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We characterize the early stages of the approach to equilibrium in isolated quantum systems through the
evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves with
at least three distinct timescales. First, on an o(1) timescale, independent of system or subsystem size and
the details of the dynamics, the entanglement spectrum develops nearest-neighbor level repulsion. The second
timescale sets in when the light-cone has traversed the subsystem. Between these two times, the density of states
of the reduced density matrix takes a universal, scale-free 1/f form; thus, random-matrix theory captures the
local statistics of the entanglement spectrum but not its global structure. The third time scale is that on which
the entanglement saturates; this occurs well after the light-cone traverses the subsystem. Between the second
and third times, the entanglement spectrum compresses to its thermal Marchenko-Pastur form. These features
hold for chaotic Hamiltonian and Floquet dynamics as well as a range of quantum circuit models.

Understanding how an isolated quantum system reaches
thermal equilibrium is a central problem in quantum statis-
tical physics. Substantial progress has been made on the late-
time aspects of thermalization, based on the eigenstate ther-
malization hypothesis [1–5], which implies that small enough
subsystems are well described by thermal density matrices if
one waits long enough for information to have traversed the
entire system. Much numerical [3, 5, 6] and experimental
[7] evidence now exists for eigenstate thermalization. How-
ever, the mechanism by which a local density matrix goes
from being disentangled to being fully thermal—the process
of thermalization—is still poorly understood. Some coarse
grained features of the thermalization process have recently
been characterized numerically, as well as through the study
of random unitary circuits (RUCs) [8–15]. In special lim-
its of RUCs (namely, the limit of large on-site Hilbert space
or Clifford circuits), and fine-tuned models such as the self-
dual kicked Ising model [16], exact solutions are available for
entanglement growth and the scrambling of local operators.
These solvable cases, however, are non-generic, and miss im-
portant aspects of the generic thermalization process.

The present work addresses the dynamics of entanglement
and thermalization at early times in generic systems (i.e. non-
integrable models with a low-dimensional on-site Hilbert
space): here, the entanglement spectrum [i.e., the eigenvalues
of the reduced density matrix (RDM)] [17–21] evolves in a
highly nontrivial way that is not even qualitatively captured by
the entanglement entropy. This behavior is absent in the afore-
mentioned exactly solvable limits. The picture that emerges is
independent of how the dynamics is generated, holding for
Hamiltonian, Floquet, and temporally random dynamics; for
systems with and without conservation laws; and for chaotic
as well as many-body localized systems. Here, we focus on
Hamiltonian dynamics and RUCs; for other cases see [22].

In this work, we show that the process of thermalization
takes place in at least three stages; our main new results are
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FIG. 1. Spectral properties of the reduced density matrix under
generic time evolution. (a) Spectral density of the reduced density
matrix for random unitary (R) and chaotic Hamiltonian (H) dynamics
at early times; this follows a 1/f distribution (dashed line). (b) Ad-
jacent gap ratio of the entanglement spectrum, as a function of time,
comparing R and H dynamics. Colors denote the model (red for R
and blue for H); for each color, empty symbols are for system size
L = 12 and subsystem size lA = 6, whereas filled symbols are for
L = 16, lA = 8. The random-matrix prediction [〈r〉 ≈ 0.599] is
marked with a dashed black line. (c, d) Evolution of entanglement
bandwidth w and von Neumann entanglement entropy S1, for R and
H dynamics with L = 16, lA = 8. For both R and H dynamics
the entanglement bandwidth grows until t = L/2 (for RUC’s this
growth is linear), then shrinks, whereas the entanglement entropy
keeps growing. The saturation value of S1 is higher for R dynamics
than H dynamics, due to the absence of conservation laws.

that the entanglement spectra behave universally even at rel-
atively early times as demonstrated in Fig. 1, although its
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early- and late-time properties belong to different universal-
ity classes. To explain these regimes, we introduce multiple
characteristic timescales in the entanglement evolution: (i)
the timescale on which the entanglement spectrum develops
nearest-neighbor level repulsion; (ii) the timescale on which
the rank of the density matrix [i.e., the Rényi entropy S0 in
Eq. (3)] saturates; and (iii) the timescale on which the reduced
density matrix saturates to its late-time behavior. One of our
main results is that timescale (i) is independent of system and
subsystem size, and largely insensitive to the nature of the
dynamics. A second main result is that the spectrum of the re-
duced density matrix between timescales (i) and (ii) exhibits a
universal, scale-invariant 1/f density of states. This distribu-
tion spreads over increasingly many decades as time passes,
until we hit timescale (ii). Once again, this behavior is present
in all the models we have considered, but is absent in the ex-
actly solvable limits. Finally, between timescales (ii) and (iii)
the range of the 1/f distribution shrinks, and narrows toward
the late-time Marchenko-Pastur form [18]; during this entire
process the entanglement entropy is still growing. For quan-
tum circuits, which have a strict light cone, there is a sharp
transition between these regimes, set by the subsystem size.
For Hamiltonian dynamics this is rounded into a crossover
(due to the exponential tails in the Lieb-Robinson bound [23])
but the two temporal regimes are still clearly distinguished in
practice (Fig. 1). Both of our main findings are absent in ex-
actly solvable limits, where the entanglement density of states
is a delta function at all times, and consequently the nearest-
neighbor level spacing is not defined.

We capture level statistics beyond nearest-neighbor using
an appropriate entanglement spectral form factor. At short
times the spectral form factor of the entanglement spectrum
has a “ramp” feature characteristic of level repulsion, but does
not quantitatively behave as random-matrix theory would pre-
dict. Further, the spectral form factor drifts with time until
very late times when the entanglement has saturated; only then
does it take on its universal shape dictated by random matrix
theory. Thus our results clarify the sense in which such sys-
tems are “locally thermal”: although the coarse structure of
the reduced density matrix is far from that of a thermal state,
its “short-distance” level statistics look thermal.

Models.—The main results outlined above were checked
for a variety of models, both under discrete-time evolution
(i.e., quantum circuits) and continuous-time Hamiltonian evo-
lution. The quantum circuits considered here all involve time-
evolution operators of the form U(t) = U(t, t−1)U(t−1, t−
2) · · ·U(1, 0), where

U(t′, t′−1)=
⊗
i∈2Z

Ui,i+1(t
′, t′−1)

⊗
i∈2Z+1

Ui,i+1(t
′, t′−1), (1)

with i being the site index and Ui,i+1 being unitary matri-
ces. When written as a matrix in the many-body Hilbert space
the gates are very sparse, and therefore we simulate them ex-
actly using sparse matrix-vector multiplication. In the main
text we present results for circuits in which these unitaries
are randomly chosen at each point in space and time; we
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FIG. 2. The entanglement spectral form factor D(θ) as a function of
θ for various different times in the RUC without a conservation law.
(a) The disconnected ESFFD(θ) and (b) the connected ESFFDc(θ)
at various times. The legend in (a) is shared across these figures.

draw them either completely randomly (with Haar measure)
or from an ensemble of random matrices with a single conser-
vation law [11]. We have also simulated the Floquet versions
of these circuits, but find no noticeable differences in entan-
glement spectra between the temporally random and Floquet
cases. One other case—a Floquet model that is many-body lo-
calized [24] rather than chaotic—is shown in [22]. Although
the evolution of S1 is very different in this case, the entangle-
ment spectrum still shows level repulsion and a 1/f distribu-
tion in its bulk: the absence of chaos only manifests itself in
the properties of the largest few Schmidt coefficients (lowest
entanglement energies).

To study Hamiltonian evolution we consider the Ising
model with both transverse and longitudinal fields:

H =
∑
i

Jσzi σ
z
i+1 + hxσ

x
i + hzσ

z
i (2)

where σαi are spin-1/2 Pauli operators. For our simulations
we choose the parameters (hx/J, hz/J) = (0.9045, 0.809),
corresponding to a nonintegrable regime in which thermaliza-
tion is known to be fast [25, 26] (in what follows we set J = 1
as the unit of energy for Hamiltonian dynamics). We use a
Krylov-space method to efficiently time-evolve the state [27].

Measured quantities.—The RDM of any subsystem has
non-negative real eigenvalues {λn}. Since broad distributions
are present, it is helpful to work with the entanglement spec-
trum, which has eigenvalues {En} = {− log λn}. The en-
tanglement density of states is a probability density over these
eigenvalues [given by %S(E) = D−1

∑
n δ(E − En) where

D is Hilbert space dimension of subsystem A], and the en-
tanglement bandwidth is the width of this probability distri-
bution [28]. The Renyi entropies are moments of the {λn}:

Sα ≡
1

1− α log
(∑

n
λαn

)
. (3)

There are three special limits: as α → 0, Sα returns the rank
of the reduced density matrix; as α → ∞, Sα picks out the
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largest eigenvalue of the reduced density matrix; and as α →
1, Sα approaches the Von Neumann entanglement entropy.

We quantify level statistics via the adjacent gap ratio r [29],

rm ≡
min(δm, δm+1)

max(δm, δm+1)
, (4)

where δm = Em − Em−1 and the Em are arranged in as-
cending order. The average adjacent gap ratio takes the value
〈r〉 ≈ 0.599 for the Gaussian unitary ensemble (GUE); its
probability distribution also approaches a universal form [29].

The adjacent gap ratio is only sensitive to the level repul-
sion of neighboring eigenvalues. To quantify “longer-range”
level repulsion we study the spectral form factor of the en-
tanglement spectrum, which is the Fourier transform of the
correlation function between two levels in the entanglement
spectrum. We term this the “entanglement spectral form fac-
tor” (ESFF). The ESFF characterizes the global level statistics
of the entanglement spectrum, and is expressed as:

D(θ) ≡
〈∑

n,m
eiθ(En−Em)

〉
. (5)

Here θ denotes an auxiliary “time” variable that is conju-
gate to the entanglement “energy.” For a GUE random
matrix, the spectral form factor has a linear growth in θ,
called the ramp, followed by a sudden saturation, reach-
ing its plateau value [30]. A precise ramp-plateau struc-
ture can be obtained by subtracting out the disconnected
parts |〈∑n exp(iθEn)〉|2, which defines the connected ESFF
Dc(θ) = D(θ) − |〈∑n exp(iθEn)〉|2. These form factors
have the advantage of capturing gap correlations beyond near-
est neighbor, but the disadvantage of being sensitive to the
overall entanglement density of states (DOS), which as we
have seen in Fig. 1 (c) are strong. Note that the ESFF is not the
unique spectral form factor one can construct for the reduced
density matrix; we could instead have constructed a spectral
form factor from the eigenvalues of the reduced density ma-
trix [22]. However, the ESFF has the crucial advantage that
its asymptotic large-θ behavior is set by the large Schmidt co-
efficients, and is therefore sensitive to the late stages of the
thermalization process.

Under Hamiltonian dynamics, the eigenstate thermalization
hypothesis implies that at late times the reduced density ma-
trix takes the form ρA = exp(−HA/T ), where T is the tem-
perature set by the global energy density [5]. Thus, the ESFF
matches the spectral form factor of the Hamiltonian (projected
into the subsystem), up to rescaling. On the other hand, under
random unitary dynamics, even when there is a conservation
law, the conserved quantity is not the generator of the dynam-
ics. Hence, the ESFF acts as a measure of how random the
state is, and its late-time structure is what one would predict
from a random pure state [31]. We find that both spectral form
factors settle down to a time-independent function that is con-
sistent with the shape predicted from random matrix theory,
once the entanglement entropy has completely saturated (see
Fig. 2 and [22]).

Purely random circuits.—We first discuss our results for
the purely random case. In this case each gate is picked Haar-
randomly and independently at each space and time point. We
have already outlined the main results in Fig. 1 and now dis-
cuss them in greater detail. The distribution of RDM eigen-
values becomes broad at short times (t < lA/2, where lA
is the size of the subsystem) following a universal scale free
1/f distribution [Fig. 1 (a)]. The entanglement level statis-
tics rapidly approaches its random-matrix value on an o(1)
timescale [Fig. 1 (b)], that is independent of the system and
subsystem size. The entanglement bandwidth initially grows
linearly in time, out to a time t = lA/2 when the light cone
hits the edge of the subsystem and then decays algebraically
to a small steady state value [Fig. 1 (c)]. During this short
time dynamical process the entanglement entropy continues
to grow until it saturates at time scale set by the system size
[Fig. 1 (d)]. In Fig. 2 we show the behavior of the ESFF in
this model, for L = 20, lA = 8. The ESFF develops a ramp-
plateau structure at early times, corresponding to the short
timescale on which level repulsion sets in among the entan-
glement “energy levels”. However, the overall shape of the
ESFF drifts over time, until the entanglement bandwidth and
entanglement entropy have saturated.

(B) Random circuits with a conservation law.—To test how
robust our results are in the presence of structure in the dy-
namics we turn to the case with a conserved quantity, which
we take to be the z-component of the spin. For spin-1/2 de-
grees of freedom the most general conserving two-spin gate
acts as a random phase on the states | ↑↑〉 and | ↓↓〉, and as a
random 2×2 matrix on the space spanned by | ↑↓〉, | ↓↑〉. The
conserved quantity is N ≡∑i σ

z
i , i.e., the number of ↑ spins.

We consider two separate classes of initial product states: (i)
random eigenstates ofN (i.e., random binary strings in a fixed
N sector) and (ii) random product states, which are superpo-
sitions of different N sectors. The results are shown in Fig. 3.

For (i) states that are initially random binary strings, many
features are different from the random case. First, the Schmidt
decomposition is block-diagonal. Each partition of N into
NA “particles” in the sub-interval has N − NA particles in
the complement, so ρA has no coherence between states of
different NA. Different-NA blocks do not repel each other,
so the global level statistics is Poisson [Fig. 3(b)]. Never-
theless, level repulsion persists within each individual block,
and manifests itself in the ramp-plateau structure of the ESFF
[Fig. 3(a)]. The ESFF is sensitive to level repulsion effects
beyond nearest-neighbor levels, and is therefore able to detect
intra-block structure, unlike the adjacent gap ratio r.

For random product states (ii), by contrast, the behav-
ior is qualitatively very similar to that of random circuits,
although there are quantitative differences in entanglement
growth rates [22]. Again, GUE level statistics emerges on
a fixed size-independent timescale when the bond dimension
of ρA is still growing [22]. The entanglement DOS behaves
qualitatively as in the Haar random unitary circuit model al-
though its bandwidth grows even wider for conserving dy-
namics. One might naively have expected level repulsion in
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FIG. 3. Random unitary circuits with a single conservation law.
(a) Evolution of the ESFF in the conserving case for an initial state
with definite particle number, at L = 16, lA = 6, averaged over
600 samples. Note the appearance of ramp-plateau structure despite
the Poisson level statistics in (b). (b) Level statistics parameter r for
the conserving circuit with fixed- and variable-number initial states,
which respectively approach Poisson and random-matrix behavior
(dashed lines show the exact distributions [32] of the r ratio for Pois-
son and GUE distributions respectively).

the entanglement spectrum to signal chaos in the underlying
dynamics; from this perspective, the irrelevance of the con-
servation law is unexpected. We observe this feature persists
even in dynamics that is not chaotic at all but localized [22].
To summarize, for random product states, the presence of a
conservation law has no qualitative effect on the evolution of
the entanglement spectrum. Only when the initial states are
also eigenstates of the conserved charge does one see qualita-
tively different evolution in the entanglement spectrum.

(C) Ising model with transverse and longitudinal fields.—
To test the generality of our results we now turn to Hamilto-
nian dynamics. We consider the nonintegrable Ising Hamilto-
nian [Eq. (2)] and time-evolve starting from a random product
state. We consider the total system L = 16 with the sub-
system size lA = 8. We observe the same scale-free 1/f
probability distribution of the eigenvalues of the reduced den-
sity matrix [22] [Fig. 1 (a)] and find that the adjacent gap ra-
tio [Fig. 1 (b)] approaches the GUE value on a o(1) time
scale. In addition we find the entanglement bandwidth grows
for times t < lA/2 and then shrinks at late times. Distinct
from RUCs, the entanglement bandwidth starts from a non-
zero initial value because the RDM is full rank for Hamilto-
nian dynamics (since the light-cone set by the Lieb-Robinson
bounds is not strict but has exponential tails). Lastly, the en-
tanglement bandwidth shrinks well before the entropy satu-
rates [Fig. 1(d)]. In summary, we have obtained all the same
features we have observed in purely random circuits.

Dependence on local Hilbert space.— Besides the compar-
ison between different RUCs and the spin Hamiltonian, we
compare our results for different dimensions of local Hilbert
space q > 2, focusing on purely random circuits (Fig. 4.) Sur-
prisingly, the entanglement DOS stays broad for all the q we
have considered [Fig. 4 (a)]; despite the expectation that this
quantity narrows as q → ∞, we see no clear sign of narrow-
ing. Thus, the approach to the known q → ∞ behavior is

q
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FIG. 4. Dependence on the local Hilbert space q. (a) Entanglement
DOS at a fixed time, t = 2, as a function of local Hilbert space
dimension q. The shape of the DOS does not seem to change much
with q, though the average entanglement “energy” goes down as one
might expect. (b) Adjacent gap ratio r vs. q at a fixed time t = 1
and t = 2, these are the only times at which there are appreciable
deviations from GUE level statistics for q > 2 (the dashed line marks
the exact GUE value r ≈ 0.599).

slow; our results suggest that the limit might also be singu-
lar. Turning to the gap ratio r we find [Fig. 4 (b)] that for
q ≥ 6 one has GUE statistics in the entanglement spectrum
for t = 1. Thus, at large q, the onset of level repulsion in the
entanglement spectrum is essentially instantaneous.

Discussion.—Our results can be qualitatively under-
stood [33] by invoking the relation between entanglement and
operator spreading [8, 34–36], as follows: one can expand the
reduced density matrix in a basis of strings of Pauli matrices,
and study the evolution of these strings in the Heisenberg pic-
ture. Strings initially localized on either side of the cut spread
out, under time evolution, to more complicated operators that
straddle the cut. Under the partial trace, most such opera-
tors vanish. While the unitary evolution of strings is rank-
preserving, the partial trace “dephases” components of the re-
duced density matrix and thereby increases its rank. Heuristi-
cally, operators with a given amplitude, when traced out, gen-
erate entries of that amplitude in the reduced density matrix.
At early times the density matrix is low-rank, so adding a new
entry of some size almost always creates a new eigenvalue of
the same size. This picture qualitatively captures the entangle-
ment DOS and level statistics. In RUCs, the speed of the strict
causal light-cone (vLC = 2) exceeds the butterfly velocity vB
at which generic operators spread. Thus, under time evolu-
tion, terms that extend beyond the operator front but within the
causal light-cone get generated with small amplitude; those
closest to the light-cone are generated at time t with ampli-
tude exp{−[t(vLC − vB)]2/(Dt)} [8, 9, 37], where D is the
rate at which the front broadens. These exponentially small-
amplitude operators generate correspondingly small eigenval-
ues in the reduced density matrix, leading to entanglement
energies that grow linearly in t and thus accounting for the
observed linear bandwidth expansion. Once the light-cone
hits the edge of the subsystem, the density matrix is full rank,
and tracing out further operators cannot create new eigenval-
ues, but instead redistributes weight among existing eigenval-
ues, causing the spectrum to narrow. The entanglement level
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statistics can be understood in similar terms: operators that
contribute nonzero Schmidt coefficients are those that have
crossed the entanglement cut; by virtue of this property they
all have overlapping support and are in causal contact. There-
fore it is natural for the corresponding eigenvalues to have the
statistics described by the random matrix theory [38].

Although we presented this argument for RUCs, it can
straightforwardly be adapted to Hamiltonian dynamics. The
density of states and level statistics of the entanglement spec-
trum behave qualitatively the same as with RUCs. The main
difference is that the reduced density matrix is always full-
rank so S0 is not physically relevant. However, if one “regu-
larizes” S0 to include only eigenvalues above a certain thresh-
old (that is well above numerical precision), the resulting evo-
lution is qualitatively the same as in RUCs.
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Supplementary Material for “Evolution of entanglement spectra under random unitary
dynamics”.

In this document we present additional data on the geometry of the random circuits we consider, the evolution of the entan-
glement spectrum in localized systems, the evolution of level statistics with time in the various models, entanglement dynamics
in random conserving circuits and the nonintegrable Ising model, the entanglement-energy dependence of the gap ratio, and the
reduced density matrix spectral form factors.

RANDOM CIRCUIT MODELS

The random unitary circuits (RUCs) are constructed from the random unitary matrices as shown in Fig. S1. The form of the
time evolution operator can be written as U(t) = U(t, t− 1)U(t− 1, t− 2) · · ·U(1, 0), where

U(t′, t′−1)=
⊗
i∈2Z

Ui,i+1(t
′, t′−1)

⊗
i∈2Z+1

Ui,i+1(t
′, t′−1), (S1)

with i being the site index and Ui,i+1 are unitary matrices. We discuss two types of RUCs in the main text. The first one is
choosing the unitary matrices with Haar measure. The second one is choosing the conserving random unitaries as in Ref. [S11],
which conserve the number of up spins in the Z basis. In this supplementary material, we will discuss a Floquet model with
a different circuit geometry [S39], which is believed to be many-body localized [S39]; our main results hold for this model as
well.
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t = 1

t = 2

FIG. S1. Depiction of the random unitary circuits considered here: one time-step involves applying random gates on the even bonds, then on
the odd bonds.

Many-body localized model

We first consider the localized model introduced in Ref. [S39], which was argued to be in the many-body localized phase for
q = 2. This model consists of two types of gates: a gate that purely adds phases η ∈ [−φ, φ] in the Z basis, and a gate consisting
of random single-site rotations. Thus its one-cycle time evolution operator has the form

U =
∏
i

exp(iησzi σ
z
i+1)

∏
i

Ri, (S2)

whereRi is a random single-site gate. These gates are applied periodically in time giving rise to a Floquet system; the model has
the nice property of having a controllable parameter φ, which tunes between decoupled and strongly coupled qubits. Note that
because of the different circuit geometry the light-cone is slower in this model than in the others we have considered: specifically,
vLC = t.

We find that the dynamics of the entanglement entropy for this model is consistent with many-body localization demonstrating
that S2 ∼ log t, which has a clear log growth with time (Fig. S2). However, the ratio r behaves as it does in the other models
discussed in the main text. Accounting for the fact that all timescales are doubled, r appears to saturate to GUE on the timescale
we would have predicted from the other models (t ' 8) – see Fig. S2, middle. The entanglement bandwidth also grows rapidly
with time, again consistent with the behavior seen in chaotic models (Fig. S2, right). This might seem counterintuitive but is
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actually what our analysis in terms of operator spreading would predict: the light-cone speed is now 1 while the butterfly speed
is zero (since we are in the localized phase), but as we argued in the main text the bandwidth growth is set by |vB − vLC | so it is
finite in this case. Finally, the existence of level repulsion follows once again from the fact that all the operators that contribute
to entanglement are in causal contact with one another, since they have all traversed the entanglement cut.

The entanglement entropy itself (as well as Rényi entropies with α > 1) are dominated by the top few Schmidt coefficients,
which indeed behave dramatically differently in chaotic and localized systems. However, the measures we are looking at here
concern the bulk of the entanglement spectrum, and this appears qualitatively insensitive to whether the dynamics is actually
chaotic.

■

■

■

■

■
■ ■ ■ ■

■■■■
●

● ●

●

● ● ●
● ●

▲

▲

▲

▲

▲ ▲
▲ ▲ ▲

◆
◆ ◆

◆
◆

◆ ◆ ◆ ◆

interactions
■ 1 ● 0.25

0 2 4 6 8 10

0.45

0.50

0.55

0.60

t

<r
>

t = 2
t = 4
t = 6
t = 8
t = 10

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

entanglement energy

en
ta
ng
le
m
en
tD
O
S

■ ■
■

■
■

■
■

■

●
●

●
●

●
●

●

●

▲
▲

▲
▲

▲
▲

▲
▲■ L=8 ● L=12 ▲ L=16

4 16 64 256
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

S 2

FIG. S2. Entanglement dynamics of the localized model of Ref. [S39]. Left: Renyi entropy S2 vs. time for φ = 1; results are roughly
consistent with logarithmic growth. Center: evolution of r for a half-system cut, at various values of φ (labelled as interactions in the legend);
solid lines are for L = 16 and dashed lines for L = 12. Note the non-monotonic behavior at L = 12 which is absent at the larger system size.
Right: time-evolution of entanglement DOS for this model at L = 16, averaged over 500 samples.

Summary of 〈r〉(t) for various models

In Fig. S3 we summarize the data we have collected for the evolution of the nearest-neighbor adjacent gap ratio for a variety of
models. Evidently, 〈r〉 approaches its saturation value on very similar timescales in all of these models, despite their considerable
differences. In addition to the models for which we have shown data, we have observed similar behavior for Floquet circuits in
which the same random gates are applied at every timestep, as well as for random free fermion models.

FURTHER DETAILS ON CONSERVING CIRCUITS

While the ESFF clearly shows ramps in the conserving circuits, it is not clear on the logarithmic scale that these ramps are
truly linear. To address this we have plotted the connected ESFF on a linear scale (Fig. S4). In the case of a random initial
product state the ramp is manifestly linear. For a fixed particle number (the case that gave Poisson level statistics) the linearity
of the ramp is less manifest; however, the observed behavior is consistent with a linear ramp at early times with a slope that
decreases at late times.

One might also wonder whether our results for the entanglement DOS in the conserving circuit, fixed-number case are qual-
itatively modified by averaging over different particle-number sectors. To address this we break out results by particle-number
sector in the right panel of Fig. S4. We find that the EDOS is qualitatively the same in different number sectors, though the
entanglement bandwidth is largest for half-filling.

THE ISING MODEL WITH TRANSVERSE AND LONGITUDINAL FIELDS

The Ising model with transverse and longitudinal fields has the following Hamiltonian

H =
∑
i

Jσzi σ
z
i+1 + hx

∑
i

σxi + hz
∑
i

σzi (S3)

This model is chaotic when hz 6= 0 and in the calculation, we take the parameter (hx/J, hz/J) = (0.9045, 0.809) [S25, S26]
(we set J = 1 as the unit of energy). For an initial random product state, under Hamiltonian dynamics, the reduced density
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FIG. S3. Summary of the evolution of 〈r〉(t) for a variety of models, compared with Wishart random matrices of size set by the bond dimension
of the corresponding circuit at time t. Note the essentially model-independent saturation timescale, which occurs in both chaotic and localized
systems.
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FIG. S4. Left: connected ESFF Dc(θ) for t = 20 on a linear scale for the conserving circuit with fixed and variable-number initial states (CF
and CV respectively); both exhibit ramps but the latter is more obviously linear. Right: entanglement DOS in different number sectors for a
fixed-number initial state.

matrix will eventually thermalize with the effective temperature specified by the energy of the initial state. In our calculation,
we take the energy to zero and we find that the ESFF starts to form a ramp when t > 6 at which the adjacent gap ratio saturates
to the GUE value 〈r〉 ≈ 0.599. After sufficient time evolution, the ESFF develops a ramp-plateau structure, the same as we
observe in the Page state, signaling level repulsion among the entanglement energy levels (Fig. S5).

ENTANGLEMENT-ENERGY DEPENDENCE OF THE ONSET OF GUE LEVEL STATISTICS

A natural question about the entanglement level statistics concerns its behavior as a function of the entanglement energy. This
dependence is illustrated in Fig. S6. The essential trend is that GUE level statistics develops first in regions of high entanglement
DOS (away from the edges of the entanglement spectrum) then spreads to the edges. In the random model the deviations are
quite small even at the earliest times; by contrast the cases with a conservation law clearly show less random-matrix-like behavior
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FIG. S5. (a) Von Neumann entanglement entropy S(t) as a function of time t for Ising Hamiltonian. The initial state is random product state
with E = 0. The system has L = 16 with LA = 8. (b) ESFF at different time. The ramp starts to develop when t > 6. (c) The connected
ESFF at different time.
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FIG. S6. Adjacent gap ratio r vs. entanglement energy for various models. The color indicates the value of r averaged over a part of the
spectrum, while the size of a dot indicates the entanglement DOS in that bin.

SPECTRAL FORM FACTOR FOR THE REDUCED DENSITY MATRIX

In the main text, we discuss the ESFF which is a characteristic function of the level distributions of the entanglement spectrum.
Here we investigate the spectral form factor for the reduced density matrix, which characterizes the level statistics of the reduced
density matrix, expressed as:

G(θ) ≡
〈∑

n,m
eiθ(λn−λm)

〉
. (S4)

where λn are the eigenvalues of the reduced density matrix. The connected spectral form factor for the reduced density matrix
is defined as Gc(θ) = G(θ) − |〈∑n exp(iθλn)〉|2. We denote these (connected) spectral form factors ρSFF [S31]. Fig. S7
shows the behavior of the ρSFF [G(θ) and Gc(θ)]. Contrasting Figs. S7 with Fig. 2, we find the ESFF develops a ramp-plateau
structure, signaling level repulsion among large Schmidt coefficients; the ρSFF takes longer to develop the analogous structure.
This is because the large entanglement energies dominate the dephasing at small θ in the ESFF, but dominate large-θ behavior
in the ρSFF.

First, Fig. S8 shows the behavior as a function of subsystem size, at a fixed late time t = 20. Gc(θ) has a ramp-plateau
structure in all cases, but in G(θ) the ramp is increasingly hidden at larger subsystems by the initial transient. Next, we consider
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FIG. S8. (a) The reduced density matrix spectral form factor and (b) connected spectral form factor at time t = 20 and total system N = 20
with NA = 2, 4, 6, 8, 10.

the conserving model. Figs. S9 and S10 show the behavior of the ρSFF for various subsystem sizes and various times. These
data are for a random initial product state, i.e., not a number eigenstate. The behavior is essentially identical to that seen in the
purely random circuit.
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FIG. S9. (left) The spectral form factor and (right) the connected spectral form factor for the layer time l = 40 and total system N = 20 with
Sz conservation and varying the subsystem sizes NA = 2, 4, 6, 8, 10.
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FIG. S10. (a) The spectral form factor and (b) the connected spectral form factor for the subsystem NA = 8 and total system N = 20 with Sz

conservation and with different times t = 5, 10, 15, 20, 30.

Finally, Fig. S11 shows the behavior of the ρSFF, as well as the entanglement entropy, for a specific state with fixed initial
particle number, the Neel state. Even though adjacent level statistics is Poisson in this case, the ρSFF is sensitive to correlations
beyond nearest-neighbor levels, and consequently develops a ramp-plateau structure.
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FIG. S11. (a) The entanglement entropy as a function of layer time and (b) the connected spectral form factor Gc(τ) with different subsystem
size NA, total system size N = 20 with Sz conservation and with the fixed initial state |ψi〉 = | ↑↓↑↓ · · · ↑↓〉. The dashed line in (a) is the
value of the entanglement entropy for the Page state with NA = 10.
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Phys. Rev. Lett. 110, 200602 (2013).

[S22] See online supplemental material for details.
[S23] E. H. Lieb and D. W. Robinson, in Statistical mechanics

(Springer, 1972) pp. 425–431.
[S24] A. Chan, A. De Luca, and J. T. Chalker, Phys. Rev. Lett. 121,

060601 (2018).
[S25] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
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