the experimental results of Cropper
and Tourret on Michalski’s train problem (Cropper and Tourret 2018) and provide additional
experimental results on two more domains: real-world string transformations and inducing
Datalog game rules from observations.

2.3.3 Theory minimisation

We focus on removing clauses from a clausal theory. A related yet distinct topic is theory
minimisationwhere the goal is to find aminimumequivalent formula to a given input formula.
This topic is often studied in propositional logic (Hemaspaandra and Schnoor 2011). The
minimisation problem allows for the introduction of new clauses. By contrast, the reduction
problem studied in this paper does not allow for the introduction of new clauses and instead
only allows for the removal of redundant clauses.

2.3.4 Prime implicates

Implicates of a theory T are the clauses that are entailed by T and are called prime when they
do not themselves entail other implicates of T . This notion differs from the subsumption
and derivation reduction because it focuses on entailment, and it differs from entailment
reduction because (1) the notion of a prime implicate has been studied only in propositional,
first-order, and some modal logics (Bienvenu 2007; Echenim et al. 2015; Marquis 2000); (2)
the generation of prime implicates allows for the introduction of new clauses in the formula.

3 Logical reduction

We now introduce the reduction problem: the problem of finding redundant clauses in a the-
ory. We first describe the reduction problem starting with preliminaries, and then describe
three instances of the problem. The first two instances are based on existing logical reduc-
tion methods: subsumption and entailment. The third instance is a new form of reduction
introduced in Cropper and Tourret (2018) based on SLD-derivations.

3.1 Preliminaries

We assume familiarity with logic programming notation (Lloyd 1987) but we restate some
key terminology. A clause is a disjunction of literals. A clausal theory is a set of clauses.
A Horn clause is a clause with at most one positive literal. A Horn theory is a set of Horn
clauses. A definite clause is a Horn clause with exactly one positive literal. A Horn clause is
a Datalog clause if (1) it contains no function symbols, and (2) every variable that appears
in the head of the clause also appears in a positive (i.e. not negated) literal in the body of the
clause.7 We denote the powerset of the set S as 2S .

7 Datalog also imposes additional constraints on negation in the body of a clause, but because we disallow
negation in the body we omit these constraints for simplicity.
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Table 1 Example metarules Name Metarule

Indent1 P(A) ← Q(A)

DIndent1 P(A) ← Q(A), R(A)

Indent2 P(A, B) ← Q(A, B)

DIndent2 P(A, B) ← Q(A, B), R(A, B)

Precon P(A, B) ← Q(A), R(A, B)

Postcon P(A, B) ← Q(A, B), R(B)

Curry P(A, B) ← Q(A, B, R)

Chain P(A, B) ← Q(A,C), R(C, B)

The letters P , Q, and R denote existentially quantified second-order
variables. The letters A, B, and C denote universally quantified first-
order variables

3.1.1 Metarules

Although the reduction problem applies to any clausal theory, we focus on theories formed
of metarules:

Definition 1 (Metarule) A metarule is a second-order Horn clause of the form:

A0 ← A1, . . . , Am

where each Ai is a literal of the form P(T1, . . . , Tn) where P is either a predicate symbol or
a second-order variable that can be substituted by a predicate symbol, and each Ti is either
a constant symbol or a first-order variable that can be substituted by a constant symbol.

Table 1 shows a selection of metarules commonly used in the MIL literature (Cropper and
Muggleton 2015, 2016a, 2019; Cropper et al. 2015; Morel et al. 2019). As Definition 1
states, metarules may include predicate and constant symbols. However, we focus on the
more general case where metarules only contain variables.8 In addition, although metarules
can be any Horn clauses, we focus on definite clauses with at least one body literal, i.e. we
disallow facts, because their inclusion leads to uninteresting reductions, where in almost all
such cases the theories can be reduced to a single fact.9 We denote the infinite set of all such
metarules asM . We focus on fragments ofM , where a fragment is a syntactically restricted
subset of a theory (Bradley and Manna 2007):

Definition 2 (The fragment M a
m) We denote as M a

m the fragment of M where each literal
has arity at most a and each clause has at most m literals in the body. We replace a by the
explicit set of arities when we restrict the allowed arities further.

Example 1 M
{2}
2 is a subset of M where each predicate has arity 2 and each clause has at

most 2 body literals.

Example 2 M
{2}
m is a subset of M where each predicate has arity 2 and each clause has at

most m body literals.

8 By more general we mean we focus on metarules that are independent of any particular ILP problem with
particular predicate and constant symbols.
9 For instance, the metarule P(A) ← entails and subsumes every metarule with a monadic head.
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Example 3 M
{0,2}
m is a subset of M where each predicate has arity 0 or 2 and each clause

has at most m body literals.

Example 4 M a{1,2} is a subset ofM where each predicate has arity at most a and each clause
has either 1 or 2 body literals.

Let T be a clausal theory. Then we say that T is in the fragment M a
m if and only if each

clause in T is in M a
m .

3.2 Meta-interpretive learning

In Sect. 6we conduct experiments to seewhether using reduced sets ofmetarules can improve
learning performance. The primary purpose of the experiments is to test our claim that
entailment reduction is not always the most appropriate form of reduction. Our experiments
focus on MIL. For self-containment, we briefly describe MIL.

Definition 3 (MIL input) An MIL input is a tuple (B, E+, E−, M) where:

– B is a set of Horn clauses denoting background knowledge
– E+ and E− are disjoint sets of ground atoms representing positive and negative examples

respectively
– M is a set of metarules

The MIL problem is defined from a MIL input:

Definition 4 (MIL problem) Given a MIL input (B, E+, E−, M), the MIL problem is to
return a logic program hypothesis H such that:

– ∀c ∈ H , ∃m ∈ M such that c = mθ , where θ is a substitution that grounds all the
existentially quantified variables in m

– H ∪ B |� E+
– H ∪ B 
|� E−

We call H a solution to the MIL problem.

The metarules and background define the hypothesis space. To explain our experimental
results in Sect. 6, it is important to understand the effect that metarules have on the size of the
MIL hypothesis space, and thus on learning performance. The following result generalises
previous results (Cropper and Muggleton 2016a; Lin et al. 2014):

Theorem 1 (MIL hypothesis space) Given p predicate symbols and k metarules inM a
m, the

number of programs expressible with n clauses is at most (pm+1k)n.

Proof The number of first-order clauses which can be constructed from a M a
m metarule

given p predicate symbols is at most pm+1 because for a given metarule there are at most
m+1 predicate variables with at most pm+1 possible substitutions. Therefore the set of such
clauses S which can be formed from k distinct metarules in M a

m using p predicate symbols
has cardinality at most pm+1k. It follows that the number of programs which can be formed
from a selection of n clauses chosen from S is at most (pm+1k)n . ��
Theorem 1 shows that theMIL hypothesis space increases givenmoremetarules. The Blumer
bound (Blumer et al. 1987),10 says that given two hypothesis spaces, searching the smaller
space will result in fewer errors compared to the larger space, assuming that the target
hypothesis is in both spaces. This result suggests that we should consider removing redundant
metarules to improve the learning performance. We explore this idea in the rest of the paper.

10 The Blumer bound is a reformulation of Lemma 2.1 in Blumer et al. (1987).
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3.3 Encapsulation

To reason aboutmetarules (especially when running the Prolog implementations of the reduc-
tion algorithms), we use a method called encapsulation (Cropper and Muggleton 2014) to
transform a second-order logic program to a first-order logic program. We first define encap-
sulation for atoms:

Definition 5 (Atomic encapsulation) Let A be a second-order or first-order atom of the form
P(T1, .., Tn). Then enc(A) = enc(P, T1, .., Tn) is the encapsulation of A.

For instance, the encapsulation of the atom parent(ann,andy) is enc(parent,ann,andy). Note
that encapsulation essentially ignores the quantification of variables in metarules by treating
all variables, including predicate variables, as first-order universally quantified variables of
the first-order enc predicate. In particular, replacing existential quantifiers with universal
quantifiers on predicate variables is fine for our work because we only reason about the form
of metarules, not their semantics, i.e. we treat metarules as templates for first-order clauses.
We extend atomic encapsulation to logic programs:

Definition 6 (Program encapsulation) The logic program enc(P) is the encapsulation of the
logic program P in the case enc(P) is formed by replacing all atoms A in P by enc(A).

For example, the encapsulation of the metarule P(A, B) ← Q(A,C), R(C, B) is
enc(P, A, B) ← enc(Q, A,C), enc(R,C, B). We extend encapsulation to interpretations
(Nienhuys-Cheng and de Wolf 1997) of logic programs:

Definition 7 (Interpretation encapsulation) Let I be an interpretation over the predicate and
constant symbols in a logic program. Then the encapsulated interpretation enc(I ) is formed
by replacing each atom A in I by enc(A).

We now have the proposition:

Proposition 1 [Encapsulation models (Cropper and Muggleton 2014)] The second-order
logic program P has a model M if and only if enc(P) has the model enc(M).

Proof Follows trivially from the definitions of encapsulated programs and interpretations.
��

We can extend the definition of entailment to logic programs:

Proposition 2 [Entailment (Cropper and Muggleton 2014)] Let P and Q be second-order
logic programs. Then P |� Q if and only if every model enc(M) of enc(P) is also a model
of enc(Q).

Proof Follows immediately from Proposition 1. ��

These results allow us to reason about metarules using standard first-order logic. In the rest of
the paper all the reasoning about second-order theories is performed at the first-order level.
However, to aid the readability we continue to write non-encapsulated metarules in the rest
of the paper, i.e. we will continue to refer to sets of metarules as second-order theories.
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3.4 Logical reduction problem

We now describe the logical reduction problem. For the clarity of the paper, and to avoid
repeating definitions for each form of reduction that we consider (entailment, subsumption,
and derivability), we describe a general reduction problem which is parametrised by a binary
relation � defined over any clausal theory, although in the case of derivability, � is in fact
only defined over Horn clauses. Our only constraint on the relation � is that if A � B,
A ⊆ A′ and B ′ ⊆ B then A′ � B ′. We first define a redundant clause:

Definition 8 (�-redundant clause) The clauseC is�-redundant in the clausal theory T ∪{C}
whenever T � {C}.
In a slight abuse of notation, we allow Definition 8 to also refer to a single clause, i.e. in our
notation T � C is the same as T � {C}. We define a reduced theory:

Definition 9 (�-reduced theory) A clausal theory is �-reduced if and only if it is finite and
it does not contain any �-redundant clauses.

We define the input to the reduction problem:

Definition 10 (�-reduction input) A reduction input is a pair (T ,�) where T is a clausal
theory and � is a binary relation over a clausal theory.

Note that a reduction input may (and often will) be an infinite clausal theory. We define the
reduction problem:

Definition 11 (�-reduction problem) Let (T ,�) be a reduction input. Then the �-reduction
problem is to find a finite theory T ′ ⊆ T such that (1) T ′ � T (i.e. T ′ � C for every clause
C in T ), and (2) T ′ is �-reduced. We call T ′ a �-reduction.

Although the input to a �-reduction problem may contain an infinite theory, the output (a
�-reduction) must be a finite theory. We also introduce a variant of the �-reduction problem
where the reduction must obey certain syntactic restrictions:

Definition 12 (M a
m-�-reduction problem) Let (T ,�,M a

m) be a triple, where the first two
elements are as in a standard reduction input and M a

m is a target reduction theory. Then the
M a

m-�-reduction problem is to find a finite theory T ′ ⊆ T such that (1) T ′ is a �-reduction
of T , and (2) T ′ is in M a

m .

3.5 Subsumption reduction

The first form of reduction we consider is based on subsumption, which, as discussed in
Sect. 2, is often used to eliminate redundancy in a clausal theory:

Definition 13 (Subsumption) A clause C subsumes a clause D, denoted as C � D, if there
exists a substitution θ such that Cθ ⊆ D.

Note that if a clause C subsumes a clause D then C |� D (Robinson 1965). However,
if C |� D then it does not necessarily follow that C � D. Subsumption can therefore
be seen as being weaker than entailment. Whereas checking entailment between clauses is
undecidable (Church 1936), Robinson (1965) showed that checking subsumption between
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clauses is decidable [although in general deciding subsumption is a NP-complete problem
(Nienhuys-Cheng and de Wolf 1997)].

If T is a clausal theory then the pair (T ,�) is an input to the �-reduction problem,
which leads to the subsumption reduction problem (S-reduction problem). We show that the
S-reduction problem is decidable for finite theories:

Proposition 3 (Finite S-reduction problem decidability) Let T be a finite theory. Then the
corresponding S-reduction problem is decidable.

Proof We can enumerate each element T ′ of 2T in ascending order on the cardinality of T ′.
For each T ′ we can check whether T ′ subsumes T , which is decidable because subsumption
between clauses is decidable. If T ′ subsumes T then we correctly return T ′; otherwise we
continue to enumerate. Because the set 2T is finite the enumeration must halt. Because the set
2T contains T the algorithm will in the worst-case return T . Thus the problem is decidable.

��

3.6 Entailment reduction

Asmentioned in the introduction, Cropper andMuggleton (2014) previously used entailment
reduction (Muggleton 1995) to reduce sets of metarules using the notion of an entailment
redundant clause:

Definition 14 (E-redundant clause) The clause C is entailment redundant (E-redundant) in
the clausal theory T ∪ {C} whenever T |� C .

If T is a clausal theory then the pair (T , |�) is an input to the �-reduction problem, which
leads to the entailment reduction problem (E-reduction). We show the relationship between
an E- and a S-reduction:

Proposition 4 Let T be a clausal theory, TS be a S-reduction of T , and TE be an E-reduction
of T . Then TE |� TS.

Proof Assume the opposite, i.e. TE 
|� TS . This assumption implies that there is a clause
C ∈ TS such that TE 
|� C . By the definition of S-reduction, TS is a subset of T so C must be
in T , which implies that TE 
|� T . But this contradicts the premise that TE is an E-reduction
of T . Therefore the assumption cannot hold, and thus TE |� TS . ��
We show that the E-reduction problem is undecidable for arbitrary clausal theories:

Proposition 5 (E-reduction problem clausal decidability) The E-reduction problem for
clausal theories is undecidable.

Proof Follows from the undecidability of entailment in clausal logic (Church 1936). ��
The E-reduction problem for Horn theories is also undecidable:

Proposition 6 (E-reduction problem Horn decidability) The E-reduction problem for Horn
theories is undecidable.

Proof Follows from the undecidability of entailment in Horn logic (Marcinkowski and
Pacholski 1992). ��
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The E-reduction problem is, however, decidable for finite Datalog theories:

Proposition 7 (E-reduction problemDatalog decidability) The E-reduction problem for finite
Datalog theories is decidable.

Proof Follows from the decidability of entailment in Datalog (Dantsin et al. 2001) using a
similar algorithm to the one used in the proof of Proposition 3. ��

3.7 Derivation reduction

Asmentioned in the introduction, entailment reduction can be too strong a form of reduction.
We therefore describe a new form of reduction based on derivability (Cropper and Tourret
2018; Tourret and Cropper 2019). Although our notion of derivation reduction can be defined
for any proof system [such as unconstrained resolution as is done in Tourret and Cropper
(2019)] we focus on SLD-resolution because we want to reduce sets of metarules, which are
definite clauses. We define the function Rn(T ) of a Horn theory T as:

R0(T ) = T

Rn(T ) = {C |C1 ∈ Rn−1(T ),C2 ∈ T ,C is the binary resolvent ofC1 andC2}
We use this function to define the Horn closure of a Horn theory:

Definition 15 (Horn closure) The Horn closure R∗(T ) of a Horn theory T is:
⋃

n∈N
Rn(T )

We state our notion of derivability:

Definition 16 (Derivability) A Horn clause C is derivable from the Horn theory T , written
T � C , if and only if C ∈ R∗(T ).

We define a derivationally redundant (D-redundant) clause:

Definition 17 (D-redundant clause)A clauseC is derivationally redundant in theHorn theory
T ∪ {C} if T � C .

Let T be a Horn theory, then the pair (T ,�) is an input to the �-reduction problem, which
leads to the derivation reduction problem (D-reduction problem). Note that a theory can have
multiple D-reductions. For instance, consider the theory T :

C1 = P(A, B) ← Q(B, A)

C2 = P(A, B) ← Q(A,C), R(C, B)

C3 = P(A, B) ← Q(C, A), R(C, B)

One D-reduction of T is {C1,C2} because we can resolve the first body literal of C2 with
C1 to derive C3 (up to variable renaming). Another D-reduction of T is {C1,C3} because we
can likewise resolve the first body literal of C3 with C1 to derive C2.

We can show the relationship between E- and D-reductions by restating the notion of a
SLD-deduction (Nienhuys-Cheng and de Wolf 1997):

Definition 18 [SLD-deduction (Nienhuys-Cheng and deWolf 1997)] Let T be a Horn theory
and C be a Horn clause. Then there exists a SLD-deduction of C from T , written T �d C ,
if C is a tautology or if there exists a clause D such that T � D and D subsumes C .
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We can use the subsumption theorem (Nienhuys-Cheng and de Wolf 1997) to show the
relationship between SLD-deductions and logical entailment:

Theorem 2 [SLD-subsumption theorem (Nienhuys-Cheng and de Wolf 1997)] Let T be a
Horn theory and C be a Horn clause. Then T |� C if and only if T �d C.

We can use this result to show the relationship between an E- and a D-reduction:

Proposition 8 Let T be a Horn theory, TE be an E-reduction of T , and TD be a D-reduction
of T . Then TE |� TD.

Proof Follows from the definitions of E-reduction and D-reduction because an E-reduction
can be obtained from a D-reduction with an additional subsumption check. ��
We also use the SLD-subsumption theorem to show that the D-reduction problem is unde-
cidable for Horn theories:

Theorem 3 (D-reduction problem Horn decidability) The D-reduction problem for Horn
theories is undecidable.

Proof Assume the opposite, that the problem is decidable, which implies that T � C is
decidable. Since T � C is decidable and subsumption between Horn clauses is decidable
(Garey and Johnson 1979), then finding a SLD-deduction is also decidable. Therefore, by
the SLD-subsumption theorem, entailment between Horn clauses is decidable. However,
entailment between Horn clauses is undecidable (Schmidt-Schauß 1988), so the assumption
cannot hold. Therefore, the problem must be undecidable. ��
However, the D-reduction problem is decidable for any fragment M a

m (e.g. definite Datalog
clauses where each clause has at least one body literal, with additional arity and body size
constraints). To show this result, we first introduce two lemmas:

Lemma 1 Let D, C1, and C2 be definite clauses with md , mc1, and mc2 body literals respec-
tively, where md , mc1, and mc2 > 0. If {C1,C2} � D then mc1 ≤ md and mc2 ≤ md.

Proof Follows from the definitions of SLD-resolution (Nienhuys-Cheng and de Wolf 1997).
��

Note that Lemma 1 does not hold for unconstrained resolution because it allows for factorisa-
tion (Nienhuys-Cheng and de Wolf 1997). Lemma 1 also does not hold when facts (bodyless
definite clauses) are allowed because they would allow for resolvents that are smaller in body
size than one of the original two clauses.

Lemma 2 Let M a
m be a fragment of metarules. Then M a

m is finite up to variable renaming.

Proof Any literal in M a
m has at most a first-order variables and 1 second-order variable, so

any literal has at most a + 1 variables. Any metarule has at most m body literals plus the
head literal, so any metarule has at most m + 1 literals. Therefore, any metarule has at most
((a + 1)(m + 1)) variables. We can arrange the variables in at most ((a + 1)(m + 1))! ways,
so there are at most ((a + 1)(m + 1))! metarules in M a

m up to variable renaming. Thus M a
m

is finite up to variable renaming. ��
Note that the bound in the proof of Lemma 2 is a worst-case result. In practice there are fewer
usable metarules because we consider fragments of constrained theories, thus not all clauses
are admissible, and in all cases the order of the body literals is irrelevant. We use these two
lemmas to show that the D-reduction problem is decidable for M a

m :
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Theorem 4 (M a
m-D-reduction problem decidability) The D-reduction problem for theories

included in M a
m is decidable.

Proof Let T be a finite clausal theory in M a
m and C be a definite clause with n > 0 body

literals. The problem is whether T � C is decidable. By Lemma 1, we cannot derive C
from any clause which has more than n body literals. We can therefore restrict the resolution
closure R∗(T ) to only include clauses with body lengths less than or equal to n. In addition,
by Lemma 2 there are only a finite number of such clauses so we can compute the fixed-point
of R∗(T ) restricted to clauses of size smaller or equal to n in a finite amount of steps and
check whether C is in the set. If it is then T � C ; otherwise T � C . ��

3.8 k-Derivable clauses

Propositions 3 and 7 and Theorem 4 show that the �-reduction problem is decidable under
certain conditions. However, as we will shown in Sect. 4, even in decidable cases, solving the
�-reduction problem is computationally expensive. We therefore solve restricted k-bounded
versions of the E- and D-reduction problems, which both rely on SLD-derivations. Specifi-
cally, we focus on resolution depth-limited derivations using the notion of k-derivability:

Definition 19 (k-derivability) Let k be a natural number. Then a Horn clauseC is k-derivable
from the Horn theory T , written T �k C , if and only if C ∈ Rk(T ).

The definitions for k-bounded E- and D-reductions follow from this definition but are omitted
for brevity. In Sect. 4 we introduce a general algorithm (Algorithm 1) to solve the S-reduction
problem and k-bounded E- and D-reduction problems.

4 Reduction algorithms

In Sect. 5 we logically reduce sets of metarules. We now describe the reduction algorithms
that we use.

4.1 �-Reduction algorithm

The reduce algorithm (Algorithm 1) shows a general�-reduction algorithm that solves the
�-reduction problem (Definition 11) when the input theory is finite.11 We ignore cases where
the input is infinite because of the inherent undecidability of the problem. Algorithm 1 is
largely based on Plotkin’s clausal reduction algorithm (Plotkin 1971). Given a finite clausal
theory T and a binary relation �, the algorithm repeatedly tries to remove a �-redundant
clause in T . If it cannot find a�-redundant clause, then it returns the�-reduced theory. Note
that since derivation reduction is only defined over Horn theories, in a �-reduction input
(T ,�), the theory T has to be Horn. We show total correctness of the algorithm:

11 In practice we use more efficient algorithms for each approach. For instance, in the derivation reduction
Prolog implementation we use the knowledge gained from Lemma 1 to add pruning so as to ignore clauses
that are too large to be useful to check whether a clause is derivable.
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Proposition 9 (Algorithm 1 total correctness) Let (T ,�) be a �-reduction input where T is
finite. Let the corresponding �-reduction problem be decidable. Then Algorithm 1 solves the
�-reduction problem.

Proof Trivial by induction on the size of T . ��

Algorithm 1 �-reduction algorithm

1 func reduce(T,�):
2 if |T | < 2:
3 return T
4 if there is a clause C in T such that T \ {C} � C:
5 return reduce(T \ {C},�)
6 else:
7 return T

Note that Proposition 9 assumes that the given reduction problem is decidable and that the
input theory is finite. If you call Algorithm 1 with an arbitrary clausal theory and the |�
relation then it will not necessarily terminate. We can call Algorithm 1 with specific binary
relations, where each variation has a different time-complexity. Table 2 shows different ways
of calling Algorithm 1 with their corresponding time complexities, where we assume finite
theories as input. We show the complexity of calling Algorithm 1 with the subsumption
relation:

Proposition 10 (S-reduction complexity) If T is a finite clausal theory then calling Algo-
rithm 1 with (T,�) requires at most O(|T |3) calls to a subsumption algorithm.

Proof For every clause in T the algorithm checks whether any other clause in T subsumes C
which requires at most O(|T |2) calls to a subsumption algorithm. If any clause C is found to
be S-redundant then the algorithm repeats the procedure on the theory (T \ {C}), so overall
the algorithm requires at most O(|T |3) calls to a subsumption algorithm. ��
Note that a more detailed analysis of calling Algorithm 1 with the subsumption relation
would depend on the subsumption algorithm used, which is an NP-complete problem (Garey
and Johnson 1979). We show the complexity of calling Algorithm 1 with the k-bounded
entailment relation:

Proposition 11 (k-bounded E-reduction complexity) If T is a finite Horn theory and k is a
natural number then calling Algorithm 1with (T,|�k) requires at most O(|T |k+2) resolutions.

Proof In the worst case the derivation check (line 4) requires searching the whole SLD-tree
which has a maximum branching factor |T | and a maximum depth k and takes O(|T |k) steps.
The algorithm potentially does this step for every clause in T so the complexity of this step
is O(|T |k+1). The algorithm has to perform this check for every clause in T with an overall
worst-case complexity O(|T |k+2). ��
The complexity of calling Algorithm 1 with the k-derivation relation is identical:

Proposition 12 (k-boundedD-reduction complexity) Let T be a finite Horn theory and k be a
natural number then calling Algorithm 1with (T,�k) requires at most O(|T |k+2) resolutions.

Proof Follows using the same reasoning as Proposition 11. ��
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Table 2 Outputs and complexity
of Algorithm 1 for different input
relations and an arbitrary finite
clausal theory T

Relation Output Complexity

� S-reduction O(|T |3)
|� E-reduction Undecidable

|�k k-E-reduction O(|T |k+2)

� D-reduction Undecidable

�k k-D-reduction O(|T |k+2)

The time complexities are a function of the size of the given theory,
denoted by |T |

4.2 M a
m-�-reduction algorithm

Although Algorithm 1 solves the �-reduction problem, it does not solve the M a
m-reduction

problem (Definition 12). For instance, suppose you have the following theory T in M 2
4 :

M1 = P(A, B) ← Q(B, A)

M2 = P(A, B) ← Q(A, A), R(B, B)

M3 = P(A, B) ← Q(A,C), R(B,C)

M4 = P(A, B) ← Q(B,C), R(A, D), S(A, D), T (B,C)

Suppose you want to know whether T can be E-reduced to M 2
2 . Then calling Algorithm 1

with (T , |�) (i.e. the entailment relation) will return T ′ = {M1, M4} because: M4 |� M2,12

M4 |� M3,13 and {M1, M4} cannot be further E-reduced.
Although T ′ is an E-reduction of T , it is not in M 2

2 because M4 is not in M 2
2 . How-

ever, the theory T can be M 2
2 -E-reduced to {M1, M2, M3} because {M2, M3} |� M4,14 and

{M1, M2, M3} cannot be further reduced. In general, let T be a theory in M a
m and an T ′ be

an E-reduction of T , then T ′ is not necessarily in M a
2 .

Algorithm 2 overcomes this limitation of Algorithm 1. Given a finite clausal theory T , a
binary relation �, and a reduction fragmentM a

m , Algorithm 2 determines whether there is a
�-reduction of T in M a

m . If there is, it returns the reduced theory; otherwise it returns false.
In other words, Algorithm 2 solves theM a

m-�-reduction problem.We show total correctness
of Algorithm 2:

12 Rename the variables in M4 to form M ′
4 = P0(X1, X2) ← P1(X2, X3), P2(X1, X4), P3(X1, X4),

P4(X2, X3). Then M ′
4θ = P(A, B) ← R(B, B), Q(A, A), Q(A, A), R(B, B) where θ =

{P0/P, P1/R, P2/Q, P3/Q, P4/R, X1/A, X2/B, X3/B, X4/A}. It follows that M ′
4θ ⊆ M2, so M4 � M2,

which in turn implies M4 |� M2.
13 Rename the variables in M4 to form M ′

4 = P0(X1, X2) ← P1(X2, X3), P2(X1, X4), P3(X1, X4),

P4(X2, X3). Then M ′
4θ = P(A, B) ← R(B,C), Q(A,C), Q(A,C), R(B,C) where θ =

{P0/P, P1/R, P2/Q, P3/Q, P4/R, X1/A, X2/B, X3/C, X4/C}. It follows that M ′
4θ ⊆ M3, so M4 � M3,

which in turn implies M4 |� M3.
14 Rename the variables in M3 to form M ′

3 = P0(X , Y ) ← P1(X , Z), P2(Y , Z). Resolve the first body
literal of M2 with M3 to form R1 = P(A, B) ← P1(A, Z), P2(A, Z), R(B, B). Rename the variables
P1 to P3, P2 to P4, and Z to Z1 in R1 (to standardise apart the variables) to form R2 = P(A, B) ←
P3(A, Z1), P4(A, Z1), R(B, B). Resolve the last body literal of R2 with M ′

3 to form R3 = P(A, B) ←
P3(A, Z1), P4(A, Z1), P1(B, Z), P2(B, Z). Rename the variables Z1 to D, ZtoC , P3 to R, P4 to S, P1 to
Q, and P2 to T in R3 to form R4 = P(A, B) ← R(A, D), S(A, D), Q(B,C), T (B,C).Thus, R4 = M4, so
it follows that and {M2, M3} |� M4
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Proposition 13 (Algorithm 2 correctness) Let (T ,�,M a
m) be aM a

m-�-reduction input. If the
corresponding �-reduction problem is decidable then Algorithm 2 solves the corresponding
M a

m-�-reduction problem.

Sketch Proof We provide a sketch proof for brevity. We need to show that the function aux
correctly determines whether B � T , which we can show by induction on the size of T .
Assuming aux is correct, then if T can be reduced to B, the mreduce function calls
Algorithm 1 to reduce B, which is correct by Proposition 9. Otherwise it returns false. ��

Algorithm 2 M a
m-�-reduction

1 function mreduce(T,�,M a
m)

2 B = {C |C ∈ T ∩ M a
m }

3 if aux(T,�,B):
4 return reduce(B,�)
5 return false
6
7 function aux(T,�,B)
8 if |T| == 0:
9 return true

10 pick any C in T
11 T ′ = T \ {C}
12 if B � C:
13 return aux(T ′,�,B)
14 return false

5 Reduction of metarules

We now logically reduce fragments of metarules. Given a fragment M a
m and a reduction

operator �, we have three main goals:

G1: identify a M a
k -�-reduction of M a

m for some k as small as possible
G2: determine whether M a

2 � M a∞
G3: determine whether M a∞ has any (finite) �-reduction

Wework on these goals for fragments ofM a
m relevant to ILP. Table 3 shows the four fragments

and their main restrictions. The subsequent sections precisely describe the fragments.
Our first goal (G1) is to essentially minimise the number of body literals in a set of

metarules, which can be seen as trying to enforce an Occamist bias. We are particularly
interested reducing sets ofmetarules to fragmentswith atmost two body literals becauseM {2}

2
augmented with one function symbol has universal Turing machine expressivity (Tärnlund
1977). In addition, previous work on MIL has almost exclusively used metarules from the
fragmentM 2

2 . Our second goal (G2) is more general and concerns reducing an infinite set of
metarules toM a

2 . Our third goal (G3) is similar, but is about determining whether an infinite
set of metarules has any finite reduction.

We work on the goals by first applying the reduction algorithms described in the previous
section to finite fragments restricted to 5 body literals (i.e. M a

5 ). This value gives us a
sufficiently large set of metarules to reduce but not too large that the reduction problem is
intractable. When running the E- and D-reduction algorithms (both k-bounded), we use a
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Table 3 The four main fragments of M that we consider

Fragment Description

C Connected clauses

D Connected Datalog clauses

K Connected Datalog clauses without singleton variables

U Connected Datalog clauses without duplicate variables

resolution-depth bound of 7, which is the largest value for which the algorithms terminate in
reasonable time.15 After applying the reduction algorithms to the finite fragments, we then
try to solve G2 by extrapolating the results to the infinite case (i.e. M a∞). In cases where
M a

2 
� M a∞, we then try to solve G3 by seeing whether there exists any natural number k
such that M a

k � M a∞.

5.1 Connected (C a
m) results

We first consider a general fragment of metarules. The only constraint is that we follow
the standard ILP convention (Cropper and Muggleton 2014; Evans and Grefenstette 2018;
Gottlob et al. 1997; Nienhuys-Cheng and de Wolf 1997) and focus on connected clauses16:

Definition 20 (Connected clause) A clause is connected if the literals in the clause cannot be
partitioned into two sets such that the variables appearing in the literals of one set are disjoint
from the variables appearing in the literals of the other set.

The following clauses are all connected:

P(A) ← Q(A)

P(A, B) ← Q(A,C)

P(A, B) ← Q(A, B), R(B, D), S(D, B)

By contrast, these clauses are not connected:

P(A) ← Q(B)

P(A, B) ← Q(A), R(C)

P(A, B) ← Q(A, B), S(C)

We denote the connected fragment of M a
m as C a

m . Table 4 shows the maximum body size
and the cardinality of the reductions obtained when applying the reduction algorithms to
C a
5 for different values of a. To give an idea of the scale of the reductions, the fragment

C
{1,2}
5 contains 77398 unique metarules, of which E-reduction removed all but two of them.

Table 5 shows the actual reductions for C {1,2}
5 . Reductions for other connected fragments are

in Appendix “A.1”.
As Table 4 shows, all the fragments can be S- and E-reduced to C a

1 . We show that in general
C a∞ has a C a

1 -S-reduction:

15 The entailment and derivation reduction algorithms often took 4–5h to find a reduction. However, in some
cases, typically where the fragments contained many metarules, the algorithms took around 12h to find a
reduction. By contrast, the subsumption reduction algorithm typically found a reduction in 30min.
16 Connected clauses are also known as linked clauses (Gottlob et al. 1997).
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Table 4 Cardinality and maximal body size of the reductions of C a
5

Arities S-reduction E-reduction D-reduction

a Bodysize Cardinality Bodysize Cardinality Bodysize Cardinality

0 1 1 1 1 2 2

1 1 1 1 1 2 2

2 1 4 1 1 5 6

0, 1 1 3 1 3 2 5

0, 2 1 6 1 3 5 21

1, 2 1 9 1 2 4 8

0, 1, 2 1 12 1 4 5 13

All the fragments can be S- and E-reduced to C a
1 but they cannot all be D-reduced to C a

2

Table 5 Reductions of the connected fragment C {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ← Q(B, A) P(A) ← Q(B, A)

P(A) ← Q(A, B) P(A, B) ← Q(A) P(A, A) ← Q(B, A)

P(A) ← Q(B, A) P(A, B) ← Q(B)

P(A, B) ← Q(A) P(A, B) ← Q(B, A)

P(A, B) ← Q(B) P(A, B) ← Q(B, B)

P(A, B) ← Q(A,C) P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(B,C) P(A, B) ← Q(A,C), R(B,C)

P(A, B) ← Q(C, A) P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ← Q(C, B)

Theorem 5 (C a∞ S-reducibility) For all a > 0, the fragment C a∞ has a C a
1 -S-reduction.

Proof Let C be any clause in C a∞, where a > 0. By the definition of connected clauses there
must be at least one body literal in C that shares a variable with the head literal of C . The
clause formed of the head of C with the body literal directly connected to it is by definition
in C a

1 and clearly subsumes C . Therefore C a
1 � C a∞. ��

We likewise show that C a∞ always has a C a
1 -E-reduction:

Theorem 6 (C a∞ E-reducibility) For all a > 0, the fragment C a∞ has a C a
1 -E-reduction.

Proof Follows from Theorem 5 and Proposition 4. ��

AsTable 4 shows, the fragmentC 2
5 could not beD-reduced toC 2

2 when running the derivation
reduction algorithm. However, because we run the derivation reduction algorithm with a
maximum derivation depth, this result alone is not enough to guarantee that the output cannot
be further reduced. Therefore, we show that C 2

5 cannot be D-reduced to C 2
2 :

Proposition 14 (C 2
5 D-irreducibility) The fragment C 2

5 has no C 2
2 -D-reduction.
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Proof We denote by P(C) the set of all clauses that can be obtained from a given clause
C by permuting the arguments in its literals up to variable renaming. For example if
C = P(A, B) ← Q(A,C) then P(C) = {(C), (P(A, B) ← Q(C, A)), (P(B, A) ←
Q(A,C)), (P(B, A) ← Q(C, A))} up to variable renaming.

Let CI denote the clause P(A, B) ← Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D).
We prove that no clause in P(CI ) can be derived from C 2

2 by induction on the length of
derivations. Formally, we show that there exist no derivations of length n from C 2

2 to a clause
in P(CI ). We reason by contradiction and w.l.o.g. we consider only the clause CI .

For the base case n = 0, assume that there is a derivation of length 0 from C 2
2 to CI . This

assumption implies that CI ∈ C 2
2 , but this clearly cannot hold given the body size of CI .

For the general case, assume that the property holds for all k < n and by contradiction
consider the final inference in a derivation of length n of CI from C 2

2 . Let C1 and C2 denote
the premises of this inference. Then the literals occurring in CI must occur up to variable
renaming in at least one of C1 and C2. We consider the following cases separately.

– All the literals of CI occur in the same premise: because of Lemma 1, this case is
impossible because this premise would contain more literals than CI (the ones from CI

plus the resolved literal).
– Only one of the literals of CI occurs separately from the others: w.l.o.g., assume that the

literal Q(A,C) occurs alone in C2 (up to variable renaming). Then C2 must be of the
form H(A,C) ← Q(A,C) or H(C, A) ← Q(A,C) for some H , where the H -headed
literal is the resolved literal of the inference that allows the unification of A and C with
their counterparts inC1.17 In this case,C1 belongs toP(CI ) and a derivation ofC1 from
C 2
2 of length smaller than n exists as a strict subset of the derivation to CI of length n.

This contradicts the induction hypothesis, thus the assumed derivation of C cannot exist.
– Otherwise, the split of the literals of CI between C1 and C2 is always such that at least

three variablesmust be unified during the inference. For example, consider the casewhere
P(A, B) ← Q(A,C) ⊂ C1 and the set {R(A′, D), S(B ′,C ′), T (B ′, D),U (C ′, D)}
occurs in the body of C2 (up to variable renaming). Then A′, B ′ and C ′ must unify
respectively with A, B and C for CI to be derived (up to variable renaming). However
the inference can at most unify two variable pairs since the resolved literal must be dyadic
at most and thus this inference is impossible, a contradiction.

ThusCI and all ofP(CI ) cannot be derived from C 2
2 . Note that, sinceP(CI ) is also neither

a subset of C 2
3 nor of C 2

4 , this proof also shows that P(CI ) cannot be derived from C 2
3 and

from C 2
4 . ��

We generalise this result to C 2∞:

Theorem 7 (C 2∞ D-irreducibility) The fragment C 2∞ has no D-reduction.

Proof It is enough to prove that C 2∞ does not have a C 2
m-D-reduction for an arbitrary m

because any D-reduced theory, being finite, admits a bound on the body size of the clauses
it contains. Starting from CI as defined in the proof of Proposition 14, apply the following
transformation iteratively for k from1 tom: replace the literals containing Q and R (i.e. at first
Q(A,C) and R(A, D)) with the following set of literals Q(A,Ck), R(A, Dk), Vk(Ck, Dk),
Qk(Ck,C), Rk(Dk, D) where all variables and predicate variables labeled with k are new.

17 Those are the only options to derive CI .Otherwise, e.g. with C2 = H(A′,C ′) ← Q(A′, D′), the resulting
clause is not CI because D′ is not unified with any of the variables in C1 (whereas A′ unifies with A and C ′
with C), e.g. the result includes the literal Q(A, D′) instead of Q(A,C) hence it is not CI .
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Table 6 Existence of a S-, E- or
D-reduction of C a∞ to C a

2
Arity S E D

1 � � �
2 � � ×
> 2 � � ×
The symbol � denotes that the fragment does have a reduction. The
symbol × denotes that the fragment does not have a reduction

Let the resulting clause be denoted CIm . This clause is of body size 3m + 5 and thus does
not belong to C 2

m . Moreover, for the same reason that CI cannot be derived from any C 2
m′

with m′ < 5 (see the proof of Proposition 14) CIm cannot be derived from any C 2
m′ with

m′ < 3m + 5. In particular, CIm cannot be derived from C 2
m . ��

Another way to generalise Proposition 14 is the following:

Theorem 8 (C a∞ D-irreducibility) For a ≥ 2, the fragment C a∞ has no C a
a2+a−2

-D-reduction.

Proof Let Ca denote the clause

Ca = P(A1, . . . , Aa) ←Q1,1(A1, B1,1, . . . , B1,a−1) . . . Q1,a(A1, Ba,1, . . . , Ba,a−1)

. . .

Qa,1(Aa, B1,1, . . . , B1,a−1) . . . Qa,a(Aa, Ba,1, . . . , Ba,a−1)

R1(B1,1, . . . , Ba,1), . . . , Ra−1(B1,a−1, . . . , Ba,a−1)

Note that for a = 2, the clauses Ca and CI from the proof of Proposition 14 coincide. In fact
to show that Ca is irreducible for any a, it is enough to consider the proof of Proposition 14
where Ca is substituted to CI and where the last case is generalised in the following way:

– the split of the literals ofCa betweenC1 andC2 is always such that at least a+1 variables
must be unified during the inference, which is impossible since the resolved literal can
at most hold a variables.

The reason this proof holds is that any subset of Ca contains at least a + 1 distinct variables.
Since Ca is of body size a2 + a − 1, this counter-example proves that C a∞ has no C a

a2+a−2
-

D-reduction. ��

Note that this is enough to conclude that C a∞ cannot be reduced to C a
2 but it does not prove

that C a∞ is not D-reducible.

5.1.1 Summary

Table 6 summarises our theoretical results from this section. Theorems 5 and 6 show that C a∞
can always be S- and E-reduced to C a

1 respectively. By contrast, Theorem 7 shows that C 2∞
cannot be D-reduced to C 2

2 . In fact, Theorem 7 says that C 2∞ has no D-reduction. Theorem 7
has direct (negative) implications forMIL systems such asMetagol andHEXMIL.Wediscuss
these implications in more detail in Sect. 7.
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Table 7 Cardinality and maximal body size of the reductions of Da
5

Arities S-reduction E-reduction D-reduction

a Bodysize Cardinality Bodysize Cardinality Bodysize Cardinality

0 1 1 1 1 2 2

1 1 1 1 1 2 2

2 2 4 2 2 5 10

0, 1 1 2 1 2 2 5

0, 2 2 5 2 3 5 38

1, 2 2 10 2 3 5 11

0, 1, 2 2 11 2 4 5 14

All the fragments can be S- and E-reduced to Da
2 but they cannot all be D-reduced to Da

2

5.2 Datalog (Da
m) results

We now consider Datalog clauses, which are often used in ILP (Albarghouthi et al. 2017;
Cropper andMuggleton 2016a; Evans and Grefenstette 2018; Kaminski et al. 2018; Muggle-
ton et al. 2015; Si et al. 2018). The relevant Datalog restriction is that if a variable appears in
the head of a clause then it must also appear in a body literal. If we look at the S-reductions
of C {1,2}

5 in Table 5 then the clause P(A, B) ← Q(B) is not a Datalog clause because the
variable A appears in the head but not in the body. We denote the Datalog fragment of C a

m as
Da
m . Table 7 shows the results of applying the reduction algorithms toDa

5 for different values

of a. Table 8 shows the reductions for the fragment D {1,2}
5 , which are used in Experiment

3 (Sect. 6.3) to induce Datalog game rules from observations. Reductions for other Datalog
fragments are in Appendix “A.2”.
We show that D2∞ can be S-reduced to D2

2 :

Proposition 15 (D2∞ S-reducibility) The fragment D2∞ has a D2
2 -S-reduction.

Proof Follows using the same argument as in Theorem 5 but the reduction is to D2
2 instead

of D2
1 . This difference is due to the Datalog constraint that states: if a variable appears in the

head it must also appear in the body. For clauses with dyadic heads, if the two head argument
variables occur in two distinct body literals then the clause cannot be further reduced beyond
D2
2 . ��

We show how this result cannot be generalised to Da∞:

Theorem 9 (Da∞ S-irreducibility) For a > 0, the fragment Da∞ does not have a Da
a−1-S-

reduction.

Proof As a counter-example to a Da
a−1-S-reduction, consider Ca = P(X1, . . . , Xa) ←

Q1(X1), . . . , Qa(Xa). The clause Ca does not belong to Da
a−1 and cannot be S-reduced

to it because the removal of any subset of its literals leaves argument variables in the head
without their counterparts in the body. Hence, any subset ofCa does not belong to the Datalog
fragment. Thus Ca cannot be subsumed by a clause in Da

a−1. ��
However, we can show that Da∞ can always be S-reduced to Da

a :

Theorem 10 (Da∞ to Da
a S-reducibility) For a > 0, the fragment Da∞ has a Da

a -S-reduction.
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Table 8 Reductions of the Datalog fragment D{1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ← Q(A, B) P(A) ← Q(B, A)

P(A) ← Q(A, B) P(A, B) ←
Q(B, A)

P(A, A) ← Q(A)

P(A) ← Q(B, A) P(A, B) ←
Q(A), R(B)

P(A, A) ← Q(A, A)

P(A, A) ←
Q(B, A)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(A), R(B,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A, B)

P(A, B) ← Q(B,C), R(A, D)

P(A, B) ←
Q(B), R(A,C)

P(A, B) ← Q(B,C), R(A, D), S(B, D), T (C, E)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D)

P(A, B) ←
Q(B,C), R(A, D), S(C, E), T (B, F),U (D, F)

P(A, B) ←
Q(B,C), R(B, D), S(C, E), T (A, F),U (D, F)

Proof To prove that Da∞ has a Da
a -S-reduction it is enough to remark that any clause in Da∞

has a subclause of body size at most a that is also in Da∞, the worst case being clauses such
as Ca where all argument variables in the head occur in a distinct literal in the body. ��
We also show that Da∞ always has a Da

2 -E-reduction, starting with the following lemma:

Lemma 3 For a > 0 and n ∈ {1, . . . , a}, the clause
P0(A1, A2, . . . , An) ← P1(A1), P2(A2), . . . , Pn(An)

is Da
2 -E-reducible.

Proof By induction on n.

– For the base case n = 2, by definition Da
2 contains P0(A1, A2) ← P1(A1), P2(A2)

– For the inductive step, assume the claim holds for n−1.We show it holds for n. By defini-
tionDa

2 contains the clauseD1=P(A1, A2, . . . , An) ← P0(A1, A2, . . . , An−1), Pn(An).
By the inductive hypothesis, D2 = P0(A1, A2, . . . , An−1) ← P1(A1), . . . , Pn−1(An−1)

is Da−1
2 -E-reducible, and thus also Da

2 -E-reducible. Together, D1 and D2 entail D =
P0(A1, A2, . . . , An) ← P1(A1), P2(A2), . . . , Pn(An), which can be seen by resolving
the literal P0(A1, A2, . . . , An−1) from D1 with the same literal from D2 to derive D.
Thus D is Da

2 -E-reducible.

��
Theorem 11 (Da∞ E-reducibility) For a > 0, the fragment Da∞ has a Da

2 -E-reduction.
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Table 9 Existence of a S-, E- or
D-reduction of Da∞ to Da

2
Arity S E D

1 � � �
2 � � ×
> 2 × � ×

Proof Let C be any clause in Da∞. We denote the head of C by P(A1, . . . , An), where
0 < n ≤ a. The possibility that some of the Ai are equal does not impact the reasoning.

If n = 1, then by definition, there exists a literal L1 in the body of C such that A1 occurs
in L1. It is enough to consider the clause P(A1) ← L1 to conclude, because P(A1) is the
head of C and L1 belongs to the body of C , thus P(A1) ← L1 entails C , and this clause
belongs to Da

2 .
In the case where n > 1, there must exist literals L1, . . . , Ln in the body ofC such that Ai

occurs in Li for i ∈ {1, . . . , n}. Consider the clause C ′ = P(A1, . . . , An) ← L1, . . . , Ln .
There are a few things to stress about C ′:

– The clause C ′ belongs to Da∞.
– Some Li may be identical with each other, since the Ai s may occur together in literals

or simply be equal, but this scenario does not impact the reasoning.
– The clause C ′ entails C because C ′ is equivalent to a subset of C (but this subset may be

distinct from C ′ due to C ′ possibly including some extra duplicated literals).

Now consider the clause D = P(A1, . . . , An) ← P1(A1), . . . , Pn(An). For i ∈ {1, . . . , n},
the clause Pi (Ai ) ← Li belongs to Da

2 by definition, thus Da
2 ∪ D � D′ where

D′ = P(A1, . . . , An) ← L1, . . . , Ln . Moreover, by Lemma 3, D is Da
2 -E-reducible,

hence D′ is also Da
2 -E-reducible. Note that this notation hides the fact that if a vari-

able occurs in distinct body literals Li in C ′, this connection is not captured in D′
where distinct variables will occur instead, thus there is no guarantee that D′ = C ′. For
example, if C ′ = P(A1, A2) ← Q(A1, B, A2), R(A2, B) then D′ = P(A1, A2) ←
Q(A1, B, A′

2), Q(A1, B, A′
2), R(A2, B ′), R(A2, B ′) However, it always holds that D′ |�

C ′, because D′ subsumes C ′. In our small example, it is enough to consider the substitution
θ = {B ′/B, A′

2/A2} to observe this. Thus by transitivity of entailment, we can conclude that
C is Da

2 -E-reducible. ��

AsTable 7 shows, not all of the fragments can beD-reduced toDa
2 . In particular, the result that

D2∞ has noD2
2 -D-reduction follows from Theorem 7 because the counterexamples presented

in the proof also belong to D2∞.

5.2.1 Summary

Table 9 summarises our theoretical results from this section. Theorem 9 shows thatDa∞ never
has a Da

a−1-S-reduction. This result differs from the connected fragment where C a∞ could
always be S-reduced to C a

2 . However, Theorem 9 shows thatDa∞ can always be S-reduced to
Da
a . As with the connected fragment, Theorem 11 shows that Da∞ can always be E-reduced

to C a
2 . The result that D

2∞ has no D-reduction follows from Theorem 7.
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Table 10 Cardinality and maximal body size of the reductions ofK a
5

Arities S-reduction E-reduction D-reduction

a Bodysize Cardinality Bodysize Cardinality Bodysize Cardinality

0 1 1 1 1 2 2

1 1 1 1 1 2 2

2 4 3 2 3 5 7

0, 1 1 2 1 2 2 5

0, 2 5 4 2 3 5 23

1, 2 4 8 2 4 5 8

0, 1, 2 4 9 2 5 5 11

Table 11 Reductions of the singleton-free fragment K {2}
5

S-reduction E-reduction D-reduction

P(A, B) ← Q(A, B) P(A, B) ← Q(B, A) P(A, A) ← Q(A, A)

P(A, B) ← Q(B, A) P(A, B) ←
Q(A, A), R(B, B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ←
Q(A,C), R(B,C)

P(A, A) ← Q(A, B), R(B, B)

P(A, B) ← Q(A, A), R(B, B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ← Q(A,C), R(A, D),

S(B,C), T (B, D),U (C, D)

5.3 Singleton-free (K a
m ) results

It is common in ILP to require that all the variables in a clause appear at least twice (Cropper
and Muggleton 2014; Muggleton and Feng 1990; De Raedt and Bruynooghe 1992), which
essentially eliminates singleton variables. We call this fragment the singleton-free fragment:

Definition 21 (Singleton-free) A clause is singleton-free if each first-order variable appears
at least twice

For example, if we look at the E-reductions of the connected fragmentC {1,2}
5 shown in Table 5

then the clause P(A) ← Q(B, A) is not singleton-free because the variable B only appears
once. We denote the singleton-free fragment of Da

m as K a
m . Table 10 shows the results of

applying the reduction algorithms toK a
5 . Table 11 shows the reductions ofK {2}

5 . Reductions
for other singleton-free fragments are in Appendix “A.3”.
Unlike in the connected and Datalog cases, the fragment K {2}

5 is no longer S-reducible to

K
{2}
2 . We show that K 2∞ cannot be reduced to K 2

2 .

Proposition 16 (K 2∞ S-reducibility) The fragment K 2∞ does not have a K 2
2 -S-reduction.
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Table 12 Existence of a S-, E- or
D-reduction ofK a∞ toK a

2
Arity S E D

1 � � �
2 × � ×
> 2 × � ×

Proof As a counter-example, consider the clause:

C = P(A, B) ← Q(A, D), R(A, D), S(B,C), T (B,C)

Consider removing any non-empty subset of literals from the body of C . Doing so leads to a
singleton variable in the remaining clause, so it is not a singleton-free clause. Moreover, for
any other clause to subsume C it must be more general than C , but that is not possible again
because of the singleton-free constraint.18 ��

We can likewise show that this result holds in the general case:

Theorem 12 (K a∞ S-reducibility) For a ≥ 2, the fragment K a∞ does not have a K a
2a−1-S-

reduction.

Proof We generalise the clause C from the proof of Proposition 16 to define the clause
Ca = P(A1, . . . , Aa) ← P1(A1, B1), P2(A1, B1), . . . , P2a−1(Aa, Ba), P2a(Aa, Ba). The
same reasoning applies to Ca as to C(= C2), making Ca irreducible inK a∞. Moreover Ca is
of body size 2a, thus Ca is a counterexample to a K a

2a−1-S-reduction of K a∞. ��

However, all the fragments can be E-reduced to K a
2 .

Theorem 13 (K a∞ E-reducibility) For a > 0, the fragment K a∞ has a K a
2 -E-reduction.

Proof The proof of Theorem 13 is an adaptation of that of Theorem 11. The only difference
is that if n = 1 then P(A1) ← L1, L1 must be considered instead of P(A1) ← L1 to
ensure the absence of singleton variables in the body of the clause, and for the same reason,
in the general case, the clause D′ = P(A1, . . . , An) ← L1, ..., Ln must be replaced by
D′ = P(A1, . . . , An) ← L1, L1, . . . , Ln, Ln . Note that C ′ is not modified and thus may or
may not belong to K a∞. However, it is enough that C ′ ∈ Da∞. With these modifications, the
proof carries from K a∞ to K a

2 as from Da∞ to Da
2 , including the results in Lemma 3. ��

5.3.1 Summary

Table 12 summarises our theoretical results from this section. Theorem 12 shows that for
a ≥ 2, the fragment K a∞ does not have a K a

2a−1-S-reduction. This result contrasts with the
Datalog fragment where Da∞ always has a Da

a -S-reduction. As is becoming clear, adding
more restrictions to a fragment typically results in less S-reducibility. By contrast, as with
the connected and Datalog fragments, Theorem 13 shows that fragment K a∞ always has a
K a

2 -E-reduction. In addition, as with the other fragments,K a∞ has no D-reduction for a ≥ 2.

18 Note that this proof also shows that K 2∞ does not have aK 2
3 -S-reduction.
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5.4 Duplicate-free (U a
m ) results

The previous three fragments are general in the sense that they have been widely used in ILP.
By contrast, the final fragment that we consider is of particular interest toMIL. Table 1 shows
a selection of metarules commonly used in the MIL literature. These metarules have been
successfully used despite no theoretical justification. However, if we consider the reductions
of the three fragments so far, the identity, precon, and postcon metarules do not appear in
any reduction. These metarules can be derived from the reductions, typically using either
the P(A) ← Q(A, A) or P(A, A) ← Q(A) metarules. To try to identify a reduction which
more closely matches the metarules shown in Table 1, we consider a fragment that excludes
clauses in which a literal contains multiple occurrences of the same variable. For instance,
this fragment excludes the previously mentioned metarules and also excludes the metarule
P(A, A) ← Q(B, A), which was in the D-reduction shown in Table 5. We call this fragment
duplicate-free. It is a sub-fragment of K a

m and we denote it as U a
m .

Table 13 shows the reductions for the fragmentU {1,2}
5 . Reductions for other duplicate-free

fragments are in Appendix “A.4”. As Table 13 shows, the D-reduction of U {1,2}
5 contains

some metarules commonly used in the MIL literature. For instance, it contains the identity1,
didentity2, and precon metarules. We use the metarules shown in Table 13 in Experiments
1 and 2 (Sects. 6.1 and 6.2) to learn Michalski trains solutions and string transformation
programs respectively.

Table 14 shows the results of applying the reduction algorithms toU a
5 for different values

of a. All the theoretical results that hold for the singleton-free fragments hold similarly for
the duplicate-free fragments for the following reasons:

– (S) The clauses in the proofs of Proposition 16 and Theorem 12 belong to U a∞.
– (E) If the clause C considered initially in the proof of Theorem 13 belongs to U a∞, then

all the subsequent clauses in that proof are also duplicate-free.
– (D) In the proof of Theorem 7, the CIm family of clauses all belong to U a∞.

Thus Table 12 is also a summary of the S-, E- and D-reduction results of U a∞ to U a
2 .

5.5 Summary

We started this section with three goals (G1, G2, and G3). Table 15 summarises the results
towards these goals for fragments of metarules relevant to ILP (Table 3). For G1, our results
are mostly empirical, i.e. the results are the outputs of the reduction algorithms. For G2,
Table 15 shows that the results are all positive for E-reduction, but mostly negative for S- and
D-reduction, especially for Datalog fragments. Similarly, forG3 the results are again positive
for E-reduction but negative for S- and D-reduction for Datalog fragments. We discuss the
implications of these results in Sect. 7.

6 Experiments

As explained in Sect. 1, deciding which metarules to use for a given learning task is a
major open problem. The problem is the trade-off between efficiency and expressivity: the
hypothesis space growsgivenmoremetarules (Theorem1), sowewish to use fewermetarules,
but if we use too few metarules then we lose expressivity. In this section we experimentally
explore this trade-off. As described in Sect. 2, Cropper and Muggleton (2014) showed that

123



Machine Learning

Table 13 Reductions of the fragment U {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ←
Q(A, B), R(A, B)

P(A) ← Q(A)

P(A) ←
Q(A, B), R(A, B)

P(A, B) ← Q(B, A) P(A) ← Q(A), R(A)

P(A, B) ← Q(A, B) P(A, B) ←
Q(A), R(B)

P(A) ← Q(A, B), R(B)

P(A, B) ← Q(B, A) P(A) ← Q(A, B), R(A, B)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B), R(A,C), S(A,C)

P(A, B) ← Q(A), R(B)

P(A, B) ←
Q(A), R(B,C), S(B,C)

P(A, B) ← Q(A), R(A, B)

P(A, B) ←
Q(B,C), R(A, D),

P(A, B) ← Q(A, B), R(A, B)

S(A, D), T (B,C) P(A, B) ← Q(A,C), R(B,C)

P(A, B) ← Q(A,C), R(A, D), S(B,C),

T (B, D),U (C, D)

P(A, B) ← Q(B,C), R(A, D), S(B, D)

T (C, E),U (E)

P(A, B) ← Q(B,C), R(A, D), S(B, D),

T (C, E),U (C, E)

Table 14 Cardinality and body size of the reductions of U a
5

Arities S-reduction E-reduction D-reduction

a Bodysize Cardinality Bodysize Cardinality Bodysize Cardinality

0 1 1 1 1 2 2

1 1 1 1 1 2 2

2 4 3 5 2 5 10

0, 1 1 2 1 2 2 5

0, 2 5 4 5 3 5 38

1, 2 4 8 2 3 5 12

0, 1, 2 4 9 2 4 5 16

Table 15 Existence of a S-, E- or
D-reduction ofM a∞ toM a

2
Arities C a∞ Da∞ K a∞ U a∞
a S E D S E D S E D S E D

1 � � � � � � � � � � � �
2 � � × � � × × � × × � ×
> 2 � � × × � × × � × × � ×
The symbol � denotes that the fragment does have such a reduction.
The symbol × denotes that the fragment does not have such a reduction
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Fig. 1 An example Michalski
trains target program. In the
Michalski trains domain, a
carriage (car) can be long or
short. A short carriage always has
two wheels. A long carriage has
either two or three wheels

learning with E-reduced sets of metarules can lead to higher predictive accuracies and lower
learning times compared to learning with non-E-reduced sets. However, as argued in Sect. 1,
we claim that E-reduction is not always the most suitable form of reduction because it
can remove metarules necessary to learn programs with the appropriate specificity. To test
this claim, we now conduct experiments that compare the learning performance of Metagol
2.3.0,19 the mainMIL implementation, when given different reduced sets of metarules.20 We
test the null hypothesis:

Null hypothesis 1 There is no difference in the learning performance of Metagol when
using different reduced sets of metarules

To test this null hypothesis, we consider three domains: Michalski trains, string transforma-
tions, and game rules.

6.1 Michalski trains

In theMichalski trains problems (Larson andMichalski 1977) the task is to induce a program
that distinguishes eastbound trains from westbound trains. Figure 1 shows an example target
program, where the target concept (f/1) is that the train has a long carriage with two wheels
and another with three wheels.

6.1.1 Materials

To obtain the experimental data, we first generated 8 random target train programs where
the programs are progressively more difficult, where difficulty is measured by the number
of literals in the generated program from the easiest task T1 to the most difficult task T8.
Figure 2 shows the background predicates available to Metagol. We vary the metarules given
toMetagol.We use the S-, E-, andD-reductions of the fragmentU {1,2}

5 (Table 13). In addition,

we also consider the U
{1,2}
2 fragment of the D-reduction of U {1,2}

5 , i.e. a subset of the D-
reduction consisting only of metarules with at most two body literals. This fragment, which
we denote as D∗, contains three fewer metarules than the D-reduction of U {1,2}

5 . Table 16
shows this fragment.

6.1.2 Method

For each train task ti in {T1, . . . , T8}:
19 https://github.com/metagol/metagol/releases/tag/2.3.0.
20 Experimental data is available at http://github.com/andrewcropper/mlj19-reduce.
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Fig. 2 Background relations
available in the trains experiment

Table 16 The D∗ fragment, which is the D-reduction of the fragmentU {1,2}
5 restricted to the fragmentU {1,2}

2

P(A) ← Q(A) P(A, B) ← Q(B, A)

P(A) ← Q(A), R(A) P(A, B) ← Q(A), R(B)

P(A) ← Q(A, B), R(B) P(A, B) ← Q(A), R(A, B)

P(A) ← Q(A, B), R(A, B) P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

Table 17 Predictive accuracies
when using different reduced sets
of metarules on the Michalski
trains problems

Task S E D D∗

T1 100 ± 0 100 ± 0 100 ± 0 100 ± 0

T2 100 ± 0 100 ± 0 100 ± 0 100 ± 0

T3 68 ± 5 62 ± 5 100 ± 0 100 ± 0

T4 75 ± 6 75 ± 6 100 ± 0 100 ± 0

T5 92 ± 4 78 ± 6 78 ± 6 100 ± 0

T6 52 ± 2 50 ± 0 70 ± 6 100 ± 0

T7 95 ± 3 65 ± 5 82 ± 5 100 ± 0

T8 55 ± 3 52 ± 2 72 ± 6 98 ± 2

Mean 80 ± 1 73 ± 2 88 ± 2 100 ± 0

Bold values denote the best performing set of metarules

1. Generate 10 training examples of ti , half positive and half negative
2. Generate 200 testing examples of ti , half positive and half negative
3. For each set of metarules m in the S-, E-, D-, and D∗-reductions:

(a) Learn a program for task ti using the training examples and metarules m
(b) Measure the predictive accuracy of the learned program using the testing examples

If a program is not found in 10min then no program is returned and every testing example
is deemed to have failed. We measure mean predictive accuracies, mean learning times, and
standard errors over 10 repetitions.

6.1.3 Results

Table 17 shows the predictive accuracies when learning with the different sets of metarules.
The D set generally outperforms the S and E sets with a higher mean accuracy of 88%
versus 80% and 73% respectively. Moreover, the D∗ set easily outperforms them all with
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Table 18 Learning times in
seconds when using different
reduced sets of metarules on the
Michalski trains problems

Task S E D D∗

T1 0 ± 0 0 ± 0 0 ± 0 0 ± 0

T2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

T3 424 ± 59 461 ± 56 0 ± 0 0 ± 0

T4 322 ± 64 340 ± 61 0 ± 0 0 ± 0

T5 226 ± 48 320 ± 59 361 ± 59 5 ± 2

T6 583 ± 17 600 ± 0 429 ± 51 7 ± 2

T7 226 ± 44 446 ± 55 243 ± 61 6 ± 1

T8 550 ± 35 570 ± 30 361 ± 64 183 ± 40

mean 292 ± 16 342 ± 17 174 ± 16 25 ± 5

Note that the values are rounded, so 0 represents that a solution was
found in under half a second
Bold values denote the best performing set of metarules

Fig. 3 Example programs learned by Metagol when varying the metarule set. The target program is shown in
Fig. 1

a mean accuracy of 100%. A McNemar’s test21 on the D and D∗ accuracies confirmed the
significance at the p < 0.01 level.

21 A statistical test on paired nominal data https://en.wikipedia.org/wiki/McNemar%27s_test.

123

https://en.wikipedia.org/wiki/McNemar%27s_test


Machine Learning

Table 18 shows the corresponding learning times when using different reduces sets of
metarules. The D set outperforms (has lower mean learning time) the S and E sets, and again
the D∗ set outperforms them all. A paired t-test22 on the D and D∗ learning times confirmed
the significance at the p < 0.01 level.

The D∗ set performs particularly well on the more difficult tasks. The poor performance
of the S and E sets on the more difficult tasks is for one of two reasons. The first reason is
that the S- and E-reduction algorithms have removed the metarules necessary to express the
target concept. This observation strongly corroborates our claim that E-reduction can be too
strong because it can remove metarules necessary to specialise a clause. The second reason
is that the S- and E-reduction algorithms produce sets of metarules that are still sufficient to
express the target theory but doing so requires a much larger and more complex program,
measured by the number of clauses needed.

The performance discrepancy between the D and D∗ sets of metarules can be explained
by comparing the hypothesis spaces searched. For instance, when searching for a program
with 3 clauses, Theorem 1 shows that when using the D set of metarules the hypothesis space
contains approximately 1024 programs. By contrast, when using the D∗ set of metarules the
hypothesis space contains approximately 1014 programs. As explained in Sect. 3.2, assuming
that the target hypothesis is in both hypothesis spaces, the Blumer bound (Blumer et al. 1987)
tells us that searching the smaller hypothesis space will result in less error, which helps to
explain these empirical results. Of course, there is the potential for the D∗ set to perform
worse than the D set when the target theory requires the three removed metarules, but we
did not observe this situation in this experiment.

Figure 3 shows the target program for T8 and example programs learned byMetagol using
the various reduced sets of metarules. Only the D∗ program is success set equivalent23 to
the target program when restricted to the target predicate f/1. In all three cases Metagol
discovered that if a carriage has three wheels then it is a long carriage, i.e.Metagol discovered
that the literal long(C2) is redundant in the target program. Indeed, if we unfold the D∗
program to remove the invented predicates then the resulting single clause program is one
literal shorter than the target program.

Overall, the results from this experiment suggest that we can reject the null hypothesis,
both in terms of predictive accuracies and learning times.

6.2 String transformations

In Lin et al. (2014) and Cropper and Muggleton (2019) the authors evaluate Metagol on 17
real-world string transformation tasks using a predefined (hand-crafted) set of metarules. In
this experiment, we compare learning with different metarules on an expanded dataset with
250 string transformation tasks.

6.2.1 Materials

Each string transformation task has 10 examples. Each example is an atomof the form f (x, y)
where f is the task name and x and y are strings. Table 19 shows task p6 where the goal

22 A statistical test on paired ordinal data http://www.biostathandbook.com/pairedttest.html.
23 The success set of a logic program P is the set of ground atoms {A ∈ hb(P)|P ∪
{¬A} has a SLD-refutation}, where hb(P) represents the Herband base of the logic program P . The success
set restricted to a specific predicate symbol p is the subset of the success set restricted to atoms containing the
predicate symbol p.
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Table 19 Examples of the p6
string transformation problem
input–output pairs

Input Output

Arthur Joe Juan AJJ

Jose Larry Scott JLS

Kevin Jason Matthew KJM

Donald Steven George DSG

Raymond Frank Timothy RFT

is to learn a program that filters the capital letters from the input. We supply Metagol with
dyadic background predicates, such as tail, dropLast, reverse, filter_letter,
filter_uppercase, dropWhile_not_letter, takeWhile_uppercase. The
full details can be found in the code repository. We vary the metarules given to Metagol.
We use the S-, E-, and D-reductions of the fragmentU {2}

5 . We again also use the D-reduction

of the fragment U {2}
5 restricted to the fragment U {2}

2 , which is again denoted as D∗.

6.2.2 Method

Our experimental method is:

1. Sample 50 tasks T s from the set {p1, . . . , p250}
2. For each t ∈ T s:

(a) Sample 5 training examples and use the remaining examples as testing examples
(b) For each set of metarules m in the S-, E-, D, and D∗-reductions:

i. Learn a program p for task t using the training examples and metarules m
ii. Measure the predictive accuracy of p using the testing examples

If a program is not found in 10min then no program is returned and every testing example
is deemed to have failed. We measure mean predictive accuracies, mean learning times, and
standard errors over 10 repetitions.

6.2.3 Results

Table 20 shows the mean predictive accuracies and learning times when learning with the
different sets of metarules. Note that we are not interested in the absolute predictive accuracy,
which is limited by factors such as the low timeout and insufficiency of the BK.We are instead
interested in the relative accuracies. Table 20 shows that the D set outperforms the S and
E sets, with a higher mean accuracy of 33%, versus 22% and 22% respectively. The D∗ set
outperforms them all with a mean accuracy of 56%. A McNemar’s test on the D and D∗
accuracies confirmed the significance at the p < 0.01 level.

Table 20 shows the corresponding learning times when varying the metarules. Again, the
D set outperforms the S and E sets, and again the D∗ set outperforms them all. A paired
t-test on the D and D∗ learning times confirmed the significance at the p < 0.01 level.

Overall, the results from this experiment give further evidence to reject the null hypothesis,
both in terms of predictive accuracies and learning times.
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Table 20 Experimental results on the string transformation problems

S E D D∗

Mean predictive accuracy (%) 22 ± 0 22 ± 0 32 ± 0 56 ± 1

Mean learning time (seconds) 467 ± 1 467 ± 1 407 ± 3 270 ± 3

Bold values denote the best performing set of metarules

Table 21 IGGP games used in
the experiments GT attrition GT chicken

GT prisoner Minimal decay

Minimal even Multiple buttons and lights

Scissors paper stone Untwisty corridor

Fig. 4 Target solution for the
next predicate for the minimal
decay game

6.3 Inducing game rules

The general game playing (GGP) framework (Genesereth et al. 2005) is a system for evalu-
ating an agent’s general intelligence across a wide range of tasks. In the GGP competition,
agents are tested on games they have never seen before. In each round, the agents are given
the rules of a new game. The rules are described symbolically as a logic program. The agents
are given a few seconds to think, to process the rules of the game, and to then start playing,
thus producing game traces. The winner of the competition is the agent who gets the best
total score over all the games. In this experiment, we use the IGGP dataset (Cropper et al.
2019) which inverts the GGP task: an ILP system is given game traces and the task is to learn
a set of rules (a logic program) that could have produced these traces.

6.3.1 Materials

The IGGP dataset contains problems drawn from 50 games. We focus on the eight games
shown in Table 21 which contain BK compatible with the metarule fragments we consider
(i.e. the BK contains predicates in the fragment M 2

m). The other games contain predicates
with arity greater than two. Each game has four target predicates legal, next, goal, and
terminal, where the arities depend on the game. Figure 4 shows the target solution for
the next predicate for the minimal decay game. Each game contains training/validate/test
data, composed of sets of ground atoms, in a 4:1:1 split. We vary the metarules given to
Metagol. We use the S-, E-, and D-reductions of the fragment D {1,2}

5 . We again also use the

D-reduction of the fragment D {1,2}
5 restricted to the fragment D {1,2}

2 , which is again denoted
as D∗.
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Table 22 Experimental results on
the IGGP data

S E D D∗

Balanced accuracy (%) 66 66 72 73

Learning time (seconds) 316 316 327 296

Bold values denote the best performing set of metarules

6.3.2 Method

Themajority of game examples are negative.We therefore use balanced accuracy to evaluate
the approaches. Given background knowledge B, sets of positive E+ and negative E− testing
examples, and a logic program H , we define the number of positive examples as p = |E+|,
the number of negative examples as n = |E−|, the number of true positives as tp = |{e ∈
E+|B ∪ H |� e}|, the number of true negatives as tn = |{e ∈ E−|B ∪ H 
|� e}|, and the
balanced accuracy ba = (tp/p + tn/n)/2.

Our experimental method is as follows. For each game g, each task gt , and each set of
metarules m in the S-, E-, D-, and D∗-reductions:
1. Learn a program p using all the training examples for gt using the metarules m with a

timeout of 10min
2. Measure the balanced accuracy of p using the testing examples

If no program is found in 10min then no program is returned and every testing example is
deemed to have failed.

6.3.3 Results

Table 22 shows the balanced accuracies when learning with the different sets of metarules.
Again, we are not interested in the absolute accuracies only the relative differences when
learning using different sets ofmetarules. The D set outperforms the S and E setswith a higher
mean accuracy of 72%, versus 66% and 66% respectively. The D∗ set again outperforms
them all with a mean accuracy of 73%. A McNemar’s test on the D and D∗ accuracies
confirmed the significance at the p < 0.01 level. Table 22 shows the corresponding learning
times when varying the metarules. Again, the D set outperforms the S and E sets, and again
the D∗ set outperforms them all. However, a paired t-test on the D and D∗ learning times
confirmed the significance only at the p < 0.08 level, so the difference in learning times
is insignificant. Overall, the results from this experiment suggest that we can reject the null
hypothesis in terms of predictive accuracies but not learning times.

7 Conclusions and further work

As stated in Sect. 1, despite the widespread use of metarules, there is little work determining
whichmetarules to use for a given learning task. Instead, suitablemetarules are assumed to be
given as part of the background knowledge, or are used without any theoretical justification.
Deciding which metarules to use for a given learning task is a major open challenge (Cropper
2017; Cropper and Muggleton 2014) and is a trade-off between efficiency and expressivity:
the hypothesis space grows given more metarules (Cropper and Muggleton 2014; Lin et al.
2014), so we wish to use fewer metarules, but if we use too few metarules then we lose
expressivity. To address this issue, Cropper and Muggleton (2014) used E-reduction on sets
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of metarules and showed that learning with E-reduced sets of metarules can lead to higher
predictive accuracies and lower learning times compared to learning with non-E-reduced
sets. However, as we claimed in Sect. 1, E-reduction is not always the most appropriate form
of reduction because it can remove metarules necessary to learn programs with the necessary
specificity.

To support our claim, we have compared three forms of logical reduction: S-, E-, and D-
reduction,where the latter is a new formof reduction based onSLD-derivations.We have used
the reduction algorithms to reduce finite sets of metarules. Table 15 summarises the results.
We have shown that many sets of metarules relevant to ILP do not have finite reductions
(Theorem 7). These negative results have direct (negative) implications forMIL. Specifically,
our results mean that, in certain cases, aMIL system, such asMetagol or HEXMIL (Kaminski
et al. 2018), cannot be given a finite set ofmetarules fromwhich it can learn any program, such
as when learning arbitrary Datalog programs. The results will also likely have implications
for other forms of ILP which rely on metarules.

Our experiments compared learning the performance of Metagol when using the different
reduced sets of metarules. In general, using the D-reduced set outperforms both the S- and
E-reduced sets in terms of predictive accuracy and learning time. Our experimental results
give strong evidence to our claim. We also compared a D∗-reduced set, a subset of the D-
reduced metarules, which, although derivationally incomplete, outperforms the other two
sets in terms of predictive accuracies and learning times.

7.1 Limitations and future work

Theorem 7 shows that certain fragments of metarules do not have finite D-reductions. How-
ever, our experimental results show that using D-reduced sets of metarules leads to higher
predictive accuracies and lower learning times compared to the other forms of reduction.
Therefore, our work now opens up a new challenge of overcoming this negative theoretical
result. One idea is to explore whether special metarules, such as a curryingmetarule (Cropper
and Muggleton 2016a), could alleviate the issue.

In future work we would also like reduce more general fragments of logic, such as triadic
logics, which would allow us to tackle a wider variety or problems, such as more of the games
in the IGGP dataset.

We have compared the learning performance of Metagol when using different reduced
sets of metarules. However, we have not investigated whether these reductions are optimal.
For instance, when considering derivation reductions, it may, in some cases, be beneficial
to re-add redundant metarules to the reduced sets to avoid having to derive them through
SLD-resolution. In future work, we would like to investigate identifying an optimal set of
metarules for a given learning task, or preferably learning which metarules to use for a given
learning task.

We have shown that although incomplete the D∗-reduced set of metarules outperforms
the other reductions. In future work we would like to explore other methods which sacrifice
completeness for efficiency.

We have used the logical reduction techniques to remove redundant metarules. It may also
be beneficial to simultaneously reduce metarules and standard background knowledge. The
idea of purposely removing background predicates is similar to dimensionality reduction,
widely used in other forms of machine learning (Skillicorn 2007), but which has been under
researched in ILP (Fürnkranz 1997). Initial experiments indicate that this is possible (Cropper
2017; Cropper and Muggleton 2014), and we aim to develop this idea in future work.
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A Detailed reduction results

A.1 Connected (C a
m) reductions

See Tables 23 and 24.

Table 23 Reductions of the connected fragment C {2}
5

S-reduction E-reduction D-reduction

P(A, B) ←
Q(A,C)

P(A, B) ←
Q(B,C)

P(A, A) ← Q(B, A)

P(A, B) ←
Q(B,C)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(C, A)

P(A, B) ← Q(B, B)

P(A, B) ←
Q(C, B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

Table 24 Reductions of the connected fragment C {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ← Q(B, A) P(A) ← Q(B, A)

P(A) ← Q(A, B) P(A, B) ← Q(A) P(A, A) ← Q(B, A)

P(A) ← Q(B, A) P(A, B) ← Q(B)

P(A, B) ← Q(A) P(A, B) ← Q(B, A)

P(A, B) ←
Q(B)

P(A, B) ← Q(B, B)

P(A, B) ←
Q(A,C)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(B,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(C, A)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(C, B)
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A.2 Datalog (Da
m) reductions

See Tables 25, 26 and 27.

Table 25 Reductions of the Datalog fragment D {0,1,2}
5

S-reduction E-reduction D-reduction

P ← Q P ← Q P ← Q

P(A) ← Q(A) P(A) ← Q(A, B) P ← Q, R

P(A) ← Q(A, B) P(A, B) ←
Q(B, A)

P(A) ← Q(B, A)

P(A) ← Q(B, A) P(A, B) ←
Q(A), R(B)

P(A, A) ← Q(A)

P(A, A) ←
Q(B, A)

P(A, A) ← Q(A, A)

P(A, B) ←
Q(A, B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B, A)

P(A, B) ← Q, R(A, B)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(A), R(B,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(B), R(A,C)

P(A, B) ← Q(B,C), R(A, D)

P(A, B) ←
Q(B,C), R(A, D)

P(A, B) ← Q(B,C), R(A, D), S(B, D), T (C, E)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D), S(C, E), T (B, F),U (D, F)

P(A, B) ←
Q(B,C), R(B, D), S(C, E), T (A, F),U (D, F)
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Table 26 Reductions of the Datalog fragment D {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ← Q(A, B) P(A) ← Q(B, A)

P(A) ← Q(A, B) P(A, B) ←
Q(B, A)

P(A, A) ← Q(A)

P(A) ← Q(B, A) P(A, B) ←
Q(A), R(B)

P(A, A) ← Q(A, A)

P(A, A) ←
Q(B, A)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(A), R(B,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A, B)

P(A, B) ← Q(B,C), R(A, D)

P(A, B) ←
Q(B), R(A,C)

P(A, B) ← Q(B,C), R(A, D), S(B, D), T (C, E)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D)

P(A, B) ←
Q(B,C), R(A, D), S(C, E), T (B, F),U (D, F)

P(A, B) ←
Q(B,C), R(B, D), S(C, E), T (A, F),U (D, F)

Table 27 Reductions of the Datalog fragment D {2}
5

S-reduction E-reduction D-reduction

P(A, A) ←
Q(B, A)

P(A, A) ←
Q(B, A)

P(A, A) ← Q(A, A)

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(B,C), R(A, D)

P(A, A) ← Q(B, A)

P(A, B) ←
Q(B, A)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B,C), R(A, D)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ← Q(B,C), R(A, D)

P(A, B) ← Q(B,C), R(A, D), S(B, D), T (C, E)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D), S(C, E), T (B, F),U (D, F)

P(A, B) ←
Q(B,C), R(B, D), S(C, E), T (A, F),U (D, F)
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A.3 Singleton-free (K a
m ) results

See Tables 28, 29 and 30.

Table 28 Reductions of the singleton-free fragment K {2}
5

S-reduction E-reduction D-reduction

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(B, A)

P(A, A) ← Q(A, A)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A, A), R(B, B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ←
Q(A,C), R(B,C)

P(A, A) ← Q(A, B), R(B, B)

P(A, B) ← Q(A, A), R(B, B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C),

T (B, D),U (C, D)

Table 29 Reductions of the singleton-free fragment K {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ← Q(A, A) P(A) ← Q(A, A)

P(A) ←
Q(A, B), R(A, B)

P(A, B) ←
Q(B, A)

P(A, A) ← Q(A)

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A,C), R(B,C)

P(A, A) ← Q(A, B), R(B, B)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(A, A), R(B, B)

P(A, B) ←
Q(A), R(B,C), S(B,C)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(B), R(A,C), S(A,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C),

T (B, D),U (C, D)
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Table 30 Reductions of the singleton-free fragment K {0,1,2}
5

S-reduction E-reduction D-reduction

P ← Q P ← Q P ← Q

P(A) ← Q(A) P(A) ← Q(A, A) P ← Q, R

P(A) ←
Q(A, B), R(A, B)

P(A, B) ←
Q(B, A)

P(A) ← Q(A, A)

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(A), R(B)

P(A, A) ← Q(A)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A,C), R(B,C)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(A), R(B)

P(A, A) ← Q(A, B), R(B, B)

P(A, B) ←
Q(A), R(B,C), S(B,C)

P(A, B) ← Q, R(A, B)

P(A, B) ←
Q(B), R(A,C), S(A,C)

P(A, B) ← Q(A, A), R(B, B)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C),

T (B, D),U (C, D)

A.4 Duplicate-free (U a
m ) results

See Tables 31, 32 and 33.

Table 31 Reductions of the fragment U {2}
5

S-reduction E-reduction D-reduction

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(B, A)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ← Q(A, B), R(A,C), S(A,C)

P(A, B) ← Q(A, B), R(A,C), S(C, D), T (C, D)

P(A, B) ← Q(B,C), R(A, D), S(A, D), T (B,C)

P(A, B) ← Q(B,C), R(A, D), S(B,C), T (B, D)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D), S(B, D), T (C, E),U (C, E)

P(A, B) ←
Q(B,C), R(C, D), S(A, E), T (B, E),U (C, D)
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Table 32 Reductions of the fragment U {1,2}
5

S-reduction E-reduction D-reduction

P(A) ← Q(A) P(A) ←
Q(A, B), R(A, B)

P(A) ← Q(A)

P(A) ←
Q(A, B), R(A, B)

P(A, B) ←
Q(B, A)

P(A) ← Q(A), R(A)

P(A, B) ←
Q(A, B)

P(A, B) ←
Q(A), R(B)

P(A) ← Q(A, B), R(B)

P(A, B) ←
Q(B, A)

P(A) ← Q(A, B), R(A, B)

P(A, B) ←
Q(A), R(B)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B), R(A,C), S(A,C)

P(A, B) ← Q(A), R(B)

P(A, B) ←
Q(A), R(B,C), S(B,C)

P(A, B) ← Q(A), R(A, B)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C),

T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D), S(B, D),

T (C, E),U (E)

P(A, B) ←
Q(B,C), R(A, D), S(B, D),

T (C, E),U (C, E)
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Table 33 Reductions of the fragment U {0,1,2}
5

S-reduction E-reduction D-reduction

P ← Q P ← Q P ← Q

P(A) ← Q(A) P(A) ←
Q(A, B), R(A, B)

P(A) ← Q(A)

P(A) ←
Q(A, B), R(A, B)

P(A, B) ←
Q(B, A)

P(A, B) ← Q(B, A)

P(A, B) ←
Q(B, A)

P(A, B) ←
Q(A), R(B)

P ← Q, R

P(A, B) ←
Q(A, B)

P(A) ← Q, R(A)

P(A, B) ←
Q(A), R(B)

P(A) ← Q(A), R(A)

P(A, B) ←
Q(A), R(B,C), S(B,C)

P(A) ← Q(A, B), R(B)

P(A, B) ←
Q(B), R(A,C), S(A,C)

P(A) ← Q(A, B), R(A, B)

P(A, B) ←
Q(B,C), R(A, D),

S(A, D), T (B,C)

P(A, B) ← Q, R(A, B)

P(A, B) ← Q(A), R(B)

P(A, B) ← Q(A), R(A, B)

P(A, B) ← Q(A, B), R(A, B)

P(A, B) ← Q(A,C), R(B,C)

P(A, B) ←
Q(A,C), R(A, D), S(B,C), T (B, D),U (C, D)

P(A, B) ←
Q(B,C), R(A, D), S(B, D), T (C, E),U (E)

P(A, B) ←
Q(B,C), R(A, D), S(B, D), T (C, E),U (C, E)
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