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Abstract

The area theorem states that when a short optical pulse drives a quantum two-level system, it
undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate
the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain
pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon
emission dynamics of a two-level system. Our model provides an intuitive way to understand re-
excitation, which elucidates the mechanism behind the two-photon emission events that can spoil
single-photon emission. We experimentally measure the emission statistics from a semiconductor
quantum dot, acting as a two-level system, and show good agreement with our simple model for short
pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al
Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with
interaction areas equal to an even multiple of 7.

1. Introduction

One of the most fundamental building blocks of quantum optics is the single discrete atomic transition, which at
its simplest is modeled as a quantum two-level system [1]. This type of system has been behind fundamental
discoveries such as photon anti-bunching [2, 3], Mollow triplets [4, 5], and quantum interference of
indistinguishable photons [6, 7]. After almost two decades of development in a solid-state environment, the
quantum two-level system is now poised to serve the pivotal role of an on-demand single-photon source [2, 6,
8—16]—by converting laser pulses with Poissonian counting statistics to single photons—for quantum networks
[17-19]. More recently, multi-photon quantum state generators have generated strong interest as replacements
for the single-photon source in many quantum applications [20-22]. To this end, it was recently discovered that
two-level systems may also generate pulses containing two photons [23]. In this article, we show a simple and
intuitive model to better understand the temporal excitation dynamics of quantum two-level systems.

Consider an ideal two-level system [24], with a ground state |¢) and an excited state |e). Suppose the system is
driven by an optical pulse startingat t = 0, resonant with the |¢) < |e) transition and where the rotating wave
approximation holds. As a function of the integrated pulse area

A(t) = J;t dt'y - E(t) /71, (1)

where E(t') is the envelope of the pulse’s electric field and y the system’s electric dipole moment, the system
undergoes coherent oscillations between its ground |g) and excited |e) states. If the system is initially prepared in
the ground state, the state after the system-pulse interaction is given by
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[Vr(A)) = 1 — B(A(1)|g) + e JR(A(1)) |e), )

where ¢ is a phase set by the laser field and E, (A (¢)) is the area-dependent probability of exciting the two-level
system. Examining P, (A (¢)) shows Rabi oscillations that are perfectly sinusoidal

R(A(1) = sin*(A(t) /2), 3

with the laser pulse capable of inducing an arbitrary number of rotations between |g) and |e). After the system
has interacted with the entire pulse, i.e. in the limit of t — 00, the probability of remaining in the excited state is

R.(A(c0)) = sin*(A(c0) /2). (C))

This statement is called the area theorem, in which Rabi oscillations occur as a function of the total interaction
area of the pulse. The majority of a pulse’s area typically interacts within a time window T, referred to as the
width of the pulse. We can state this mathematically as

A(T) =~ A(0). )

However, a realistic system is coupled to the outside world through its electric dipole and may spontaneously
decay, which spoils the results of the area theorem [23, 25-27]. Previous works have shown its regime of validity
occurs when the width of the pulse T'is very short compared to the spontaneous decay time 7, = 1/~. That way,
the system-pulse interaction occurs before any spontaneous emissions—we now explore this concept from a
photon counting perspective [28].

2. A theory for photon counting

Spontaneous emission of photons can be thought of as turning the system’s wavefunction into a stochastic
process, and realizations of this process are called trajectories (see appendix A for a formal justification of the
following counting procedure). At any time step, a photon emission may occur at a rate of vE, resetting the
wavefunction into its ground state and ‘restarting’ the area theorem. The area theorem then again results in
deterministic evolution of the system. This process occurs until the pulse has been fully interacted, after which
the two-level system can only decay spontaneously. Then, we label a resulting trajectory by a set of emission
times #< -+ <t,, and this trajectory occurs with the probability density

Pn (tl)"') tn)- (6)
Integrating these densities yields the total probability for #n photon emissions
B [Tdn [Tde [T dtup, (s ). @
0 t t

n—1
Because photon emissions are sequential, we will be able to more naturally construct inclusive probabilities that
represent the probability for # or more emissions
E=B+Ba+Ba+ - (8)

They have associated densities as well f, (#,-,t,), which correspond to any emission sequence that has its first
emissions timesas f; < --- < t,,, and implicitly include the probability of any subsequent emissions as well. They
are similarly related to their parent probabilities as

o0 o0 o0
B=Tdn [Tan- [ duf, (e . ©
0 t ty
If we can solve for F,, they are trivially related to the exclusive emission probabilities
B =F — F (10)

with the special case Py = 1 — Fi.

We now outline the computing of each f, (#;,---,t,) for ashort pulse, beginning with f, (,)—the density thata
first emission occurs at time ¢;. Consider the time period during the pulse 0 < # < T.The probability no
photon was emitted before ¢, is given by

e e M2 fo<y< T, (11)

because the emissions behave like a Poisson point process with variable rate parameter
t
A :fl dt AB(A(H) if0 < < T, (12)
0

and the area theorem sets this variable rate (see appendix A for more details). The approximation in equation (11)
is valid in the short pulse limit, where the average excited state population dominates the probability no photon
was emitted over an interval. Putting this together with the true instantaneous emission rate yP, (A (1)), the
inclusive probability density is
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£(t) ~ 7 sin? (%)efvﬁ/z if0<t<T. (13)

In the time period after the pulse T' < #, the decay of the density is exponential since the system can only emit
spontaneously, yielding

fith) ~ oy sin? (402 ) T2e 6T HE T < (14)
(We refer the reader to appendix A for a formal derivation of this rate.) The associated inclusive probability is
T 00
F = *yfo dfy sin? (%)e’”’t‘/z + 7 sin? (—A(‘;O))e*ﬂ/zj; dfie7=1) (15)
T
~ —~T/2 s 2 (Al 2 (A0 —~T/2
~ye fo df sin ( B ) + sin (—2 )e , (16)

where the approximation that

T T
’yf df sin? (%) e /2 gy e‘”rT/zf d# sin? (%) (17)
0 0

holds for short pulses. One might be tempted to further approximate away the term with the integral in
equation (16) since itis O(yT) and the second term looks O(1), however, Rabi oscillations can cause the second
term to vanish when A (o) = {2m, 4m,---}. Then, the O(yT) term dominates the emission density.

Next, we construct the inclusive probability density for a second emission at time ¢, following the first
emission at time ¢;. The first emission resets the system to its ground state, so the application of the area theorem
restarts from #;. This leads to the new factor v E,(A(f;) — A(#)) in f;, so the density of two emissions occurring
during the pulse is given by

f(t, 1) &= v? sin? (w)sin2 (%)e—mﬁ ift, < T. (18)

When the first emission occurs during the pulse and the second after, then
£ (1, 1) = ¥? sin? (M) sin? (%)e*w/ze*”(“* Dify < T <ty (19)

Because there is no energy after the pulse to re-excite the system following an emission,
fz(tb Hh)=0 ifT<f<t (20)

The density from t, < T contributes O((yT)?) to F, but the density from T < t, contributes O(yT), for any
total area A(T) = A(c0). Hence, in our short pulse approximation we take only the second interval

T
Fy~ e*"r’T/ZfO d# sin? (M) sin? (%), (21)

where we have already integrated out r,—that integral sums over simple exponential decay.

Each new emission during the pulse time resets the area theorem and contributes a factor of
v P(A(t,) — A(t,_1)) tof,. Hence, the general solution for an emission sequence 0 < #< --- < t, withashort
pulseis

fu(tyeosty) =

~" sin? (714“") _ZA(t”’l)) .-+ sin? (714(&)2_A(t1))sin2 (—A;tl))e_”"/z ift, <T

A(00) *A(tnfl))sinz (A(tn—l) — A(tn—l)). .
2 2

n i
]9 sin (
---sin? (—A(&)Z_A(tl))sin2 (—Agl))e‘""T/ze‘V(t”‘T) ift, 1< T<t,

L0 otherwise

(22)

In the case where we integrate to obtain the counting probabilities (equation (9)), the density from ¢, < T
contributes O((yT)") but the density from T < £, contributes O((yT)"~1), for any total area A(T) = A(c0).
Then, we further approximate

T T T
E ~ ,yn—le—WT/Zf an [ dey - f dtnflsinz(A(oo%A(t,,fl))sinz(A(rH%A(rnfz))
0 al ti—2

2 2

v esin? (M)Sinz (@) (23)

where we have already integrated out #,,.. This is equivalent to saying that we expect every photon emission to
occur during the pulse except for the last one, which occurs afterwards. Because of the exponential factor in
front, this set of inclusive probabilities is almost always properly normalized. We briefly note that in the limit of
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Figure 1. Re-excitation dynamics for two-level system under interaction with a w-pulse, i.e. A(c0) = 7. (a) Two example quantum
trajectories, with no photon emission (solid black) and one photon emission (dashed red) during the system-pulse interaction. Arrow
indicates time of photon emission. (b) Probability of one photon emission P;: simple model (solid blue) and numerically exact (dashed
blue). Probability of two photon emissions P,: simple model (solid red) and numerically exact (dashed red). Both under excitation by a
square pulse. (c) Measured degree of second-order coherence g®[0] under excitation by a square pulse, simulated with the quantum
regression theorem (black) and estimated from our simple analytic approach (green). (d) Experimentally measured degree of second-
order coherence, obtained when resonantly exciting a two-level system made up of excitonic states from a deterministically charged
quantum dot.

long pulses

Foa QT2 i 24)
(n— 1!
which is Poisson distributed.

Back to short pulses: the inclusive probabilities die away with increasing number of n emissions. Therefore,
the exclusive probabilities P, are all O((yT)"~!) for n > 1. As the pulse length increases, our model will deviate
from the exact behavior since we neglected the cases where all # photon emissions occur during the pulse. It will
also deviate from ignoring the effect of spontaneous emission on the deterministic dynamics during the pulse
(see appendix A), which is justified in the strong driving or short pulse limit.

3. Breakdown with increasing pulse length

Although remarkably simple, our trajectory formalism allows for analytic exploration of an important
phenomenon in solid-state single-photon sources—many single-photon sources behave as nearly ideal
quantum two-level systems [9, 29, 30]. These systems operate by sending a short pulse of area A(co0) = 7 to
excite the system to |e) with almost unity probability, which results in emission of a single-photon wavepacket
with high probability [31]. The target single-photon wavepackets may be used in quantum information systems
in the future, however, some of these systems have extremely stringent requirements against multiphoton errors
[32, 33]. Thus, our proposed model for understanding multiphoton errors, as due to re-excitation in a two-level
system, can be used to help identify useful regimes of operation.

To explore this concept further, we suppose the excitation of a two-level system by a short pulse of area
A(00) = m. The dynamics of this process as a function of interacted pulse area are depicted in figure 1(a). A
standard quantum trajectory [28] with no re-excitation is shown as the black curve, where the single-photon
emission would occur some time long after the system-pulse interaction. Because the n-photon generation
probability scales as (yT)"~!, we only need to consider the error due to a single re-excitation. The red dashed
curve depicts a trajectory with an emission occurring after A(#) = /2 hasbeen interacted. Similar to the
trajectory with a single emission, the re-excited system is most likely to emit its second photon long after the
system-pulse interaction has occurred.

By integrating over all possible trajectories, we can compute the signal rate P;(A(c0) = ) and error rate
P,(A(00) = ), which was only extracted experimentally [27] and numerically [31] thus far. We now assume a
specific form of A(#) corresponding to a square pulse, so
A ifo<r< T
A(co) T <t

A(t) = (25)

From equations (16), (21), and (23), we identify the short pulse approximations to the inclusive emission
probabilities and explicitly write them for the square pulse

4
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Fi(A(c0) = ) = e—WT/Z(l + %)

F(A(o0) = 7)) ~ e’”T/z%,

—24 + 72 + 4(—6 + T)(YT)?

F3(A(c0) = ) e 71/2
3(A(0c0) ) P

(26)
The differences between inclusive probabilities give the exclusive probabilities (equation (10))as P, = F| — F,
and Pz = Fz — F3, with

P = m~e {1+ 20,

T 3 5
Py(A(c0) = M)~ e T/ 1 4 Tz(———) 27
2(A(00) = ) (8 (’Y)47r2 ” 27)
shown as the solid curves in figure 1(b). We also computed the exclusive probabilities numerically without
approximation for the pulse (dashed curves). Notably, our approximations hold fairly well until vT is O(1).
These probabilities can then be used to estimate the experimentally measurable metric of the quality of a
single-photon source [31], the degree of second-order coherence

P Zkk(k — 1Py
g90l = ———5— (28)
(E[n])?
with the expected photon number
E[n] =) kP (29)
k

As the pulse-width decreases g‘» [0] approaches from 1 — 0, shown as the black curve in figure 1(c), indicating
an increase in the quality of the single-photon nature of the wavepacket (see appendix B for a discussion on the
temporally resolved second-order coherence). The degree of second-order coherence was computed asin [31]
with the Quantum Optics Toolbox in Python [34]. For short pulses, the system acts as a good single-photon
source and

2P,

2) ~
g0 v ————,
(P + 2P,)?

(30)
which we can calculate from our analytical expressions in equation (27) (solid green curve).

Any ideal Rabi oscillation of equivalent A (00) is isomorphic by a nonlinear coordinate transformation in
time because the area theorem depends on A(¥) (e.g. in figure 1(a) the x-axis is A(¢)). However, the precise form of
the pulse can change P, for a given T due to integration over the time variable. For extremely short pulses the
exponential factors in P, are irrelevant, and for example, a Gaussian pulse yields P, ~ 0.2188 ~T while a square
pulseyields P, = ~T /8. (We note here that we considered an incident Gaussian pulse where T'is the width in
energy, by convention in the field of single-photon sources.)

Our approximation works quite well until vT' = 1, where the analytic model does not correctly capture the
saturation behavior of the second-order coherence. For long pulse lengths, the statistics tend towards Poissonian
due to the possibility of many randomly distributed photon emissions occurring.

To verify that our simple model has real predictive power for short pulses, we experimentally measured the
degree of second-order coherence g® [0] of pulses scattered by a resonantly driven two-level system
(figure 1(d)). We explored a much broader range of pulse widths compared to previous data, showing a complete
series from a few ps to 10’s of ns, which allows us to explore how our analytic model deviates from experiment
for long pulses as well. Our two-level system of choice was the single electron to trion transition of a charged
InAs/GaAs quantum dot (see supplementary material available online at stacks.iop.org/QST/3/014006/
mmedia for data and details on the experiments). Good agreement can be seen between the full quantum-optical
model and data, with only small differences that result from experimental inaccuracies (see supplementary
material). Meanwhile, the analytic model gives good agreement until T ~ 1.

In summary, we have quantified how the area theorem breaks down as a function of pulse length. This
discussion can provide an important limit on the achievable source error rates for a given ratio of pulse length to
spontaneous emission lifetime, an important addition to previous studies on the phonon-induced limitations
for emission of indistinguishable photons from solid-state devices [35—-38]. We expect new directions in research
on solid-state sources to involve understanding the interplay of pulsed excitation with phonon dynamics
[39-41]. For short pulses, we believe the phonon dynamics work to incoherently populate (or re-excite) the
system—most likely with the same type of linear dependence as the coherent excitation mechanism we have
identified [23].
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Figure 2. Re-excitation dynamics for a two-level system under interaction with extremely short mm-pulses, i.e. A(co) = m for

m € {1, 2, 3, 4}. Here, the precise pulse shape is not important because the exponential factors in equation (23) are all nearly unity
for extremely short pulses, so we use the pulse-independent function A (#) as our x-axis. (a)-(d) Probability of system being in the
excited state P, if no emissions occur, and probability density p, () for a single photon emission at time ¢, and p, (;) for a pair of
photon emissions to begin at time ¢;. (¢)—(h) Fully time-resolved probability density p, (#, t,) for a pair of photon emissions, assuming
the system-pulse interaction time is very short compared to the excited state lifetime, i.e. 7T < 1.

4. Breakdown for even 7 areas

As recently discovered [23], the area theorem breaks down when A(c0) = 2mmand m € {1, 2, 3, ...}. We
now explore this point with our simple model. To help understand this breakdown we introduce the new

probability densities
p) =fiw) — [ duf ), (3D
which represents the exclusive and marginal probability density for a single photon emission, and
= dtz( fii o)~ [ dsfta t3)), (32)

which represents the exclusive and marginal probability density for a single photon emission to be the start ofa
two-photon emission sequence. In the limit of very short pulses, where the exponential factors do not matter
and we keep only terms of comparable order in 4T,

p(t) = ’Y(sin2 (%) — sin? (M)sin2 (%)) ify<T

—  sin? (%)cos2 (M) iff < T (33)
and
P~ [ dnfn ) (34)
41
= 3T sin? (A0 A0 ) gin2 (402). (35)

Consider the probability densities for a 7w pulse (figure 2(a)), plotted independent of the pulse shape by using
A (1)) as the x-axis. The trajectory if no photon emission occurs is again shown as a function of interacted pulse
area; however, we now additionally show p, (%) and p, (). Integrals of the densities give the probabilities for one
or two photon emissions to occur, respectively, with the only or first emission to occur during the system-pulse
interaction time. The shaded regions hence depict total probabilities for exclusive types of emission events
(though the exact values are determined by the specific pulse shape). By considering the fully time-resolved
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probability density for two photon emissions, we comment that p, (#, ) is approximately separable for short
pulsesas p,(#, ;) = p,(#)e "2, which is plotted for a 7 pulse in (figure 2(e)). Additionally, consider two other
scenarios:

1. The situation is dramatically different when the pulse is long compared to the emission lifetime and
multiple re-excitation events can occur (see appendix B).

2. The results for A(co) =  are similar to all pulses with odd-7 areas. For example, examine the densities for
m (figures 2(a) and (e)) and 37 (figures 2(c) and (g)) pulse areas: they are comparable whereby the densities
from A(co) = 7 have been tessellated three times for A(co) = 3.

On the other hand, the situation for p, (#) is radically different for a 27 pulse (figures 2(b) and (f)).
Importantly, the area theorem requires the excited-state population to return to zero after the system-pulse
interaction, as shown by the dashed black line. Hence, both P, and P, are of order «T . This procedure yields
P, /P, = 2.33 for a Gaussian pulse and P, /P, = 3 for a square pulse, with the remarkable result that P, > Pj.
Interestingly, P, is emphasized because the most likely initial emission occurs when roughly 7 of the area has
been absorbed, forcing a re-excitation with almost unity probability by the remaining 7 area. In fact, our results
in this regime are nearly identical for all pulses of even- area (see figures 2(d) and (h) for A(co) = 4w, where
the probability densities for A(co) = 27 have just been copied a second time). Nearly constant ratios of P, /P
for all even-m areas occur because both p, (1) and p, (#) are periodic with area 2. The most important
consequence of the periodicity is that P, > P, for even arbitrarily short pulses, showing a dramatic result in the
breakdown of the area theorem when A (00) = 2mr.

We comment on the pulse-length dependence of P, and P, for 27 pulses in appendix C. It turns out that
even for quite long pulses, two-photon emission is strongly dominant all the way up to ¥T &~ 1. This bodes well
for future experiments and its potential use as a two-photon source, and we expect that further pulse-shape
optimization could lead to even stronger two-photon emission. We discuss the extension to three-photon
emission densities in appendix D, in order to explore why the two-photon emission can dominate for such long
pulse lengths.

5. Comparison to realistic Rabi oscillations

In the final section, we compare the results generated with our simple model to those from a full quantum
mechanical simulation [23, 31]. Here, we show the full inclusive probability densities calculated with our
analytical model for a square pulse of width T:

F~ e”’T/Z[sin2 (—A(OO)) + ﬂ(l - 7sin(A(oo))))) (36)
2 2 A(00)
F, ~ e”’T/2%(2 + cos(A(oc0)) — 3%), (37)

F; ~ e‘””zﬂ (4(—6 4+ A(00)?) — (—24 + A(00)?) cos(A(00)) + 9A(00) sin(A(00))). (38)
64 A(c0)?
Again, the differences between the inclusive probabilities give the exclusive probabilities P, = F; — F, and
P, = F, — F;.We consider a typical pulse width of T = 0.3/~ and look at the Rabi oscillations in emitted
photon number (figure 3(a)) and photon statistics (figure 3(b)) versus interacted pulse area. We choose this pulse
length because the deviations between our analytic model and the numerically exact results become noticeable
(for additional quantitative comparisons of this deviation at important points consider figures 1(b) and 5).

Now, we discuss the Rabi oscillations in more detail. The ideal probabilities to scatter a single photon Py, if
spontaneous emission is all but ignored, are shown—these are the well-known sinusoidal Rabi oscillations
predicted by the area theorem (dashed black curve). When the effects of spontaneous emission are included, re-
excitation causes P; to deviate from perfect sinusoidal behavior (blue) and P, to become important (red). On this
plotscale, P, , are negligible. As we have already discussed, it is clear that for the even-m pulses P, > P.

We can also consider the photon statistics of the emission ¢*'[0] and the variance of the emission relative to
the variance of a coherent state

DR — (D) Py
B E[n] '

The relative photon-number variance is lowest around odd multiples of 7, indicating the emission of a highly
pure single-photon state. Around even-multiples of 7, however, the emission is highly super-Poissonian because

Var[n]

(39)
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Pulse area, A(t,—©0) [n]

Figure 3. Photon emission statistics of a two-level system under excitation by a square pulse of T = 0.3/+. (a) Probabilities for P,
single and P, pairs of photon emissions. Black curve shows P; for an ideal Rabi oscillation, while blue and red dashed curves indicate
simulated values using a full quantum trajectory calculation that includes spontaneous emission. Solid red and solid blue curves show
estimates based on our simple analytic approach. (b) Exact simulations for the variance relative to a coherent state Var[n] and for
g@[0] as dashed curves, while solid curves show estimates based on our simple analytic approach. Dotted black line shows coherence
statistics of the incident laser pulse.

two-photon emission is emphasized, i.e. P, >> P,. Thus the second-order coherence bunches, g?[0] > 1,and
the relative photon number variance peaks. All of these values can accurately be estimated from our simple
model (solid curves) which agree very well with the full simulated values (dashed curves). This agreement
furthers our assertion that the probability of three emissions P; is negligible because it is of order (yT)?. From
our discussion, we clearly see the area theorem alone is incapable of correctly capturing the dynamics and
photon statistics especially around A (c0) = 2mr. The failure holds even for arbitrarily short pulse areas, where
the second-order coherence diverges resulting in a singularity.

6. Outlook

In this paper, we showed how the area theorem breaks down. We found an intuitive picture for understanding
the photon emission dynamics from a two-level system and showed that a two-level system can mostly emit
photon pairs for quite long pulses. In the future, we expect that further optimization of the pulse shape should
allow for more pure two-photon emission. Finally, we believe it will be interesting to explore the separability of
the two-photon pulses to understand the application of two-level systems as photon pair sources.
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Appendix A. Photon counting with the stochastic Schrodinger equation

Consider a more formal description of our two-level system driven by a short optical pulse, where we look at the
evolution of the system’s state vector

[ (0) = Ue(D)Ig) + Ye(D)le). (40)

The optical driving occurs through the system’s dipole operator o = |g) (e|, resonant with the |g) < |e)
transition, and where the rotating wave approximation holds. If the system-pulse interaction begins at ¢ = 0,
then the Schrédinger evolution is given by (using /2 = 1and a rotating frame transformation) [42, 43]

_pEO

: (io — ioH)[ (1)), (41)

d

il 1)) =

” (1))
with the interacted pulse envelope from equation (1) and taking y - E(¢) as real (our choice of phase is to provide
real solutions). The system undergoes coherent Rabi oscillations between its ground and excited states: if the
system is initially prepared in |g) then the solution to equation (41) is

[ (1) = cos(A(t) /2)Ig) + sin(A(t) /2)]e). (42)

This is again, a statement of the area theorem.
However, the system also may spontaneously emit photons. Both spontaneous emissions and Rabi
oscillations can be captured by the stochastic Schrodinger equation [42]

dl (1) = —i“'TE(%a — Ot + L) () = T n)dr
+ [L - 1]|¢(t)>dN (t, ). (43)
<0T0> (1)

Importantly, this equation represents something called a quantum trajectory, which is a realization of the
stochastic process [¥(#)). The increment dN (¢, 1) represents a Poisson process that ‘triggers’ photon emission
atrandom times. Its mean is

(AN (t, ¥)) = v (Y (1) |oalip (1)) dt, (44)

which is the instantaneous photon emission probability conditioned on the particular trajectory. The evolution
ofatrajectory |1 (¢)) is uniquely identified by a vector of random emission times 7,(¢) = {#,--, t,,} with
0<f<--<t,<t,called the measurement record, and the total number of emissions #n is random. This
vector implies that for these times AN (; € 7(¢), ©) = 1and zero otherwise. These trajectories occur with
probability P (7,(t)). We are interested in calculating the inclusive probability density of a given trajectory up to
the nth photon emission, so we want

fu(tiseos tn) = P(@u(tn).- (45)

This density is inclusive because it does not specify the evolution of the trajectory after time t,,. We will now use
this form of equation (43) in a nonstandard way: as opposed to sampling the probability density for photon
emissions by evolving many random trajectories and building a histogram of emission times, we directly
compute their probability densities.

For short pulses, we can break up the stochastic evolution into two periods. First, the behavior during the
system-pulse interaction 0 < t < T:

E(t)

dly () ~ —i“'T(ia — ioN 1)) dt + [ - l]lw(t»dN(t, V)

J(oo) (1)

fo<t< T, (46)

when 4T < 1. The first term again causes the system to Rabi oscillate like in the area theorem, and the second
term collapses the wavefunction into the ground state through photon emission at random times. Each time an
emission occurs dN (¢, ¢) = 1, and itresets the area theorem. For example, let us use this equation to calculate
the probability density of emission f, (1) during the pulse. Specifically, we consider the evolution of [¢(¢)) until
the first emission at time #;, with the initial condition 1) (0)) = |g). Then, dN (t < #, 1)) = 0inequation (46)
and the evolution is deterministic

[ (t)) = cos(A(t) /2)|g) + sin(A(¥) /2)]e) f0<t<t<T. (47)
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Hence, the realization of the excited state probability is
P(t) = sin?(A(t)/2) f0<t< g < T. (48)

The rate of photon emission is given by equation (44), i.e. (AN (t < #, ©)) /dt = v B.(¢). To arrive at the
emission density, we also need to count the probability no photon was emitted before t,. For a Poisson process
this is given by e, and we have a variable rate parameter from equation (44) so

ho (dN(1,
A(f, 0) = fo dt% (49)
- fo " dt BA() 0 < < T. (50)
Putting these all together
fi(n) = v sin? (%)e‘“’l’o) ifo<y<T, (51)

which in the short pulse limit is equation (13).
Second, consider the behavior after the system-pulse interaction T' < t. The pulse no longer drives the
system so

J (o) (1)

if T <t (52)

djy (1) ~ %(<0Ta> (1) — d'o) [y () dt + [ - 1]Iw(t)>dN (t, V)

If there were no emissions before T, then the initial condition of any trajectory is
[U(T)) = cos(A(T)/2)lg) + sin(A(T)/2)le). (53)

Like before, suppose there are no emissions until time # > T,so AN (¢t < #, 1) = 0and hence

[ (1)) = cos(@) lg) + (1 + (1/ sinz(g) - l)e"/(‘*T))_l/2 ley ifT<t<Ht. (54)
Then, the rate of photon emission is given by
AN(T<t<t,p) s (@)eﬂ"(ﬂ)
dt 1+ sin? (A0 )@ — 1)

and the probability for no emission to occur on this interval is
e NwD = 1 4 sin? (4D) @0 — 1), (55)

Putting this together with the rate and the probability no emission occurred during 0 < ¢t < T, the density is
£(t) = 7 sin? (@)e*ﬂﬂ Ve MTO T < . (56)

The decay is exponential and reduces to equation (14) in the short pulse limit.
By defining

fi vy = 20

(i — iot) + i%«gm (t) — o'o),
we can formally write down a solution for the inclusive probability density for the first emission occurring at
time #,, and an arbitrary pulse shape, as

fi(h) = R(#, 0)e B0 (57)
and

i ar B
Rty 1) = 5 [(eTe " @0, (58)

where 7 indicates time-ordering of the exponential. This exponential should be understood as a shorthand to
integrate equation (43) with dN = 0. This process can be repeated sequentially—enumerating trajectories and
their paths to get the inclusive probability densities. Generally for any number of emissions

(o5 1) = Rty ty—1)e At oo R(8y, f)e 20 R(f, 0)e A0, (59)
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Figure 4. Second-order coherence G (4, t,) of emission from a two-level system under excitation by along pulse (I’ = 3.3/7) with
area A(co) = .

Appendix B. Second-order coherence when driven by a long pulse

In this appendix, we consider the temporally-resolved second-order coherence of the emission from a two-level
system when it is driven by along pulse (yT > 1) with 7 area. For short pulses, the second-order coherence is
givenby G (1, 1) = 2 p,(#, 1) for t, > #. Because we do not care if the first detection was at time t; or t,

G (#, t,)is symmetric with exchange of these time indices. Thus, short pulses yield two thin slivers of second-
order coherence that have dimensions T x 1/yand 1/ x T.However, for long pulses G® (4, t,) isan
inclusive moment of the probability densities rather than exclusive. In this scenario, multiphoton emissions also
contribute to G®(#,, t,) giving a giant blob of second-order coherence (figure 4). The blob has zero values for the
equal time correlations G (#, #) since the two-level system only can emit one photon at a time. Notably, when
the pulse is long it inherits the coherence of the incident laser beam and g®[0] = 1. Please see [31] fora
discussion on the relationship between temporally-resolved and pulse-wise second-order coherences.

Appendix C. Pulse-length photocount distribution for 2-7r area pulses

In this appendix, we investigate the pulse-length dependence of the photocount distribution in the region where
two-photon emission dominates. For the square pulse when A (co) = 27, we can arrive at very simple
expressions for the probabilities to emit one or two photons. Again, we take P, = F; — F,and P, = F, — F;,
and get

Pi(A(c0) = 27) = e_'VT/Z% (60)

2
Py(A(00) = 2m) ~ e"/T/z(% _ %)

These analytic functions are plotted in figure 5(a) as the solid curves. We also numerically computed the P,, up to
three or more photon emissions exactly (dashed curves). The analytic curves match well up to around 7T = 1,
with P; and P, being underestimated. Ideally, we would experimentally work in the region of highest two-
photon emission rate P, that does not spoil its purity with other numbers of photon emissions. One metric for
purity is given by

P,

Zm>OPm ’

which is a renormalization of the probabilities without the vacuum component [23]. The purities are only
computed numerically (figure 5(b)) and show that the two-photon purity remains high to surprisingly large
values of the pulse width. Specifically, the two-photon purity begins to drop only as yT approaches 1. Hence, we
could operate in this region and achieve m ~ 0.71and P, ~ 0.25 for an ideal two-level system. Though, we
expect even better purities can be achieved with optimization of the pulse shape.

(61)

Ty =
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Appendix D. Three-photon emission probability density

In this appendix, we explore the possibility for three photoemissions to occur during drive by a short pulse. This
scenario with three emissions requires two emissions to occur during the pulse width T, and hence the total
probability for three emissions P is of the order (yT')?. Taking equation (22) for the case of three photon
emissions attimes f; < f, < f3, the inclusive probability density is given by

f5(8, 1, 13) &= 7 sin? (A(oo)z_A(tZ))sin2 (A(tz);A(tl)) sin? (%)e‘%.

(62)

Here, we have additionally taken the limitas T — 0 so we neglect the exponential factor e ?/2 in our general

solution. Further in this limit, the four-photon density is smaller by vT" and hence the inclusive and exclusive
densities are roughly equivalent

ps(t, 0, t3) = f3(t, to, t3). (63)
We will also make use of the symmetric probability densities, which are defined as

fi, t, T b, t
Pl tpty) | Pttty (64)
3! 3!

by adding together p; with all of its indices permuted. This gives a nice form for the marginal probability
densities

p3,s(tl) 12, t3) =

p3,s(t1> tz) = j; dt3p3,s(tla 12, t3)> (65)

and

pys(t) = fo dtsps s (1, 1. (66)

These densities are defined forany # > 0 or ¢, > 0.

Using these densities, we explore a number of points. Along the third detection time axis 3, the probability
density decays exponentially and is rather uninteresting. The remaining densities have interesting behavior;
consider p, ¢(#, 1) as plotted in figures 6(b), (d), (f), (h) for A(c0) = mmand m € {1, 2, 3, 4}. These densities
are almost all identical in shape for m € {1, 2, 3}. The similarity of the shape owes to the fact that until the
interaction area is greater than 3, the optimal way to achieve a three-photon emission is to divide the pulse into
thirds—the increase in excitation probability is then monotonically increasing between emissions. This division
is reflected in the two bright regions of the densities, which correlate emissions around A (cc) /3 to those around

2A(00) /3. Meanwhile for 47, enough area is present that the optimum division must include Rabi flopping

between the ground and excited states, resulting in an increase in the number of optimal ways to achieve three-
photon emission.

Next, consider the densities p,(#) as plotted in figures 6(a), (c), (e), (g) for A(c0) = mm and

m € {1, 2, 3, 4}. These densities can easily be understood as all possible ways to start a three-photon emission
sequence at time . Their integrals yield P; and are depicted as the shaded regions (though the exact values are
determined by the specific pulse shape). Notably, P; is almost two orders of magnitude lower for A(co) = T,
which occurs because not enough interaction area is yet present to significantly excite the system between any of

12
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Figure 6. Three-photon emission dynamics for two-level system under interaction with mm-pulses, i.e. A(c0) = mm for

m € {1, 2, 3, 4}.(a), (c), (e), (g) Three-photon emission probability density p,(t) at time t;, i.e. all the ways three-photon emission
might contribute a photon at the time t;, E[M (#)]. Note, p,(#) is not dimensionless. (b), (d), (f), (h) Symmetric three-photon
emission probability density p, ;(#, t,)—along the third time axis #;, the probability density p; ¢ decays exponentially like p, does
along t,.

the photon emissions, i.e. sin®((27/3) /2)* > sin*((7/3)/2)* . As a final remark, we note the connection
between photon flux and probability densities. Generally, as long as the marginal densities for photoemission
pn(t) are constructed as exclusive events, then

VEIMD] =Y p,(0) = p,(0), (67)
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which represents all possible ways to achieve a photon emission at time ¢;. Specifically, E[M (¢)] is the expected
number of trajectories that contribute an emission at time ¢.
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