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Abstract

We consider the problem of testing whether the points in a complex or real variety
with non-zero coordinates form a multiplicative group or, more generally, a coset of a
multiplicative group. For the coset case, we study the notion of shifted toric varieties which
generalizes the notion of toric varieties. This requires a geometric view on the varieties
rather than an algebraic view on the ideals. We present algorithms and computations on
129 models from the BioModels repository testing for group and coset structures over both
the complex numbers and the real numbers. Our methods over the complex numbers are
based on Gröbner basis techniques and binomiality tests. Over the real numbers we use
first-order characterizations and employ real quantifier elimination. In combination with
suitable prime decompositions and restrictions to subspaces it turns out that almost all
models show coset structure. Beyond our practical computations, we give upper bounds on
the asymptotic worst-case complexity of the corresponding problems by proposing single
exponential algorithms that test complex or real varieties for toricity or shifted toricity. In
the positive case, these algorithms produce generating binomials. In addition, we propose
an asymptotically fast algorithm for testing membership in a binomial variety over the
algebraic closure of the rational numbers.

1. Introduction
We are interested in situations where the points with non-zero coordinates in a given complex or
real variety form a multiplicative group or, more generally, a coset. We illustrate this by means
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of a simple example. For K ∈ {C,R}, (K∗)n denotes the direct power of the multiplicative group
of the respective field. Consider a family of ideals

Ik = 〈x2 − ky2〉 (1)

with a rational parameter k. Let Vk be the complex variety of Ik, and let V ∗k = Vk∩ (C∗)2. Then
V ∗1 forms a group, but V ∗−1 does not, because it does not contain (1, 1). However, V ∗−1 = (1, i) ·V ∗1
forms a coset of V ∗1 . Over the reals, V ∗1 ∩ (R∗)2 is again a group, but V ∗−1 ∩ (R∗)2 = ∅ is not a
coset of any group. Consider now V1 = V11 ∪ V12, where V11 and V12 are given by 〈x − y〉 and
〈x + y〉, respectively. Notice that V ∗11 is itself a group, and V ∗12 is a coset of V ∗11. Both V ∗11 and
V ∗12 are irreducible because their generating ideals are prime. Under the additional condition of
irreducibility V ∗11 forms a torus and V ∗12 forms a shifted torus. We then call the varieties V11 and
V12 toric and shifted toric, respectively.

Toric varieties are well established and have an important role in algebraic geometry [28, 21].
However, our principal motivation to study generalizations of toricity comes from the sciences,
specifically chemical reaction networks such as the following:

2 A
k
2
1
2

2 B.

Assuming, e.g., mass action kinetics one can derive a system of autonomous ordinary differential
equations describing the development of concentrations of the species A and B as functions of
time [26, Section 2.1.2]. For the given reaction network one obtains a polynomial vector field
generating exactly our ideals Ik in (1). Our methods thus detect whether equilibrium points
with non-zero coordinates form a group or a coset.
Detecting toricity of a variety in general, and of the steady state varieties of chemical reaction

networks in particular, is a difficult problem. The first issue in this regard is finding suitable
notions to describe the structure of the steady states. Existing work typically addresses algebraic
properties of the steady state ideal, e.g., the existence of binomial Gröbner bases. In this article,
in contrast, we take a geometric approach, focusing on varieties rather than ideals. We propose to
study toricity and shifted toricity of varieties V over K ∈ {C,R}, which for irreducible varieties
coincides with V ∩ (K∗)n forming a multiplicative group or coset, respectively. It is noteworthy
that chemical reaction network theory generally takes place in the interior of the first orthant
of Rn, i.e., all species concentrations and reaction rates are assumed to be strictly positive [26].
Our considering (C∗)n in contrast to Cn is a first step in this direction, considering also (R∗)n
is another step.
Our generalized notions of toricity are inspired by Grigoriev and Milman’s work on binomial

varieties [36]. Gorban et al. [31, 32] and Grigoriev and Weber [37] applied results on binomial
varieties to study reversible chemical reactions in the case of detailed balancing. Gatermann
et al. considered deformed toricity for steady state ideals [29]. Toric dynamical systems have
been studied by Feinberg [24] and by Horn and Jackson [40]. Craciun et al. [14] showed that
toric dynamical systems generalize complex balancing [26]. The generalization of the principle
of complex balancing to toric dynamical systems has obtained considerable attention in the last
years [49, 30, 14, 46]. Complex balancing itself generalizes detailed balancing, which has widely
been used in the context of chemical reaction networks [25, 26, 40].
Historically, the principle of detailed balancing has attracted considerable attention in the

sciences. It was used by Boltzmann in 1872 in order to prove his H-theorem [3], by Einstein in
1916 for his quantum theory of emission and absorption of radiation [20], and by Wegscheider
[57] and Onsager [47] in the context of chemical kinetics, which lead to Onsager’s Nobel prize
in Chemistry in 1968. Millan, Dickenstein and Shiu in [49] consider steady state ideals with
binomial generators. They present a sufficient linear algebra condition on the stoichiometry
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matrix of a chemical reaction network in order to test whether the state ideal has binomial
generators. Conradi and Kahle proposed a corresponding heuristic algorithm. They furthermore
showed that the sufficient condition is even equivalent when the ideal is homogenous [12, 42, 41].
Based on the above-mentioned linear algebra condition, MESSI systems have been introduced in
[48]. Recently, binomiality of steady states ideals was used to infer network structure of chemical
reaction networks out of measurement data [56].
Our original contributions in this article are the following. Interested in the geometric structure

of real and complex varieties V rather than the algebraic structure of the corresponding ideals,
we study primarily V ∗ = V ∩ (K∗)n. We call V shifted toric when V is irreducible and V ∗ is
a coset. This generalizes the notion of toric varieties V for groups V ∗. Within this setting, we
have two principal results:

• Relating our novel geometric view to the established algebraic view, we give a characteri-
zation in terms of Gröbner bases for V ∗ to be a group or coset. (Proposition 7).

• We show that Zariski closures of groups in (C∗)n are binomial varieties (Proposition 6).
The converse had been shown in [36].

We propose practical algorithms testing for given polynomial systems F whether their varieties
contain group or coset structures.

• We consider over the complex numbers V (F )∗ (Algorithm 1) and V (Pi)∗ for prime com-
ponents 〈Pi〉 of 〈F 〉 (Algorithm 3).

• We consider the same over the real numbers, V (F )∗ (Algorithm 4) and V (Pi)∗ (Algo-
rithm 6).

• With prime decomposition we find that for up to 98% of the prime components VK(Pi)∗
is either empty or a coset.

Our algorithms are implemented in Maple1 and Reduce2 [52, 39, 38] and systematically applied
to the steady state varieties of 129 models from the BioModels repository3. Our objective
was to build on robust, off-the-shelf software, which has a chance to be accepted by scientific
communities outside symbolic computation in the foreseeable future. As a consequence, our
proposed algorithms must rely on existing implementations. Over C we use Gröbner bases
[6, 22, 23], and over R we use real quantifier elimination techniques.

Gröbner bases and real quantifier elimination mentioned above come with high intrinsic com-
plexity. The former are complete for exponential space [45]. The latter are double exponential
[15, 34, 58]. From a more theoretical point of view we study the intrinsic complexity of the
problems actually addressed. We follow Chistov–Grigoriev’s complexity results for first-order
quantifier elimination over algebraically closed fields [9], the algorithm constructing irreducible
components of a variety [9, 33] and Grigoriev–Vorobjov’s algorithm for solving polynomial sys-
tem of inequalities [35]. These results are used to propose an algorithm to test within single
exponential complexity bounds whether:

• a given complex variety is toric or shifted toric (Theorem 25);

• a given real variety is toric or shifted toric (Theorem 26);

• a given point belongs to a given binomial variety (Theorem 27).

1Maple (2019). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
2https://sourceforge.net/projects/reduce-algebra/
3https://www.ebi.ac.uk/biomodels/

3

https://sourceforge.net/projects/reduce-algebra/
https://www.ebi.ac.uk/biomodels/


The plan of the article is as follows. In Section 2 we present preliminaries from the literature
and introduce our new notions and related results. In Section 3, we present new algorithms for
group and coset tests over C and R. As a first step towards irreducible varieties we also use
prime decompositions over the coefficient field, i.e., rational numbers. For the sake of a concise
discussion, the major part of our rather comprehensive computation results can be found in Ap-
pendix A. In Section 4 we propose asymptotically fast algorithms for the practical computations
in Section 3. The proposed algorithms induce upper complexity bounds on the corresponding
problems. In Section 5 we summarize our findings and mention perspectives for future work.

2. Toric, Shifted Toric and Binomial Varieties
We use K to denote either C or R when definitions or results hold for both fields. The natural
numbers N include 0. For positive n ∈ N and X = (x1, . . . , xn), the polynomial ring with
coefficients inQ and variables x1, . . . , xn is writtenQ[X] = Q[x1, . . . , xn]. For α = (α1, . . . , αn) ∈
Nn, Xα = xα1

1 . . . xαn
n is a monomial in Q[X]. When mentioning Gröbner bases of ideals we

generally mean reduced Gröbner bases; when not mentioned explicitly the term order is not
relevant. Given a polynomial f ∈ Q[X], the variety of a f over K is V (f) = { z ∈ K | f(z) =
0 } ⊆ Kn; this naturally generalizes to sets F of polynomials and ideals I. Vice versa, given a
variety V ⊆ Kn, we define the ideal of V to be I(V ) = { f ∈ Q[X] | f(z) = 0 for all z ∈ V }.
Recall that I(V (J)) =

√
J , the radical of J .

Let K∗ be the multiplicative group of K. A subgroup G ⊆ (K∗)n is called a torus over (K∗)n
if there exits m ∈ N such that G is isomorphic to (K∗)m. A variety V ⊆ Kn is called toric if it
is irreducible and there exists a torus G ⊆ (K∗)n such that V = G, the Zariski closure of G [53].
It is noteworthy that there are alternative definitions that requires the variety to be normal as
well [28].
For a variety V ⊆ Kn, by V ∗ we denote V ∩ (K∗)n, i.e., the points in V with non-zero

coordinates. It is well-known that every torus is the (irreducible) zero set of a set of Laurent
binomials of the form Xγ − 1 where γ ∈ Z [28]. We are going to make use of the following
proposition, which is a a consequence of results in [28, 53].

Proposition 1. Let V ⊆ Cn be a variety. V is a toric variety if and only I(V ) is prime and
some Gröbner basis (every Gröbner basis) of I(V ) is generated by binomials of the form Xα−Xβ

where α, β ∈ Nn.

By definition, V is toric if and only if V is irreducible and there exists a torus T such that
V = T . Assume that V is given by a set of generators of I(V ). Since V is irreducible, then V ∗
is irreducible, hence T = V ∗, V = V ∗, and I(V ) = I(V ∗). Therefore, it suffices to compute a
Gröbner basis of I(V ) instad of I(V ∗) and use Proposition 1 in order to check if V ∗ is a group.
Note that if a Gröbner basis of I(V ) is non-empty and its elements are of the form Xα − Xβ

and the ideal is prime, then V ∗ is clearly non-empty. Since a toric variety is irreducible, one can
replace I(V ) with V (I) in the above proposition. For more detailed study of toric varieties refer
to [28] and [53].
Not all subgroups of (K∗)n are reducible. For example if K = C and V = V (x2 − y2) ⊆ Cn,

one can check that V ∗ = V ∩ (C∗)2 is a group, however it is not reducible, hence not a torus.
Actually V can be decomposed into the torus V1 = V (x− y)∩ (C∗)2 and V2 = V (x+ y)∩ (C∗)2,
which is a coset of V1. Varieties that admit a group structure have interesting properties. A class
of such varieties, called binomial varieties are studied by Grigoriev and Milman [36], where the
authors present a structure theorem for them and discuss the complexity of their Nash resolution.
We remind ourselves of the definition and the structure theorem of binomial varieties, which will
be used for classifying steady state ideals.
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Definition 2 (Binomial Variety). A variety V ⊆ Cn is called binomial if V ∗ := V ∩ (C∗)n is the
zero set of a finite set of binomials of the form Xα − 1 ∈ K[x±1

1 , . . . , x±1
n ] and V = V ∗.

Using Gröbner bases instead of Laurent polynomials, one can see that if a variety V ⊆ Cn is
binomial then all elements of every Gröbner basis of I(V ) are binomials of the form Xα −Xβ ,
where α, β ∈ N \ {0}. The following theorem by Grigoriev and Milman shows the structure of
the binomial varieties by precisely describing their irreducible components.

Theorem 3. [36, Theorem 3.7] The irreducible components of a binomial variety V ⊆ Cn include
exactly one toric variety T , where T ⊆ (C∗)n is a torus, and several varieties V1 = x1T , . . . , Vr =
xrT , where x1T, . . . , xrT ⊆ (C∗)n are coset of T as a group, with respect to x1, . . . , xr ∈ (C∗)n,
respectively.

Later in this section we will show that the closure of any subgroup of (C∗)n is a binomial variety.
Proposition 1 gives the form of the polynomials in a Gröbner basis of the ideal describing the toric
component of a binomial variety. For the components that are cosets of the torus, one can easily
derive the form of the reduced Gröbner basis from the definition of the torus and Proposition
1. This is stated precisely in the following proposition. Intuitively, non-toric components of a
binomial variety can be considered as the shifts of the toric component. This motivates us to
define shifted toric varieties.

Definition 4 (Shifted Toric Variety). A shifted torus in (K∗)n is defined to be a coset of a torus
in (K∗)n. A variety V ⊆ Kn is called shifted toric if it is the closure of a shifted torus.

Since every group is a coset of itself, every torus is a shifted torus, and therefore every toric
variety is a shifted toric variety. However, a shifted toric variety is not necessarily a toric variety.
Following the definition of shifted toric varieties and using Proposition 1, we show in the following
proposition that ideals of shifted toric varieties have Gröbner bases of a specific form.

Proposition 5. V ∗ ⊆ Cn is a shifted torus if and only if V ∗ is the zero set of the Laurent
binomials of the form

(
X
g

)α
− 1, where g ∈ V ∗ and α ∈ Zn. Similarly, V is shifted toric if

and only if I(V ) is prime and every Gröbner basis of I(V ) is generated by binomials of the form
Xα + cXβ where c ∈ C∗, α, β ∈ Nn \ {(0, . . . , 0)}.

Proof. V is shifted toric if and only if there exists a torus T and a coset C of a T with respect
to some g ∈ Kn ( i.e., C = gT ), such that V = C. Since V is irreducible, then V ∗ = C = V and
I(V ) = I(V ∗) = I(C), and this ideal is prime. Assume that V given by a set of generators of
I(V ). V is shifted toric if and only if I(V ∗) = I(V ) is prime and V ∗ is a coset. This holds if and
only if I(V ∗) is prime and g−1V ∗ is a group. Note that g−1V ∗ is irreducible if and only if V ∗
is reducible. This holds if and only if I(V ∗) is prime, or equivalently I(V ) is prime. Therefore,
by Proposition 1, V is shifted toric if and only if I(V ) is prime and all the elements of every
Gröbner basis of I(g−1V ∗) is of the form Xα −Xβ , for α, β ∈ Nn \ {(0, . . . , 0)}. Equivalently,
all the elements of I(V ) are of the form

(
X
g

)α
−
(
X
g

)β
. Cleaning the denominator, we have the

desired form of the Gröbner basis elements.

Proposition 5 along with the structure theorem for binomial ideals imply that the primary
decomposition of an ideal generated by binomials of the form Xα−Xβ include an ideal generated
by binomials of the formXα−Xβ and several ideals generated by binomials of the formXα−cXβ .

Using Proposition 5, one can design a randomised algorithm for testing shifted toricity of a
variety V = V ∗. Let g1, . . . , gm be generic points in V ∗ and consider the set of Laurent binomials
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G =
{(

X
gi

)γi

− 1
∣∣∣ i = 1, . . . ,m

}
with symbolic exponents γi = (γi1, . . . , γin). Let

M =

 γ11 · · · γ1n
... . . . ...

γm1 · · · γmn

 (2)

be the matrix of exponents of the Laurent binomials and make it row reduced. This leads to a
linear combination of rows with coefficients in Z, say di. Then V is shifted toric if and only if

m∑
i=1

diγi = 0, (3)

which holds if and only if
m∏
i=1

(
gdi1
i1 . . . gdin

in

)
= 1. Solving the linear equations (3) will give us the

exponents of the Laurent polynomials. Note that G obtained in this way is a reduced Gröbner
basis.
One can see that a binomial variety is the closure of a group and furthermore, by Proposition

3, it can be decomposed into toric and shifted toric varieties as its irreducible components. A
natural question is whether this property holds for every variety that is the closure of a group.
The answer to this question is positive and indeed such varieties are precisely binomial varieties.
This is explicitly formulated in a remark in [21, after Proposition 2.3].

Proposition 6. Let W be a subgroup of (C∗)n. Then W is a binomial variety.

Proof. By definition of binomial variety, we have to prove that W is the zero set of binomials of
the form Xα −Xβ and

(
W
)∗ = W . The equality

(
W
)∗ = W directly comes from the definition

of Zariski closure.
For proving that the generators of I(W ) have the desired form, we use the notations of [21].

By Proposition 2.3(a) in the latter reference, C[X±1]I(W ) = I(ρ), for some partial character
ρ ∈ Hom(Zn,C∗). By Theorem 2.1(b) in the same reference, I(ρ) = 〈xm1 − ρ(m1), . . . , xmr −
ρ(mr)〉 where m1, . . . ,mr ∈ Zn is a basis of Lρ. As W is a group, (1, . . . , 1) ∈ W ; hence
ρ(m1) = . . . = ρ(mr) = 1 and therefore I(W ) is generated by binomials of the form Xα − Xβ

where α, β ∈ N. Since W = V (I(W )), we have proved the proposition.

Proposition 6 can also be proved over the real numbers by considering the logarithm map on
Rn acting coordinate-wise. The image of this map forms a linear space. A basis of this linear
space provides a parametrization of a group.
From computational point of view, a variety V = V (I) is usually given by a set of generators

of I and we would like to derive information about toricity, binomiality or coset property of V by
computations over the generators of I. This can be done via Gröbner bases. Assume that G is a
Gröbner basis of I, hence V = V (G), and V ∗ 6= ∅. If all elements of G are of the form Xα−Xβ ,
then V ∗ is a subgroup of (C∗)n. If all elements of G are of the form cαX

α − cβXβ where cα 6= 0
and cβ 6= 0, then V ∗ is a coset of a subgroup of (C∗)n. Note that the converse of the above
does not hold. This is because V ∗ and V may not be equal and therefore I(V ∗) and I(V ) may
not be equal, which means that a Gröbner basis of I(V ) does not give information about group
or coset structure of V ∗. In case V is irreducible, we have that V ∗ = V , e.g., when V is toric
or shifted toric. In order to solve this problem one needs to saturate I with the multiplication
of the variables and then consider the radical of this saturation. Saturation removes the points
that are in V but not in V ∗. The following proposition states this precisely and is the essence of
this section for computations over complex numbers.
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Proposition 7. Let I be an ideal in Q[x1, . . . , xn], let V := V (I) ⊆ Cn be the variety of I, and
let G ⊆ Q[x1, . . . , xn] be a Gröbner basis of the radical of I : 〈x1 . . . xn〉∞. Then V ∗ = ∅ if and
only if G = {1}. If V ∗ 6= ∅, then the following hold:

(i) V ∗ is a subgroup of (C∗)n if and only if all elements of G are of the form Xα −Xβ.

(ii) V ∗ is a coset of a subgroup of (C∗)n if and only if all elements of G are of the form
cαX

α − cβXβ where cα 6= 0 and cβ 6= 0.

Proof. In order to prove the proposition we use [13, Chapter 4, Theorem 10 (iii)], which states
that over an algebraically closed field, we have that V (J1) \ V (J2) = V (J1 : J∞2 ) for ideals J1
and J2. Set J1 = I and J2 = 〈x1 . . . xn〉. Since V ∗ = V (I) \ V (x1 . . . xn), and V is a variety over
C which is algebraically closed, we have that V ∗ = V (I : 〈x1 . . . xn〉∞). Then

I(V ∗) = I(V (I : 〈x1 . . . xn〉∞)) =
√
I : 〈x1 . . . xn〉∞. (4)

V ∗ = ∅ if and only if V (I)\V (x1 . . . xn) = ∅, which is the case if and only if V (I) ⊆ V (x1 . . . xn).
This happens if and only if I(V (I)) = I(V (x1 . . . xn)), if and only if 〈x1, . . . , xn〉 ⊆

√
I, which is

the case if and only if some product of the variables is in I, or equivalently I : 〈x1 . . . xn〉∞ = 〈1〉,
i.e., G = 1.
For proving (i), let V ∗ be a group. By Proposition 6, we have that all the elements of every

Gröbner basis of I(V ∗) are of the form Xα−Xβ . But according to (4) and the assumption that
G is a Gröbner basis of

√
I : 〈x1 . . . xn〉∞, this condition holds.

For the converse, let the elements of G have the desired form. Then V (
√
I : 〈x1 . . . xn〉∞)∗ is

obviously a group. But V (
√
I : 〈x1 . . . xn〉∞)∗ = V (I : 〈x1 . . . xn〉∞)∗ and therefore the latter

is a group. Now using [13, Chapter 4, Theorem 10 (iii)], we have that V (I : 〈x1 . . . xn〉∞)∗ =
(V (I) \ V (x1 . . . xn))∗. One can easily check that the latter is equal to V (I)∗. Hence V ∗ = V (I)∗
is a group and we are done.
The proof of part (ii) is analogous to that of part (i) above.

For the rest of this section, we present the monomial parametrization of a torus and state
propositions that allow one to find the cosets of a torus as irreducible components of a binomial
variety using roots of unity. Readers primarily interested in our algorithms in Section 3 can
safely skip this part.
We start with introducing the monomial parametrisation of shifted toric varieties. Let T ⊆

(K∗)n be a torus of dimensionm, hence T ' (K∗)m, and let x0 ∈ (K∗)n. Following the monomial
parametrisation of a torus given in [21, Corollary 2.6], one can see that he coset x0T of T can
be seen as the image of the following monomial map, which is the monomial parametrisation of
x0T .

φ(x0,A) : (K∗)m → (K∗)n, φ(x0,A)(t1, . . . , tm) =
(

(x0)1
m∏
i=1

tAi1
i , . . . , (x0)n

m∏
i=1

tAin
i

)
,

where A ∈ Zd×nis a rank m matrix. Note that while the matrix A is not unique, it only depends
on T and not on x0. In particular, T is its own coset with respect to the unity 1 := (1, . . . , 1) ∈
(K∗)n. Note that if B ∈ Zd×n is another matrix such that T equals the image of φ(1,B), then B
corresponds to a re-parametrisation of T .
Example 8. V (xy − 1) ∩ (C∗)2 can be seen as the image of φ(1,(1,−1)) : C∗ → (C∗)2, with
φ(1,(1,−1))(t) = (t, t−1) or as the image of φ(1,(−1,1)) : C∗ → (C∗)2, with φ(1,(1,−1))(t) = (t−1, t).

Proposition 9. If G ⊆ (C∗)n is a group and reducible into r ∈ N cosets of a torus T , then there
exist y1, . . . , yr ∈ (C∗)n whose coordinates are roots of unity and G =

⋃r
i=1 yiT is the irreducible

decomposition of G.
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Proof. If G = T , then it is its own coset with respect to 1 and we are done. Otherwise, let
Si = yiT be a proper coset of T and suppose that there is no ξ ∈ (C∗)n such that the coordinates
of ξ are roots of unity and Si = ξT . This means that for all such ξ the image of φ(yi,T ) is
different from the image of φ(ξ,T ). Hence there exists t ∈ (C∗)m such that for all s ∈ (C∗)m one
has φ(yi,T )(t) 6= φ(ξ,T )(s). In other words, there exists t ∈ (C∗)m such that for all s ∈ (C∗)m
one has yitai 6= ξsai , for some i ∈ {1, . . . , n}. As the coordinates of ξ are roots of unity, there
is a natural number N such that ξN = 1. Therefore, for all s ∈ (C∗)m one has yNi tNai 6= sNai ,
for some i ∈ {1, . . . , n}. As the image of φ is invariant under ai 7→ Nai, the cosets yNi T and T
are distinct. By using a similar argument and induction, one can prove that T, yNi T , y2N

i T, . . .
are distinct. As G is closed under multiplication, it contains all these cosets. However this
contradicts the assumption that G is reducible into a torus and a finite number of its cosets.

Remark 10. Let S1 and S2 be two cosets of a torus T ⊆ (C∗)n. The coset S1 is called the complex
conjugate of the coset S2, written S1 = S+

2 , when every point of S1 is the complex conjugate of
a point of S2 and every point of S2 is the complex conjugate of a point of S1. As the complex
conjugate is an automorphism of (C∗)m, S1 is the complex conjugate of S2 if and only if S1
contains the complex conjugate of some point of S2. A pair S1, S2 is called a pair of complex
conjugates if S1 = S+

2 . If G ⊆ (C∗)n is reducible into a finite number of cosets of a torus then
they come in pairs of complex conjugates. To see this, denote the toric component of G by T .
If G = T , then clearly G = G+. Suppose that G contains a proper coset S of T . By Lemma 9
there is a point ξ ∈ S whose coordinates are roots of unity. Then ξξ+ = 1. As G is a group, ξ+

is an element of G. As S = ξT and ξ+T = (ξT )+ = S+, we conclude that S+ is contained in G.

Proposition 11. Let P = (X/ξ)u − (X/ξ)v ∈ C[X] be a non-zero irreducible polynomial, where
the coordinates of ξ ∈ (C∗)n are roots of unity. Then for all i in N there exist gi in C[X] and
αi, βi in Nn such that giP = Xiαi −Xiβi .

Proof. Note that P = (Xu − ξu−vXv)/ξu. As the coordinates of ξ are roots of unity, γ = ξu−v

is also a root of unity. Let m be the smallest positive integer such that γm = 1. As Um =
{γ, γ2, . . . , γm} is a group of roots of unity of order m, it is clear that

(Xu − γXv)(Xu − γ2Xv) · · · (Xu − γmXv) = (Xmu −Xmv).

Hence one can take

g1 = ξu(Xu − γ2Xv)(Xu − γ3Xv) . . . (Xu − γmXv).

Substituting Um with the group Umi, i.e., the group of roots of unity of order mi, and following
the steps for constructing g1 accordingly, one can construct gi for all i ≥ 2.

3. Algorithmic Classification of Biomodels
We want to apply our concept of shifted toricity to biomodels focusing on the BioModels4 repos-
itory of mathematical models of biological and biomedical systems [7]. Technically, our source
is ODEbase5 providing pre-processed versions for use in symbolic computation. From there we
consider all models where the vector field of the ODE is polynomial over Q after application of
certain SBML-specific rules and substitution of parameter values. This amounts to a total of
129 models considered in this article.

4https://www.ebi.ac.uk/biomodels/
5http://odebase.cs.uni-bonn.de/
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Following a convention often used in publications on chemical reaction network theory in
the context of symbolic computation, ODEbase replaces names of species concentrations by
more abstract names xi using numbers as indices. With the application of the above-mentioned
SMBL-rules some of those xi vanish in the ODEbase toolchain. We therefore consider, more
abstractly, ordered sets X of variables, tacitly assuming that the order establishes a mapping
between indeterminates in Q[X] and coordinates in K |X|. As a matter of fact, the variables will
also vanish during our own algorithms discussed throughout this section. The following example
illustrates this.
Example 12 (BIOMD0000000198). Consider the following system in Q[x2, . . . , x10]:

F = {−350x2 + 800x3, 350x2 − 1650x3, 4250x3 − 100x4 + x5, 100x4 − x5,

− 350x6 + 800x7, 350x6 − 1650x7, 1700x7 − 5x8 + 50x9, x10 + 125x8 − 1330x9,−x10 + 80x9}.

From its Gröbner basis G = {x2, x6, x5−100x4, 8x8−x10, x7, x3,−x10+80x9} we can read off that
for every point in VC(F ) ⊆ C9, e.g., the x2-coordinate must be 0. It follows that VC(F )∗ = ∅.
Geometrically, VC(F ) lives in C5 with coordinates x4, x5, x8, x9, x10. Thinking about toricity
as a geometric notion, it makes sense to study the variety as an object in that lower dimensional
space. Hence, consider

Ĝ = G \ {x2, x3, x6, x7} = {x5 − 100x4, 8x8 − x10,−x10 + 80x9} ⊆ Q[x4, x5, x8, x9, x10].

It turns out that VC(Ĝ) is shifted toric in C5.

Definition 13 (Maximal Projected Subset of Variables). Let K ∈ {R,C}, let X be an ordered
set of variables, and let VK be a variety in K |X|. There exists a unique maximal subset X̂ ⊆ X,
depending on K, such that for all x ∈ X̂ there exists a ∈ VK(F ) with x-coordinate different from
0. We call X̂ the maximal projected subset.

The maximal projected subset X̂ gives us coordinates for the highest dimensional subspace
K |X̂|, where the variety VK does not entirely vanish in any coordinate. We consider this a
canonical choice for checking shifted toricity. When VK is given as VK(F ) for F ⊆ Q[X], then
we define F̂ = F ∩Q[X̂], as we did with the Gröbner basis G in Example 12. Note that VK(F̂ )∗
can still be empty in K |X̂|.
The principle domain of interest for us is R-space, where, e.g., concentrations of species are

located in the interior of the first orthant. In the literature there has been considerable attention
to C-space. We therefore start our algorithmic considerations over C in Subsection 3.1, and then
turn to R in Subsection 3.2.
In Example 12 we could conclude that VC(F̂ )∗ is shifted toric because F̂ consists of binomials

of the characteristic shape according to Proposition 7, and one can easily see from its linearity
that it generates a prime ideal over C. As prime ideal decomposition is related to polynomial
factorization, decomposition or even primeness tests over our fields C and R of interest are
not well supported in off-the-shelf computer algebra systems. In our algorithms we therefore
limit ourselves to the properties “group” and “coset” rather than “toric” and “shifted toric”.
Nevertheless, we will consider prime decompositions over Q, which are well supported in software
and provide at least partial decompositions over C and R.
Example 14 (Comparison of V ∗C with V ∗R ). For F1 = 〈x2 +2〉, F2 = 〈(x2−1)(x2 +2)〉 the following
holds:

(i) VC(F1)∗ = {i
√

2,−i
√

2} is a coset in C∗, because (−i
√

2)−1VC(F1)∗ = {1,−1} is a group.
In contrast, VR(F1)∗ = ∅ is not a coset in R∗.
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(ii) VC(F2)∗ = {1,−1, i
√

2,−i
√

2} is a coset in C∗ if and only if it is group, due to 1 ∈ VC(F2)∗.
This is not the case because it is not closed under multiplication: (i

√
2)(−i

√
2) = 2 /∈

VC(F2)∗. In contrast, VR(F2)∗ = {1,−1} is a group.

3.1. Classification over C
Our methods over C are, naturally, based on Gröbner bases [6, 22, 23], for which we rely on the
commercial computer algebra system Maple. We generally leave it to Maple to find a good term
order. Our classifications hold over any algebraically closed extension field of the coefficient field
Q, including C as well as, e.g., the countable algebraic closure of Q.
Algorithm 1 recognizes for a given ideal basis F whether VC(F )∗ is a coset.

Algorithm 1 ProjectAndClassifyC
Input: 1. X, a finite ordered set of variables; 2. F ⊆ Q[X] finite and non-empty
Output: 1. X̂ ⊆ X; 2. γ ∈ {G, C, O, X, g, c, o, x}

X̂ is the unique maximal subset of X with respect to VC(F ). The letter γ classifies VC(F )∗
in X̂-space, using upper case when X̂ = X:
G/g – VC(F )∗ is a group; C/c – VC(F )∗ is a proper coset; O/o – VC(F )∗ = ∅; X/x else.

1: G := GroebnerBasis(F )
2: X ′ := G ∩X
3: X̂ := X \X ′
4: Ĝ := G \X ′ . 〈∅〉 = 〈0〉
5: G̃ := Radical(Saturate(Ĝ,

∏
X̂)) . G̃ is a Gröbner basis

6: γ := ClassifyC(X̂, G̃)
7: if X̂ 6= X then
8: convert γ to a lower case letter
9: end if

10: return X̂, γ

In line 1 we compute a Gröbner basis G of F .

Lemma 15. Let F ⊆ Q[X], and let G ⊆ Q[X] be a reduced Gröbner basis of F . Denote by
vars(F ) and vars(G) the variables occurring in polynomials in F and G, respectively. Then
vars(G) = vars(F ).

Proof. It is clear that vars(G) ⊆ vars(F ). Assume for a contradiction that there is x ∈ vars(F ) \
vars(G). Then x occurs in some f ∈ F . It follows that f is irreducible modulo G, and therefore
G is not a Gröbner basis.

In line 2, the variables X ′ occurring as elements of G are exactly those that must be zero for
all points in VC(F ). Removing X ′ from X in line 3 yields the unique maximal projected subset
X̂ of X according to Definition 13. Removing X ′ from G in line 4 is equivalent to plugging 0
into all X ′ in G, which in turn realizes the projection of VC(F ) = VC(G) into X̂-space. Note that
we follow the convention that the empty set is a generator of the trivial ideal [2, Definition 1.36].
In line 5 we obtain G̃ by saturating Ĝ and subsequently taking the radical. In line 6 we call
Algorithm 2 in order to apply Proposition 7 with I = 〈Ĝ〉 and G = G̃.

In line 1 of Algorithm 2, if X̂ = ∅, then we are in zero-dimensional C-space and certainly
VC(Ĝ)∗ = ∅. Otherwise G̃ = {1} is an equivalent criterion for VC(Ĝ)∗ = ∅ by Proposition 7.
From line 3 on we know that VC(Ĝ)∗ 6= ∅ and apply in line 3 and line 5 the criteria from part
(i) and (ii) of Proposition 7, respectively. In the negative case we return X in line 8.
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Algorithm 2 ClassifyC

Input: 1. X̂, a finite ordered set of variables; 2. G̃ ⊆ Q[X̂], a Gröbner basis of a saturated
radical ideal

Output: γ ∈ {G, C, O, X}
1: if X̂ = ∅ or G̃ = {1} then
2: return O
3: else if all elements of G̃ are of the form X̂α − X̂β with α, β ∈ Nm then
4: return G
5: else if all elements of G̃ are of the form cαX̂

α− cβX̂β with α, β ∈ Nm, cα 6= 0, cβ 6= 0 then
6: return C
7: else
8: return X
9: end if

This takes us back to line 7 of Algorithm 1. For convenience, we patch the classification letter
γ from upper case to lower case when proper projection has taken place. That information could
be also reconstructed by comparing the variables X of the input F with the unique maximal
subset X̂ of X, which is returned in line 10 along with γ.
Example 16 (BIOMD0000000519). Consider F = {f1, f2, f3} ⊆ Q[X], where X = {x1, x2, x3}:

f1 = − 110569195060524661790966049x2
1 − 110569195060524661790966049x1x2

− 110569195060524661790966049x1x3 + 8268303407262959414915925880x1,

f2 = − 39340519602534770292542037060x2
1 − 64716470904160708181625699581x1x2

− 39340519602534770292542037060x1x3 + 4720862352304172435105044447200x1

− 25375951301625937889083662521x2
2 − 25375951301625937889083662521x2x3

+ 1783712878395505546690039502520x2,

f3 = − 40542202233642354036972112493x1x2 − 40542202233642354036972112493x2
2

− 40542202233642354036972112493x2x3 + 4865064268037082484436653499160x2

− 1101385347722460000000000000000x3.

We obtain X̂ = X and Ĝ = G = {ĝ1, . . . , ĝ4} with, using approximate coefficients,

ĝ1 = 5.72× 1041x3 − 1.05× 1042x2 + 1.47× 1042x1,

ĝ2 = 3.63× 1080x2
1 − 6.37× 1080x1,

ĝ3 = 8.89× 1067x1x2 − 2.44× 1069x1,

ĝ4 = 2.34× 10111x2
2 − 9.39× 10112x1 − 5.82× 10112x2.

Notice that g4 is not binomial. After saturation we obtain G̃ = {g̃1, g̃2, g̃3} with

g̃1 = ĝ2, g̃2 = ĝ3, g̃3 = 2.66× 1092x3 − 1.21× 1094,

which is classified as γ = C.
In Appendix A.1 we discuss practical aspects of our implementation and give in Table 1

classification results from applying Algorithm 1 to the 129 models introduced at the beginning of
this section. For our discussion here we note that our algorithm terminates within a time limit
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of 6 hours per model on 104 out of the 129 models. We obtain 2 G, 20 C, and 6 c, which can be
summarized as VC(G̃)∗ forming a coset. Furthermore we have 4 O and 42 o, i.e., VC(G̃)∗ = ∅.
The rest is 29 X and one single x. In terms of percentages of the 104 successful computations
this yields the following picture:

coset

26.9%empty
44.2%

We are now going to turn to prime decompositions over Q of the generating ideals F of our
varieties VC(F ). Recall that shifted toricity requires, in addition to the coset structure of VC(F )∗,
irreducibility of VC(F ), which in turn corresponds to prime decompositions of F even over C.
From that point of view, our decompositions considered here are only a heuristic step into the
right direction. On the other hand, the following example suggests that beyond the irreducibility
issue, prime decompositions over Q can improve our hit rate on cosets.
Example 17 (BIOMD0000000359). Consider F ⊆ Q[X], where X = {x1, . . . , x7, x9}:

F = {−125x1x2 − 125x1x5 − 11x1x7 + 19250x3 + 19250x4,−5x1x2 + 20x3x7 + 770x3,

5x1x2 − 20x3x7 − 1190x3, 250x1x5 − 300x4x6 + 21000x3 − 38500x4 + x9,

− 2500x1x5 − 27x5x6 + 385000x4 + 10x7,−3000x4x6 − 27x5x6 + 10x7 + 10x9,

− 220x1x7 − 10000x3x7 + 27x5x6 − 10x7, 11x1x7, 1000x3x7 + 300x4x6 − x9}.

Applying Algorithm 1 to X and F yields X̂ = {x1, x2, x4, . . . , x7}, Ĝ = {x1x7, x4x7, x1x5 −
154x4, x1x2, x4x6, 27x5x6 − 10x7, x2x4}, and the saturated radical basis G̃ = {1}. The classifi-
cation result is X̂ together with γ = o.
The following is a prime decomposition of F over Q:

P = ({x1, x3, x4, x9,−27x5x6 + 10x7}, {x1, x3, x4, x5, x7, x9}, {x1, x3, x4, x6, x7, x9},
{x2, x3, x4, x5, x7, x9}, {x2, x3, x6, x7, x9, x1x5 − 154x4}).

Projection of every individual prime component yields respective maximal projected subsets of
variables X̂ = ({x5, x6, x7},∅,∅,∅, {x1, x4, x5}) and Gröbner bases

G̃ = Ĝ = ({−27x5x6 + 10x7}, {0}, {0}, {0}, {x1x5 − 154x4}),

which are already saturated. Application of Algorithm 2 to pairs of elements of X̂ and G̃ yields
Γ = (c, o, o, o, c). This tells us that VC(F )∗ has two components, which live in different 3-
dimensional subspaces of C8. Both of them are cosets.
Algorithm 3 formalizes the approach outlined in Example 17.
It starts with the computation of a prime decomposition in line 1. We have

k⋃
i=1

VC(Pi) = VC(F ) and
k⋂
i=1
〈Pi〉 = 〈F 〉.

Note that the obtained prime ideals 〈Pi〉 are also radical.
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Algorithm 3 DecomposeProjectAndClassifyC
Input: 1. X, a finite ordered set of variables; 2. F ⊆ Q[X] finite and non-empty
Output: 1. P ∈ ℘(Q[X])k; 2. X̂ ∈ ℘(X)k; 3. Γ ∈ {G, C, O, X, g, c, o, x}k

P = (P1, . . . , Pk) are Gröbner bases of a prime decomposition over Q of 〈F 〉.
In X̂ = (X̂1, . . . , X̂k), Xi is the unique maximal subset of X with respect to VC(Pi).
In Γ = (γ1, . . . , γk), the letter γi classifies VC(Pi)∗ in X̂i-space, using upper case when
X̂i = X:
G/g – VC(Pi)∗ is a group; C/c – VC(Pi)∗ is a proper coset; O/o – VC(Pi)∗ = ∅; X/x else.

1: P = (P1, . . . , Pk) := PrimeDecompositionQ(F ) . P1, . . . , Pk are Gröbner bases
2: for i = 1, . . . , k do
3: X ′i := Pi ∩X
4: X̂i := Xi \X ′i
5: P̂i := Pi \X ′i . 〈∅〉 = 〈0〉
6: P̃i := Saturate(P̂i,

∏
X̂i) . P̃i is a Gröbner basis; the product runs over the set X̂i

7: γi := ClassifyC(X̂i, P̃i) . call Algorithm 2
8: if X̂i 6= X then
9: convert γi to a lower case letter

10: end if
11: end for
12: return P, (X̂1, . . . , X̂k), (γ1, . . . , γk)

Lemma 18. Let I ⊆ Q[X] be a prime ideal. Then I is a radical ideal.

Proof. Let fs ∈ I. We show by induction on s that f ∈ I. If s = 0, then we are done. Otherwise
consider fs = ffs−1 ∈ I. Since I is prime, we have f ∈ I or fs−1 ∈ I. In the latter case, f ∈ I
by the induction hypothesis.

In lines 3–10, Algorithm 3 follows in a for-loop essentially Algorithm 1 for each prime compo-
nent basis Pi. In line 5 we note that 〈P̂i〉 is prime by the following lemma.

Lemma 19. Let G ⊆ Q[X] be a reduced Gröbner basis of a prime ideal 〈G〉, and let x ∈ G∩X.
Then 〈G \ {x}〉 is prime.

Proof. Notice that 〈G \ {x}〉 is the elimination ideal 〈G〉x = 〈G〉 ∩Q[X \ {x}]. Let fg ∈ 〈G〉x ⊆
〈G〉. Then w.l.o.g. f ∈ 〈G〉, because 〈G〉 is prime. Since x does not occur in fg, it does not
occur in f either. Hence f ∈ 〈G〉x.

It follows that 〈P̂i〉 is also radical by Lemma 18. When computing P̃i in line 6 primality is
again preserved, as the following lemma shows.

Lemma 20. Let I ⊆ Q[X] be a prime ideal, and let f ∈ Q[X]. Then I : 〈f〉∞ is a prime ideal.

Proof. Recall that I ⊆ I : 〈f〉∞. Let gh ∈ I : 〈f〉∞. We must show that g ∈ I : 〈f〉∞ or
h ∈ I : 〈f〉∞. By definition there is s ∈ N such that fsgh ∈ I. If fs ∈ I, then I : 〈f〉∞ = 〈1〉,
which is prime. Otherwise gh ∈ I and therefore g ∈ I ⊆ I : 〈f〉∞ or h ∈ I ⊆ I : 〈f〉∞.

We once more call Lemma 18 to obtain that 〈P̃i〉 is also radical. Therefore, the radical ideal
computation in line 5 of Algorithm 1 is not necessary here.
In Appendix A.2 we discuss practical aspects of our computations and give in Table 3 classifi-

cation results using Algorithm 3 on the 129 models introduced at the beginning of this section.
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We succeed on 105 out of the 129 models within a time limit of 6 hours per model. This yields
3426 prime components to test altogether. We obtain 2 G, 22 C, and 1085 c, which can be
summarized as VC(P̃i)∗ forming a coset. Furthermore, we have 2242 o, i.e., VC(P̃i)∗ = ∅. The
rest is only 34 X and 41 x. Again we visualize these results in terms of percentages of the total
of 3426 prime components:

coset

32.4%

empty

65.4%

Recall that our selection from the BioModels repository presented here is essentially complete
with respect to polynomial examples. This comes with the disadvantage that our data is some-
what dominated by BIOMD0000000281, which contributes 1008 c and 2136 o. We have verified
that the ideal dimensions for the 1008 c components are positive, pointing at non-trivial coset
structures in contrast to isolated points. For the sake of scientific rigor we also present the
statistics without BIOMD0000000281:

coset

35.8%

empty
37.6%

3.2. Classification over R
Our primary tool over R is real quantifier elimination [55, 10, 11, 58, 34, 59]. We use imple-
mentations by the fourth author and his students [18] in Redlog [17, 52], which is integrated
with the open-source computer algebra system Reduce [38, 39]. Our strategy is to apply virtual
substitution methods [59, 44, 43] for quantifier elimination within the relevant degree bounds
and fall back into partial cylindrical algebraic decomposition [16, 50] with subproblems where
this is not possible. Our results hold over any real-closed field, including R as well as, e.g, the
countable field of real algebraic numbers.
Algorithm 4 is the real counterpart to Algorithm 1 in Subsection 3.1.
In line 4 we construct for each xi ∈ X the first-order LOR-formula, where LOR denotes the

language of ordered rings:
ψ =̇ ∀

( ∧
f∈F̂

f = 0 −→ xi = 0
)
,

The underlined universal quantifier denotes the universal closure, which universally quantifies
all variables freely occurring within its scope. Our formula ψ straightforwardly states that for
all points in VR(F̂ ) with coordinates xj ∈ X, which occur as variables in the polynomials f ∈ F̂ ,
the specific coordinate xi is zero. The if-condition R |= ψ expresses that R is a model of this
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Algorithm 4 ProjectAndClassifyR
Input: 1. X, a finite ordered set of variables; 2. F ⊆ Q[X] finite and non-empty
Output: 1. X̂ ⊆ X; 2. γ ∈ {G, C, O, X, g, c, o, x}

X̂ is the unique maximal subset of X with respect to VR(F ). The letter γ classifies VR(F )∗
in X̂-space, using upper case when X̂ = X:
G/g – VR(F )∗ is a group; C/c – VR(F )∗ is a proper coset; O/o – VR(F )∗ = ∅; X/x else.

1: X̂ := X
2: F̂ := F
3: for xi ∈ X do
4: if R |= ∀(

∧
f∈F̂ f = 0 −→ xi = 0) then

5: X̂ := X̂ \ {xi}
6: F̂ := F̂ [xi/0]
7: end if
8: end for
9: γ := ClassifyR(X̂, F̂ )

10: if X̂ 6= X then
11: convert γ to a lower case letter
12: end if
13: return X̂, γ

formula, meaning that the formula holds in R or, equivalently, in the model class of real closed
fields.
A real quantifier elimination procedure computes for any given first-order LOR-formula ϕ an

equivalent quantifier-free LOR-formula ϕ′, where the variables in ϕ′ are a subset of the variables
freely occurring in ϕ. Since ψ contains no free occurrences of variables, the corresponding ψ′
will be variable-free and can be easily simplified to either true or false. In the former case the
if-condition holds, in the latter case it does not.
When some xi is identified to vanish in all points of VR(F̂ ) it is removed from X̂ in line 5.

Accordingly, xi is set to zero within F̂ in line 6, where [xi/0] is a postfix operator substituting
the term 0 for the variable xi in its argument F̂ . From line 9 on, Algorithm 4 proceeds like its
complex counterpart Algorithm 1 but using Algorithm 5 for real classification.
In line 1 we define Φ(t1, . . . , tn) to generate a first order LOR-formula which states that

(t1, . . . , tn) ∈ VR(F̂ ), where the ti are LOR-terms. In lines 2–4 we handle the case VR(F̂ )∗ = ∅.
Hence in line 5 we know VR(F̂ )∗ 6= ∅. We are going to use the following characterization of
cosets.

Proposition 21. Let K∗ be a multiplicative group. Let C ⊆ (K∗)n, C 6= ∅. Then the following
are equivalent:

(i) C is a coset;

(ii) there exists g0 ∈ (K∗)n such that g−1
0 C is a group;

(iii) there exists g0 ∈ C such that g−1
0 C is a group;

(iv) for all g ∈ C we have that g−1C is a group.

Proof. The equivalence between (i) and (ii) is the definition of a coset. When (ii) holds, then
C = g0G for a group G, hence g0 · 1 ∈ C, which shows (iii). The implication from (iii) to (ii)

15



Algorithm 5 ClassifyR

Input: 1. X̂, a finite ordered set of variables, w.l.o.g. X̂ = {x1, . . . , xn}; 2. F̂ ⊆ Q[X̂] finite
Output: γ ∈ {G, C, O, X}

1: define operator Φ(t1, . . . , tn) := (
∧
f∈F̂ f = 0)[x1/t1, . . . , xn/tn]

2: if X̂ = ∅ or R |6= ∃(
∧n
i=1 xi 6= 0 ∧ Φ(x1, . . . , xn)) then

3: return O
4: end if
5: τinv := ∀(

∧n
i=1 gi 6= 0 ∧

∧n
i=1 xi 6= 0 ∧

Φ(g1, . . . , gn) ∧ Φ(g1x1, . . . , gnxn) −→ Φ(g1x
−1
1 , . . . , gnx

−1
n )

6: if R |6= τinv then
7: return X
8: end if
9: τmult := ∀(

∧n
i=1 gi 6= 0 ∧

∧n
i=1 xi 6= 0 ∧

∧n
y=1 yi 6= 0 ∧ Φ(g1, . . . , gn) ∧

Φ(g1x1, . . . , gnxn) ∧ Φ(g1y1, . . . , gnyn) −→ Φ(g1x1y1, . . . , gnxnyn)
10: if R |6= τmult then
11: return X
12: end if
13: τgroup := Φ(1, . . . , 1)
14: if R |= τgroup then
15: return G
16: else
17: return C
18: end if

is obvious, and so is the implication from (iv) to (iii). It remains to be shown that (iii) implies
(iv).
Assume that g0 ∈ C and G = g−1

0 C is a group; equivalently C = g0G. Let g ∈ C. Then there
is y ∈ G such that g = g0y. It follows that g−1C = (g0y)−1C = y−1g−1

0 C = y−1G = G.

Proposition 21(iv) yields a first-order characterization for VR(F̂ )∗ to be a coset, which could
be informally stated as follows:

∀g, x, y ∈ (R∗)n: g ∈ VR(F̂ ) ∧ gx ∈ VR(F̂ ) ∧ gy ∈ VR(F̂ )⇒ gx−1 ∈ VR(F̂ ) ∧ gxy ∈ VR(F̂ ). (5)

As a first-order LOR-formula this yields:

τ =̇ ∀
(

n∧
i=1

gi 6= 0 ∧
n∧
i=1

xi 6= 0 ∧
n∧
y=1

yi 6= 0 ∧ Φ(g1, . . . , gn) ∧ Φ(g1x1, . . . , gnxn) ∧

Φ(g1y1, . . . , gnyn) −→ Φ(g1x
−1
1 , . . . , gnx

−1
n ) ∧ Φ(g1x1y1, . . . , gnxnyn)

)
.

In the equations originating from Φ(g1x
−1
1 , . . . , gnx

−1
n ) principal denominators containing vari-

ables from x1, . . . , xn can be equivalently dropped, because the left hand side of the implication
requires those variables to be different from zero. The first-order LOR-formula τ can be equiv-
alently transformed into τinv ∧ τmult with τinv and τmult as in line 5 and line 9 of Algorithm 5,
respectively. Therefore it is correct to exit with γ = X in line 7 or 11 when either part does not
hold. This splitting into subproblems has two advantages. First, separate quantifier eliminations
on smaller problems are more efficient. Second, when τinv does not hold in line 6, then τmult need
not be considered at all.
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When reaching line 13, we know that VR(F̂ )∗ is a coset and apply the following corollary, which
concludes our discussion of Algorithm 5.

Corollary 22. Let C be a coset. Then C is group if and only if 1 ∈ C.

Proof. If 1 ∈ C, then C = 1−1C is a group by Proposition 21(iv). The converse implication
follows from the definition of a group.

Remark 23. As an alternative to (5), Proposition 21(iii) yields the following characterization of
cosets, which might appear more natural because it is closer to the original definition of cosets:

∃g ∈ (R∗)n ∀x, y ∈ (R∗)n: gx ∈ VR(F̂ ) ∧ gy ∈ VR(F̂ )⇒ gx−1 ∈ VR(F̂ ) ∧ gxy ∈ VR(F̂ ). (6)

The first difference to observe is that in (6) in contrast to (5) there is quantifier alternation
from ∃ to ∀. The number of quantifier alternations is known to be a critical parameter for
asymptotic complexity of the real quantifier elimination problem [34, 58]. Furthermore, in the
presence of the leading existential quantifier prohibits our splitting into two independent smaller
problems. Experimental computations on the complete dataset considered here have confirmed
that formulation (5) is clearly preferable.
Example 24 (BIOMD0000000159). Consider F ⊆ Q[X], where X = {x1, . . . , x3}:

F = {−32x1x2 + 3,−x2 + x3, 4x1 − x3}.

In lines 3–8 of Algorithm 4 we consecutively apply real quantifier elimination to the following
formulas:

∀x1∀x2∀x3(−32x1x2 + 3 = 0 ∧ −x2 + x3 = 0 ∧ 4x1 − x3 = 0 −→ xi = 0), i = 1, . . . , 3.

Neither of them holds in R so that in line 9 we enter Algorithm 5 with X̂ = X and F̂ = F .
In line 2 of Algorithm 5 we test

∃x1∃x2∃x3(x1 6= 0 ∧ x2 6= 0 ∧ x3 6= 0 ∧ −32x1x2 + 3 = 0 ∧ −x2 + x3 = 0 ∧ 4x1 − x3 = 0). (7)

Real quantifier elimination confirms that (7) holds in R and even gives us a witness [44, 43]

(x1, x2, x3) =
( √

3
8
√

2 ,
√

3
2
√

2 ,
√

3
2
√

2

)
∈ VR(F )∗. (8)

Therefore we set up τinv in line 5 as follows:

τinv =̇ ∀g1∀g2∀g3∀x1∀x2∀x3(g1 = 0 ∧ g2 = 0 ∧ g3 = 0 ∧ x1 = 0 ∧ x2 = 0 ∧ x3 = 0
∧ −32g1g2 + 3 = 0 ∧ −g2 + g3 = 0 ∧ 4g1 − g3 = 0

∧ −32g1x1g2x2 + 3 = 0 ∧ −g2x2 + g3x3 = 0 ∧ 4g1x1 − g3x3 = 0
−→ −32g1g2 + 3x1x2 = 0 ∧ −g2x3 + g3x2 = 0 ∧ 4g1x3 − g3x1 = 0). (9)

Notice that in the three equations in last line of (9) we have equivalently dropped denominators
x1x2, x2x3, and x1x3, respectively. The inequalities for x1, . . . , x3 in first line of (9) ensure that
those denominators do not vanish. In line 10, quantifier elimination confirms that τinv holds in
R, and so does τmult in line 10. Thus we reach line 13 and set up the following formula to test
whether our coset F̂ is even a group:

−32 + 3 = 0 ∧ −1 + 1 = 0 ∧ 4− 1 = 0.

This is obviously not the case. Algorithm 5 returns ‘C’ in line 17, and Algorithm 4 finally returns
{x1, x2, x3} and ‘C’ in line 13.
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In Appendix A.1 we discuss practical aspects of our implementation and give in Table 1
classification results from applying Algorithm 1 to the 129 models introduced at the beginning
of this section. For our discussion here we note that our algorithm terminates within a time
limit of 6 hours per model on 94 out of the 129 models. We obtain 20 C and 6 c, which can be
summarized as VC(G̃)∗ forming a coset. Furthermore we have 4 O and 42 o, i.e., VC(G̃)∗ = ∅.
The rest is 21 X and one single x. In terms of percentages of the 94 successful computations this
gives the following picture:

coset

27.7%

empty
48.9%

In analogy to Algorithm 3 in Subsection 3.1, Algorithm 6 applies prime decompositions over
Q also in the real case.

Algorithm 6 DecomposeProjectAndClassifyR
Input: 1. X, a finite ordered set of variables; 2. F ⊆ Q[X] finite and non-empty
Output: 1. P ∈ ℘(Q[X])k; 2. X̂ ∈ ℘(X)k; 3. Γ ∈ {G, C, O, X, g, c, o, x}k

P = (P1, . . . , Pk) are Gröbner bases of a prime decomposition over Q of 〈F 〉.
In X̂ = (X̂1, . . . , X̂k), Xi is the unique maximal subset of X with respect to VR(Pi).
In Γ = (γ1, . . . , γk), the letter γi classifies VR(Pi)∗ in X̂i-space, using upper case when
X̂i = X:
G/g – VR(Pi)∗ is a group; C/c – VR(Pi)∗ is a proper coset; O/o – VR(Pi)∗ = ∅; X/x else.

1: P = (P1, . . . , Pk) := PrimeDecompositionQ(F )
2: for i = 1, . . . , k do
3: X̂i, γi := ProjectAndClassifyR(X,Pi)
4: end for
5: return P, (X̂1, . . . , X̂k), (γ1, . . . , γk)

It starts with the computation of a prime decomposition in line 1. We then have

k⋃
i=1

VR(Pi) = VR(F ) and R |=
k∨
i=1

∧
p∈Pi

p = 0←→
∧
f∈F

f = 0.

In lines 3–4 we apply Algorithm 4 to each component and collect the results.
In Appendix A.2 we discuss practical aspects of our computations and give in Table 3 classifi-

cation results using Algorithm 6 on the 129 models introduced at the beginning of this section.
We succeed on 88 out of the 129 models within a time limit of 6 hours per model. This yields
3390 prime components to test altogether. We obtain 2 G, 22 C, and 1083 c, which can be sum-
marized as VC(P̃i)∗ forming a coset. Furthermore, we have 7 O and 2232 o, i.e., VC(P̃i)∗ = ∅.
The rest is only 18 X and 26 x. In left hand side picture below, we visualize these results in terms
of percentages of the total of 3390 prime components. In the right hand side picture, we see the
corresponding statistics without BIOMD0000000281:
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coset

32.7%

empty

66.0%

coset

40.2%

empty

41.9%

Recall from the discussion at the end of Subsection 3.1 that we consider the left hand side picture
more adequate and add the right hand side one for the sake of scientific rigor.

4. Upper Complexity Bounds
In this section we give asymptotic upper bounds on the worst case complexity of problems
addressed in this paper. In Subsection 4.1 we derive bounds for recognizing toric and shifted
toric varieties over algebraically closed fields of characteristic zero. In Subsection 4.2 we derive
corresponding bounds for toric varieties over real closed fields. Subsection 4.3 finally gives bounds
for the membership problem in subgroups of (Q∗)n, which correspond to binomial varieties.

4.1. Toricity over Algebraically Closed Fields of Characteristic Zero
As mentioned in Section 2, a torus G can be represented as the set of solutions of binomials of
the form xa1i

1 · · ·xani
n = 1, 1 ≤ i ≤ n −m, where aji ∈ Z and m is equal to the dimension of G

and every Gröbner basis of a toric variety G consists only of binomials of the form xb1i
1 · · ·xbni

n −
xc1i

1 · · ·xcni
n where integers bji, cji are non-negative [53].

Let f1, . . . , fk ∈ Z[x1, . . . , xn] and V ⊆ Cn be the algebraic variety of common zeroes of f1,
. . . , fk. We design an algorithm which recognizes whether V is toric. Note that f1, . . . , fk are not
necessary binomials. To estimate the complexity of the algorithm we suppose that deg(fi) ≤ d,
1 ≤ i ≤ k and that the bit-size of each integer coefficient of f1, . . . , fk does not exceed L.
Invoking [8, 33] we first verify whether V is irreducible and V ∗ = V (if this is not true then V is
not toric). The complexity of the algorithms from [8, 33] can be bounded by (Ldn2)O(1). Then
we verify that V ∗ is a group. This holds if and only if we have the following first-order formula
in the theory of algebraically closed fields of characteristic zero:

∀x∀y(x 6= 0 ∧ y 6= 0 ∧
∧
i fi(x) = 0 ∧

∧
i fi(y) = 0 −→

∧
i fi(xy) = 0 ∧

∧
i fi(1/x) = 0). (10)

This can be verified via the algorithm in [9]. The complexity of this step is bounded by (Ldn2)O(1)

as well.
So far, the algorithm has verified whether V is toric. Now we show how to find a system

of binomial equations determining V ∗. In order to do so, in this subsection we find a set of
Laurent binomials determining V ∗ instead of binomials in C[X] whose set of solutions is V .
This is because as it has been shown by Mayr and Meyer in their seminal work, the number of
binomials and their degrees in a Gröbner basis of I(V ) can be double-exponential [45]. Using
the algorithms from [8, 33] one can produce m = dimV coordinates among x1, . . . , xn which
form a transcendental basis of V ∗. Without loss of generality, assume that {x1, . . . , xm} be a
transcendental basis. Fix an integer j, m < j ≤ n and project V ∗ on the space generated by x1,
. . . , xm, xj , which is isomorphic to (C∗)m+1 invoking again [9]. LetW ⊆ (C∗)m+1 be image of the
projection. Due to the choice of the transcendental basis, we have that dimW = m and W is a
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hypersurface. Therefore,W can be determined by a single polynomial h := hj ∈ Z[x1, . . . , xm, xj ]
(c.f. e.g., [51]). Moreover, degW ≤ deg V ∗ ≤ dn; the latter follows from Bezout inequality [51].
The algorithm from [9] constructs h and a generic point of W within the complexity (Ldn2)O(1).
Observe thatW is also a group, hence h can be rewritten as a binomial of the form x

qj1
1 · · ·x

qjm
m ·

x
qj

j − 1 ∈ Z[x±1 , . . . , x±n ] for suitable relatively prime integers qj1, . . . , qjm, qj ∈ Z. Doing so for
every j, m < j ≤ n, the algorithm yields polynomials hj ∈ Z[x1, . . . , xn]. Denote by H ⊆ (C∗)n
the variety given by equations hj , m < j ≤ n. Clearly, V ∗ ⊆ H, dimH = m and H is a group,
therefore, V ∗ is an irreducible component of H. Moreover, H is a binomial variety and hence, V ∗
is its subgroup (of a finite index). In particular, (1, . . . , 1) ∈ V ∗, and every irreducible component
H1 of H has the form H1 = gV ∗ for an arbitrary element g ∈ H1. Moreover, one can choose g
such that its coordinates are roots of unity [36, Remark 3.1, Remark 5.2].
In addition, in order to obtain the Laurent binomials defining V ∗, the algorithm finds a

Z-basis of the intersection Q(Qm+1, . . . , Qn) ∩ Zn of the Q-linear space generated by vectors
Qj = (qj1, . . . , qjm, 0, . . . , 0, qj , 0 . . . , 0), m < j ≤ n with the grid Zn [36, Remark 3.1]. To find
that Z-basis, the algorithm first applies [27, 19] to produce (within polynomial complexity) a
Z-basis Z of the space of integer solutions of the linear system with rows Qj , m < j ≤ n, and
subsequently applies [27, 19] to construct a Z-basis of the linear system with the rows from Z.
Recall from the Definition 4 that for a torus V ∗ ⊆ (C∗)n and a point g ∈ (C∗)n we call gV ∗ a

shifted torus, and gV ∗ ⊆ Cn a shifted toric variety. In particular, every irreducible component
of a binomial variety in (C∗)n is a shifted torus (Proposition 3). One can modify the described
algorithm to test whether an input variety V ⊆ Cn is shifted toric. To this end, pick an arbitrary
point g = (g1, . . . , gn) ∈ V ∗ and test whether g−1V ∗ is a torus. If the latter holds, the algorithm
produces binomial equations for g−1V ∗. Clearly a binomial equation xs1

1 · · ·xsn
n = 1 vanishes on

g−1V ∗ if and only if xs1
1 · · ·xsn

n = gs1
1 · · · gsn

n vanishes on V ∗ .
The following theorem summarizes our algorithm.

Theorem 25. Let f1, . . . , fk ∈ Z[x1, . . . , xn], deg(fi) ≤ d, 1 ≤ i ≤ k with bit-sizes of integer
coefficients of f1, . . . , fk at most L. One can design an algorithm which tests whether the variety
V ⊆ Cn determined by f1, . . . , fk is (shifted) toric. In the positive case, the algorithm yields
a transcendental basis xi1 , . . . , xim , m = dimV of V . It furthermore yields binomial equations
defining V ∗ = V ∩ (C∗)n. Each binomial equation has the form xs1

1 · · ·xsn
n = gs1

1 · · · gsn
n for

all (g1, . . . , gn) ∈ V ∗ and for suitable integers s1, . . . , sn ∈ Z satisfying |si| < O(dn2) . The
complexity of the designed algorithm does not exceed (Ldn2)O(1).

One can extend the algorithm in Theorem 25 so that it takes a reducible variety V and
decomposes V into irreducible components and then tests whether its irreducible components
are toric or shifted toric (following the lines of the algorithm for each irreducible component of
V ∗ separately). Moreover, if the irreducible components of V are exclusively toric and shifted
toric varieties and V ∗ is a group, then the extended algorithm yields the described representation
of V ∗ by means of binomials. The complexity of the extended algorithm is still (Ldn2)O(1).
Our discussion here can be straightforwardly generalized to any algebraically closed field with

characteristic zero. Independently, the algorithm can be generalized to coefficients from a finite
field extension of Q [8, 33].

4.2. Toricity over Real Closed Fields
In this subsection we design an algorithm that recognizes toricity of semi-algebraic set over R.
We refer to [1] for the algorithms in real algebraic geometry. Let R>0 := { z ∈ R | z > 0 } denote
the positive orthant. Keeping the notations from Subsection 4.1 consider the semi-algebraic set
T := {x ∈ (R>0)n | fi(x) ≥ 0, 1 ≤ i ≤ k }. Modify (10) replacing C∗ by R>0 and equalities
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fi = 0 by inequalities fi ≥ 0, respectively. Also keep the first-order formula (10). This formula
can be verified by applying the algorithms from [35]. Clearly, (10) is true if and only if T is a
group (a torus). Thus, assume that (10) is true. Then the image of the coordinate-wise logarithm
map log(T ) ⊆ Rn is a linear subspace. Hence, in particular, T is connected.

First, compute m := dim(T ) and produce m coordinates such that the projection U of T on
m-dimensional space with these coordinates has the full dimension m. Without loss of generality
assume that these coordinates are x1, . . . , xm. Fix j, m < j ≤ n and denote by Uj the projection
of T on the (m+1)-dimensional space with coordinates x1, . . . , xm, xj . Denote by p the projection
map of the latter space along xj onto m-dimensional space with the coordinates x1, . . . , xm.
Then p(Uj) = U . Since dim(Uj) = dim(U) = m, we have that p(log(Uj)) = log(U) = Rm, and
therefore we conclude that any point of U has a unique preimage of p in Uj . Moreover, Uj is
determined by a single binomial-type (analytic) equation of the form

x
tj1
1 · · ·xtjm

m x
tj
j = cj (11)

for some reals tj1, . . . , tjm, tj , cj . Since Uj is a group we get that cj = 1.
On the other hand, applying the algorithm from [1], one can construct the projection p : Uj →

U and conclude that equation (11) is algebraic, thus tj1, . . . , tjm, tj ∈ Z. The algorithm also
yields tj1, . . . , tjm, tj . Note that without loss of generality one can assume that they are relatively
prime, otherwise divide by their greatest common divisor. The complexity of the algorithm is
again (Ldn2)O(1). Doing so for each j, m < j ≤ n, the algorithm yields binomial equations of
the form (11) which determine T uniquely. Similar to subsection 4.1 one can produce a Z-basis
of the intersection of Q-linear space generated by vectors (tj1, . . . , tjm, 0, . . . , 0, tj , 0 . . . , 0) with
the grid Zn. Then any vector (s1, . . . , sn) from this basis provides a binomial Xs1

1 · · ·Xsn
n − 1

that vanishes on T . The above Z-basis need not be constructed, since binomials of the form (11)
already determine T uniquely. We summarize the described algorithm in the following theorem.

Theorem 26. Let f1, . . . , fk ∈ Z[x1, . . . , xn], deg(fi) ≤ d, 1 ≤ i ≤ k with bit-sizes of integer
coefficients of f1, . . . , fk at most L. One can design an algorithm which tests whether the semi-
algebraic set T := {x ∈ (R>0)n | fi(x) ≥ 0, 1 ≤ i ≤ k } is a group (a torus). In the positive case,
the algorithm yields coordinates xi1 , . . . , xim , where m = dim(T ), such that the dimension of
the projection of T on the m-dimensional space with the coordinates xi1 , . . . , xim equals m. It
furthermore yields for each j /∈ {i1, . . . , im} a binomial equation of the form x

tj1
1 · · ·x

tjm
m ·xtjj = 1

which vanishes on T , with relatively prime tj1, . . . , tjm, tj ∈ Z, where |tj1|+ · · ·+ |tjm|+ |tj | ≤
dO(n). The complexity of the algorithm does not exceed (Ldn2)O(1).

Similar to Subsection 4.1, our results here can be generalized to arbitrary real closed field.

4.3. Membership in Binomial Varieties
Let a group G ⊂ (Q∗)n be given by binomial equations xai,1

1 · · ·xai,n
n = 1, 1 ≤ i ≤ k, where

ai,j ∈ Z, |ai,j | ≤ d. Let v = (v1, . . . , vn) ∈ Qn be a point such that the absolute values of the
numerators and denominators of v1, . . . , vn do not exceed M . We design an algorithm which
tests whether v ∈ G. Recall that G is a binomial variety, and it is a toric variety when G is
irreducible.

Theorem 27. There is an algorithm which tests whether a point v belongs to a binomial variety
G with its complexity bounded by

(i) (k · logM · (dn)n)O(1) and by

(ii) (k ·M · n · log d)O(1).
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Proof. Permuting the coordinates, assume without loss of generality that v =
(0, . . . , 0, vs+1, . . . , vn), where vs+1 · · · vn 6= 0. Due to Claim 5.3 in [36], v ∈ G if and only if
there exist a point u = (u1, . . . , us, vs+1, . . . , vn) ∈ G and positive 0 < b1, . . . , bs ∈ Z such that

v = lim
t→0

(u1 · tb1 , . . . , us · tbs , vs+1, . . . , vn) (12)

and for all t 6= 0, i.e., a shift of a one-parametric subgroup, we have that (u1 · tb1 , . . . , us ·
tbs , vs+1, . . . , vn) ∈ G. Then (12) is equivalent to the existence of u ∈ G and a one-parametric
subgroup { (tb1 , . . . , tbs , 1, . . . , 1) | t 6= 0 } ⊆ G. The existence of the latter is equivalent to the
existence of a non-negative vector (b1, . . . , bs, 0, . . . , 0) orthogonal to the vectors (ai,1, . . . , ai,n),
1 ≤ i ≤ k. This can be checked by means of linear programming.
The existence of a point u ∈ G satisfying (12) is equivalent to the existence of non-zero u1,

. . . , us ∈ Q∗ satisfying the binomial equations

u
ai,1
1 · · ·uai,s

s = v
−ai,s+1
s+1 · · · v−ai,n

n , 1 ≤ i ≤ k. (13)

One can apply the algorithm in [37] to this system and transform the k×s submatrix A = (ai,j),
1 ≤ i ≤ k, 1 ≤ j ≤ s to its Smith form. Then solvability of (13) is equivalent to that the
right-hand side of (13) fulfils (at most k) relations of the form∏

1≤i≤k
(v−ai,s+1
s+1 · · · v−ai,n

n )ci = 1 (14)

for some integers ci being suitable minors of matrix A, hence |ci| ≤ (ds)O(s) by Hadamard’s
inequality.
One can verify relations (14) using the binary form of the numerators and denominators of

vs+1, . . . , vn. This leads to the complexity bound (i). Alternatively, one can factorize the
numerators and denominators of vs+1, . . . , vn and execute calculations in terms of exponents of
their prime factors which leads to the complexity bound (ii). This completes the verification of
(12) and the description of the algorithm.

One can extend the complexity bound (i) for vj ∈ Q, 1 ≤ j ≤ n being algebraic numbers. In
this case logM plays the role of the bit-size of the representation of v.

5. Conclusions and Future Work
We have taken a geometric approach to studying steady state varieties, which—besides significant
theoretical results—generated comprehensive empirical data from computations on 129 networks
from BioModels repository. We are not aware of any comparable systematic large scale symbolic
computations on those data in the literature. We were indeed surprised by the success rate of
Gröbner basis and real quantifier elimination techniques with input sizes up to 71 variables. We
find this most encouraging and believe that robust and supported software tools for systems
biology and medicine that include symbolic computation components are not out of reach.
It was important to learn that real methods do not significantly fall behind complex methods

efficiency-wise. After all, chemical reaction network theory takes place in the interior of the
positive first orthant. In a way, our consideration of V ∗ in favor of V here marks a first step in
that direction by looking at points in the variety rather than polynomials in the ideal. Only real
methods allow to go further and, e.g., identify prime components whose varieties reach into the
first orthant.
Our work here gives a number of quite concrete challenges to be considered in subsequent work.

To start with, one must complete the step from “coset” to “shifted toric” in practical software by

22



producing suitable prime decompositions beyond decompositions over Q. As mentioned above,
real methods allow to explicitly refer to the interior of the first orthant, and our framework and
the first-order descriptions we use should be refined in this direction. On the complex side, one
should also test suitable elimination methods with the logic descriptions we developed here.
It is noteworthy that all quantifier elimination problems considered here were decision prob-

lems, even without quantifier alternation. On the one hand, this allows the application of methods
and tools from Satisfiability Modulo Theories Solving. On the other hand, it shows that we are
not yet using the full power of quantifier elimination methods. One could, e.g., leave a subset
of reaction rates parametric and study invariance of shifted toricity under variation of those
reaction rates.
Our input of 129 models considered here is in a way complete: We took all available models

from BioModels/ODEbase for which we could straightforwardly produce polynomial vector fields.
So far we did not consider systems with rational vector fields. Such systems come with some
interesting challenges on the algebraic side.
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A. Computations on 129 Models from the BioModels
Repository

We conducted our computations on a 2.40 GHz Intel Xeon E5-4640 with 512 GB RAM and
32 physical cores providing 64 CPUs via hyper-threading. For parallelization of the jobs for the
individual models we used GNU Parallel [54]. Results are stored in an Sqlite3 database file. That
database contains significantly more information than can be presented here in print. Beyond
our own computations the database imports data from BioModels and ODEbase, so that our
models and the history of our input can be reliably tracked. For instance, we store the mappings
between our variables and the original species names and even the original SBML file with each
model.
Among the information imported from ODEbase there is a binary flag indicating whether or

not a model is has mass action kinetics according to the following criterion [26, Section 2.1.2].

Definition 28 (Mass Action Test). A system is considered a mass action system when the
kinetic law is made up of the product of the concentrations of the reactant species to the power
of their respective stoichiometry times a constant

A.1. Classifications of the Original Systems
We start with the classification over C and R of the original, not decomposed, systems using
algorithms from Subsection 3.1 and Subsection 3.2, respectively. For comments on the tables
from a theoretical point of view compare those sections. Beyond the data presented here we
generally save the sets X, X̂. Furthermore, over C we save the computed Gröbner bases G, Ĝ,
G̃ and their term orders, and over R we save witnesses for V ∗R 6= ∅.

Table 1: Applying ProjectAndClassifyK over C and R. Model numbers nnn stand for
BIOMD0000000nnn. “m/a” indicates mass action kinetics (Definition 28). |X| and |X̂|
are numbers of variables before and after projection, respectively. γ is G for group, C fo
coset, O for empty set, and X else; lower case letters indicate projection. Time columns
give total CPU times in seconds or “⊥” for a timeout with a limit of 6 hours per model.

Algorithm 1 (C) Algorithm 4 (R)
model m/a |X| |X̂| γ time (s) |X| |X̂| γ time (s)

001 1 12 12 C 10.32 12 12 C 3.37
002 1 ⊥ ⊥
009 0 22 22 C 85.96 22 22 C 21.26
011 0 22 22 C 150.21 22 22 C 11.20
026 1 11 11 X 3.99 11 11 X 1.12
028 1 16 16 X 66.60 ⊥
030 1 18 18 X 57.84 ⊥
035 0 9 9 X 21.11 9 9 X 0.25
038 0 ⊥ ⊥
040 0 3 3 X 4.65 3 3 X 0.05
046 0 ⊥ ⊥
050 0 9 0 o 0.09 9 0 o 0.02
052 0 6 0 o 0.09 6 0 o 0.01
057 0 6 6 C 1.53 6 6 C 0.11
069 0 10 10 X 14.09 ⊥
072 0 7 3 o 0.63 7 3 o 0.03
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Table 1: Applying ProjectAndClassifyK over C and R (continued)

Algorithm 1 (C) Algorithm 4 (R)
model m/a |X| |X̂| γ time (s) |X| |X̂| γ time (s)

077 0 7 7 C 5.82 7 7 C 0.14
080 0 10 8 o 3.72 10 8 o 0.09
082 0 10 8 o 2.44 10 8 o 0.14
085 0 ⊥ ⊥
086 0 ⊥ ⊥
091 0 14 0 o 0.05 14 0 o 0.03
092 0 3 3 C 1.87 3 3 C 0.04
099 0 7 7 C 2.48 7 7 C 0.34
101 1 6 6 X 1.82 6 6 X 0.09
102 0 13 13 X 226.67 ⊥
103 0 17 17 X 20238.89 ⊥
104 0 4 4 O 1.36 4 4 O 0.01
105 0 26 0 o 0.24 26 0 o 0.51
108 0 ⊥ ⊥
122 0 12 12 X 8639.19 ⊥
123 0 ⊥ ⊥
125 0 5 5 X 2.26 5 5 X 0.05
137 0 21 20 x 50.16 21 20 x 2.91
147 0 ⊥ ⊥
150 0 4 4 C 3.43 4 4 C 0.04
152 0 ⊥ ⊥
153 0 ⊥ ⊥
156 0 3 3 C 0.96 3 3 C 0.02
158 0 3 3 X 1.00 3 3 X 0.02
159 0 3 3 C 2.49 3 3 C 0.02
163 0 16 16 X 9.09 16 16 X 1.75
173 1 ⊥ ⊥
178 0 4 0 o 0.06 4 0 o 0.00
186 1 10 10 O 4.63 10 10 O 0.14
187 1 10 10 O 9.85 10 10 O 0.12
188 1 10 0 o 0.10 10 0 o 0.02
189 1 7 0 o 0.03 7 0 o 0.01
193 1 8 8 X 7.11 8 8 X 0.13
194 1 5 5 X 7.07 5 5 X 0.03
197 0 5 5 X 9.93 5 5 X 0.15
198 1 9 5 c 0.79 9 5 c 0.06
199 0 8 8 C 2.79 8 8 C 0.18
200 0 ⊥ ⊥
205 0 ⊥ ⊥
220 0 56 46 o 5.27 56 46 o 88.15
226 0 14 14 X 14.19 ⊥
227 0 39 0 o 0.14 39 0 o 0.19
229 0 7 7 C 1.33 7 7 C 0.20
230 0 24 23 o 47.72 ⊥
233 0 2 2 X 1.03 2 2 X 0.01
243 0 19 12 o 1.32 19 11 o 5.21
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Table 1: Applying ProjectAndClassifyK over C and R (continued)

Algorithm 1 (C) Algorithm 4 (R)
model m/a |X| |X̂| γ time (s) |X| |X̂| γ time (s)

257 1 8 8 X 2.65 ⊥
259 0 16 0 o 0.38 16 0 o 0.17
260 0 16 0 o 0.09 16 0 o 0.16
261 0 16 0 o 0.09 16 0 o 0.17
262 0 9 1 c 3.18 9 1 c 0.05
263 0 9 1 c 1.11 9 1 c 0.05
264 0 11 9 c 11.45 11 9 c 0.37
267 0 3 0 o 0.09 3 0 o 0.00
270 0 ⊥ ⊥
271 1 4 1 c 0.20 4 1 c 0.01
272 1 4 1 c 0.27 4 1 c 0.01
281 0 32 31 o 1.20 32 31 o 24.50
282 1 3 3 O 0.16 3 3 O 0.01
283 1 3 2 o 0.28 3 2 o 0.01
286 0 ⊥ ⊥
287 1 20 20 X 33.76 ⊥
289 0 4 4 X 0.84 4 0 o 0.01
292 0 2 0 o 0.16 2 0 o 0.01
306 0 2 2 C 0.25 2 2 C 0.01
307 0 2 0 o 0.14 2 0 o 0.01
310 0 1 0 o 0.02 1 0 o 0.00
311 0 1 0 o 0.02 1 0 o 0.00
312 0 2 0 o 0.02 2 0 o 0.00
314 0 10 7 o 0.73 10 7 o 0.07
315 1 ⊥ ⊥
321 0 3 0 o 0.02 3 0 o 0.00
332 0 ⊥ 70 64 o 395.97
333 0 49 43 o 573.10 49 43 o 120.98
334 0 ⊥ 69 63 o 271.40
335 1 29 28 o 97.52 ⊥
344 0 ⊥ ⊥
357 1 8 4 o 0.20 8 4 o 0.10
359 0 8 6 o 0.21 8 6 o 0.08
360 0 8 6 o 0.93 8 6 o 0.07
361 0 8 7 o 1.04 8 7 o 0.04
362 1 29 28 o 1304.71 29 28 o 429.42
363 0 3 0 o 0.07 3 0 o 0.00
364 1 12 10 o 1.03 12 10 o 0.54
365 1 30 24 o 212.01 ⊥
407 0 ⊥ ⊥
413 1 5 5 X 1.05 5 5 X 0.06
416 0 32 32 X 25.87 32 32 X 4.17
430 0 ⊥ 23 23 X 13.99
431 0 ⊥ 27 27 X 31.90
439 0 20 20 X 52.51 20 20 X 15.42
459 0 3 3 C 0.50 3 3 C 0.09
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Table 1: Applying ProjectAndClassifyK over C and R (continued)

Algorithm 1 (C) Algorithm 4 (R)
model m/a |X| |X̂| γ time (s) |X| |X̂| γ time (s)

460 0 3 3 X 0.52 3 3 X 0.04
475 0 22 20 o 3.26 22 20 o 7.92
478 0 29 28 o 33.38 29 28 o 16.85
479 0 ⊥ ⊥
483 0 6 6 X 1.26 6 6 X 0.11
484 0 1 1 C 0.14 1 1 C 0.01
485 0 1 1 X 1.22 1 1 X 0.12
486 1 2 2 C 0.63 2 2 C 0.02
487 1 6 6 C 0.69 6 6 C 0.16
491 1 57 57 G 12.21 ⊥
492 1 52 52 G 17.96 ⊥
504 0 ⊥ ⊥
519 0 3 3 C 4.71 3 3 C 0.18
546 0 3 0 o 0.07 3 0 o 0.00
559 0 71 0 o 0.32 71 0 o 0.91
581 0 ⊥ 25 25 X 6.00
584 0 9 9 C 0.60 9 9 C 0.13
619 1 8 0 o 0.07 8 0 o 0.01
629 0 5 5 C 0.41 5 5 C 0.08
637 1 12 12 X 492.76 ⊥
647 1 11 11 X 6.03 11 11 X 0.37

There are 15 models where the complex classification in Table 1 succeeded but the real clas-
sification timed out: 028, 030, 069, 102, 103, 122, 226, 230, 257, 287, 335, 365, 491, 492, 637.
Among those, models 491 and 492 have classification G and models 230, 335, and 265 have
classification o over C, from which we can conclude that they have the same classification over
R, respectively. Vice versa, there are 5 models where real classification succeeded but complex
classification timed out: 332, 334, 430, 431, 581. There is one single model where we succeeded
over both C and R but obtained different classifications: model 289 has X over C but o over R.

Table 2 collects some statistical information about the computations. Figure 1 provides some
analysis of the computation times. Notice that many computations finish quite quickly.

Table 2: Statistical information about the computations in Table 1.

Algorithm 1 (C) Algorithm 4 (C)
time limit 6 h 6 h
#models 129 129
# successful computations 104 94
success rate 80.62% 72.87%
median(time) 1.33 s 0.09 s

A.2. Classifications of Rational Prime Decompositions
Recall that Algorithm 3 and Algorithm 6 compute prime decompositions P over Q and then
apply our classification approach to each prime component individually. This yields lists X , X̂
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Figure 1: Numbers of problems solved within certain time limits by Algorithm 1 over C (left)
and Algorithm 4 over R (right). The total number of problems is 129.

containing in turn lists X and X̂ of variables before and after projection, respectively, as well as
a list Γ of classifications γ. We have |X | = |X̂ | = |Γ| = |P|, and elements can be matched by
position. Since this information is too comprehensive to be displayed in a table, we give only |P|
and summarize the numbers of occurrences of the various classifications in Γ. Our database, of
course, stores the complete information.

Table 3: Applying DecomposeProjectAndClassifyK over C and R. Model numbers nnn stand
for BIOMD0000000nnn. “m/a” indicates mass action kinetics (Definition 28). |P| is the
number of prime components over Q. Γsummary summarizes the classification of the
components using G for group, C fo coset, O for empty set, and X else; lower case letters
indicate projection. Time columns give total CPU times in seconds or “⊥” for a timeout
with a limit of 6 hours per model.

Algorithm 3 (C) Algorithm 6 (R)
model m/a |P| time (s) Γsummary time (s) Γsummary time (s)

001 1 1 4.49 C 12.64 C 5.00
002 1 1 192.42 X 318.37 ⊥
009 0 28 199.03 C + 13c + 14o 238.71 C + 13c + 14o 255.23
011 0 20 167.45 C + 9c + 10o 197.90 C + 9c + 10o 212.07
026 1 2 4.74 o + X 5.95 o + X 5.36
028 1 2 135.05 o + X 162.90 ⊥
030 1 2 157.89 o + X 175.57 ⊥
035 0 1 12.31 X 18.26 X 12.76
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Table 3: Applying DecomposeProjectAndClassifyK over C and R (continued)

Algorithm 3 (C) Algorithm 6 (R)
model m/a |P| time (s) Γsummary time (s) Γsummary time (s)

038 0 1 391.05 X 463.38 ⊥
040 0 2 1.64 o + X 2.14 o + X 1.67
046 0 2 764.98 X + x 817.90 ⊥
050 0 1 0.59 o 0.61 o 0.60
052 0 1 0.95 o 0.98 o 0.95
057 0 1 0.63 C 5.44 C 0.70
069 0 2 56.34 2x 61.34 ⊥
072 0 2 0.26 2c 0.55 2c 0.27
077 0 1 1.05 C 6.26 C 1.15
080 0 7 9.43 3c + 4o 11.43 3c + 4o 9.62
082 0 7 8.45 3c + 4o 13.70 3c + 4o 8.64
085 0 ⊥ ⊥ ⊥
086 0 ⊥ ⊥ ⊥
091 0 1 0.02 o 0.06 O 0.02
092 0 2 0.75 C + o 1.36 C + o 0.77
099 0 1 0.26 C 0.92 C 0.47
101 1 1 0.36 X 5.90 X 0.43
102 0 1 38.46 X 249.72 ⊥
103 0 1 3090.38 X 20628.00 ⊥
104 0 4 0.63 4o 0.64 4o 0.63
105 0 1 0.37 o 0.55 O 0.37
108 0 2 40.86 2X 68.74 ⊥
122 0 1 326.19 X 363.45 ⊥
123 0 ⊥ ⊥ ⊥
125 0 1 0.18 X 1.22 X 0.21
137 0 5 180.68 5x 220.13 5x 190.34
147 0 ⊥ ⊥ ⊥
150 0 1 1.12 C 2.86 C 1.15
152 0 ⊥ ⊥ ⊥
153 0 ⊥ ⊥ ⊥
156 0 2 0.53 C + o 0.77 C + o 0.54
158 0 1 0.22 X 1.06 X 0.24
159 0 1 0.20 C 0.60 C 0.23
163 0 1 9.69 X 19.50 X 10.36
173 1 1 295.07 x 1719.63 ⊥
178 0 1 3.66 o 3.67 o 3.66
186 1 5 4.73 2c + 3x 7.78 2c + 3x 5.09
187 1 5 18.41 2c + 3x 29.25 2c + 3x 18.79
188 1 1 0.27 o 0.29 O 0.27
189 1 1 0.02 o 0.04 O 0.02
193 1 1 6.50 X 7.12 X 6.62
194 1 1 1.38 X 1.98 X 1.41
197 0 1 4.18 X 6.96 X 4.24
198 1 1 0.69 c 3.16 c 0.72
199 0 1 0.35 C 2.63 C 0.50
200 0 ⊥ ⊥ ⊥
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Table 3: Applying DecomposeProjectAndClassifyK over C and R (continued)

Algorithm 3 (C) Algorithm 6 (R)
model m/a |P| time (s) Γsummary time (s) Γsummary time (s)

205 0 ⊥ ⊥ ⊥
220 0 ⊥ ⊥ ⊥
226 0 1 17.10 X 25.93 ⊥
227 0 1 0.03 o 0.15 O 0.03
229 0 2 1.60 C + c 6.77 C + c 1.73
230 0 5 181.14 5x 249.78 ⊥
233 0 3 0.14 2C + o 2.46 2C + o 0.15
243 0 8 9.13 8o 9.19 8o 9.18
257 1 2 0.63 o + X 2.29 o + X 590.61
259 0 1 2.93 o 2.98 o 2.95
260 0 1 1.41 o 1.46 o 1.42
261 0 1 0.84 o 0.87 o 0.86
262 0 1 1.83 c 4.43 c 1.85
263 0 1 2.48 c 2.66 c 2.49
264 0 1 3.12 c 7.28 c 3.31
267 0 1 0.10 o 0.11 o 0.10
270 0 1 14511.34 X 15819.74 ⊥
271 1 1 3.87 c 5.31 c 3.88
272 1 1 0.12 c 1.11 c 0.12
281 0 3144 8264.69 1008c + 2136o 8317.80 1008c + 2136o 8655.75
282 1 2 0.36 2o 0.37 2o 0.37
283 1 2 0.10 2o 0.11 2o 0.11
286 0 ⊥ ⊥ ⊥
287 1 1 12.78 X 27.29 ⊥
289 0 2 1.15 o + X 2.84 2o 1.15
292 0 1 1.20 o 1.20 O 1.20
306 0 2 0.53 C + o 1.04 C + o 0.54
307 0 1 0.02 o 0.03 o 0.02
310 0 1 0.02 o 0.03 o 0.02
311 0 1 0.02 o 0.02 o 0.02
312 0 1 0.04 o 0.05 o 0.04
314 0 3 0.94 3c 1.11 3c 0.99
315 1 ⊥ ⊥ ⊥
321 0 1 0.07 o 0.08 o 0.07
332 0 ⊥ ⊥ ⊥
333 0 ⊥ ⊥ ⊥
334 0 ⊥ ⊥ ⊥
335 1 ⊥ ⊥ ⊥
344 0 ⊥ ⊥ ⊥
357 1 2 0.23 2o 0.25 2o 0.24
359 0 5 0.96 2c + 3o 2.80 2c + 3o 1.02
360 0 4 0.72 2c + 2o 1.48 2c + 2o 0.77
361 0 2 0.48 2c 1.01 2c 0.60
362 1 ⊥ ⊥ ⊥
363 0 1 0.26 o 0.27 o 0.26
364 1 4 2.23 2c + 2o 3.22 2c + 2o 2.37
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Table 3: Applying DecomposeProjectAndClassifyK over C and R (continued)

Algorithm 3 (C) Algorithm 6 (R)
model m/a |P| time (s) Γsummary time (s) Γsummary time (s)

365 1 ⊥ ⊥ ⊥
407 0 ⊥ ⊥ ⊥
413 1 1 1.07 X 1.59 X 1.11
416 0 3 36.24 X + 2x 43.95 X + 2x 41.76
430 0 20 112.47 8c + 10o + X + x 221.05 8c + 10o + X + x 12709.47
431 0 ⊥ ⊥ ⊥
439 0 9 32.38 2c + 2o + X + 4x 40.10 ⊥
459 0 1 0.24 C 0.50 C 0.25
460 0 1 1.27 X 1.49 X 1.30
475 0 30 30.46 14c + 4o + 12x 37.62 14c + 4o + 12x 43.66
478 0 ⊥ ⊥ ⊥
479 0 ⊥ ⊥ ⊥
483 0 1 0.23 X 0.59 X 0.28
484 0 1 0.10 C 0.14 C 0.11
485 0 1 0.16 X 0.23 X 0.23
486 1 1 0.15 C 0.27 C 0.16
487 1 1 1.40 C 1.78 C 1.49
491 1 1 2.55 G 22.49 G 47.84
492 1 1 1.59 G 10.04 G 35.49
504 0 ⊥ ⊥ ⊥
519 0 3 1.60 C + c + o 4.15 C + c + o 1.62
546 0 1 0.13 o 0.14 o 0.13
559 0 1 0.98 o 1.18 O 0.99
581 0 ⊥ ⊥ ⊥
584 0 1 0.26 C 2.36 C 0.38
619 1 1 0.86 o 0.88 o 0.88
629 0 1 1.03 C 1.70 C 1.06
637 1 3 8383.02 X + 2x 8464.64 ⊥
647 1 1 5.95 X 6.70 X 6.23

There are 17 models where the complex classification in Table 3 succeeded but the real classi-
fication timed out: 002, 028, 030, 038, 046, 069, 102, 103, 108, 122, 173, 226, 230, 270, 287, 439,
637. Vice versa, there are no models where the classification succeeded over R but not over C.
There are 8 models where we succeeded over both C and R but obtained different classifications:
091, 105, 188, 189, 227, 289, 292, 559. All those differences are visible in the summaries Γsummary
in Table 3. Model 289 is o + X over C but 2o over R. We have addressed this difference already
with the computations in Appendix A.1. With all other models listed above the difference is o
over C in contrast to O over R.

Table 4 collects some statistical information about the computations. Figure 2 provides some
analysis of the computation times. Notice that many computations finish quite quickly.
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Table 4: Statistical information about the computations in Table 3.

Algorithm 3 (C) Algorithm 6 (C)
time limit 6 h 6 h
#models 129 129
# successful computations 105 88
success rate 81.40% 68.22%
median(time) 2.80 sec 0.99 sec
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Figure 2: Numbers of problems solved within certain time limits by Algorithm 3 over C (left)
and Algorithm 6 over R (right). The total number of problems is 129.
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