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Abstract: We employed a global high-resolution inverse model to optimize the CH4 emission using 
Greenhouse gas Observing Satellite (GOSAT) and surface observation data for a period from 2011–
2017 for the two main source categories of anthropogenic and natural emissions. We used the 
Emission Database for Global Atmospheric Research (EDGAR v4.3.2) for anthropogenic methane 
emission and scaled them by country to match the national inventories reported to the United 
Nations Framework Convention on Climate Change (UNFCCC). Wetland and soil sink prior fluxes 
were simulated using the Vegetation Integrative Simulator of Trace gases (VISIT) model. Biomass 
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burning prior fluxes were provided by the Global Fire Assimilation System (GFAS). We estimated 
a global total anthropogenic and natural methane emissions of 340.9 Tg CH4 yr–1 and 232.5 Tg CH4 
yr–1, respectively. Country-scale analysis of the estimated anthropogenic emissions showed that all 
the top-emitting countries showed differences with their respective inventories to be within the 
uncertainty range of the inventories, confirming that the posterior anthropogenic emissions did not 
deviate from nationally reported values. Large countries, such as China, Russia, and the United 
States, had the mean estimated emission of 45.7 ± 8.6, 31.9 ± 7.8, and 29.8 ± 7.8 Tg CH4 yr–1, 
respectively. For natural wetland emissions, we estimated large emissions for Brazil (39.8 ± 12.4 Tg 
CH4 yr–1), the United States (25.9 ± 8.3 Tg CH4 yr–1), Russia (13.2 ± 9.3 Tg CH4 yr–1), India (12.3 ± 6.4 
Tg CH4 yr–1), and Canada (12.2 ± 5.1 Tg CH4 yr–1). In both emission categories, the major emitting 
countries all had the model corrections to emissions within the uncertainty range of inventories. The 
advantages of the approach used in this study were: (1) use of high-resolution transport, useful for 
simulations near emission hotspots, (2) prior anthropogenic emissions adjusted to the UNFCCC 
reports, (3) combining surface and satellite observations, which improves the estimation of both 
natural and anthropogenic methane emissions over spatial scale of countries. 

Keywords: inverse model; GOSAT; methane emission; anthropogenic; UNFCCC; wetland 
 

1. Introduction 

Climate change, a matter of global concern, is driven by the increasing anthropogenic emissions 
of greenhouse gases (GHGs), currently, in particular, from developing countries. Methane (CH4), a 
major greenhouse gas, has the global warming potential of about 28 times (over a time span of 100 
years) higher than carbon dioxide (CO2) [1] and a tropospheric lifetime of about 8–11 years. The 
anthropogenic sources of CH4 are almost 50% larger than the natural sources and are estimated to be 
around 360 (334–375) Tg yr–1 during 2008–2017 [2]. Methane is oxidized by photochemical reactions 
to carbon monoxide (CO), carbon dioxide (CO2), water (H2O), and formaldehyde (CH2O). These 
reactions consume the hydroxyl radical (•OH) and are the biggest sink of methane in the atmosphere. 
The reaction involves a set of several other trace gases, including ozone (O3) (see, for example, Dzyuba 
et al. 2012 [3]). Atmospheric methane affects the earth's radiative balance in several ways. Its 
oxidation produces other important greenhouse gases (such as CO2 and H2O), it contributes to global 
warming through its infrared absorption spectrum, and it controls the lifetime of many other climate-
relevant gases, such as ozone. Methane is also a precursor of tropospheric ozone, which itself is a 
short-lived greenhouse gas and a pollutant having adverse impacts on human health (e.g., [4]) and 
ecosystem productivity [5]. Therefore, reducing methane emissions brings, besides supporting 
climate change mitigation, added safety and health and energy-related benefits (e.g., [4]). For 
constituting an effective strategy for mitigation, it is essential to independently verify the national 
emission reports, the accuracy of which has been widely debated [6]. One way of accomplishing this 
is by analyzing the variations in atmospheric concentrations of methane and link them to emissions. 
Due to a heterogeneous network of surface observations, missing in some key regions, satellite 
observations have been widely used in such studies (e.g., [7,8]), owing to the advantage of the global 
coverage high-frequency observation. 

 On the country level, the CH4 budget depends on the ecosystem types and socio-economic 
development of a country. Methane is emitted into the atmosphere from a variety of individual 
sources, whose intensity varies largely with space and time (e.g., rice fields, enteric fermentation of 
livestock, manure, wetlands, crop residue burning, coal production, waste disposal, etc.). Methane is 
mainly emitted by anthropogenic activities and natural biogenic processes, followed by minor 
contributions from other natural sources—biomass burning, oceans, inland water bodies, and 
geological reservoirs. The prime anthropogenic sources are fugitive emission from solid fuels, leaks 
from gas extraction and distribution facilities, agriculture, and waste management. During the period 
2000–2007, the atmospheric growth rate of CH4 was nearly stalled, implying a balance between the 
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sources and sinks. However, since 2007, the growth rate has become positive again ([9–11]). Methane 
has been growing after 2014 at an unprecedented rate (e.g. 12.7±0.5 ppb yr–1) since the 1980s ([12]). 
The reasons for the observed atmospheric CH4 trend are highly debated (e.g., [13]).  

Recently, significant developments of inverse modeling methods have improved our 
understanding of the spatial and temporal distributions of CH4 sources and sinks (e.g., [14–17]). 
Inverse models are able to reproduce the observed atmospheric CH4 trends and variability within the 
uncertainty of the processes involved (e.g., [18–20]). However, further reduction in the posterior 
emission uncertainty of inverse modeling results depends on a better quantification of the errors in 
the prior emissions and sinks and on error reductions in forward modeled atmospheric transport.  

Bottom-up inventories, which are often used as a priori information on emission in inverse 
modeling, also have several uncertainties. The statistical data on activities, causing emissions, 
emission factors, and emission measurements, all have associated uncertainties. Thus, the uncertainty 
of an emission inventory varies as a function of the uncertainties in each of these factors. It is 
preferable, as far as possible, to distinguish between uncertainties in activity data and emission 
factors in order to obtain an assessment as accurate as possible, and at a later stage be able to seek 
specific inventory improvements. The verification of national GHG emission inventories is necessary 
for building confidence in the emission estimates and trends. Verification techniques include quality 
checks, inter-comparison of inventories and their error estimates, comparison with activity data, 
comparison with concentration/source measurements, and transport modeling studies. Currently, 
efforts to compare the national inventories to inverse model estimates are relying upon inverse 
models using regional high-resolution Lagrangian transport models ([21,22]). The major reason to 
use high-resolution transport models for analyzing anthropogenic methane emissions is the need to 
resolve high concentration events associated with emission plumes, which lower resolution models 
resolve less well and thus underestimate. Here, we reported the results of our analysis using a high-
resolution global Eulerian–Lagrangian coupled inverse model of methane using national reports of 
anthropogenic methane emissions to the United Nations Framework Convention on Climate Change 
(UNFCCC) ([23]) as prior anthropogenic fluxes and evaluated the posterior emissions optimized in 
two emission categories of natural and anthropogenic on a country scale. This study is an extension 
to one by Wang et al. (2019) [24], where they compared methane emissions for 2010–2012 for large 
regions with UNFCCC reports using either Emission Database for Global Atmospheric Research 
(EDGAR) or UNFCCC reported values as prior, whereas, in this study, we reported results for 
country-scale analysis of methane emissions for 2011–2017, with more detailed discussion and use of 
independent validation for India using optimized forward simulations of aircraft CH4 observations. 

2. Materials and Methods 

2.1. Data  

In this analysis, we used methane observations from the surface observation network and 
satellite. The details are described in the following sections. 

2.1.1. Greenhouse Gas Observing Satellite (GOSAT) Observations 

The Greenhouse gases Observing Satellite (GOSAT) is a sun-synchronous satellite that observes 
column-averaged dry-air mole fractions of methane in the shortwave infrared band (SWIR) ([25,26]). 
Observations are made around 13:00 local time with a surface footprint diameter of about 10 km. In 
the default observation mode, it has a repeat cycle of every three days, and in the target mode, special 
observations are made over regions of interest. GOSAT is providing observations since June 2009 
with no significant degradation of data quality ([27]). In this study, we used XCH4 retrieved from the 
GOSAT at the National Institute for Environmental Studies, Japan (NIES Level 2 product, v.02.72; 
[28]) for the period 2011–2017 to constrain methane emissions. Data uncertainty for the GOSAT 
retrievals were set to 60 ppb, with the rejection threshold of 30 ppb. Such a large data uncertainty was 
applied to the GOSAT retrievals due to the volume of GOSAT observations being much larger than 
that of ground-based observations. Using a smaller uncertainty could result in an over-fit to the 
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GOSAT data, although measurement precision is higher for the ground-based observations. The 
averaging kernel of GOSAT retrievals was not applied in this study because it did not affect the 
results in sensitivity tests. 

2.1.2. Surface, Aircraft, and Ship Observations 

Along with the GOSAT XCH4 observations, ground-based weekly or continuous atmospheric 
CH4 observations from a global network of stationary stations (Figure 1), aircraft and ship tracks were 
used in the inversions. In order to increase the representativeness of the measurements by using 
observations during well-mixed atmospheric conditions, the continuous observations were averaged 
to daily values using 12:00–16:00 local time. For mountain sites, 00:00–04:00 local time was instead 
used for the effects of upslope transport of local emissions due to daytime heating. For the 
observations from surface sites, data uncertainties were defined based on the root mean squared error 
(RMSE) with its prior forward simulations. A minimum threshold value of 6 ppb was set in order to 
allow more freedom for the inversion in the Southern Hemisphere. The rejection criteria for the 
surface, aircraft, and ship observations were decided based on the variance in the data (double its 
magnitude). Details of the data used are given in Table A1. 

2.1.3. Aircraft Observations over India for Validation 

Airborne CH4 measurements were performed during Cloud Aerosol Interaction and 
Precipitation Enhancement Experiment (CAIPEEX) airplane campaigns around two urban areas in 
India ([29,30]). The measurements were done by deploying in an airplane an online in-situ cavity 
ring-down spectroscopy (CRDS) technique-based analyzer (G2401-m; Picarro Inc., USA). For 
calibration of the measurements against the World Meteorological Organization (WMO) (X2004A) 
scale, we measured prior to take-off three working secondary standard gasses (provided by National 
Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA) for 20 min each. The analyzer 
was monitored for pressure stability during vertical sounding. Details of the analyzer are similar to 
the ones reported in Chen et al. (2010) [31]. More details of observation methods could be found in 
Tiwari et al. 2019 [32].  
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Figure 1. Locations of the methane observations used in the inversion. Greenhouse gas Observing 
Satellite (GOSAT) (green), surface station (red), aircraft (purple), and ship observations (blue) are 
shown. The top row and right columns are regionally zoomed from the bottom left panel. 

2.1.4. Prior Fluxes 

Prior methane fluxes used in the model included anthropogenic emissions, natural emissions 
from wetlands, soil sink, emissions from biomass burning, and other natural sources from the ocean, 
geological reservoirs, and termites. Annual anthropogenic emission was from the Emissions 
Database for Global Atmospheric Research (EDGAR v4.3.2) at a spatial resolution of 0.1°×0.1° ([33]) 
scaled to match the country reports to the UNFCCC. The scaling was applied on each grid cell based 
on the fractional difference in country total emissions between EDGAR and UNFCCC. The top fifteen 
emitting countries based on EDGAR v4.3.2 estimate for 2012 and other four countries Germany, 
France, United Kingdom, and Japan were selected to adjust the inventory according to UNFCCC 
reports (see Table A2). These nineteen countries emit 66% of the global total methane for the year 
2012 ([24]). The new gridded prior emission based on the UNFCCC reports was produced by scaling 
the annual total to EDGAR v4.3.2 values. Beyond 2012, we used the EDGAR values for 2012. More 
details on the data preparation could be found in [24]. Monthly variability was incorporated using 
the emission seasonality data available for one year for 2010 from EDGAR. Emissions from rice 
cultivation were taken from EDGAR. 

Emission from wetland and soil sink were estimated by Vegetation Integrative Simulator of 
Trace gases (VISIT, [34]) terrestrial ecosystem model simulation at 0.5°, which uses Global Lakes and 
Wetlands Database (GLWD; [35]) wetland area with corrections to the inundated area based on 
analyzed rainfall and temperature. These data were remapped from 0.5° to the model grid of 0.1° 
using GLWD globally, and for India using PROBA-V 100 m wetland area map from Copernicus 
Global Land Service ([36]), since we found several wetlands with small areal extent were missing in 
GLWD wetland fraction when comparing to the Indian Space Research Organization wetland atlas 
([37]). Soil sink data were remapped to 0.1° resolution using the gross primary productivity (GPP) 
maps by MODIS MOD17 GPP product ([38]). 

Emission from biomass burning was taken from Copernicus Atmosphere Monitoring Service 
(CAMS) Global Fire Assimilation System (GFASv1.2, [39]) daily data at 0.1° resolution. GFAS 
assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily 
estimates of biomass burning emissions. It has been extended to include information about injection 
heights derived from fire observations and meteorological information from the operational weather 
forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). FRP observations 
currently assimilated in GFAS are the National Aeronautics and Space Administration (NASA) Terra 
and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire products 
(http://modis-fire.umd.edu/). Data are available globally on a regular latitude-longitude grid with a 
horizontal resolution of 0.1 degrees.  

Other emissions included annual oceanic, geological, and termite emissions. The emission from 
termites was from Fung et al. (1991) [40]. The emissions due to oceanic exchange were distributed 
over the coastal region ([41]), and mud volcano emissions were based upon Etiope and Milkov (2004) 
[42]. 

The meteorological data used for the transport model, which is described in Section 2.2.1, were 
obtained from the Japanese Meteorological Agency (JMA) Climate Data Assimilation System 
(JCDAS; [43,44]), which provides the required parameters, such as three-dimensional wind fields, 
temperature and humidity at 1.25°×1.25° spatial resolution, 40 vertical hybrid sigma-pressure levels, 
and a temporal resolution of 6 h. 
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2.2. Methods 

2.2.1. NIES-TM-FLEXPART-VAR (NTFVAR) Inverse Modeling System 

This study utilized a global Eulerian–Lagrangian coupled model NTFVAR that consists of the 
National Institute for Environmental Studies (NIES) model as a Eulerian three-dimensional transport 
model, and FLEXPART (FLEXible PARTicle dispersion model) [45] as the Lagrangian particle 
dispersion model (LPDM). The forward transport model and model development were reported by 
Ganshin et al. (2012) [46] and Belikov et al. (2016) [47]. Our transport model was a modified version 
of the one described in [47]. The coupled model combines NIES-TM v08.1i with a horizontal 
resolution of 2.5° and 32 hybrid-isentropic vertical levels described by Belikov et al. (2013) [48], and 
FLEXPART model v.8.0 ([45]) run in backward mode with surface flux resolution of 0.1° (resolution 
of available surface fluxes limits resolution of the Lagrangian model). The changes in the current 
version with respect to the study by [47] include revision in the transport matrix, indexing and sorting 
algorithms to allow efficient memory usage for handling large matrixes of Lagrangian responses to 
surface fluxes required when using GOSAT data in the inversion. More details could be found in [24]. 

2.2.2. The Inverse Modeling Scheme 

We used a high-resolution version of the transport model and its adjoint described by Belikov 
et al. (2016) [47], which was combined with the optimization scheme proposed by Meirink et al. (2008) 
[49] and Basu et al. (2013) [50]. Following the approach by [49], flux corrections were estimated 
independently for two categories of emissions viz. anthropogenic and natural. Variational 
optimization was applied to obtain flux corrections as two sets of scaling factors to monthly varying 
prior uncertainty fields at 0.1°×0.1° resolution separately for anthropogenic and natural wetland 
emissions with a bi-weekly time step. Corrections to the anthropogenic emission were according to 
the monthly climatology of emissions provided by EDGAR, and wetland emissions were 
proportional to the monthly climatology of wetland emissions by the VISIT model, both given as 
prior uncertainty fields. The grid-scale flux uncertainty was defined as 30% of EDGAR climatology 
for the anthropogenic flux category and 50% of VISIT climatological emissions for the wetland 
emission category. No optimization was applied to other natural flux categories, such as emissions 
from biomass burning, geological sources, termites, and soil sink, as their amplitude is an order of 
magnitude less than that of wetlands. A spatial correlation length of 500 km and a temporal 
correlation of two weeks were used to provide smoothness on the scaling factors. The inverse 
modeling problem was formulated ([49,51]) as the solution for the optimal value of 𝑥 – vectors of 
corrections to prior fluxes at the minimum of a cost function 𝐽(𝑥): 𝐽(𝑥) = ଵଶ (𝐻 ∙ 𝑥 − 𝑟)் ∙ 𝑅ିଵ ∙ (𝐻 ∙ 𝑥 − 𝑟) + ଵଶ 𝑥் ∙ 𝐵ିଵ ∙ 𝑥      (1) 

where H is the atmospheric transport operator, r is the difference between observed 
concentration and forward simulation made with prior fluxes without correction, R is the covariance 
matrix of observations, and B is the covariance matrix of fluxes. In the B matrix design, we followed 
[49] in representing B matrix as multiple of non-dimensional covariance matrix C and the diagonal 
flux uncertainty D as 𝐵 = 𝐷் ∙ 𝐶 ∙ 𝐷 (2) 

C matrix is commonly implemented as a band matrix with non-diagonal elements declining as ~exp (− 𝑙ଶ 𝑑ଶ⁄ )  with distance l between the grid cells and d the correlation distance. The optimal 
solution, as the minimum of the cost function J, was calculated iteratively with an efficient Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm, as implemented by [52]. More details on the 
implementation could be found in [24,53]. 
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2.2.3. Posterior Uncertainties  

 Posterior flux uncertainties were calculated from a set of five simulations by randomly 
perturbing the observations and the prior fluxes, as in the method described by [54]. Pseudo-
observations were prepared by perturbing the observations with its uncertainty at each site. Also, 
prior monthly EDGAR and VISIT fluxes were prepared, applying random scaling factors separately 
for each global carbon project (GCP) region and month. Inversions were carried out using the 
perturbed pseudo-observations and the perturbed fluxes (perturbed EDGAR and VISIT combined 
with non-perturbed soil sink, biomass burning, and other natural emissions from the ocean, 
geological sources, and termites) as the prior fluxes and calculating the standard deviation of the 
inversion results.  

3. Results 

3.1. Posterior Fluxes and Flux Corrections       

In this study, two categories of fluxes, viz. natural and anthropogenic, were optimized by the 
inverse model. The annual mean (for the entire study period) global total natural prior was 209.15 Tg 
CH4 yr–1, and the posterior estimated was 232.49 Tg CH4 yr–1. This was in close agreement with top-
down estimates reported in Saunois et al. (2016) [55] (234 Tg), but higher than Saunois et al. (2019) [2] 
(215 Tg). In the case of anthropogenic emissions, the prior was 342.57 Tg CH4 yr–1, and the posterior 
was 340.92 Tg CH4 yr–1, which was between 319 and 357 Tg estimated by [55] and [2], respectively. 
The global total methane emission prior and posterior were 551.73 and 573.40 Tg CH4 yr–1, 
respectively; the total posterior emission was close to the estimate of 572 Tg by [2]. Figure 2 presents 
the comparison of surface methane observations, prior forward simulation and optimized forward 
for six surface measurement sites, including Fraserdale (Canada), Sinhagad (India), Hateruma 
(Japan), Mauna Loa (United States), Le Puy (France), and Ryori (Japan). Fraserdale is a continental 
site with large CH4 variability due to local wetland emissions. Sinhagad is a mountain site, whose 
CH4 concentration is influenced by maritime air in summer and inland emissions during winter due 
to seasonal reversal of wind patterns. Mauna Loa is considered as a global background station, and 
Hateruma and Ryori are influenced by emissions from East Asia. The inversion optimized fluxes 
brought down the RMSE and bias compared to the prior forward simulations. 
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Figure 2. The observed (grey impulses), prior forward (red), and optimized (blue) CH4 concentrations 
at six sites, a) Fraserdale, b) Sinhagad, c) Hateruma, d) Maunaloa, e) Le Puy, and f) Ryori. The root 
mean squared error (RMSE, in ppb) and the bias (BIAS, in ppb) for the prior and posterior are shown 
(red and blue, respectively). 

On a regional scale, anthropogenic emissions were found to increase in posterior compared to 
the prior over North America, tropical South America, Western Europe, tropical Africa, and 
Southeast Asia. Reductions were observed mainly over eastern Europe, China, Middle East countries, 
Japan, temperate South America, and southern parts of Southern Africa. These were in conformity 
with some studies, for example, the overestimation of Chinese coal emissions and the oil and gas 
sector in the Middle East in EDGAR ([56]), although we did not attribute these differences to any 
source sectors. The posterior fluxes in the natural emission category increased over tropical South 
America, contiguous and central North America, Southern Africa, parts of India, China, and 
Southeast Asia, and eastern parts of Russia. Amazonia is the largest natural tropical source of 
methane, still have large uncertainty in the emission ([57]), and some studies have reported upward 
revision in the inverse analysis (e.g., [58]). Tropical Africa is also a natural methane emitter (12% of 
global wetland emission, [59]) where the sources are wetlands, flood plain, riverine ecosystems, etc. 
Due to the seasonal migration of the intertropical convergence zone (ITCZ), the inundation extent is 
highly variable in these water bodies, and thus there is significant variability in the estimates of 
methane emission in this region ([60]) and difficulty in models to capture the wetland emissions. 
Significant reductions were observed over boreal North America and Russia (Figure 3). It should be 
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noted that the administrative boundaries shown in Figures 3 and 4 are approximate and might 
deviate from areas for which national emissions are reported or the national boundaries defined by 
the countries. Detailed analysis on the country scale is described in the following section. 

 

Figure 3. Posterior fluxes (a and c) and the corresponding flux corrections (b and d) by inverse model, 
averaged for 2011–2017, for natural (bottom panel) and anthropogenic (upper panel) categories. The 
units are in g CH4 m–2 d–1. Note that the administrative boundaries depicted in the figure may not 
reflect the actual political boundaries. 

3.2. Country Total Emissions 

3.2.1. Emission from Anthropogenic Sources 

We analyzed the prior and posterior emissions for anthropogenic and natural categories and 
their flux corrections by the inverse model on a country scale (Figure 4). For the anthropogenic 
category, emission totals calculated from EDGAR prior were highest for China (54.3 Tg CH4 yr–1), 
Russia (34.2 Tg CH4 yr–1), United States (27.8 Tg CH4 yr–1), India (20.1 Tg CH4 yr–1), and Brazil (16.4 
Tg CH4 yr–1). The inverse model corrected the prior emission upward for India 24.18±5.3 Tg CH4 yr–1 
(difference: 4.1 Tg; 20.4%) and United States 29.76±7.8 Tg CH4 yr–1 (2 Tg; 7.2%), while reduction in 
posterior emissions found over China 45.73±8.6 Tg CH4 yr–1 (8.6 Tg; 15.8%), Russia 31.91±7.8 Tg CH4 
yr–1 (2.25 Tg; 6.6%). Among countries having large anthropogenic emissions, emission from Brazil 
was having the least correction (0.1 Tg CH4 yr–1; 0.61%). Anthropogenic prior total emission in 
Indonesia was 11.17 Tg CH4 yr–1, which was found to have a 5.8% upward correction of 0.65 Tg so 
that the posterior emission was 11.82±2.5 Tg. The prior, posterior, and percentage difference in 
posterior for natural, anthropogenic, and total emissions for selected countries is shown in Table 1. 
Considering the posterior uncertainty for each country, most of the large emitting countries were 
found to have the inverse model corrections within the model uncertainty range, which was 
calculated, as mentioned in Section 2.2.3. Though in the case of India, the optimized emission was 
higher than the anthropogenic prior, the difference was within the inverse model uncertainty (4.1 Tg 
against 5.3 Tg uncertainty). 
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Figure 4. The mean annual total emissions aggregated (2011–2017) for each country for anthropogenic 
(left panels) and natural (right panels) categories. a) and d) (upper panel) Prior, b) and e) (middle 
panel) posterior, and c) and f) (bottom panel) correction fluxes  in Tg CH4 yr–1 units are given. 

3.2.2. Emission from Natural Sources 

In our study, though we optimized only for wetland emissions, the discussions were on total 
natural emissions, including other natural sources. In the case of emissions from natural sources, the 
largest upward corrections were for northern South American countries, such as Venezuela (2.22 Tg 
CH4 yr–1; 36.27%), Colombia (0.78 Tg CH4 yr–1; 32.77%), and Brazil (10.5 Tg CH4 yr–1; 36%) and a lower 
posterior emissions in Argentina (0.14 Tg CH4 yr–1; 3.5%) in South America. Other South American 
countries, such as Peru and Bolivia, also had a more than 20% increase in the posterior emissions 
compared to prior. Thus, there is a general tendency that the northern South American countries have 
lower emissions from natural sources in the prior. While the United States had 2.1 Tg CH4 yr–1 
increase, which was 8.8% of the natural prior, posterior emissions in Canada was 7.4 Tg CH4 yr–1 
(37.8%) less than prior, which was still within the uncertainty range of the prior emissions. In Asia, 
India, Bangladesh, there are large positive corrections to emissions (2.48 Tg CH4 yr–1; 25% and 1.89 
Tg CH4 yr–1; 46.9%, respectively), followed by a less but positive correction in China mainland (0.45 
Tg CH4 yr–1; 7.7%). The inverse model suggested an overall underestimation in the prior for equatorial 
African countries (Figure 4f), such as Uganda, Tanzania, Sudan, and Kenya, though the annual 
emissions were lower for these countries. A recent study ([60]) using GOSAT XCH4 observations in 
their inversion reported overall larger emissions compared to prior over Africa with strong 
exceptions in the Congo basin. However, in our analysis, we found a slight increase in our posterior 
emissions over the Democratic Republic of Congo. They attributed the increase in the CH4 emissions 
during 2010–2015 to increase the wetland extent during this period in some regions of Sudan (Sudd 
wetland). Tootchi et al. (2019) [61] presented the details of the disparity in the spatial extent among 
different wetland datasets over this region (Figure 10 therein). In their study, the Baroste floodplain 
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in southern tropical Africa had a wetland extent ten times that during the dry season minimum. Thus, 
there was potentially an underestimation in our prior wetland model over this area. More details of 
emission from these countries could be found in Table 1. 

Table 1. List of countries with annual emission (natural or anthropogenic) greater than 2.5 Tg CH4. 
Annual prior and posterior emission for total, natural, and anthropogenic categories and their 
percentage difference after optimization are given. The final row corresponds to global values. 
Country codes are listed against country names in the appendix, Table A2. 
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CHN 60.1 52.0 -13.5 5.8 6.3 7.7 54.3 45.7 -15.8 -8.6 8.6 

USA 51.6 55.7 7.9 23.8 25.9 8.8 27.8 29.8 7.2 2.0 7.8 

RUS 47.8 45.2 -5.5 13.6 13.2 -2.7 34.2 31.9 -6.6 -2.3 7.8 

BRA 45.6 56.2 23.3 29.2 39.8 36.1 16.4 16.5 0.6 0.1 10.0 

IND 29.9 36.5 21.9 9.9 12.3 25.2 20.1 24.2 20.4 4.1 5.3 

CAN 23.4 16.4 -29.8 19.7 12.2 -37.8 3.7 4.2 12.4 0.5 4.5 

IDN 19.5 20.6 5.5 8.3 8.7 5.1 11.2 11.8 5.8 0.7 2.5 

VEN 9.2 11.6 26.0 6.1 8.3 36.3 3.1 3.2 5.3 0.2 2.0 

BGD 8.6 11.1 29.1 4.0 5.9 46.9 4.6 5.2 13.7 0.6 1.7 

NGA 8.3 8.5 2.2 2.4 2.4 0.8 5.9 6.1 2.7 0.2 1.5 

PAK 7.7 8.0 3.0 0.6 0.6 3.6 7.2 7.4 2.9 0.2 1.0 

ARG 7.7 7.0 -9.2 3.9 3.8 -3.6 3.8 3.3 -14.7 -0.6 1.2 

SDN 6.7 7.7 14.5 3.8 4.6 20.8 2.9 3.1 5.5 0.2 1.5 

IRN 6.4 6.3 -1.6 0.8 0.8 0.0 5.6 5.5 -1.8 -0.1 0.8 

VNM 6.2 6.7 8.2 2.1 2.4 14.0 4.1 4.3 5.2 0.2 1.1 

COD 6.0 7.2 19.9 5.0 6.2 23.0 1.0 1.0 4.1 0.0 0.9 

THA 5.8 6.4 10.0 1.2 1.4 17.1 4.6 5.0 8.1 0.4 1.0 

MEX 5.5 5.8 5.3 1.0 1.1 6.1 4.5 4.7 5.4 0.2 0.9 

MMR 5.4 6.1 13.3 2.0 2.3 19.5 3.4 3.8 10.0 0.3 0.8 

COL 5.1 6.1 18.8 2.4 3.2 32.8 2.7 2.9 6.6 0.2 1.1 

ETH 4.5 4.8 7.4 0.9 1.0 16.9 3.6 3.8 5.0 0.2 0.8 

PRY 4.5 4.6 3.6 3.6 3.8 5.2 0.8 0.8 -3.7 0.0 0.9 

TZA 4.3 5.0 14.8 2.8 3.4 20.3 1.5 1.6 4.6 0.1 0.6 

TUR 3.8 3.6 -4.8 0.1 0.1 0.0 3.6 3.4 -5.0 -0.2 0.5 

KAZ 3.8 3.6 -6.3 0.5 0.5 0.0 3.3 3.1 -7.2 -0.2 0.6 

PER 3.8 4.7 23.0 2.9 3.7 29.5 0.9 0.9 2.2 0.0 0.6 

TCD 3.8 4.1 9.5 3.2 3.5 10.6 0.6 0.6 3.5 0.0 0.9 

ZMB 3.8 4.7 23.4 3.4 4.3 26.0 0.4 0.4 2.4 0.0 0.6 

ZAF 3.4 3.2 -4.7 0.3 0.3 0.0 3.1 2.9 -5.2 -0.2 0.4 

IRQ 2.9 2.9 -1.4 0.1 0.1 0.0 2.9 2.8 -1.4 0.0 0.4 

DZA 2.9 3.0 2.4 0.1 0.1 8.3 2.8 2.9 2.5 0.1 0.4 

KEN 2.9 3.2 11.8 1.1 1.4 22.3 1.8 1.9 5.7 0.1 0.4 

PNG 2.9 3.4 14.3 2.8 3.3 14.8 0.1 0.1 0.0 0.0 0.7 

SAU 2.8 2.9 1.8 0.0 0.0 0.0 2.8 2.8 1.8 0.1 0.4 

UKR 2.8 2.4 -14.5 0.2 0.2 -4.4 2.6 2.2 -15.8 -0.4 0.4 
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PHL 2.8 2.8 1.5 0.2 0.2 4.6 2.5 2.6 1.2 0.0 0.4 

POL 2.7 2.5 -5.3 0.0 0.0 0.0 2.6 2.5 -5.3 -0.1 0.4 

AGO 2.7 3.1 12.9 2.1 2.5 16.0 0.6 0.6 1.7 0.0 0.3 

FRA 2.5 2.8 11.2 0.1 0.1 0.0 2.4 2.7 11.2 0.3 0.4 

Global 551.7 573.4 3.9 209.2 232.5 11.2 342.6 340.9 -0.5 -1.7 22.6 

 

4. Discussion 

4.1. Case of India 

As far as the methane emission from India is concerned, there are large differences in the total 
wetland area in different wetland area databases. For example, Adam et al. (2010) [62] addressed the 
issue of disparity between GLWD wetland areas and satellite-based estimation of naturally 
inundated areas (NIA). Their study showed that the difference between GLWD and NIA in India and 
Southeast Asia (among other regions in their study) covered a significant area. Though satellite-based 
inundation extent might be overestimated in areas where wet soils could be interpreted as inundated, 
in the Indian subcontinent, they showed that GLWD might be missing some waterbodies. Therefore, 
there is a possibility that the wetland methane emissions in India may be underestimated in the prior 
(as suggested by increasing the wetland emissions by optimization), and this may influence the 
posterior estimate of anthropogenic emissions due to the lack of freedom to increase wetland 
emissions because of underestimated wetland area fraction in the region. In our analysis, we found 
that in India, some wetlands with small areal extent were not captured in GLWD dataset, and we 
merged it with the PROBA-V 100 m wetland area fraction to redistribute spatially the 0.5° wetland 
methane emissions from VISIT model, keeping the total India wetland emissions unchanged. 

Moreover, the anthropogenic emissions for India in EDGAR v4.3.2 is around 65% higher than 
the UNFCCC reported data (for example, in 2010, the EDGAR estimate is 32.6 Tg, while the emission 
reported to UNFCCC is 19.7 Tg in first Biennial Update Report to the UNFCCC by the Government 
of India ([63]) and 21 Tg in 2008 by [64]). Some of the recent studies, focusing on the region, covering 
some of the years in this analysis, found emission estimates between UNFCCC reports and the recent 
EDGAR updates. For example, Miller et al, (2019) [7] estimated lower anthropogenic emission for 
India than EDGAR 4.3.2 but higher annual emissions than Ganesan et al, (2017) [65]. Both the studies 
used GOSAT observations, and [65] also included surface and aircraft observations of methane in 
India in their inversion. Here, in our analysis, to constrain the emissions in the region, observations 
from four surface stations (Sinhagad; SNG [66], Cape Rama; CRI [67], Port Blair; PBL, and 
Pondicherry; PON [68]) in the Indian subcontinent were included in the inversion. The RMSE and 
bias for all four stations were reduced after the optimization by the inverse model. The RMSE for 
SNG was reduced to 57.4 in optimized simulation from 62.5 of prior forward and the bias from –17.9 
to –4.6. Similarly, for CRI station (RMSE from 50.9 to 37.9 and bias from –23.4 to –9.4), PBL (RMSE 
from 40.9 to 34.8 and bias from –14.6 to –5.5), and PON (RMSE from 50.4 to 39.4 and bias from –32 to 
–16.7). 

As a validation to the inverse model estimates, we prepared an independent check with aircraft 
observations of methane during few months for 2014 (September to November) and 2015 (July). This 
aircraft observation campaign was conducted by the Indian Institute of Tropical Meteorology, India 
(Section 2.1.3). These observations were not included in our inversion itself, but prior forward and 
optimized forward simulations were carried out for one-minute averaged CH4 observations. Figure 
5a shows the tracks of aircraft observations centered around the Indian city of Varanasi and the 
difference between the observations and simulation with fluxes optimized by the inverse model. 
Flight tracks of the observations around the city of Pune, which were also used in the profile 
averaging presented in Figure 5b, were not shown here. The vertical profiles of the aircraft CH4 
observations averaged for 300 m altitude is shown in Figure 5b. The total methane emission, both 
anthropogenic and natural, in India, was corrected upwards by the optimization. It could be seen in 
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Figure 5b that the prior forward simulation showed low mixing ratios at all mean vertical levels, and 
the simulations with posterior emissions agreed well in the boundary layer and to a less degree above 
it. Overall, the validation with the surface stations was used in the inversion and the aircraft 
observations used for validation only, and the posterior simulations showed a better fit to the 
observations than the prior forward model. 

 

Figure 5. (a) Track of aircraft observation of methane over the Indian domain, where the colors show 
the difference between optimized forward and observations. To facilitate visual clarity, not all 
observations are shown. The black stars represent cities around the region. Names of the cities are 
labeled in black. Observations at different altitudes are shown with different symbols, as shown in 
the legend. (b) The vertical profile of 300 m averaged aircraft observations against prior forward and 
optimized forward simulations. 

4.2. Seasonal Variability in Emission 

Besides the annual country’s total emissions, we analyzed the monthly variation of the fluxes 
for selected countries (having total emission greater than 5 Tg yr–1), as presented in Figure 6. In the 
case of China, the peak anthropogenic emission during the spring season was reduced, and the 
posterior emissions peaked during the summer months. The relatively lower natural methane 
emissions had not been altered by the inverse model. Anthropogenic prior for India showed a very 
weak seasonal cycle (similar to the analysis by [65]), while the inverse model brought out the more 
significant seasonal cycle with peaks during the southwest monsoon season (June to September). This 
was due to the fact that agricultural practices are dependent on rainy season (e.g., ~40% of rice 
production in low-lying rainfed land, [69]), and a slight phase shift with natural sources was found 
with the emission from natural sources (Figure 6), which indicates sources other than in natural 
emission category. Waterlogged areas increased nearly threefold during the southwest monsoon 
season, resulting in increased wetland CH4 emissions ([70]). During this season, the natural emission 
also increased in the posterior (e.g., [71]), both contributing to the summer peak in the total methane 
emission in India. Bangladesh had a very clear seasonal cycle (further enhanced by the optimization), 
which was mainly modulated by the methane emission from the natural sources. Pakistan had a 
peculiar scenario, having very small emission from natural sources with the total methane emission 
having distinct double peaks, a dominant one in spring and another one in summer. Most of the 
methane emission in Pakistan was from the agricultural sector (4 Tg in 2012, [72]). Iran also showed 
large influence from anthropogenic sources, and the inverse model offset the emission peak to 
summer months from spring. The natural methane emission in Russia was almost half of the total 
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anthropogenic emissions, but the amplitude of the monthly variation was large compared to 
anthropogenic emissions, and thus the seasonality in total methane emission was modulated by 
natural emissions.  

In the Southeast Asian countries, emission from natural sources is mainly influenced by water 
availability due to summer monsoon (e.g., [73]). Although the anthropogenic emission is larger than 
the emission from natural sources in Indonesia, there are strong signals of natural emissions due to 
major fire events in Indonesia (e.g., anomalous peak in 2015). Total methane emission in Myanmar 
has two peaks in monthly emissions, one in spring and another prominent peak in summer monsoon 
season. Myanmar is a country influenced by southwest monsoon rainfall and is a land of rice 
production both irrigated and rainfed ([74]), of which the majority of CH4 emission (65%) is from 
irrigated or deep-water rice fields. Thus, the seasonality in CH4 emissions is mainly modulated by 
wetland emissions. Variability in total emission follows mainly the variability in natural emissions. 
Methane emission in Thailand is, on the other hand, influenced mainly by anthropogenic emissions. 
So is the case with Vietnam, the optimization embeds a stronger annual peak during the monsoon 
season. 

For the United States, these two categories are nearly equal in magnitude, but peaks at different 
seasons in the year-−natural emissions in summer and anthropogenic in winter. The main 
anthropogenic source of methane in the United States is from livestock and manure management. 
The seasonality in methane emission in Canada is driven mainly by natural emissions, which has a 
larger magnitude than the anthropogenic emissions [75]. The seasonal cycle in the total methane 
emission in Mexico is mainly contributed by the anthropogenic emissions, with more than four times 
the emission from natural sources. In Brazil, the seasonality in the total methane emission is mainly 
driven by variability in methane emissions from natural sources, and in the posterior, we found 
substantial upward correction in the natural emission category and thereby total methane emissions. 
Besides Brazil, Venezuela also is mainly contributed by emission from natural sources with a distinct 
peak during summer months. While seasonality in the methane emission in Colombia is influenced 
mainly by natural sources, the seasonal cycle in total emission in Argentina is equally modulated by 
natural and anthropogenic categories. 

In the African continent, Nigeria, Sudan, and the Democratic Republic of Congo are the main 
methane emitters. Though anthropogenic emission is the major category of emission and has clear 
seasonality in Nigeria, the total emissions do not have a discernible seasonal pattern in emission. On 
the contrary, Sudan and Congo have a clear seasonal cycle due to the greater contribution from 
natural sources. 
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Figure 6. Time series of prior (light colors) and posterior (darker shades) fluxes for anthropogenic and 
natural categories and the total, for selected countries for the period from 2011 to 2017. The histograms 
show the mean annual total (Tg CH4 yr–1) for these categories. Units for series are on the left vertical 
axis, and for histograms are on the right, where the axis scales are different for each country. 

4.3. Desirable Future Improvements 

The deficiencies of the inversion system, with respect to the application for comparison of 
estimated emissions with national emission reports, to be addressed in future studies include the 
following. The inverse model optimizes the emissions on a coarser spatial resolution than the 
transport defined on 0.1° because of smoothing in the flux corrections applied to the prior emissions, 
which is dependent on both the smoothness constraint and the number of iterations. Thus, more 
research is needed to find an optimal balance between the smoothness of the solution and the amount 
of detail in retrieved fluxes. It would potentially improve the estimated emissions for countries and 
regions with lower emissions. Another improvement should be the use of high-resolution 
meteorological fields for transport, in place of currently used data at 1.25° spatial resolution and 6 h 
temporal intervals ([76,77]). Improved mapping of natural (and anthropogenic) emissions is 
necessary as we have identified deficiencies in the spatial distribution of wetland emissions, for 
example, over India, as discussed in Section 4.1. Some of the transport model biases, such as reduced 
vertical mixing and higher inter-hemispheric transport rate in the Eulerian transport model, used in 
this study were discussed in a multi-model intercomparison study by Krol et al. (2018) [78]. 
Currently, there is less evidence on the size of the biases and their impact on inversion results; more 
details would emerge after analysis of the data of GCP methane intercomparison ([2]), where multiple 
models could be compared to each other, including the one used in this study, and the correlations 
between transport model properties and reconstructed emissions could be established. Unaccounted 
biases in the satellite observations, especially over regions where ground-based observations are 
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missing, also might influence the results. Incorporating more ground-based observations in the 
inversion might help reducing biases over regions with a sparse observation network. 

5. Conclusions 

We carried out inversion of methane fluxes for seven years using GOSAT satellite observations 
and surface observations using a high-resolution inverse model NIES-TM-FLEXPART-VAR 
(NTFVAR) that couples a Lagrangian particle dispersion model FLEXPART with a global Eulerian 
model NIES-TM. Optimization was applied to natural (wetland only) and anthropogenic emissions 
on a bi-weekly time step, and the results were analyzed on a global country scale. In order to evaluate 
the inverse model estimates of methane emissions on a country scale, we used EDGAR anthropogenic 
methane emission inventory scaled to match the national reports to the UNFCCC. Our results 
showed that largest correction to the wetland emissions were for Bangladesh having an upward 
revision of around 46.9% (1.89 Tg CH4 yr–1) of its prior, followed by Venezuela (2.2 Tg CH4 yr–1; 
36.3%), Brazil (10.5 Tg CH4 yr–1; 36.1%), and India (2.4 Tg CH4 yr–1; 25.2%), while there was 37.8% (7.5 
Tg CH4 yr–1) reduction for Canada. On the other hand, anthropogenic emission was found to differ 
from national reports for the United States by 2 Tg CH4 yr–1 (7.2%), China (8.6 Tg CH4 yr–1; 15.8%), 
India (4.1 Tg CH4 yr–1; 20.4%), Russia (2.3 Tg CH4 yr–1; 6.6%), Canada (0.5 Tg CH4 yr–1; 12.4%), 
Bangladesh (0.6 Tg CH4 yr–1; 13.7%, and Argentina (0.6 Tg CH4 yr–1; 14.7%), with all differences being 
within emission uncertainty range. The inversion results for India were validated against aircraft data 
over two north Indian urban regions, and the posterior fit to the observations showed a clear 
improvement, especially in the boundary layer. The application of an inversion system based on 
high-resolution transport using prior anthropogenic emission field adjusted to the UNFCCC 
emission reports, and with the combination of surface and satellite observations, enabled us to study 
the natural and anthropogenic methane emissions over a spatial scale of countries and to compare 
with the national methane emission reports. However, improvements in the resolution of the model 
and meteorological fields, fixing source allocations in emission sources used as priors, refinements to 
reduce model and observation biases, and inclusion of more observations are desirable targets for 
future improvement. 
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Appendix A 

Table A1. List of observations used in this inversion. The details are Station (country), site ID, institute 
conducting observations, observation type, and sampling method. 

Station Observation 

ID 
Lab 

Observation 

Type 
Sampling Type 

Abbotsford (Canada) abb006 ECCC Station Continuous 
Arembepe (Brazil) abp001 NOAA Station Discrete 
Alert (Canada) alt006 ECCC Station Continuous 
Alert (Canada) alt001 NOAA Station Discrete 
Amsterdam Island (France) ams011 LSCE Station Discrete/Continuous 
Argyle (US) amt001 NOAA Station Discrete 
Anmyeon-do (Republic of 
Korea) amy061 KMA Station Continuous 

Aircraft (Western North Pacific) 
(Japan) aoa019 JMA Aircraft Discrete (aircraft) 

Arrival Heights (New Zealand) arh015 NIWA Station Discrete 
Ascension Island (United 
Kingdom) asc001 NOAA Station Discrete 

Assekrem (Algeria) ask001 NOAA Station Discrete 
Amazon Tall Tower 
Observatory (Brazil) ato045 MPI-BGC Station Continuous 

Serreta (Portugal) azr001 NOAA Station Discrete 
Azovo (Russia) azv NIES Station Continuous 
Baltic Sea (Poland) bal001 NOAA Station Discrete 
Boulder (US) bao001 NOAA Station Discrete 
Behchoko (Canada) beh006 ECCC Station Continuous 
Begur (Spain) bgu011 LSCE Station Discrete 
Baring Head (New Zealand) bhd001 NOAA Station Discrete 
Biscarrosse (France) bis011 LSCE Station Continuous 
Bukit Kototabang (Indonesia) bkt105 EMPA Station Continuous 
Bukit Kototabang (Indonesia) bkt001 NOAA Station Discrete 
St. David's Head (United 
Kingdom) bme001 NOAA Station Discrete 

Tudor Hill (Bermuda) 
(United Kingdom) bmw001 NOAA Station Discrete 

Bratt's Lake (Canada) brl006 ECCC Station Continuous 
Barrow (US) brw001 NOAA Station Discrete 
Berezorechka (Russia) brz NIES Station Continuous 
Constanta (Black Sea) 
(Romania) bsc001 NOAA Station Discrete 

Pacific Ocean (New Zealand) bsl015 NIWA Ship Discrete 
Cambridge Bay (Canada) cab006 ECCC Station Continuous 
Cold Bay (US) cba001 NOAA Station Discrete 
Cabauw (Netherlands) cbw196 RUG Station Continuous 
Cape Ferguson (Australia) cfa002 CSIRO Station Discrete 
Cape Grim (Australia) cgo001 NOAA Station Discrete 
Cape Grim (Australia) cgo043 AGAGE Station Continuous 
Chapais (Canada) cha006 ECCC Station Continuous 
Chibougamau (Canada) chi006 ECCC Station Continuous 
Christmas Island (Kiribati) chr001 NOAA Station Discrete 
Cherskii (Russia) chs001 NOAA Station Discrete 
Churchill (Canada) chu006 ECCC Station Continuous 
Valladolid (Spain) cib001 NOAA Station Discrete 
Monte Cimone (Italy) cmn106 UNIURB/ISAC Station Discrete 
Cape Ochiishi (Japan) coi020 NIES Station Continuous 
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Cape Point (South Africa) cpt036 SAWS Station Continuous 
Cape Point (South Africa) cpt001 NOAA Station Discrete 
Cape Rama (India) cri002 CSIRO Station Discrete 
Crozet (France) crz001 NOAA Station Discrete 
Casey (Australia) cya002 CSIRO Station Discrete 
Demyanskoe (Russia) dem020 NIES Station Continuous 
Downsview (Canada) dow006 ECCC Station Continuous 
Drake Passage (US) drp001 NOAA Ship Discrete 
Dongsha Island (Taiwan) dsi001 NOAA Station Discrete 
Egbert (Canada) egb006 ECCC Station Continuous 
Easter Island (Chile) eic001 NOAA Station Discrete 
CONTRAIL (Japan) eom010 MRI Aircraft Discrete (aircraft) 
Estevan Point (Canada) esp006 ECCC Station Continuous 
Esther (Canada) est006 ECCC Station Continuous 
East Trout Lake (Canada) etl006 ECCC Station Continuous 
Finokalia (Greece) fik011 LSCE Station Discrete 
Fraserdale (Canada) fsd006 ECCC Station Continuous 
Gif-sur-Yvette (France) gif011 LSCE Station Continuous 
Giordan Lighthouse (Malta) glh209 UMIT Station Continuous 
Guam (US) gmi001 NOAA Station Discrete 
Gunn Point (Australia) gpa002 CSIRO Station Discrete 
Gosan (Republic of Korea) gsn NIER Station Continuous 
Hateruma Island (Japan) hat020 NIES Station Continuous 
Halley (United Kingdom) hba001 NOAA Station Discrete 
Hanle (India) hle011 LSCE Station Discrete 
Hohenpeissenberg (Germany) hpb001 NOAA Station Discrete 
Hegyhatsal (Hungary) hun001 NOAA Station Discrete 
Storhofdi (Iceland) ice001 NOAA Station Discrete 
Igrim (Russia) igr020 NIES Station Continuous 
Inuvik (Canada) inu006 ECCC Station Continuous 
Izaña (Spain) izo001 NOAA Station Discrete 
Izaña (Spain) izo027 AEMET Station Continuous 
Jungfraujoch (Switzerland) jfj005 EMPA Station Continuous 
Key Biscane (US) key001 NOAA Station Discrete 
Kollumerwaard (Netherlands) kmw196 RIVM Station Continuous 
Karasevoe (Russia) krs020 NIES Station Continuous 
Cape Kumukahi (US) kum001 NOAA Station Discrete 
Sary Taukum (Kazakhstan) kzd001 NOAA Station Discrete 
Plateau Assy (Kazakhstan) kzm001 NOAA Station Discrete 
Lauder (New Zealand) lau015 NIWA Station Discrete/Continuous 
Park Falls (US) lef001 NOAA Station Discrete 
Lac La Biche (Canada) llb006 ECCC Station Continuous 
Lac La Biche (Canada) llb001 NOAA Station Discrete 
Lulin (Taiwan) lln001 NOAA Station Discrete 
Lampedusa (Italy) lmp001 NOAA Station Discrete 
Lampedusa (Italy) lmp028 ENEA Station Discrete 
Ile Grande (France) lpo011 LSCE Station Discrete 
Lamto (Côte d'Ivoire) lto011 LSCE Station Continuous 
Mawson (Australia) maa002 CSIRO Station Discrete 
Mex High Altitude Global 
Climate Observation Center 
(Mexico) 

mex001 NOAA Station Discrete 

Mace Head (Ireland) mhd001 NOAA Station Discrete 
Mace Head (Ireland) mhd043 AGAGE Station Continuous 
Sand Island (US) mid001 NOAA Station Discrete 
Mt. Kenya (Kenya) mkn001 NOAA Station Discrete 
Mauna Loa (US) mlo001 NOAA Station Discrete/Continuous 
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Minamitorishima (Japan) mnm019 JMA Station Continuous 
Macquarie Island (Australia) mqa002 CSIRO Station Discrete 
Mt. Wilson Observatory (US) mwo001 NOAA Station Discrete 
Natal (Brazil) nat001 NOAA Station Discrete 
Neuglobsow (Germany) ngl025 UBA-Germany Station Continuous 
Gobabeb (Namibia) nmb001 NOAA Station Discrete 
Novosibirsk (Russia) nov004-070 NIES Aircraft Discrete (aircraft) 
Noyabrsk (Russia) noy NIES Station Continuous 
Niwot Ridge - T-van (US) nwr001 NOAA Station Discrete 
Observatoire Pérenne de 
l’Environnement (France) ope011 LSCE Station Discrete/Continuous 

Otway (Australia) ota002 CSIRO Station Discrete 
Ochsenkopf (Germany) oxk001 NOAA Station Discrete 
Pallas (Finland) pal001 NOAA Station Discrete 
Pallas (Finland) pal030 FMI Station Continuous 
Port Blair (India) pbl011 LSCE Station Discrete 
Pic du Midi (France) pdm011 LSCE Station Discrete 
Off the coast of Sendai Plain 
(Japan) pip008 TU Aircraft Discrete (aircraft) 

Pacific Ocean (US) poc000-s35 NOAA Ship Discrete 
Pondicherry (India) pon011 LSCE Station Discrete 
Plateau Rosa (Italy) prs021 RSE Station Continuous 
Palmer Station (US) psa001 NOAA Station Discrete 
Point Arena (US) pta001 NOAA Station Discrete 
Puy de Dôme (France) puy011 LSCE Station Discrete 
Ragged Point (Barbados) rpb001 NOAA Station Discrete 
Ragged Point (Barbados) rpb043 AGAGE Station Continuous 
Ryori (Japan) ryo019 JMA Station Continuous 
Beech Island (US) sct001 NOAA Station Discrete 
Shangdianzi (China) sdz001 NOAA Station Discrete 
Mahé (Seychelles) sey001 NOAA Station Discrete 
Southern Great Plains (US) sgp001 NOAA Station Discrete 
Shemya Island (US) shm001 NOAA Station Discrete 
Samoa (US) smo001 NOAA Station Discrete 
Samoa (US) smo043 AGAGE Station Continuous 
Hyytiala (Finland) smr421 UHELS Station Continuous 
Sonnblick (Austria) snb211 EAA Station Continuous 
Sinhagad (India) sng IITM Station Discrete 
Sodankylä (Finland) sod030 FMI Station Continuous 
South Pole (US) spo001 NOAA Station Discrete 
Schauinsland (Germany) ssl025 UBA-Germany Station Continuous 
Sutro Tower (US) str001 NOAA Station Discrete 
Summit (Denmark) sum001 NOAA Station Discrete 
Surgut (Russia) sur005-070 NIES Aircraft Discrete (aircraft) 
Syowa (Japan) syo001 NOAA Station Discrete 
Tae-ahn Peninsula 
(Republic of Korea) tap001 NOAA Station Discrete 

over Japan between Sendai and 
Fukuoka (Japan) tda008 TU Aircraft Discrete (aircraft) 

Teriberka (Russia) ter055 MGO Station Discrete 
Trinidad Head (US) thd001 NOAA Station Discrete 
Trinidad Head (US) thd043 AGAGE Station Continuous 
Tiksi (Russia) tik001 MGO Station Discrete 
Trainou (France) tr3011 LSCE Station Discrete 
Turkey Point (Canada) tup006 ECCC Station Continuous 
Ushuaia (Argentina) ush001 NOAA Station Discrete 
Wendover (US)  uta001 NOAA Station Discrete 
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Uto (Finland) uto030 FMI Station Continuous 
Ulaan Uul (Mongolia) uum001 NOAA Station Discrete 
Vaganovo (Russia) vgn NIES Station Continuous 
West Branch (US) wbi001 NOAA Station Discrete 
Walnut Grove (US) wgc001 NOAA Station Discrete 
Sede Boker (Israel) wis001 NOAA Station Discrete 
Moody (US) wkt001 NOAA Station Discrete 
Mt. Waliguan (China) wlg001 NOAA Station Discrete 
Mt. Waliguan (China) wlg033 CMA/NOAA Station Discrete 
Western Pacific (US) wpc001 NOAA Ship Discrete 
Western Pacific (Japan) wpsEQ0-S35 NIES Ship Discrete 
Sable Island (Canada) wsa006 ECCC Station Discrete/Continuous 
Yakutsk (Russia) yak010-030 NIES Station/Aircraft Continuous/Discrete 
Yonagunijima (Japan) yon019 JMA Station Continuous 
Zeppelin Mountain (Norway) zep001 NOAA Station Discrete 
Zotino (Russia) zot045 MPI-BGC Station Discrete/Continuous 
Zugspitze (Germany) zsf025 UBA-Germany Station Continuous 

Table A2. List of country codes used in this paper and their respective names. The nineteen countries 
used for scaling the EDGAR using UNFCCC reports are listed in bold letters. 

Country code Country Name 
CHN China 
USA United States 
RUS Russia 
BRA Brazil 
IND India 
CAN Canada 
IDN Indonesia 
BGD Bangladesh 
NGA Nigeria 
PAK Pakistan 
FRA France 
AUS  Australia 
DEU  Germany 
GBR United Kingdom 
JPN  Japan 
THA Thailand 
MEX Mexico 
IRN Iran 
ARG Argentina 
VEN Venezuela 
SDN Sudan 
VNM Vietnam 
COD Democratic Republic of the Congo 
MMR Myanmar 
COL Colombia 
ETH Ethiopia 
PRY Paraguay 
TZA Tanzania 
TUR Turkey 
KAZ Kazakhstan 
PER Peru 
TCD Chad 
ZMB Zambia 
ZAF South Africa 
IRQ Iraq 



Remote Sens. 2020, 12, 375 21 of 25 

 

DZA Algeria 
KEN Kenya 
PNG Papua New Guinea 
SAU Saudi Arabia 
UKR Ukraine 
PHL Philippines 
POL Poland 
AGO Angola 
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