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The cell cortex, a thin film of active material assembled below the cell membrane, plays a key
role in cellular symmetry breaking processes such as cell polarity establishment and cell division.
Here, we present a minimal model of the self-organization of the cell cortex that is based on a
hydrodynamic theory of curved active surfaces. Active stresses on this surface are regulated by
a diffusing molecular species. We show that coupling of the active surface to a passive bulk fluid
enables spontaneous polarization and the formation of a contractile ring on the surface via mechano-
chemical instabilities. We discuss the role of external fields in guiding such pattern formation. Our
work reveals that key features of cellular symmetry breaking and cell division can emerge in a
minimal model via general dynamic instabilities.

The cortex of animal cells is a dynamically cross-linked
polymer network located beneath the cell membrane [1].
It is involved in many important cellular symmetry-
breaking events, such as the establishment of cell polar-
ity [2, 3] and cell division [4]. These processes typically
involve cortical flows and cell shape changes, such that
the cortex has to interact with material that surrounds
it. Towards the inside of the cell, it is in contact with
the cytoplasm, a crowded viscous fluid. By manipulat-
ing the cytoplasm mechanically, it has been shown that
cytoplasmic flows can directly affect the dynamics of the
cortex and the distribution of proteins within it [5]. The
reverse scenario, in which active cortical flows set the cy-
toplasmic fluid into motion, has also been observed [6].
This suggests that the cytoplasmic fluid is coupled to the
dynamics of the cell cortex and vice versa.

The cell cortex has been successfully described as a
thin active fluid film [7]. Many aspects of the cortex’
emergent dynamics can be accounted for by consider-
ing its generic mechano-chemical organization [8]: The
concentration of a diffusible chemical species regulates
the amplitude of active stress, but also changes dynam-
ically due to advection of the stress regulator by ma-
terial flows. Spontaneous pattern formation in such self-
organized active fluids has been studied on fixed domains
with and without substrate friction [8–14] and on de-
forming surfaces in an environment with a homogeneous
pressure [15].

In this letter, we study a minimal model for the
self-organization of an active surface that encloses a
passive viscous fluid. A diffusing molecular species
that regulates active tension on the surface provides a
mechano-chemical feedback. We show that the coupling
of the surface to the enclosed fluid gives rise to a hydro-
dynamic screening length that guides mechano-chemical

instabilities to generate well-defined patterns on the sur-
face. These patterns can govern shape changes and they
can be oriented by external inhomogeneous signaling
cues, which captures key features of symmetry-breaking
events during important cellular processes.

We base our work on a simple hydrodynamic theory of
a thin active fluid layer on a closed surface geometry [15].
The surface Γ is represented by a parametrization of sur-
face position vectors X(s1, s2) by two generalized coordi-
nates s1, s2. Tangent vectors and unit surface normal are
given by ei = ∂iX (∂i = ∂/∂si) and n = e1×e2/|e1×e2|,
respectively. Furthermore, we define the metric tensor
gij = ei · ej , the Levi-Civita tensor εij = n · (ei × ej),
and the curvature tensor Cij = −n · ∂i∂jX.

The force and torque balance on the surface read [16]

∇iti = −f ext (1)

∇imi = ti × ei . (2)

Here, we have introduced the surface stress ti = tije
j +

tinn, the surface moment mi = mije
j + mi

nn, and ∇i
denotes the covariant derivative. The external force per
unit area is denoted f ext = f ext

i ei + f ext
n n. We do not

include inertial forces and external torques. For simplic-
ity, we do not consider deviatoric contributions to the
moments. The tension and moment tensors in the sur-
face can then be written as tij = teij + tdij , mij = me

ij ,

tin = ti,en + ti,dn , and mi
n = mi,e

n , where the superscripts e
and d refer to equilibrium and deviatoric contributions,
respectively.

Equilibrium contributions can be obtained by con-
sidering a passive membrane with bending rigidity κ,
spontaneous curvature C0, and passive surface tension
γ as described by the Helfrich energy of a fluid mem-
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brane [15, 17]. In this case [18]:

teij = γgij + κ
(
Ckk − 2C0

) ((
Ckk − 2C0

)
gij − 2Cij

)
(3)

me
ij = 2κ

(
Ckk − 2C0

)
εij . (4)

For the deviatoric part of the tension tensor, we consider
contributions from an isotropic active fluid film. In-plane
material flows v‖ = viei and surface deformations v⊥ =
vnn contribute to the center-of-mass velocity v = v‖+v⊥
of the active fluid film. The deviatoric tension tensor is
given by [15, 18]

tdij = 2ηs

(
vij −

1

2
vkkgij

)
+ ηbv

k
k gij + ξij . (5)

Here, ηs and ηb denote shear and bulk viscosity of the
two-dimensional material, respectively and ξij denotes
an active tension. The strain rate tensor vij = (∇ivj +
∇jvi)/2 +Cijvn captures the shear rate and area expan-
sion of the thin material.

With Eqs. (3) and (4), the torque balance Eq. (2) im-
plies mi,e

n = 0, ti,dn = 0 and ti,en = εij∇kmkj,e, and we can
express the force balance Eq. (1) as

∇iti,dj = −f ext
j (6)

Cijtdij + fen = f ext
n . (7)

Here, we have defined fen = Cijteij −∇iti,en as the normal
force exerted by a passive membrane [19, 20]. With the
deviatoric tension tensor tdij from Eq. (5), Eqs. (6) and (7)
yield the hydrodynamic equations for the tangential and
normal flow velocity, v‖ and v⊥, respectively.

The active surface encloses a passive bulk fluid. We
describe the latter as an incompressible Stokes fluid
(∇ ·u = 0) obeying the force balance

η∆u = ∇p, (8)

where u denotes the passive flow field, η is the shear vis-
cosity, and p denotes the hydrostatic pressure. To solve
Eq. (8), we impose no-slip and impermeability boundary
conditions at the surface:

ei ·u|Γ = vi (9)

n ·u|Γ = vn . (10)

The forces f ext in Eqs. (6) and (7) result from vis-
cous shear stresses that the passive fluid exerts on the
surface. They are given by f ext = −n ·σ|Γ, where
σ = η

(
∇u +∇uT

)
− pI is the stress tensor of the en-

closed fluid.

The equations for the active surface and the bulk fluid
are combined with an advection-diffusion equation for
stress regulator molecules of area concentration c on the

surface [18]:

∂tc+∇i
(
cvi
)

+ Ckkvnc−D∆Γc = Jn . (11)

Here, ∆Γ = ∇i∇i denotes the Laplace-Beltrami oper-
ator, D is a diffusion coefficient and Jn describes the
exchange of molecules between the thin film and the en-
closed fluid. It is given by

Jn = konc̄|Γ − koffc , (12)

where kon and koff denote rates for the recruitment of
the stress regulator to and detachment from the surface,
respectively. c̄ is the volume concentration of molecules
in the enclosed bulk fluid. For simplicity, we consider
the case where the diffusion of the stress regulator in
the enclosed fluid is fast compared to its exchange with
the thin film. Then, the concentration c̄ is homogeneous
with dc̄/dt = −V −1

∮
Γ
dAJn, where V is the volume of

the enclosed bulk fluid.

Finally, the system is completed by a mechano-
chemical feedback [15]: The active tension ξij in Eq. (5)
depends on the local surface concentration c of the
stress regulator molecules. We consider an active ten-
sion ξij = ξf(c)gij that is isotropic within the surface,
and the contractility ξ is modulated by a function f(c)
with ∂cf(c) > 0 [8]. Because of the mechanical coupling
between the thin film and the enclosed fluid, given in
Eqs. (9) and (10), self-organized surface flows and defor-
mations generated by active tension set the passive bulk
fluid into motion.

Together, Eqs. (6), (7), (8), and (11) represent a
minimal model for cortical flows that are coupled to
the cellular cytoplasm [5]. This model has a simple
stationary state in which the surface is given by a sphere
of radius R0, the surface concentration is homogeneous
(c = c0), and no flows exist (v = 0,u = 0). Two
important time scales in this system are the time scale
τc = ηb/ξ describing the advection-driven accumula-
tion of stress regulator, and the diffusion time scale
τD = R2

0/D. Then, Pe = τD/τc = ξR2
0/(Dηb) can be

identified as Péclet number characterizing the activity
in the system [8, 11].

We now discuss the linear stability of the homoge-
neous stationary state in which the active surface is
given by a sphere. Using spherical harmonics Ylm(θ, ϕ)
(l = 0, 1, ...,∞; m = −l, ..., l), where θ and ϕ denote polar
angle and azimuthal, respectively, as well as vector spher-
ical harmonics Ψ(lm) = R0∇ΓYlm and Φ(lm) = r̂×Ψ(lm),
we express shape, concentration, and flow perturbations
as δR =

∑
l,m δRlmYlm, δc =

∑
l,m δclmYlm, and δv‖ =∑

l,m(δv
(1)
lmΨ(lm) + δv

(2)
lmΦ(lm)) [15].

We expand Eqs. (6), (7), (8), and (11) to linear
order in these fields [20, 21]. After eliminating the
flow fields, the dynamics of each mode has the form
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Figure 1. (a) Eigenmode growth rates τDλl as a function
of mode number l for different Péclet numbers for larger
(top) and smaller (bottom) hydrodynamic length Lh = ηs/η.
Lines serve as guide to the eye. (b) Linear stability diagram.
The mode l = 1 (l = 2) becomes unstable first when mov-
ing across the gray (black) curve [Eq. (13)]. Insets visualize
unstable modes: Arrows depict bulk flows, outlines indicate
perturbed shapes (large perturbation amplitude for visual-
ization). The stability diagram is independent of bending
rigidity κ, spontaneous curvature C0, and surface tension γ.
(c) Contributions of deformations δR∗

lm to a critical eigen-
mode δ∗

lm = (δR∗
lm/R0, δc

∗
lm/c0)T at Pe = Pe∗l as a function

of κ [20], shown here for l = 2,m = 0 (κ0 = R2
0ηb/τD).

Parameters: κ = 0 (a), C0 = 0, koffτD = 10, ν = 1, and
c0∂cf(c0) = 1.

d
dt (δRlm, δclm)T = Jl(δRlm, δclm)T , where Jl is the Ja-
cobian. Its eigenvalues λl are the growth rates of eigen-
modes δlm = (δRlm, δclm)T . For vanishing or small
Péclet number Pe, we have Re(λl) < 0, and the steady
state is stable (Fig. 1 a). For increasing Péclet number
and independently of the azimuthal mode number m,
modes with l ≥ 1 become unstable at Pe = Pe∗l , where

Pe∗l =
1

c0∂cf(c0)

(
1 +

τDkoff

l(l + 1)

)
×
[
l(l + 1) + ν

(
(l − 1)(l + 2) + (1 + 2l)

R0

Lh

)]
(13)

is the critical Péclet number for a mode l [20]. Here, we
have defined the surface viscosity ratio ν = ηs/ηb, as well
as the hydrodynamic length Lh = ηs/η. Remarkably,
Pe∗l is independent of bending rigidity κ, spontaneous
curvature C0, and surface tension γ. Therefore, Eq. (13)
equals the expression found in the limit of large κ, where
the surface becomes a rigid sphere [20].

We now discuss Eq. (13) and key properties of the un-
stable modes in more detail. For small viscosities of the
passive fluid, η . ηs/R0, the mode l = 1 becomes un-
stable first for increasing Péclet number. The instability
of l = 1 corresponds to a vectorial (polar) symmetry
breaking. In the limit of large Lh the viscosity of the
surrounding passive fluid can be neglected and we re-

cover the result reported in [15]. Interestingly, for finite
turnover koff > 0 the nematic mode l = 2 can become
unstable, while l = 1 is still stable (Fig. 1 a, bottom).
It follows from Eq. (13) that this can only occur for a
small hydrodynamic length, Lh . R0, corresponding to a
regime where the stresses exerted by the enclosed passive
fluid are significant. This implies that the hydrodynamic
screening length Lh plays a crucial role in selecting a spe-
cific wavelength for patterns on the surface. For finite
surface tension γ and bending rigidity κ, the eigenmode
associated with this instability is given by an ingression
of the spherical surface along a ring of high stress regula-
tor concentration. Critical eigenmodes δ∗lm and a stabil-
ity diagram of the spherical state as a function of Péclet
number and hydrodynamic length are shown in Fig. 1 b.
The homogeneous sphere is unstable in the gray shaded
region. The polar (l = 1) and nematic (l = 2) instabili-
ties, depicted by the gray and black curves, respectively,
are given by Eq. (13). For l ≥ 2, critical eigenmodes de-
pend on the bending rigidity κ and the surface tension γ.
In particular, contributions from deformations δR∗lm/R0

to the eigenmode vanish for large surface tension or bend-
ing rigidity (Fig. 1 c) [20].

To study the nonlinear dynamics beyond the discussed
instabilities, we use numerical methods [20]. For sim-
plicity, we consider the limit of large bending rigidity κ,
where the surface is not deformed. We first discuss
the case Lh/R0 = 5, where the polar mode becomes
unstable first. Using a small random concentration
perturbation as initial condition, the instability of l = 1
leads to an axisymmetric steady-state pattern exhibiting
a single patch of high stress regulator concentration
(Fig. 2 a–c). A cross section that contains the polar axis
defined by this pattern reveals a hydrodynamic flow
field with a backflow along the symmetry axis, driven by
the active surface flows that maintain the pattern. For
Lh/R0 = 0.2 the mode l = 2 can become unstable first
for increasing Péclet number (Fig. 1 b). In this case, a
random perturbation leads to the formation of a ring
of high stress regulator concentration along the equator
(Fig. 2 d–f). This ring corresponds to a circumferential
contractile ring of active tension that can constrict a
deformable sphere. In this state, the passive fluid flow
exhibits two toroidal vortex tubes, stacked orthogonally
to the nematic axis and rotating in opposite directions.
Further away from the instability threshold, numerical
calculations reveal the existence of oscillatory patterns
in certain regimes [20].

The nematic instability provides a minimal model for
the self-organized formation of a contractile ring that can
drive constriction during cell division. In our model, the
axis characterizing the contractile ring is defined by a
spontaneous symmetry-breaking event. This is different
from biological systems, where the contractile ring, and
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Figure 2. (a) An instability of the mode l = 1 leads to
a surface pattern with polar symmetry. (b) Corresponding
cross-sectional view parallel to the axis defined by the sur-
face patterns. Black lines depict streamlines. (c) Schematic
representation of the global flow topology. Gray tori depict
vortex rings, blue arrows indicate their direction of rotation.
(d–f) In regimes where l = 2 is the only unstable mode, a
contractile ring with nematic symmetry form. Parameters:
Pe = 20, Lh/R0 = 5 (l = 1); Pe = 100, Lh/R0 = 0.2 (l = 2);
kτD = 10, ν = 1, κ → ∞ (l = 1, 2). Active tension is regu-
lated by f(c) = 2c2/(c20 + c2), such that c0∂cf(c0) = 1.

hence the division axis, are oriented along the mitotic
spindle via biasing signaling cues [22, 23]. Also cell po-
larization, a process that is key to asymmetric cell divi-
sions, depends on the coordination between spindle ori-
entation and the biochemical organization of the cellular
cortex [24]. In order to include such a symmetry-breaking
bias in our model, we generalize the expression for the
flux Jn given in Eq. (12) and consider an angle depen-
dent recruitment rate kon(θ) of stress regulator on the
surface, described by

kon(θ) = k(0)
on

[
1 + β

(
1− 3 cos2 θ

)]
. (14)

The coefficient β determines the strength and sign of the
nematic bias. It varies in the interval [−1, 1/2], such that
kon(θ) ≥ 0. For β > 0 (β < 0), there is a recruitment of
stress regulator predominantly to the equator region near
θ = π/2 (to the opposing poles at θ = 0, π) (Fig. 3 a).

We first consider the effects of the nematic cue on the
self-organized pattern formation in the regime where the
polar mode l = 1 becomes unstable first for increasing
Péclet number (Fig 3). For Pe < Pe∗1, the homogeneous
state is stable in the absence of the cue (β = 0), while
β 6= 0 leads to the formation of a concentration pat-
tern with the nematic symmetry dictated by kon(θ). For
Pe > Pe∗1, the polar instability in the presence of a ne-
matic cue leads to more complex surface patterns that
combine polar and nematic features (Fig. 3 b). For β > 0

-0.5 0.50-10
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Figure 3. (a) Cross-sectional views on recruitment rate kon(θ)
[Eq. (14)]. β determines amplitude and sign of the nematic
cue. (b) Schematic representation of surface patterns and
their orientation for varying Péclet number Pe and strength
of the nematic cue β in a regime where l = 1 becomes unstable
first at Pe = Pe∗1 if β = 0 (dotted line). Gray arrows depict
the orientation and symmetry axes defined by the surface pat-
terns. For Pe < Pe∗1 and β 6= 0, steady-state surface patterns
are dictated by kon(θ). For Pe > Pe∗1 and β 6= 0, spon-
taneously forming patterns on the surface interact with the
nematic cue. (c) Representative steady-state concentration
patterns obtained from numerical solutions. Qualitative color
code as in Fig. 2 a,d. Parameters: Lh/R0 = 5, koffτD = 10,
and ν = 1.

a polar surface pattern forms, whose axis is oriented par-
allel to the axis of the nematic cue. For β < 0, we can
qualitatively distinguish three regimes. If |β| is small, a
single contractile patch forms, defining a polar axis that
is oriented orthogonal to the nematic cue axis. If |β| is
increased, two local concentration maxima appear. If |β|
is increased further, the nematic cue dominates, leading
to pattern with two patches of stress regulator at oppos-
ing poles aligned by the cue. Figure 3 c shows examples
of steady-state concentration patterns for these different
cases.

We also found that in the case of an instability with
nematic symmetry (l = 2), a cue with β > 0 ensures
that the nematic axis of the emerging contractile rings is
reliably oriented parallel to the axis of the nematic cue.
This captures the effect of a mitotic spindle with nematic
symmetry orienting the contractile ring along the division
axis.

In this letter, we have studied the mechano-chemical self-
organization of active fluid surfaces with spherical geom-
etry. We have shown that the viscous forces exerted by a
passive fluid on an enclosing active fluid film can control
the formation of patterns with different symmetries.

We have found that the active surface can undergo
spontaneous symmetry-breaking instabilities toward pat-
terns of concentration, flows, and deformations with po-
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lar or nematic symmetries, depending on the ratio Lh/R0

of hydrodynamic screening length to sphere radius. For
large ratios, polar patterns emerge, corresponding to the
mode l = 1, while patterns can be nematic, correspond-
ing to l = 2, for smaller ratios Lh/R0. When decreasing
the ratio Lh/R0 even further, stationary patterns corre-
sponding to higher harmonic modes l > 2 can emerge.
These have a polar symmetry for odd l and a nematic
symmetry if l is even [20].

For simplicity, we considered here an isotropic active
tension. In general, an anisotropic contribution to the
active tension of the form ξ′ij = ξ′f(c)Cij exists. When
taking such anisotropies in active tension into account,
the results presented here do not change qualitatively,
but the critical Péclet number is altered for l > 1 [20].

The emergence of mechano-chemical patterns pre-
sented in this work generalizes the one-dimensional con-
tractile instabilities described in [8] to curved surfaces.
Instabilities on the surface of a sphere discussed here
capture key features of important cellular processes. The
emergence of polar patterns resembles the establishment
of cell polarity by active processes in the cell cortex [25–
27]. The emergence of an equatorial ring of high con-
tractility provides a minimal model for the formation of
contractile rings that play a key role during cell divi-
sion [1, 4]. Symmetry-breaking instabilities can be bi-
ased by external chemical cues. In particular, we found
the axis of a contractile ring can be reliably aligned with
the axis of a nematic cue, similar to the alignment of a
contractile ring with the mitotic spindle axis during cell
division [22, 23].

Considering a passive fluid outside of the active surface
also leads to the formation of patterns via dynamic insta-
bilities. During the polar instability, a net flow outside
the surface is generated. Driven by active surface flows,
the sphere will therefore move relative to the laboratory
frame [20], corresponding to a swimmer that exhibits
spontaneous self-propulsion. For the case of vanishing
surface viscosity, ηb = ηs = 0, this scenario is similar to
swimmers driven by Marangoni flows [28, 29].

Our minimal model captures general features of the
contractile actomyosin cortex of cells and its mechanical
interactions with the cytoplasm. To account for more
complex features of the cell cortex [1], it could be
extended, for example, by including a multi-component
descriptions of the biochemical processes. Finally, the
instabilities and surface patterns discussed here could
be studied experimentally using in-vitro actomyosin
systems reconstituted in vesicles or in droplets [30–32].
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Supplemental Material

1 LINEARIZATION OF THE HYDRODYNAMIC EQUATIONS

The hydrodynamic equations of our deforming active thin film model read

∇iti,dj = −f ext
j (S1)

Cijtdij + fen = f ext
n , (S2)

where

tdij = 2ηs

(
vij −

1

2
vkkgij

)
+ ηbv

k
k gij + ξf(c)gij + ξ′g(c)Cij (S3)

fen = 2γH + 4κ
[
2K (H − C0) + 2H(C2

0 −H2)−∆ΓH
]
. (S4)

Here, H = Ckk/2 denotes the mean curvature and fen = 0 corresponds to the shape equation of a Helfrich mem-
brane [33]. In the constitutive Eq. (S3), we have included a curvature-dependent active tension ∼ ξ′g(c)Cij with a
stress-regulating function g(c). In general, such a potentially anisotropic contribution exists in surfaces with up-down
broken symmetry [18] and is therefore included in the following linearization. External forces f ext = f ext

i ei + f ext
n n

result from the shear stress exerted by the passive Stokes fluid onto the active surface and read

f ext = n · (σ̄ − σ)|Γ . (S5)

Here, σ̄ and σ denote the stress tensor of the passive fluid outside of and enclosed by the surface, respectively, and we
included σ̄ for generality. Viscosities of the passive Stokes fluids inside and outside of the closed surface are denoted
η and η̄, respectively.
We linearize the hydrodynamic Eqs. (S1) and (S2) around the stationary state in which the active fluid film prescribes
the surface of a sphere of radius R0 at rest (v,u = 0) and the concentration of stress regulator is homogeneous (c = c0,
c̄ = koffc0/kon). We consider a perturbation expansion in terms of scalar spherical harmonics Ylm and vector spherical
harmonics Ψ(lm) = R0∇ΓYlm, Φ(lm) = r̂×Ψ(lm) and Y(lm) = Ylmr̂ and find from the hydrodynamic equations for
each mode (l,m) the system of equations

ηs
R2

0

(1− l)(l + 2)δv
(1)
lm +

ηb
R2

0

(
2δṘlm − l(l + 1)δv

(1)
lm

)
+
ξ

R0
∂cf(c0)δclm +

ξ′

R2
0

(
∂cg(c0)δclm + (l − 1)(l + 2)g(c0)

δRlm
R0

)
= −δf (1)

lm (S6)

ηs
R2

0

(1− l)(l + 2)δv
(2)
lm = −δf (2)

lm (S7)

2ηb
R2

0

(
2δṘlm − l(l + 1)δv

(1)
lm

)
+

2ξ

R0
∂cf(c0)δclm +

2ξ′

R2
0

∂cg(c0)δclm

+

[
2κ

R4
0

{l(l + 1)− 4C0R0}+
γ + 4κC2

0 + ξf(c0)

R2
0

+
2ξ′g(c0)

R3
0

]
(l − 1)(l + 2)δRlm = δfrlm, (S8)

where dots denote derivatives with respect to time. For each mode, this system determines the coefficients describ-

ing in-plane flows (δv
(1)
lm , δv

(2)
lm ) and deformations (δRlm) as a function of concentration changes (δclm). We have

furthermore introduced the perturbation-induced changes of the external viscous shear stress as

δf ext =

∞∑
l=0

m=l∑
m=−l

(
δf

(1)
lm Ψ(lm) + δf

(2)
lm Φ(lm) + δfrlmY(lm)

)
, (S9)
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where

R0δf
(1)
lm = − (η + η̄)(1 + 2l)δv

(1)
lm + 3[η(l + 1) + η̄l]

δṘlm
l(l + 1)

+
η̄

2
Aδl,1 (S10)

R0δf
(2)
lm = − [η(l − 1) + η̄(l + 2)] δv

(2)
lm (S11)

R0δf
r
lm = 3 [η(l + 1) + η̄l] δv

(1)
lm −

[
(η + η̄)

(
4 + 3l + 2l2

)
l + 3η

] δṘlm
l(l + 1)

+
η̄

2
Aδl,1, (S12)

and A = 2δv
(1)
lm + δṘlm. Equations (S10)–(S12) follow from an analytic solution of the Stokes equation [21] for no-slip

and impermeability boundary conditions at the surface [Eqs. (9)–(10)].
The linearization of the convection-diffusion Eq. (11) reads

δċlm +
c0
R0

(
2δṘlm − l(l + 1)δv

(1)
lm

)
+

(
D

R2
0

l(l + 1) + koff

)
δclm = 0. (S13)

2 DETERMINING THE CRITICAL PÉCLET NUMBER

In the following, we describe how a critical Péclet number can be derived from the linearized Eqs. (S6)–(S8). While we
introduced a more general system in Sec. 1, the critical Péclet number Pe∗l given in Eq. (13) (main text) corresponds
to the case, where the passive fluid viscosity outside of the closed surface and the curvature-dependent active tension
vanish, i.e. η̄ = 0 and ξ′ = 0.

2.1 General procedure and treatment of the translational mode

First, we use Eqs. (S6)–(S8) to eliminate the mode coefficients for the in-plane flows: From Eq. (S7) we find δv
(2)
lm = 0

for l ≥ 2. Additionally, we exclude full body rotations, such that δv
(2)
lm = 0 for all l. The remaining equations can

be used to eliminate δv
(1)
lm from Eqs. (S8) and (S13) to arrive at expressions for δṘlm and δċlm in terms of δclm

and δRlm, effectively yielding the Jacobian Jl associated with this perturbation. Note that for l = 1, Eqs. (S6) and

(S8) determine only the net in-plane compression ∇Γ · δv|l=1 ∼ δṘ1m − δv(1)
1m due to the presence of translational

modes that we have not fixed so far. Any such fix has to imply a relation between δv
(1)
1m and δṘ1m. However,

because the linearized convection-diffusion Eq. (S13) also depends for l = 1 exclusively on the compression rate

∼ δṘ1m− δv(1)
1m, the dispersion relation, and consequently the critical Péclet number, is independent of the constraint

by which translational modes are fixed.

2.2 Instabilities of the polar mode l = 1

Shape perturbations of the mode l = 1 to first order do not change the curvature of a spherical surface. As a
consequence, the linearized Eqs. (S6)–(S8) drastically simplify. Furthermore, the curvature Cij is to zeroth order
isotropic, such that contributions from ξ and ξ′ are essentially equivalent for l = 1, if we identify ξf(c)↔ ξ′g(c)/R0.
Instabilities of the polar mode l = 1 occur for increasing Péclet number at

Pe∗l=1 =
1

c0∂cf(c0)

(
1 +

1

2
τDkoff

)[
2 + ν

(
3R0

Lh
+

2R0

L̄h

)]
. (S14)

In addition to the hydrodynamic length Lh = ηs/η, we have introduced here L̄h = ηs/η̄ as the hydrodynamic screening
length associated with the passive fluid outside of the closed surface. In the limit L̄h →∞, when the viscosity of the
passive fluid outside of the closed surface can be neglected, Eq. (S14) is equivalent to Eq. (13) with l = 1 (main text).
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2.3 Components of the Jacobian for l ≥ 2

Following the general procedure outlined in Sec. 2.1, we derive in the following the components of the system’s
Jacobian. The Jacobian diagonalizes in the space of spherical harmonics and contributes for each mode l with

Jl =

(
J lRR J lRc
J lcR J lcc

)
. (S15)

To determine its components, we first use Eqs. (S6) and (S8) and find:

δv
(1)
lm = Λ1δRlm + Λ2δṘlm, (S16)

where

Λ1 =
(l + 2)(1− l)

[
2κl(l + 1)/R2

0 + γ̂ + ξf(c0)
]

(l − 1)R0η + (l + 2)R0η̄ + 2(l − 1)(l + 2)ηs
(S17)

Λ2 =
3η − l(l + 2)(2l − 1)(η + η̄)

l(l + 1) [(l − 1)η + (l + 2)η̄ + 2(l − 1)(l + 2)ηs/R0]
. (S18)

In Eqs. (S17) and (S18), we have collected contributions to an effective passive surface tension into

γ̂ = γ + 4κC0(C0 − 2/R0). (S19)

Next, we use Eqs. (S6) and Eq. (S16), which can be rearranged into

δṘlm =
1

Γ
[(Λ1JRR + J ′RR) δRlm + (JRc + J ′Rc) δclm] (S20)

with

Γ =
ηs
R0

(l − 1)(l + 2)Λ2 +
ηb
R0

[l(l + 1)Λ2 − 2]

+ (η + η̄) (1 + 2l)Λ2 − 3

(
η

l
+

η̄

l + 1

)
(S21)

JRR = − ηs
R0

(l − 1)(l + 2)− ηb
R0

l(l + 1)− (η + η̄) (1 + 2l) (S22)

JRc = ξ∂cf(c0) (S23)

J ′RR =
ξ′g(c0)

R2
0

(l − 1)(l + 2) (S24)

J ′Rc =
ξ′

R0
∂cg(c0). (S25)

From Eq. (S20), one can read off the components of the Jacobian that are defined by Ṙlm = J lRRδRlm + J lRcδclm.
Finally, we use Eqs. (S13), (S16) and (S20) to write

δċlm = (Jcc + J ′cc) δclm + (Λ1JcR + J ′cR) δRlm, (S26)

where

Jcc = −
(
D

R2
0

l(l + 1) + koff +
ξc0∂cf

ΓR0
[2− l(l + 1)Λ2]

)
(S27)

JcR =
c0
R0

[
l(l + 1)

(
1 +

Λ2

Γ
JRR

)
− 2

Γ
JRR

]
(S28)

J ′cc = −ξ
′c0∂cg

ΓR2
0

[2− l(l + 1)Λ2] (S29)
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J ′cR = −ξ
′g(c0)c0
ΓR3

0

[2− l(l + 1)Λ2] (l − 1)(l + 2). (S30)

From Eq. (S26), one can read off the remaining components of the Jacobian defined by δċlm = J lcRδRlm + J lccδclm.

2.4 Critical parameter values for l ≥ 2

From the Jacobian Jl given in Eq. (S15) and its components defined in Eqs. (S16)–(S30), we now determine for a given
mode l the critical parameter values for which the system becomes unstable. A numerical analysis of the Jacobian
and the comparison with its asymptotic behavior for large bending rigidities indicates that instability transitions are
typically stationary. Critical parameter values can therefore be determined from the condition det(Jl) = 0. The
computation of the determinant yields

−Γ det (Jl) =

(
Λ1JRR +

ξ′g(c0)

R2
0

(l − 1)(l + 2)

)(
D

R2
0

l(l + 1) + koff

)
+ Λ1

[R0ξ∂cf(c0) + ξ′∂cg(c0)] c0
R2

0

l(l + 1). (S31)

In addition to the Péclet number defined in the main text, Pe = ξR2
0/(Dηb), we define an analogue dimensionless

quantity associated with the curvature-dependent active tension: Pe′ = ξ′R0/(Dηb). The mode l is unstable if the
Péclet numbers Pe and Pe′ fulfill the condition

Pec0∂cf(c0) + Pe′c0∂cg(c0) >(
1 +

τDkoff

l(l + 1)

)[
l(l + 1) + ν

(
(l − 1)(l + 2) + (1 + 2l)

R0

Leff
h

+
Pe′g(c0)

Λ̃1

)]
. (S32)

Here, τD = R2
0/D, Leff

h = LhL̄h/(Lh + L̄h) is an effective hydrodynamic length, and Λ̃1 is derived from Eq. (S17) as

Λ̃1 =

τD
ηb

[
2κl(l + 1)/R2

0 + γ̂
]

+ Pef(c0)

(l − 1)R0/Lh + (l + 2)R0/L̄h + 2(l − 1)(l + 2)
, (S33)

where γ̂ is defined in Eq. (S19).

From Eq. (S32) it follows that larger gradients of the stress regulator functions, ∂cf(c0) and ∂cg(c0), both tend to
destabilize the homogeneous state for given Pe > 0 and Pe′ > 0 [left-hand side of Eq. (S32)]. Furthermore, the
steady-state values of the active tension ∼ Pef(c0) and ∼ Pe′g(c0) affect the stability of the homogeneous state,
which is not the case if Pe′ = 0. In particular, in conjunction with the curvature-dependent active tension, an increase
in active steady-state tension ∼ Pef(c0) tends to destabilize the homogeneous state [right-hand side of Eq. (S32)].
For larger bending rigidity or surface tension, κ � R2

0ηb/τD or γ̂ � ηb/τD, we have Λ̃1 � 1 and the last term in
Eq. (S32) can be neglected, which leads to the prediction of instabilities for

Pec0∂cf(c0) + Pe′c0∂cg(c0) >(
1 +

τDkoff

l(l + 1)

)[
l(l + 1) + ν

(
(l − 1)(l + 2) + (1 + 2l)

R0

Leff
h

)]
. (S34)

In this regime, contributions from the isotropic active tension and from the curvature-dependent active tension yield
the same physics in terms of the linear instabilities. Furthermore, Eq. (S34) represents the instability criterion in
the limit where the surface is a rigid sphere. This can be checked independently by directly deriving the dispersion
relation for the dynamics on a rigid sphere using Eqs. (S6) and (S13) for δRlm = 0 and δṘlm = 0.



S5

2.5 Critical Péclet number and eigenmode components for isotropic active tension

In the absence of a curvature-dependent active tension [Pe′ = 0 in Eq. (S32)] the critical Péclet number Pe∗l reads for
l ≥ 2:

Pe∗l≥2 =
1

c0∂cf(c0)

(
1 +

τDkoff

l(l + 1)

)[
l(l + 1) + ν

(
(l − 1)(l + 2) + (1 + 2l)

R0

Leff
h

)]
. (S35)

This expression is equivalent to Eq. (13) in the main text in the limit L̄h → ∞, when the viscosity of passive fluid
outside of the closed surface vanishes.
From Eq. (S35) it follows that instabilities of modes with l ≥ 2 can be characterized by an effective hydrodynamic
length Leff

h = LhL̄h/(Lh + L̄h) or, alternatively, by an effective viscosity ηeff = η+ η̄ of the surrounding passive fluids.
Mechanical interactions with a passive fluid outside of the active surface therefore give rise to the same phenomenology
as for the enclosed passive fluid case discussed in the main text. This is because both cases lead to hydrodynamic
screening length on the surface, which is one of the key requirements for the described patterning mechanism. Further-
more, in the absence of a curvature-dependent active tension, mechano-chemical instability transitions are generally
independent of surface tension γ, bending rigidity κ and spontaneous curvature C0.
Note that in the limit of large surface tension or bending rigidity the surface remains a non-deforming sphere. In
this case, the condition of a force-free surface dynamics with η̄ 6= 0, i.e.

∮
Γ
dA σ̄ ·n = 0, implies for any surface flow

∼ δv1m a net motion of the surface relative to the laboratory frame [28] (see also Sec. 4.3). Hence, a polar instability
at the critical Péclet number given in Eq. (S14) is for η̄ 6= 0 accompanied by the spontaneous onset of well-defined
translational motion.

Finally, we compute the components of the critical eigenmodes δ∗lm for l ≥ 2. Using the fact that the critical Péclet
number follows from det(Jl) = 0, the critical eigenmode must be of the form(

δR∗lm/R0

δc∗lm/c0

)
=

1

N

(
J lRc/(R0J lRR)

−1

)
, (S36)

where N denotes some normalizing prefactor. The eigenmode component related to deformations is therefore propor-
tional to

J lRc
R0J lRR

=
(l − 1)R0η + (l + 2)R0η̄ + 2(l − 1)(l + 2)ηs
(l + 2)(l − 1) [2κl(l + 1)/R2

0 + γ̂ + ξf(c0)]

× ξc0∂cf(c0)

[(l − 1)(l + 2)ηs + l(l + 1)ηb + (1 + 2l)R0 (η + η̄)]
, (S37)

which follows from Eqs. (S15), and (S20)–(S23). Equation (S37) has two important implications: First, in the limit of
large bending rigidity (or surface tension), we have δR∗lm ∼ 1/κ→ 0 (see Fig. 1 c). Second, we note that the expression
on the right-hand side of Eq. (S37) is manifestly positive. Together with the form of the eigenmode Eq. (S36), this
provides a formal proof that an increase of stress regulator around the equator (δc∗2,0 < 0) induces a shape constriction
around the equator (δR∗2,0 > 0) if the mode l = 2,m = 0 becomes unstable and a contractile ring forms (see Fig. 1 b
inset).

3 NONLINEAR DYNAMICS ON THE SURFACE OF A RIGID SPHERE

3.1 Pattern formation and dynamics beyond the linear instability

Using numerical simulations, we analyzed the pattern formation in the limit of large bending rigidity (rigid sphere)
across the whole unstable region of the stability diagram shown in Fig. 1 b (main text). Surface patterns of the
expected polar and nematic symmetry form robustly near the instability thresholds (squares in Fig. S1). Further
away, numerical simulations additionally reveal the existence of oscillatory steady state patterns (disks in Fig. S1).
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Figure S1. Pattern formation and dynamics in the unstable region of the stability diagram (same parameters as in Fig. 1 b, main
text) in the limit of large bending rigidity (rigid sphere). Beyond the linear instability threshold stationary patterns (squares)
with the predicted symmetry emerge (patterns shown in Fig. 2, main text). Further away from the instability threshold
oscillatory patterns can form (disks). Blue/Green disks: a single patch of high stress regulator concentration propagates in
a fixed equatorial plane around the surface, corresponding to a mixed polar and nematic symmetry. Green disks: A nematic
pattern oscillates between a centered contractile ring and a pair of high concentration patches at opposite poles. Black crosses:
No distinct symmetry can be identified due to an irregular pattern dynamics.

3.2 Instabilities of higher harmonic modes

We have focused in our work on the formation of polar and nematic patterns as the most relevant cases in the context
of biological processes. However, the general hydrodynamic screening also allows for the emergent formation of surface
patterns with symmetries corresponding to higher harmonics modes. Such patterns will form if a higher harmonic
mode becomes the only unstable mode, which occurs at even smaller hydrodynamic lengths and larger Péclet numbers
than discussed in the main text. Depending on the parity of the unstable harmonic mode, the resulting steady state
patterns of higher modes also have polar (odd modes) or nematic symmetry (even modes). Two examples of stationary
states corresponding to instabilities of the modes l = 3 and l = 4 are shown in Fig. S2.

3.3 General analytic solution for active surface flows on a fixed sphere

The in-plane hydrodynamic Eq. (S1) on a fixed sphere is linear in the surface flows v‖ = viei and a closed analytic
solution can be derived. This solution forms the basis of the numerical approach that we have used to solve the fully
non-linear problem on a fixed sphere (Sec. 3.4). Note that on a rigid sphere the curvature is isotropic, such that active
contributions ∼ ξ and ∼ ξ′ in Eq. (S3) are equivalent and we include w.l.o.g. only ξ in the following derivation. To
derive the analytic solution, we first note that on an arbitrary non-deforming surface the hydrodynamic Eq. (6) (main
text) can be expressed as

ηs
(
∇i∇ivj +Kvj

)
+ ηb∇j∇ivi + ξ∂jf(c) = −f ext

j , (S38)

where K = det
(
C ,ji

)
is the Gaussian curvature of the surface and we have used the Ricci identity on two-dimensional

surfaces [34]: ∇i∇jvi −∇j∇ivi = Kvj . Expanding surface flows on the fixed sphere as

v‖ =

∞∑
l=0

m=l∑
m=−l

v
(1)
lmΨ(lm), (S39)
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Figure S2. Stationary patterns in a regime where the mode l = 3 (left) or l = 4 (right) are the only unstable modes.
Parameters: Pe = 315, Lh/R0 = 1/15.5, kτD = 16 (l = 3), Pe = 610, Lh/R0 = 1/24, kτD = 27 (l = 4) and ν = 1. Active
tension is regulated by f(c) = 2c2/(c20 + c2), such that c0∂cf(c0) = 1.

and the distribution of active tension as

f(c) =

∞∑
l=0

m=l∑
m=−l

flmYlm, (S40)

Eq. (S38) implies

v
(1)
lm =

R0ξ

R0 [(η + η̄) (1 + 2l)− η̄δl,1] + l(l + 1)(ηb + ηs)− 2ηs
flm. (S41)

Here, we have used covariantly formulated properties of vector spherical harmonics that read on the unit sphere [34]:

Ψ
(lm)
i = ∂iYlm, ∇iΨ(lm)

i = −l(l + 1)Ylm and ∇i∇iΨ(lm)
j = [1− l(l + 1)] Ψ

(lm)
j . Furthermore, we have used that f ext

j

is given by Eqs. (S9)–(S11), which become exact expressions on a fixed sphere. Equation (S41) provides an analytic
solution for surfaces flows v‖ that result from an arbitrary distribution of active isotropic tension ∼ ξf(c)gij on

the surface. Note that the solution Eq. (S41) can also be read off from Eq. (S6) for δṘlm = 0, δv
(1)
lm → v

(1)
lm and

∂cfδclm → flm.
The flow and pressure of the passive fluid driven by active surface flows are given by

u =

∞∑
l=0

m=l∑
m=−l

(
u

(1)
lm(r)Ψ(lm) + urlm(r)Y(lm)

)
(S42)

p =

∞∑
l=0

m=l∑
m=−l

plm(r)Ylm, (S43)

where the coefficient functions are given by [21]

u
(1)
lm(r) =A

(1)
lm

(l + 3)

l(l + 1)

(
r

R0

)l+1

+
A

(2)
lm

l

(
r

R0

)l−1

+ Ā
(2)
1mδl,1

−A(3)
lm

l − 2

l(l + 1)

(
r

R0

)−l
−
A

(4)
lm

l + 1

(
r

R0

)−l−2

(S44)
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urlm(r) =A
(1)
lm

(
r

R0

)l+1

+A
(2)
lm

(
r

R0

)l−1

+ Ā
(2)
1mδl,1 +A

(3)
lm

(
r

R0

)−l
+A

(4)
lm

(
r

R0

)−l−2

(S45)

plm(r) = ηA
(1)
lm

4l + 6

l

rl

Rl+1
0

+ η̄A
(3)
lm

4l − 2

l + 1

r−l−1

Rl0
. (S46)

Here, the coefficients A
(1)
lm and A

(2)
lm yield the solution of the Stokes equation inside the sphere, A

(3)
lm and A

(4)
lm outside

the sphere. For l = 1, the outside solution contains in general a third coefficient Ā
(2)
1m related to translational motion.

The latter is fixed by imposing a force-free surface dynamics,
∮

Γ
dA σ̄ ·n = 0, which is equivalent to A

(3)
1m = 0. For

impermeability and no-slip boundary conditions, a solution in the rest-frame of the non-deforming sphere is then

given by urlm(R0) = 0 and u
(1)
lm(R0) = v

(1)
lm , which implies

A
(1)
lm =

1

2
l(1 + l)v

(1)
lm (S47)

A
(2)
lm = −1

2
l(1 + l)v

(1)
lm (S48)

A
(3)
lm =

1

2
l(1 + l)v

(1)
lm − δl,1v

(1)
lm (S49)

A
(4)
lm =

1

2
l(1 + l)v

(1)
lm +

1

3
δl,1v

(1)
lm . (S50)

and Ā
(2)
1m = 2v

(1)
1m/3 ∼ |u(r →∞)|. Because this solution was computed in the rest-frame of the sphere, the constant

flow field at infinity described by Ā
(2)
1m corresponds to a translational motion relative to the laboratory frame [28].

Writing the concentration field of the stress regulator as

c =

∞∑
l=0

m=l∑
m=−l

clmYlm, (S51)

the advection-diffusion Eq. (11) (main text) implies on a fixed sphere for each mode

d

dt
clm = − D

R2
0

l(l + 1)clm + Jlm + alm. (S52)

Here, Jlm denotes the harmonic expansion of the exchange of molecules between the thin film and the enclosed fluid
[Eqs. (12) and (14)] given by

Jlm =

{
2
√
πkonc̄ δl,0 − koffclm (without nematic cue)

2
√
πk

(0)
on c̄

(
δl,0 − β 2

5δl,2
)
− koffclm (with nematic cue)

(S53)

Throughout, we have parametrized the homogeneous bulk concentration as c̄ = koffc0/kon (= koffc0/k
(0)
on ) and used c0

as the characteristic surface concentration of the system. The coefficients alm in Eq. (S52) result from the nonlinear
advection term in the advection-diffusion equation, and they are given by

alm =−
∫
∇i(cvi)Y ∗lmdΩ

=
1

2R0

∑
l1,l2,m1,m2

cl1m1
v

(1)
l2m2

[l(l + 1) + l2(l2 + 1)− l1(l1 + 1)]

∫
Yl1m1

Yl2m2
Y ∗lmdΩ. (S54)

Here, dΩ = sin θdθdϕ denotes the spherical solid angle and the integrals over products of three spherical harmonics
are known as Gaunt coefficients [35].

3.4 Numerical solution

Based on the analytic solution introduced above, we have implemented a spectral solver that uses a least-squared
formulation to approximate all spatial dependencies in terms of spherical harmonics [36]. These projections are
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required to determine the coefficients flm in Eq. (S40) for a given concentration field c, as well as the coefficients alm
[Eq. (S54)]. The latter can be found for given v

(1)
lm and clm either explicitly from Eq. (S54) or by first calculating

numerically in real space the scalar field a = R0∇i
(
cvi
)

from

a = R0

(
c∇ivi + v‖ · ∇Γc

)
= −c

∞∑
l=0

m=l∑
m=−l

l(l + 1)v
(1)
lmYlm +

∑
l,m

clmv‖ ·Ψ(lm) (S55)

using c and v‖ given in Eqs. (S39) and (S51), respectively, and second determining the coefficients alm as the numerical
least-squared harmonic projection of a.
To obtain numerical solutions in practice, we consider a concentration field as given in Eq. (S51), where we take all
harmonic modes up to l = 16, i.e. 289 modes overall, into account. We then determine f(c) and its harmonic expansion
coefficients flm using the harmonic least-squared projection [36]. The harmonic mode coefficients corresponding to
the surface and bulk flows are analytically given by Eq. (S41), and by Eqs. (S44) and (S45), respectively. With
this, all terms on the right-hand side of Eq. (S52) can be determined from given concentration modes clm. The time
integration of Eq. (S52) is performed using the Dormand-Prince method (RKDP) [37] as implemented in Matlab [38].
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