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Abstract
The area theorem states that when a short optical pulse drives a quantum two-level system, it
undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate
the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain
pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon
emission dynamics of a two-level system.Ourmodel provides an intuitive way to understand re-
excitation, which elucidates themechanismbehind the two-photon emission events that can spoil
single-photon emission.We experimentallymeasure the emission statistics from a semiconductor
quantumdot, acting as a two-level system, and show good agreement with our simplemodel for short
pulses. Additionally, themodel clearly explains our recent results (Fischer andHanschke 2017 et al
Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with
interaction areas equal to an evenmultiple ofπ.

1. Introduction

One of themost fundamental building blocks of quantumoptics is the single discrete atomic transition, which at
its simplest ismodeled as a quantum two-level system [1]. This type of systemhas been behind fundamental
discoveries such as photon anti-bunching [2, 3],Mollow triplets [4, 5], and quantum interference of
indistinguishable photons [6, 7]. After almost two decades of development in a solid-state environment, the
quantum two-level system is nowpoised to serve the pivotal role of an on-demand single-photon source [2, 6,
8–16]—by converting laser pulses with Poissonian counting statistics to single photons—for quantumnetworks
[17–19].More recently,multi-photon quantum state generators have generated strong interest as replacements
for the single-photon source inmany quantum applications [20–22]. To this end, it was recently discovered that
two-level systemsmay also generate pulses containing two photons [23]. In this article, we show a simple and
intuitivemodel to better understand the temporal excitation dynamics of quantum two-level systems.

Consider an ideal two-level system [24], with a ground state ñ∣g and an excited state ñ∣e . Suppose the system is
driven by an optical pulse starting at t=0, resonant with the ñ « ñ∣ ∣g e transition andwhere the rotatingwave
approximation holds. As a function of the integrated pulse area

ò m= ¢ ¢( ) · ( ) ( )A t t E td , 1
t

0

where ¢( )E t is the envelope of the pulse’s electric field andμ the system’s electric dipolemoment, the system
undergoes coherent oscillations between its ground ñ∣g and excited ñ∣e states. If the system is initially prepared in
the ground state, the state after the system-pulse interaction is given by
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y ñ = - ñ + ñf-∣ ( ) ( ( )) ∣ ( ( )) ∣ ( )A P A t g P A t e1 e , 2f e e
i

wheref is a phase set by the laser field and ( ( ))P A te is the area-dependent probability of exciting the two-level
system. Examining ( ( ))P A te shows Rabi oscillations that are perfectly sinusoidal

=( ( )) ( ( ) ) ( )P A t A tsin 2 , 3e
2

with the laser pulse capable of inducing an arbitrary number of rotations between ñ∣g and ñ∣e . After the system
has interactedwith the entire pulse, i.e. in the limit of  ¥t , the probability of remaining in the excited state is

¥ = ¥( ( )) ( ( ) ) ( )P A Asin 2 . 4e
2

This statement is called the area theorem, inwhich Rabi oscillations occur as a function of the total interaction
area of the pulse. Themajority of a pulse’s area typically interacts within a timewindowT, referred to as the
width of the pulse.We can state thismathematically as

» ¥( ) ( ) ( )A T A . 5

However, a realistic system is coupled to the outsideworld through its electric dipole andmay spontaneously
decay, which spoils the results of the area theorem [23, 25–27]. Previousworks have shown its regime of validity
occurs when thewidth of the pulseT is very short compared to the spontaneous decay time t g= 1e . Thatway,
the system-pulse interaction occurs before any spontaneous emissions—we now explore this concept from a
photon counting perspective [28].

2. A theory for photon counting

Spontaneous emission of photons can be thought of as turning the system’s wavefunction into a stochastic
process, and realizations of this process are called trajectories (see appendix A for a formal justification of the
following counting procedure). At any time step, a photon emissionmay occur at a rate of gPe, resetting the
wavefunction into its ground state and ‘restarting’ the area theorem. The area theorem then again results in
deterministic evolution of the system. This process occurs until the pulse has been fully interacted, after which
the two-level system can only decay spontaneously. Then, we label a resulting trajectory by a set of emission
times < <t tn1 , and this trajectory occurs with the probability density

( ) ( )p t t, , . 6n n1

Integrating these densities yields the total probability for n photon emissions

ò ò ò=
¥ ¥ ¥

-

 ( ) ( )P t t t p t td d d , , . 7n
t t

n n n
0

1 2 1
n1 1

Because photon emissions are sequential, wewill be able tomore naturally construct inclusive probabilities that
represent the probability for n ormore emissions

= + + ++ +  ( )F P P P . 8n n n n1 2

They have associated densities as well ( )f t t, ,n n1 , which correspond to any emission sequence that has itsfirst
emissions times as < <t tn1 , and implicitly include the probability of any subsequent emissions as well. They
are similarly related to their parent probabilities as

ò ò ò=
¥ ¥ ¥

-

 ( ) ( )F t t t f t td d d , , . 9n
t t

n n n
0

1 2 1
n1 1

If we can solve for Fn, they are trivially related to the exclusive emission probabilities

= - + ( )P F F 10n n n 1

with the special case = -P F10 1.
We nowoutline the computing of each ( )f t t, ,n n1 for a short pulse, beginningwith ( )f t1 1 —the density that a

first emission occurs at time t1. Consider the time period during the pulse < <t T0 1 . The probability no
photonwas emitted before t1 is given by

» < <l g- - ( )t Te e if 0 , 11t 2
1

1

because the emissions behave like a Poisson point process with variable rate parameter

òl g= < <( ( )) ( )t P A t t Td if 0 , 12
t

e
0

1
1

and the area theorem sets this variable rate (see appendixA formore details). The approximation in equation (11)
is valid in the short pulse limit, where the average excited state population dominates the probability no photon
was emitted over an interval. Putting this together with the true instantaneous emission rate g ( ( ))P A te 1 , the
inclusive probability density is

2
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g» < <g-( )( ) ( )( )f t t Tsin e if 0 . 13A t t
1 1

2
2

2
1

1 1

In the time period after the pulse <T t1, the decay of the density is exponential since the system can only emit
spontaneously, yielding

g» <g g¥ - - -( )( ) ( )( ) ( )f t T tsin e e if . 14A T t T
1 1

2
2

2
1

1

(We refer the reader to appendix A for a formal derivation of this rate.)The associated inclusive probability is

ò òg g= +g g g- ¥ -
¥

- -( ) ( ) ( )( ) ( ) ( )F t td sin e sin e d e 15
T

A t t A T

T

t T
1

0
1

2
2

2 2
2

2
1

1 1 1

òg» +g g- ¥ -( ) ( ) ( )( ) ( )te d sin sin e , 16T
T

A t A T2

0
1

2
2

2
2

21

where the approximation that

ò òg g»g g- -( ) ( ) ( )( ) ( )t td sin e e d sin 17
T

A t t T
T

A t

0
1

2
2

2 2

0
1

2
2

1 1 1

holds for short pulses. Onemight be tempted to further approximate away the termwith the integral in
equation (16) since it is g( )T and the second term looks( )1 , however, Rabi oscillations can cause the second
term to vanishwhen p p¥ = ( ) { }A 2 , 4 , . Then, the g( )T term dominates the emission density.

Next, we construct the inclusive probability density for a second emission at time t2 following thefirst
emission at time t1. Thefirst emission resets the system to its ground state, so the application of the area theorem
restarts from t1. This leads to the new factor g -( ( ) ( ))P A t A te 2 1 in f2, so the density of two emissions occurring
during the pulse is given by

g» <g- -( ) ( )( ) ( )( ) ( ) ( )f t t t T, sin sin e if . 18A t A t A t t
2 1 2

2 2
2

2
2

2
2

2 1 1 2

When thefirst emission occurs during the pulse and the second after, then

g» < <g g¥ - - - -( ) ( )( ) ( )( ) ( ) ( ) ( )f t t t T t, sin sin e e if . 19A A t A t T t T
2 1 2

2 2
2

2
2

2
1 2

1 1 2

Because there is no energy after the pulse to re-excite the system following an emission,

= < <( ) ( )f t t T t t, 0 if . 202 1 2 1 2

The density from <t T2 contributes g(( ) )T 2 to F2 but the density from <T t2 contributes g( )T , for any
total area = ¥( ) ( )A T A . Hence, in our short pulse approximationwe take only the second interval

òg» g- ¥ -( ) ( ) ( )( ) ( ) ( )F te d sin sin , 21T
T

A A t A t
2

2

0
1

2
2

2
2

1 1

wherewe have already integrated out t2—that integral sums over simple exponential decay.
Each new emission during the pulse time resets the area theorem and contributes a factor of

g - -( ( ) ( ))P A t A te n n 1 to fn. Hence, the general solution for an emission sequence < < <t t0 n1 with a short
pulse is

g

g

»

<

< <

g

g g

- - -

¥ - -

- - - -
-

-

- - -









⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( ) ( ) ( )
( ) ( )

( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f t t

t T

t T t

, ,

sin sin sin e if

sin sin

sin sin e e if

0 otherwise

. 22

n n

n A t A t A t A t A t t
n

n A A t A t A t

A t A t A t T t T
n n

1

2
2

2
2

2
2

2

2
2

2
2

2
2

2
2

2
1

n n n

n n n

n

1 2 1 1

1 1 2

2 1 1

In the case wherewe integrate to obtain the counting probabilities (equation (9)), the density from <t Tn

contributes g(( ) )T n but the density from <T tn contributes g -(( ) )T n 1 , for any total area = ¥( ) ( )A T A .
Then, we further approximate

ò ò òg» g- -
-

¥ - -

-
-

- - -



( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

F t t te d d d sin sin

sin sin , 23

n
n T

T

t

T

t

T

n
A A t A t A t

A t A t A t

1 2

0
1 2 1

2
2

2
2

2
2

2
2

n

n n n

1 2

1 1 2

2 1 1

wherewe have already integrated out tn. This is equivalent to saying thatwe expect every photon emission to
occur during the pulse except for the last one, which occurs afterwards. Because of the exponential factor in
front, this set of inclusive probabilities is almost always properly normalized.We briefly note that in the limit of

3
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long pulses

g
»

-
g

-
-( )

( )!
( )F

T

n

2

1
e , 24n

n
T

1
2

which is Poisson distributed.
Back to short pulses: the inclusive probabilities die awaywith increasing number of n emissions. Therefore,

the exclusive probabilitiesPn are all g -(( ) )T n 1 for >n 1. As the pulse length increases, ourmodel will deviate
from the exact behavior sincewe neglected the cases where all n photon emissions occur during the pulse. It will
also deviate from ignoring the effect of spontaneous emission on the deterministic dynamics during the pulse
(see appendix A), which is justified in the strong driving or short pulse limit.

3. Breakdownwith increasing pulse length

Although remarkably simple, our trajectory formalism allows for analytic exploration of an important
phenomenon in solid-state single-photon sources—many single-photon sources behave as nearly ideal
quantum two-level systems [9, 29, 30]. These systems operate by sending a short pulse of area p¥ =( )A to
excite the system to ñ∣e with almost unity probability, which results in emission of a single-photonwavepacket
with high probability [31]. The target single-photonwavepacketsmay be used in quantum information systems
in the future, however, some of these systems have extremely stringent requirements againstmultiphoton errors
[32, 33]. Thus, our proposedmodel for understandingmultiphoton errors, as due to re-excitation in a two-level
system, can be used to help identify useful regimes of operation.

To explore this concept further, we suppose the excitation of a two-level systemby a short pulse of area
p¥ =( )A . The dynamics of this process as a function of interacted pulse area are depicted infigure 1(a). A

standard quantum trajectory [28]with no re-excitation is shown as the black curve, where the single-photon
emissionwould occur some time long after the system-pulse interaction. Because the n-photon generation
probability scales as g -( )T n 1, we only need to consider the error due to a single re-excitation. The red dashed
curve depicts a trajectory with an emission occurring after p=( )A t 21 has been interacted. Similar to the
trajectorywith a single emission, the re-excited system ismost likely to emit its second photon long after the
system-pulse interaction has occurred.

By integrating over all possible trajectories, we can compute the signal rate p¥ =( ( ) )P A1 and error rate
p¥ =( ( ) )P A2 , whichwas only extracted experimentally [27] and numerically [31] thus far.We now assume a

specific formofA(t) corresponding to a square pulse, so

=
< <

¥ <

¥⎪

⎪

⎧
⎨
⎩

( )
( )

( )
( )

A t
t t T

A T t

if 0

if
. 25

A

T

From equations (16), (21), and (23), we identify the short pulse approximations to the inclusive emission
probabilities and explicitly write them for the square pulse

Figure 1.Re-excitation dynamics for two-level systemunder interactionwith aπ-pulse, i.e. p¥ =( )A . (a)Two example quantum
trajectories, with no photon emission (solid black) and one photon emission (dashed red) during the system-pulse interaction. Arrow
indicates time of photon emission. (b)Probability of one photon emissionP1: simplemodel (solid blue) and numerically exact (dashed
blue). Probability of two photon emissions P2: simplemodel (solid red) and numerically exact (dashed red). Both under excitation by a
square pulse. (c)Measured degree of second-order coherence [ ]( )g 02 under excitation by a square pulse, simulatedwith the quantum
regression theorem (black) and estimated fromour simple analytic approach (green). (d)Experimentallymeasured degree of second-
order coherence, obtainedwhen resonantly exciting a two-level systemmade up of excitonic states from a deterministically charged
quantumdot.
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⎞
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2

3
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2

The differences between inclusive probabilities give the exclusive probabilities (equation (10)) as = -P F F1 1 2

and = -P F F2 2 3, with

p
g

p
g

g
p

¥ = » +

¥ = » + -

g

g

-

-

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟
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P A
T

P A
T

T

e 1
3

8
,

e
8

3

4

5

64
27

T

T

1
2

2
2 2

2

shown as the solid curves infigure 1(b).We also computed the exclusive probabilities numerically without
approximation for the pulse (dashed curves). Notably, our approximations hold fairly well until gT is( )1 .

These probabilities can then be used to estimate the experimentallymeasurablemetric of the quality of a
single-photon source [31], the degree of second-order coherence

å
=

-
[ ]

( )
( [ ])

( )( )g
k k P

E n
0

1
28k k2

2

with the expected photon number

å=[ ] ( )E n kP . 29
k

k

As the pulse-width decreases [ ]( )g 02 approaches from 1 0, shown as the black curve infigure 1(c), indicating
an increase in the quality of the single-photon nature of thewavepacket (see appendix B for a discussion on the
temporally resolved second-order coherence). The degree of second-order coherencewas computed as in [31]
with theQuantumOptics Toolbox in Python [34]. For short pulses, the system acts as a good single-photon
source and

»
+

[ ]
( )

( )( )g
P

P P
0

2

2
, 302 2

1 2
2

whichwe can calculate fromour analytical expressions in equation (27) (solid green curve).
Any ideal Rabi oscillation of equivalent ¥( )A is isomorphic by a nonlinear coordinate transformation in

time because the area theoremdepends onA(t) (e.g. infigure 1(a) the x-axis isA(t)). However, the precise formof
the pulse can change P2 for a givenT due to integration over the time variable. For extremely short pulses the
exponential factors inPn are irrelevant, and for example, aGaussian pulse yields g»P T0.21882 while a square
pulse yields g»P T 82 . (Wenote here that we considered an incident Gaussian pulsewhereT is thewidth in
energy, by convention in the field of single-photon sources.)

Our approximationworks quite well until g »T 1, where the analyticmodel does not correctly capture the
saturation behavior of the second-order coherence. For long pulse lengths, the statistics tend towards Poissonian
due to the possibility ofmany randomly distributed photon emissions occurring.

To verify that our simplemodel has real predictive power for short pulses, we experimentallymeasured the
degree of second-order coherence [ ]( )g 02 of pulses scattered by a resonantly driven two-level system
(figure 1(d)).We explored amuch broader range of pulsewidths compared to previous data, showing a complete
series from a fewps to 10ʼs of ns, which allows us to explore howour analyticmodel deviates from experiment
for long pulses as well. Our two-level systemof choicewas the single electron to trion transition of a charged
InAs/GaAs quantumdot (see supplementarymaterial available online at stacks.iop.org/QST/3/014006/
mmedia for data and details on the experiments). Good agreement can be seen between the full quantum-optical
model and data, with only small differences that result from experimental inaccuracies (see supplementary
material).Meanwhile, the analyticmodel gives good agreement until g »T 1.

In summary, we have quantified how the area theorembreaks down as a function of pulse length. This
discussion can provide an important limit on the achievable source error rates for a given ratio of pulse length to
spontaneous emission lifetime, an important addition to previous studies on the phonon-induced limitations
for emission of indistinguishable photons from solid-state devices [35–38].We expect newdirections in research
on solid-state sources to involve understanding the interplay of pulsed excitationwith phonon dynamics
[39–41]. For short pulses, we believe the phonon dynamics work to incoherently populate (or re-excite) the
system—most likely with the same type of linear dependence as the coherent excitationmechanismwe have
identified [23].

5
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4. Breakdown for evenπ areas

As recently discovered [23], the area theorembreaks downwhen p¥ =( )A m2 and Î ¼{ }m 1, 2, 3, .We
now explore this point with our simplemodel. To help understand this breakdownwe introduce the new
probability densities

ò= -
¥

( ) ( ) ( ) ( )p t f t t f t td , , 31
t

1 1 1 1 2 2 1 2
1

which represents the exclusive andmarginal probability density for a single photon emission, and

ò ò= -
¥ ¥⎛

⎝⎜
⎞
⎠⎟( ) ( ) ( ) ( )p t t f t t t f t t td , d , , , 32

t t
2 1 2 2 1 2 3 2 1 2 3

1 2

which represents the exclusive andmarginal probability density for a single photon emission to be the start of a
two-photon emission sequence. In the limit of very short pulses, where the exponential factors do notmatter
andwe keep only terms of comparable order in gT ,

g

g

» - <

= <

¥ -

¥ -

( )( ) ( ) ( )
( ) ( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

p t t T

t T

sin sin sin if

sin cos if 33

A t A A t A t

A t A A t

1 1
2

2
2

2
2

2 1

2
2

2
2 1

1 1 1

1 1

and

ò»
¥

( ) ( ) ( )p t t f t td , 34
t

2 1 2 2 1 2
1

g= ¥ -( ) ( ) ( )( ) ( ) ( )T sin sin . 35A A t A t2
2

2
2

1 1

Consider the probability densities for aπ pulse (figure 2(a)), plotted independent of the pulse shape by using
( )A t1 as the x-axis. The trajectory if no photon emission occurs is again shown as a function of interacted pulse

area; however, we now additionally show ( )p t1 1 and ( )p t2 1 . Integrals of the densities give the probabilities for one
or two photon emissions to occur, respectively, with the only orfirst emission to occur during the system-pulse
interaction time. The shaded regions hence depict total probabilities for exclusive types of emission events
(though the exact values are determined by the specific pulse shape). By considering the fully time-resolved

Figure 2.Re-excitation dynamics for a two-level systemunder interactionwith extremely short pm -pulses, i.e. p¥ =( )A m for
Î { }m 1, 2, 3, 4 . Here, the precise pulse shape is not important because the exponential factors in equation (23) are all nearly unity

for extremely short pulses, sowe use the pulse-independent function ( )A t1 as our x-axis. (a)–(d)Probability of system being in the
excited state Pe if no emissions occur, and probability density ( )p t1 1 for a single photon emission at time t1 and ( )p t2 1 for a pair of
photon emissions to begin at time t1. (e)–(h) Fully time-resolved probability density ( )p t t,2 1 2 for a pair of photon emissions, assuming
the system-pulse interaction time is very short compared to the excited state lifetime, i.e. g T 1.
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probability density for two photon emissions, we comment that ( )p t t,2 1 2 is approximately separable for short
pulses as » g-( ) ( )p t t p t, e t

2 1 2 2 1
2, which is plotted for aπ pulse in (figure 2(e)). Additionally, consider two other

scenarios:

1. The situation is dramatically different when the pulse is long compared to the emission lifetime and
multiple re-excitation events can occur (see appendix B).

2. The results for p¥ =( )A are similar to all pulses with odd-π areas. For example, examine the densities for
π (figures 2(a) and (e)) and p3 (figures 2(c) and (g)) pulse areas: they are comparable whereby the densities
from p¥ =( )A have been tessellated three times for p¥ =( )A 3 .

On the other hand, the situation for ( )p t1 1 is radically different for a p2 pulse (figures 2(b) and (f)).
Importantly, the area theorem requires the excited-state population to return to zero after the system-pulse
interaction, as shownby the dashed black line.Hence, bothP2 and P1 are of order gT . This procedure yields

»P P 2.332 1 for aGaussian pulse and =P P 32 1 for a square pulse, with the remarkable result that >P P2 1.
Interestingly, P2 is emphasized because themost likely initial emission occurs when roughlyπ of the area has
been absorbed, forcing a re-excitationwith almost unity probability by the remainingπ area. In fact, our results
in this regime are nearly identical for all pulses of even-π area (see figures 2(d) and (h) for p¥ =( )A 4 , where
the probability densities for p¥ =( )A 2 have just been copied a second time). Nearly constant ratios of P P2 1

for all even-π areas occur because both ( )p t1 1 and ( )p t2 1 are periodic with area p2 . Themost important
consequence of the periodicity is that >P P2 1 for even arbitrarily short pulses, showing a dramatic result in the
breakdownof the area theoremwhen p¥ =( )A m2 .

We comment on the pulse-length dependence ofP1 andP2 for p2 pulses in appendix C. It turns out that
even for quite long pulses, two-photon emission is strongly dominant all theway up to g »T 1. This bodeswell
for future experiments and its potential use as a two-photon source, andwe expect that further pulse-shape
optimization could lead to even stronger two-photon emission.We discuss the extension to three-photon
emission densities in appendixD, in order to explore why the two-photon emission can dominate for such long
pulse lengths.

5. Comparison to realistic Rabi oscillations

In thefinal section, we compare the results generatedwith our simplemodel to those from a full quantum
mechanical simulation [23, 31]. Here, we show the full inclusive probability densities calculatedwith our
analyticalmodel for a square pulse of widthT:

g
»

¥
+ -

¥
¥

g- ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

( ) ( ( ))
( )

( )F
A T A

A
e sin

2 2
1

sin
, 36T

1
2 2

g
» + ¥ -

¥
¥

g-
⎛
⎝⎜

⎞
⎠⎟( ( )) ( ( ))

( )
( )F

T
A

A

A
e

8
2 cos 3

sin
, 37T

2
2

g
»

¥
- + ¥ - - + ¥ ¥ + ¥ ¥g- ( )

( )
( ( ( ) ) ( ( ) ) ( ( )) ( ) ( ( ))) ( )F

T

A
A A A A Ae

64
4 6 24 cos 9 sin . 38T

3
2

2

2
2 2

Again, the differences between the inclusive probabilities give the exclusive probabilities = -P F F1 1 2 and
= -P F F2 2 3.We consider a typical pulse width of g=T 0.3 and look at the Rabi oscillations in emitted

photon number (figure 3(a)) and photon statistics (figure 3(b)) versus interacted pulse area.We choose this pulse
length because the deviations between our analyticmodel and the numerically exact results become noticeable
(for additional quantitative comparisons of this deviation at important points consider figures 1(b) and 5).

Now,we discuss the Rabi oscillations inmore detail. The ideal probabilities to scatter a single photonP1, if
spontaneous emission is all but ignored, are shown—these are thewell-known sinusoidal Rabi oscillations
predicted by the area theorem (dashed black curve).When the effects of spontaneous emission are included, re-
excitation causes P1 to deviate fromperfect sinusoidal behavior (blue) andP2 to become important (red). On this
plot scale, >Pn 2 are negligible. Aswe have already discussed, it is clear that for the even-π pulses >P P2 1.

We can also consider the photon statistics of the emission [ ]( )g 02 and the variance of the emission relative to
the variance of a coherent state

å
=

-
[ ]

( ( [ ]) )
[ ]

( )n
k E n P

E n
Var . 39k k

2 2

The relative photon-number variance is lowest around oddmultiples ofπ, indicating the emission of a highly
pure single-photon state. Around even-multiples ofπ, however, the emission is highly super-Poissonian because
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two-photon emission is emphasized, i.e. P P2 1. Thus the second-order coherence bunches, >[ ]( )g 0 12 , and
the relative photon number variance peaks. All of these values can accurately be estimated fromour simple
model (solid curves)which agree verywell with the full simulated values (dashed curves). This agreement
furthers our assertion that the probability of three emissions P3 is negligible because it is of order g( )T 2. From
our discussion, we clearly see the area theorem alone is incapable of correctly capturing the dynamics and
photon statistics especially around p¥ =( )A m2 . The failure holds even for arbitrarily short pulse areas, where
the second-order coherence diverges resulting in a singularity.

6.Outlook

In this paper, we showed how the area theorembreaks down.We found an intuitive picture for understanding
the photon emission dynamics from a two-level system and showed that a two-level system canmostly emit
photon pairs for quite long pulses. In the future, we expect that further optimization of the pulse shape should
allow formore pure two-photon emission. Finally, we believe it will be interesting to explore the separability of
the two-photon pulses to understand the application of two-level systems as photon pair sources.
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Figure 3.Photon emission statistics of a two-level systemunder excitation by a square pulse of g=T 0.3 . (a)Probabilities for P1
single and P2 pairs of photon emissions. Black curve shows P1 for an ideal Rabi oscillation, while blue and red dashed curves indicate
simulated values using a full quantum trajectory calculation that includes spontaneous emission. Solid red and solid blue curves show
estimates based on our simple analytic approach. (b)Exact simulations for the variance relative to a coherent stateVar[n] and for

[ ]( )g 02 as dashed curves, while solid curves show estimates based on our simple analytic approach. Dotted black line shows coherence
statistics of the incident laser pulse.
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AppendixA. Photon countingwith the stochastic Schrödinger equation

Consider amore formal description of our two-level systemdriven by a short optical pulse, wherewe look at the
evolution of the system’s state vector

y y yñ = ñ + ñ∣ ( ) ( )∣ ( )∣ ( )t t g t e . 40g e

The optical driving occurs through the system’s dipole operator s = ñá∣ ∣g e , resonant with the ñ « ñ∣ ∣g e
transition, andwhere the rotatingwave approximation holds. If the system-pulse interaction begins at t=0,
then the Schrödinger evolution is given by (using  = 1and a rotating frame transformation) [42, 43]

y
m

s s yñ = - - ñ∣ ( ) · ( ) ( )∣ ( ) ( )†
t

t
E t

t
d

d
i

2
i i , 41

with the interacted pulse envelope from equation (1) and taking m · ( )E t as real (our choice of phase is to provide
real solutions). The systemundergoes coherent Rabi oscillations between its ground and excited states: if the
system is initially prepared in ñ∣g then the solution to equation (41) is

y ñ = ñ + ñ∣ ( ) ( ( ) )∣ ( ( ) )∣ ( )t A t g A t ecos 2 sin 2 . 42

This is again, a statement of the area theorem.
However, the system alsomay spontaneously emit photons. Both spontaneous emissions andRabi

oscillations can be captured by the stochastic Schrödinger equation [42]

y
m

s s y
g

s s s s y

s

s s
y y

ñ = - - ñ + á ñ - ñ

+
á ñ

- ñ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣ ( ) · ( ) ( )∣ ( ) ( ( ) )∣ ( )

( )
∣ ( ) ( ) ( )

† † †

†

t
E t

t t t t t

t
t N t

d i
2

i i d
2

d

1 d , . 43

Importantly, this equation represents something called a quantum trajectory, which is a realization of the
stochastic process Y ñ∣ ( )t . The increment y( )N td , represents a Poisson process that ‘triggers’ photon emission
at random times. Itsmean is

y g y s s yá ñ = á ñ( ) ( )∣ ∣ ( ) ( )†N t t t td , d , 44

which is the instantaneous photon emission probability conditioned on the particular trajectory. The evolution
of a trajectory y ñ∣ ( )t is uniquely identified by a vector of random emission times t =

 ( ) { }t t t, ,n n1 with
< < < <t t t0 n1 , called themeasurement record, and the total number of emissions n is random. This

vector implies that for these times t t yÎ =
( ( ) )N td , 1i and zero otherwise. These trajectories occurwith

probability t( ( ))P tn .We are interested in calculating the inclusive probability density of a given trajectory up to
the nth photon emission, sowewant

t= ( ) ( ( )) ( )f t t P t, , . 45n n n n1

This density is inclusive because it does not specify the evolution of the trajectory after time tn.Wewill nowuse
this formof equation (43) in a nonstandardway: as opposed to sampling the probability density for photon
emissions by evolvingmany random trajectories and building a histogramof emission times, we directly
compute their probability densities.

For short pulses, we can break up the stochastic evolution into two periods. First, the behavior during the
system-pulse interaction < <t T0 :

y
m

s s y
s

s s
y yñ » - - ñ +

á ñ
- ñ

< <

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ( ) · ( ) ( )∣ ( )

( )
∣ ( ) ( )

( )

†
†

t
E t

t t
t

t N t

t T

d i
2

i i d 1 d ,

if 0 , 46

when g T 1. Thefirst term again causes the system toRabi oscillate like in the area theorem, and the second
term collapses thewavefunction into the ground state through photon emission at random times. Each time an
emission occurs y =( )N td , 1, and it resets the area theorem. For example, let us use this equation to calculate
the probability density of emission ( )f t1 1 during the pulse. Specifically, we consider the evolution of y ñ∣ ( )t until
thefirst emission at time t1, with the initial condition y ñ = ñ∣ ( ) ∣g0 . Then, y< =( )N t td , 01 in equation (46)
and the evolution is deterministic

y ñ = ñ + ñ < < <∣ ( ) ( ( ) )∣ ( ( ) )∣ ( )t A t g A t e t t Tcos 2 sin 2 if 0 . 471
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Hence, the realization of the excited state probability is

= < < <( ) ( ( ) ) ( )P t A t t t Tsin 2 if 0 . 48e
2

1

The rate of photon emission is given by equation (44), i.e. y gá < ñ =( ) ( )N t t t P td , d e1 . To arrive at the
emission density, we also need to count the probability no photonwas emitted before t1. For a Poisson process
this is given by l-e , andwe have a variable rate parameter from equation (44) so

òl
y

=
á ñ( ) ( ) ( )t t

N t

t
, 0 d

d ,

d
49

t

1
0

1

ò g= < <( ( )) ( )t P A t t Td if 0 . 50
t

e
0

1
1

Putting these all together

g= < <l-( )( ) ( )( ) ( )f t t Tsin e if 0 , 51A t t
1 1

2
2

,0
1

1 1

which in the short pulse limit is equation (13).
Second, consider the behavior after the system-pulse interaction <T t . The pulse no longer drives the

system so

y
g

s s s s y
s

s s
y yñ » á ñ - ñ +

á ñ
- ñ

<

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ( ) ( ( ) )∣ ( )

( )
∣ ( ) ( )

( )

† †
†

t t t t
t

t N t

T t

d
2

d 1 d ,

if . 52

If therewere no emissions beforeT, then the initial condition of any trajectory is

y ñ = ñ + ñ∣ ( ) ( ( ) )∣ ( ( ) )∣ ( )T A T g A T ecos 2 sin 2 . 53

Like before, suppose there are no emissions until time >t T1 , so y< =( )N t td , 01 and hence

y ñ = ñ + + - ñ < <g -
-( )( )∣ ( ) ( )∣ ( ) ∣ ( )( ) ( ) ( )t g e T t tcos 1 1 sin 1 e if . 54A T A T t T

2
2

2

1 2

1

Then, the rate of photon emission is given by

y gá < < ñ
=

+ -

g

g

-

-

( )
( )

( )

( )

( ) ( )

( ) ( )

N T t t

t

d ,

d

sin e

1 sin e 1
,

A T t T

A T t T

1
2

2

2
2

and the probability for no emission to occur on this interval is

= + -l g- -( )( ) ( )( ) ( ) ( )e 1 sin e 1 . 55t T A T t T, 2
2

1 1

Putting this togetherwith the rate and the probability no emission occurred during < <t T0 , the density is

g= <g l- - -( )( ) ( )( ) ( ) ( )f t T tsin e e if . 56A T t T T
1 1

2
2

,0
1

1

The decay is exponential and reduces to equation (14) in the short pulse limit.
By defining

y
m

s s
g

s s s s= - + á ñ -˜ ( ) · ( ) ( ) ( ( ) )† † †H t
E t

t,
2

i i i
2

,

we can formally write down a solution for the inclusive probability density for the first emission occurring at
time t1, and an arbitrary pulse shape, as

= l-( ) ( ) ( )( )f t R t , 0 e 57t
1 1 1

,01

and

 òg= á ñ
y-( ) ∣ ∣ ∣ ∣ ( )

˜ ( )
R t t e g, e , 58

t H t
2 1

i d , 2t

t

1

2

where  indicates time-ordering of the exponential. This exponential should be understood as a shorthand to
integrate equation (43)with =Nd 0. This process can be repeated sequentially—enumerating trajectories and
their paths to get the inclusive probability densities. Generally for any number of emissions

= l l l
-

- - -- ( ) ( ) ( ) ( ) ( )( ) ( ) ( )f t t R t t R t t R t, , , e , e , 0 e . 59n n n n
t t t t t

1 1
,

2 1
,

1
,0n n 1 2 1 1
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Appendix B. Second-order coherencewhen driven by a long pulse

In this appendix, we consider the temporally-resolved second-order coherence of the emission froma two-level
systemwhen it is driven by a long pulse (g T 1)withπ area. For short pulses, the second-order coherence is
given by =( ) ( )( )G t t p t t, 2 ,2

1 2 2 1 2 for >t t2 1. Becausewe do not care if the first detectionwas at time t1 or t2,
( )( )G t t,2

1 2 is symmetric with exchange of these time indices. Thus, short pulses yield two thin slivers of second-
order coherence that have dimensions g´T 1 and g ´ T1 . However, for long pulses ( )( )G t t,2

1 2 is an
inclusivemoment of the probability densities rather than exclusive. In this scenario,multiphoton emissions also
contribute to ( )( )G t t,2

1 2 giving a giant blob of second-order coherence (figure 4). The blob has zero values for the
equal time correlations ( )( )G t t,2

1 1 since the two-level systemonly can emit one photon at a time.Notably, when
the pulse is long it inherits the coherence of the incident laser beam and =[ ]( )g 0 12 . Please see [31] for a
discussion on the relationship between temporally-resolved and pulse-wise second-order coherences.

AppendixC. Pulse-length photocount distribution for 2-π area pulses

In this appendix, we investigate the pulse-length dependence of the photocount distribution in the regionwhere
two-photon emission dominates. For the square pulsewhen p¥ =( )A 2 , we can arrive at very simple
expressions for the probabilities to emit one or two photons. Again, we take = -P F F1 1 2 and = -P F F2 2 3,
and get

p
g

¥ = » g-( ( ) ) ( )P A
T

2 e
8

60T
1

2

p
g g

¥ = » -g-
⎛
⎝⎜

⎞
⎠⎟( ( ) ) ( )

P A
T T

2 e
3

8

3

64
.T

2
2

2

These analytic functions are plotted infigure 5(a) as the solid curves.We also numerically computed the Pnup to
three ormore photon emissions exactly (dashed curves). The analytic curvesmatchwell up to around g »T 1,
withP1 andP2 being underestimated. Ideally, wewould experimentally work in the region of highest two-
photon emission rate P2 that does not spoil its purity with other numbers of photon emissions. Onemetric for
purity is given by

å
p º

>

( )P

P
, 61n

n

m m0

which is a renormalization of the probabilities without the vacuum component [23]. The purities are only
computed numerically (figure 5(b)) and show that the two-photon purity remains high to surprisingly large
values of the pulse width. Specifically, the two-photon purity begins to drop only as gT approaches 1.Hence, we
could operate in this region and achieve p » 0.712 and »P 0.252 for an ideal two-level system. Though, we
expect even better purities can be achievedwith optimization of the pulse shape.

Figure 4. Second-order coherence ( )( )G t t,2
1 2 of emission from a two-level systemunder excitation by a long pulse ( g=T 3.3 )with

area p¥ =( )A .
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AppendixD. Three-photon emission probability density

In this appendix, we explore the possibility for three photoemissions to occur during drive by a short pulse. This
scenariowith three emissions requires two emissions to occur during the pulsewidthT, and hence the total
probability for three emissions P3 is of the order g( )T 2. Taking equation (22) for the case of three photon
emissions at times < <t t t1 2 3, the inclusive probability density is given by

g» g¥ - - -( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )f t t t, , sin sin sin e . 62A A t A t A t A t t
3 1 2 3

3 2
2

2
2

2
2

2 2 1 1 3

Here, we have additionally taken the limit as T 0 sowe neglect the exponential factor g-e T 2 in our general
solution. Further in this limit, the four-photon density is smaller by gT and hence the inclusive and exclusive
densities are roughly equivalent

»( ) ( ) ( )p t t t f t t t, , , , . 633 1 2 3 3 1 2 3

Wewill alsomake use of the symmetric probability densities, which are defined as

= + + ( )
( )

!
( )

!
( )p t t t

p t t t p t t t
, ,

, ,

3

, ,

3
643,S 1 2 3

3 1 2 3 3 2 1 3

by adding together p3 with all of its indices permuted. This gives a nice form for themarginal probability
densities

ò=
¥

( ) ( ) ( )p t t t p t t t, d , , , 653,S 1 2
0

3 3,S 1 2 3

and

ò=
¥

( ) ( ) ( )p t t p t td , . 663,S 1
0

2 3,S 1 2

These densities are defined for any >t 01 or >t 02 .
Using these densities, we explore a number of points. Along the third detection time axis t3, the probability

density decays exponentially and is rather uninteresting. The remaining densities have interesting behavior;
consider ( )p t t,3,S 1 2 as plotted infigures 6(b), (d), (f), (h) for p¥ =( )A m and Î { }m 1, 2, 3, 4 . These densities
are almost all identical in shape for Î { }m 1, 2, 3 . The similarity of the shape owes to the fact that until the
interaction area is greater than p3 , the optimal way to achieve a three-photon emission is to divide the pulse into
thirds—the increase in excitation probability is thenmonotonically increasing between emissions. This division
is reflected in the two bright regions of the densities, which correlate emissions around ¥( )A 3 to those around

¥( )A2 3.Meanwhile for p4 , enough area is present that the optimumdivisionmust include Rabi flopping
between the ground and excited states, resulting in an increase in the number of optimal ways to achieve three-
photon emission.

Next, consider the densities ( )p t3 1 as plotted in figures 6(a), (c), (e), (g) for p¥ =( )A m and
Î { }m 1, 2, 3, 4 . These densities can easily be understood as all possible ways to start a three-photon emission

sequence at time t1. Their integrals yieldP3 and are depicted as the shaded regions (though the exact values are
determined by the specific pulse shape). Notably,P3 is almost two orders ofmagnitude lower for p¥ =( )A ,
which occurs because not enough interaction area is yet present to significantly excite the systembetween any of

Figure 5.Photon distributions for two-level systemunder interactionwith a square p2 -pulse, i.e. p¥ =( )A 2 . (a)Photocount
distribution, calculated numerically (dashed curves) and analytically P1 (solid blue) or P2 (solid red). (b)Photon purities
p = å >P Pn n m m0 , showing highly pure two-photon emission over a large range of pulse widths.
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the photon emissions, i.e. p p(( ) ) (( ) )sin 2 3 2 sin 3 22 3 2 3 . As a final remark, we note the connection
between photon flux and probability densities. Generally, as long as themarginal densities for photoemission
pn(t) are constructed as exclusive events, then

å åg = =[ ( )] ( ) ( ) ( )E M t p t p t , 67
n

n
n

n,S

Figure 6.Three-photon emission dynamics for two-level systemunder interactionwith pm -pulses, i.e. p¥ =( )A m for
Î { }m 1, 2, 3, 4 . (a), (c), (e), (g)Three-photon emission probability density ( )p t3 1 at time t1, i.e. all the ways three-photon emission

might contribute a photon at the time t1, [ ( )]E M t1 . Note, ( )p t3 1 is not dimensionless. (b), (d), (f), (h) Symmetric three-photon
emission probability density ( )p t t,3,S 1 2 —along the third time axis t3, the probability density p3,S decays exponentially like p2 does
alongt2.
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which represents all possible ways to achieve a photon emission at time t1. Specifically, [ ( )]E M t is the expected
number of trajectories that contribute an emission at time t.
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