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Performance optimization of low-dissipation thermal machines revisited

Ramandeep S. Johal∗

Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzerstraße 38, 01187 Dresden, Germany

We revisit the optimization of performance of finite-time Carnot machines satisfying the low-
dissipation assumption. The standard procedure seeks to optimize an objective function, such as
power output of the engine, over the durations of contacts between the working medium and the
heat reservoirs. This procedure may lead to unwieldy equations at the optimum of some objective
functions. We propose an alternate scheme in which the output or input work is first optimized for
a given cycle time, followed by an optimization of another objective function over the cycle time.
This optimization problem is solved in a much simplified manner, with closed-form expressions for
figures of merit. The approach is demonstrated for various objective functions, both for engines as
well as refrigerators.

I. INTRODUCTION

Optimization of performance of finite-time thermal
machines has been intensely studied for many years now
[1–5]. In recent years, the low-dissipation model has been
proposed and applied to heat engines and refrigerators
with presumably large cycle times and so, close to the
reversible limit. The low-dissipation regime is character-
ized by the following dependence: the entropy generated
in a heat-exchange process is inversely proportional to
the duration of the process. It was initially derived for a
mesoscopic, brownian heat engine treated within stochas-
tic thermodynamic framework [6], and was later adapted
for finite-time macroscopic engines [7]. It is observed at
the optimal performance of quantum dot Carnot engine
based on the master equation approach [8], and within
a perturbative approach for slowly driven open quantum
systems [9].
Because of its simplicity, the low-dissipation model has

attracted a lot of attention [10–18]. Furthermore, there is
no explicit requirement on the form of heat-transfer law,
or the temperature difference between the heat reservoirs
to be small, unlike in endoreversible models [7]. Still, the
optimization problem may become cumbersome, or even
intractable, with some objective functions. In this paper,
we propose an alternate two-step optimization scheme
which yields the optimal solution in a quite simplified
manner, while predicting the essential characteristics of
the model, such as closed-form expressions for figures of
merit as well as the bounds satisfied by them within the
domain of applicability of the model. The utility of the
approach is demonstrated on various objective functions.
The plan of the paper is as follows. In Section II, we

briefly describe the basic features low-dissipation Carnot
engine. In Section III, we first optimize the work output
for a given cycle time and discuss its main features. In
Section IV, we optimize other objective functions for the
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engine, giving explicit expressions for the efficiency. In
Section V, we treat the model of a refrigerator and derive
expressions for the coefficient of performance at optimum
of different objective functions. Sections VI is devoted to
a discussion of some novel features of the work-optimized
model and Section VII contains the conclusions.

II. LOW-DISSIPATION MODEL

Consider a two heat-reservoirs set up, with hot (h)
and cold (c) temperatures, Th and Tc. A heat engine
runs through a four-step cycle by coupling to these reser-
voirs alternately. The cycle consists of two thermal con-
tacts lasting for time intervals τh and τc, and two adi-
abatic steps whose time intervals are considered neg-
ligible in comparison to the other time scales. Now,
the change in entropy of the working medium during
heat transfer at the hot/cold contact, can be split as:
∆Sj = ∆revSj + ∆irSj , with j = h, c. Here, the first
term accounts for a reversible heat transfer, whereas the
second term denotes an irreversible entropy generation
during the process. Now, the low-dissipation behavior
is quantified as: Tj∆irSj = σj/tj + O(1/t2j), where σj

is the dissipation constant [7, 13], and the higher order
terms are considered neglegible due to the large dura-
tions. Thus at the hot and the cold contact, we respec-
tively have

∆Sh =
Qh

Th

+
σh

Thth
, (1)

∆Sc = −Qc

Tc

+
σc

Tctc
, (2)

where Qj > 0. Given that the other two steps in the heat
cycle are adiabatic—with no entropy changes—the cyclic
process within the working medium implies ∆Sh+∆Sc =
0. In other words, ∆Sh = −∆Sc = ∆S > 0, where
the value ∆S is preassigned. Then the amount of heat
exchanged with each reservoir can be written as:

Qh = Th∆S − σh

th
, (3)

Qc = Tc∆S +
σc

tc
. (4)
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The work extracted in a cycle with the time period t ≈
th + tc is, W = Qh −Qc, given by

W (th, tc) = ∆T∆S − σh

th
− σc

tc
, (5)

where ∆T = Th−Tc. Now, in the standard optimzations
of the LD model, the parameter ∆S is held fixed during
variations of the time intervals. Clearly, for a given ∆S,
as each tj → ∞, the work approaches its maximum value
of ∆T∆S ≡ Wrev, which is referred to as the reversible
work, under conditions of a fixed ∆S. Therefore, the dif-
ference Wrev−W represents the lost work due to entropy
production. Recently, we showed that each loss term
above can be obtained from a linear-irreversible engine
running between an infinite heat reservoir and a finite
heat sink or source for a given time (th or tc) [19].

III. OPTIMAL WORK FOR A GIVEN CYCLE

TIME

Now, instead of choosing th and tc as the control pa-
rameters that may be tuned in order to optimize the
overall performance of the engine [6, 7, 13], let us define
th and tc in terms of the fraction of the total cycle time
as: th = γt, and tc = (1− γ)t, obtaining

W (γ, t) = ∆T∆S −
(

σh

γ
+

σc

1− γ

)

1

t
. (6)

As a first step towards optimization of the engine’s per-
formance, we maximize the irreversible work W for a
fixed value of the time interval t. This amounts to tun-
ing the parameter γ. Thus, setting:

∂W

∂γ

∣

∣

∣

∣

t,∆S

= 0, (7)

we obtain the optimum value of γ as

γ̂ =

√
σh√

σh +
√
σc

, (8)

which is function only of the ratio of the dissipation con-
stants. In the following, we seek to optimize the sub-class
of low-dissipation models which operate at optimal work
in a given time. Thus, in our model, the (maximum)
work output for a cycle of time t is:

Ŵ (t) = ∆T∆S − (
√
σh +

√
σc)

2

t
, (9)

which is equivalent to finite-time availability [20, 21] for
the low-dissipation engine.
Then, the heat absorbed from the hot reservoir is:

Q̂h(t) = Th∆S −
√
σh(

√
σh +

√
σc)

t
. (10)

Thus, the efficiency under these conditions is: η̂(t) =

Ŵ/Q̂h.

Similarly, the heat rejected to the cold reservoir is:

Q̂c(t) = Tc∆S +

√
σc(

√
σh +

√
σc)

t
. (11)

We notice two limiting cases here. For a finite value
of σh, if we have σc ≪ σh, which is equivalent to the
condition γ̂ ≈ 1, Eqs. (9)-(11) simplify to: Ŵ (t) ≈
∆T∆S − σh/t, Q̂h(t) ≈ Th∆S − σh/t, and Q̂c ≈ Tc∆S.
In other words, the heat exchange at the cold end ap-
proaches its reversible value, in this limit. On the other
hand, for a given finite value of σc, if we have σh ≪ σc,
which is equivalent to the condition γ̂ ≈ 0, Eqs. (9)-(11)

simplify to: Ŵ (t) ≈ ∆T∆S − σc/t, Q̂h ≈ Th∆S, and

Q̂c(t) ≈ Tc∆S + σc/t. Thus, when the strength of dis-
sipation at the hot end is negligible as compared to the
cold end, then, at optimal work, the heat exchange at
the hot end can be approximated to be reversible.
Further, upon eliminating time t from Eqs. (10) and

(11), we obtain the following interesting equality:

γ̂Q̂c + (1 − γ̂)Q̂h

γ̂Tc + (1 − γ̂)Th

= ∆S. (12)

This also makes it clear that as γ̂ → 1, Q̂c → Tc∆S.
Further, this limit implies t̂h/t → 1, while t̂c/t → 0.
Thus, for a smaller dissipation at a thermal contact, one
has to spend a smaller fraction of the total given time
for that process. Similarly, as γ̂ → 0, Q̂h → Th∆S, and
analogous conclusions can be drawn.
Equivalently, we may consider the ratio of dissipations

at the hot to cold contacts, as follows:

Th∆irŜh

Tc∆irŜc

=
γ̂

1− γ̂
=

√

σh

σc

. (13)

In this sense, γ̂ → 0 can be regarded as the limit in
which the dissipation at the hot end becomes negligible
in comparison to the dissipation at the cold end, and so
on. A related fact is that the average rate of dissipation
at the hot and the cold end become equal at optimum
work:

Th∆irŜh

t̂h
=

Tc∆irŜc

t̂c
=

(
√
σh +

√
σc)

2

t2
. (14)

IV. OPTIMIZATION: SECOND STEP

The optimal work derived above, Eq. (9), is still a
function of the chosen cycle time t. An appropriate value
of this cycle time may be selected as the one which op-
timizes another chosen objective function. In the follow-
ing, we show that, for a variety of objective functions—
popular in the study of finite-time thermodynamics—it is
relatively easy to perform this optimization and thus to
find an optimal cycle time. Interestingly, this procedure
also yields a closed-form expression for the correspond-
ing figure of merit, along with its lower and upper bounds
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set by the allowed parameter range. We show the util-
ity of this approach for low-dissipation engines as well as
refrigerators.

A. Power output

After knowing the optimal work as a function of the
cycle time, we may like to extract this work at the fastest
rate. An appropriate objective function to optimize is
then the average power output, defined as

P ≡ Ŵ (t)

t
=

∆T∆S

t
− (

√
σh +

√
σc)

2

t2
. (15)

Note that the power output is defined relative to the
optimal work in time t. Then, t∗, corresponding to the
maximum of this power, is obtained by setting ∂P/∂t =
0, which yields

t∗ =
2(
√
σh +

√
σc)

2

∆T∆S
, (16)

with the optimal allocation of times for the thermal con-
tacts: th = γ̂t∗, and tc = (1− γ̂)t∗. The optimal amounts
of heat and work are:

Q∗

h =

[

Th − γ̂

2
∆T

]

∆S, (17)

W ∗ =
∆T∆S

2
, (18)

from which the efficiency at maximum power, η∗ =
W ∗/Q∗

h, follows in the well-known form [6, 13, 22]:

η∗ =
ηC

2− γ̂ηC
. (19)

Note that the same optimum for power may also be ob-
tained by performing optimization simultaneously over
the pair of variables th and tc [13], which is the standard
approach in literature. However, this approach often be-
comes involved and an analytic solution becomes hard to
obtain with other objective functions, in general. In the
following, we highlight the utility of the present two-step
optimization approach, for the case of engines as well as
refrigerators.

B. Per-unit-time efficiency

First proposed by Ma [23], this objective function was
optimized for the endoreversible model in Ref. [24]. Our
first step is to optimize the work output for a given time
t, as described above, and calculate the efficiency at this
optimal work, denoted by η̂(t). As the second step, we
optimize the function:

˙̂η ≡ η̂(t)

t
, (20)

w.r.t. time t. The solution can be easily worked out and
the efficiency at optimal ˙̂η is given by:

η̂∗ =
1

γ̂

(

1−
√

1− γ̂ηC

)

, (21)

which is bounded as: ηC/2 6 η̂∗ 6 1 − √
1− ηC. Thus

the results from the endoreversible model [24] are derived
within the low-dissipation model too, in a simple manner.

C. Efficient power

An objective function, defined as the product of effi-
ciency of the engine and its power output [25], was op-
timized for the low-dissipation model with the standard
optimization [26], but the solution turns out to be highly
involved. In the present approach, at optimal work for
the given cycle time t, the efficient power is defined as:

P̂η(t) = η̂(t)
Ŵ (t)

t
. (22)

The optimum of the above function (∂P̂η/∂t = 0) is easily
evaluated by just solving a quadratic equation in t. Fi-
nally, the efficiency at optimal efficient power is obtained
in a simple closed form:

η∗ =
1

2γ̂

[

3−
√

9− 8γ̂ηC

]

, (23)

which is bounded as follows:

2

3
ηC ≤ η∗ ≤ 1

2

[

3−
√

9− 8ηC

]

, (24)

as γ̂ interpolates in the interval [0, 1]. These bounds were
also obtained in Ref. [14, 26].

V. REFRIGERATOR

Analogous to the heat engine, one may consider the
operation of a refrigerator by inverting the thermal and
work flows. So, in this case, the entropy generated at the
hot and the cold contact is respectively given by:

∆Sir,c = ∆S − Qc

Tc

, (25)

and

∆Sir,h =
Qh

Th

−∆S. (26)

Here, ∆S > 0 is the entropy change of the working
medium at the cold contact. Qc is the heat extracted
from cold reservoir, while Qh is the heat dumped into
the hot reservoir. Within the low-dissipation assumption,
the input work to drive the refrigerator, W = Qh − Qc,
is given by

W (γ, t) = ∆T∆S +

(

σh

γ
+

σc

1− γ

)

1

t
. (27)



4

As expected, the input work is more than the reversible
work, in case of an irreversible refrigerator. Then, mini-
mizing the irreversible work w.r.t to γ, for a given time t,
we obtain—as in case of the engine—the optimal value,
γ̂ =

√
σh/(

√
σh +

√
σc). So, the optimal input work is

given by:

Ŵ (t) = ∆T∆S +
(
√
σh +

√
σc)

2

t
, (28)

and the optimal heat extracted from the cold reservoir is

Q̂c(t) = Tc∆S −
√
σc(

√
σh +

√
σc)

t
. (29)

The next step would be to obtain an optimal cycle time
corresponding to a chosen objective function, as dis-
cussed below.

A. Cooling power

We consider the cooling power of the refrigerator, op-
erating with optimal work input for a given cycle time,
given by : Q̂c(t)/t. The optimal cycle time that maxi-
mizes this cooling power is found to be:

t∗ =
2
√
σc(

√
σh +

√
σc)

Tc∆S
. (30)

The corresponding optimal amounts of heat exchanged
with reservoirs are:

Q̂∗

c =
Tc∆S

2
, (31)

Q̂∗

h = Th∆S +

√

σh

σc

Tc∆S

2
. (32)

Finally, the coefficient of performance (COP) of the re-
frigerator is defined as ξ = Qc/(Qh − Qc), and, at opti-
mum cooling power, COP is evaluated to be

ξ∗ = ξC

(

2 +
ξC

1− γ̂

)

−1

, (33)

where ξC = Tc/(Th − Tc) is the Carnot coefficient. The
above expression is bounded as 0 ≤ ξ∗ ≤ ξC/(2+ξC), and
is also obtained in other studies, such as exoreversible
refrigerators with only the internal irreversibilities [27],
and within a global linear-irreversible framework for total
entropy production [28], with a parameter equivalent to
γ̂ and defined in the range [0, 1].
It may be noted that a two-parameter, direct opti-

mization problem cannot be set up with the standard
definition of cooling power which, from Eq. (25), can be
written as:

Qc

t
=

(

Tc∆S − σc

tc

)

1

t
. (34)

Clearly, with t = th + tc, the optimum of cooling power
does not exist under the variations of both th and tc.

B. Per-unit-time COP

This objective function was investigated in Ref. [29]
for the endoreversible model. It is a criterion for refriger-
ators, analogous to the function used in Section IIIB on
engines. Again, we use the optimal work condition for a

given cycle time, and evaluate ξ̂(t) ≡ Q̂c/Ŵ , using Eqs.
(28) and (29). Then, we optimize the function:

˙̂
ξ ≡ ξ̂(t)

t
, (35)

w.r.t time t. The COP at the optimal
˙̂
ξ is evaluated to

be:

ξ̂∗ = (1 − γ̂)

[
√

1 +
ξC

1− γ̂
− 1

]

. (36)

which is bounded as: 0 ≤ ξ̂∗ ≤
√
1 + ξC− 1. The bounds

match with the findings of Ref. [29].

C. χ-criterion

In the literature on the optimal performance of refrig-
erators, χ-criterion is defined as: χ = ξQc/t. This has
been studied within endoreversible [30] as well as low-
dissipation models [10, 11]. As pointed out above, the
calculations may become involved for such objective func-
tions, thus making the analytic solution intractable [10].
However, the present approach of two-step optimization
leads directly to an exact expression for the COP as:

ξ∗ =
1− γ̂

2

[
√

9 +
8ξC
1− γ̂

− 3

]

. (37)

Interestingly, a similar formula as above is obtained for
the so-called minimally nonlinear irreversible refrigera-
tors [31], with an equivalent parameter defined in the
range [0,1]. Moreover, the above formula satisfies the
following bounds:

0 ≤ ξ∗ ≤ 1

2

[

√

9 + 8ξC − 3
]

, (38)

which are obtainable under the standard optimization
[10].

VI. DISCUSSION

In this section, we further highlight some features of
the low-dissipation model, in particular, those related
to the first step of work optimization for a given cycle
time. We start by studying the notion of lost work in
this model.
The lost work is equivalent to the energy which is made

unavailable for work, due to the irreversible process [20].
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As a way to characterize irreversibility in nonequilibrium
thermodynamics, it can also be related to the concept
of thermodynamic length in finite-time thermodynamics
[32]. It is defined by the difference: Wlost = Wrev −W .
Therefore, optimizing the work in the irreversibile pro-
cess as above, implies minimizing the lost work. Since,
Wrev = ∆T∆S, from Eq. (9), we have

Ŵlost =
(
√
σh +

√
σc)

2

t
, (39)

as the minimum lost work in the low-dissipation engine
with a given cycle time t. Further, according to Gouy-
Stodola theorem [20, 33, 34], the lost work is directly
proportional to the total entropy produced in the irre-
versibile process, where the constant of proportionality
is given by a reference temperature T0. Then, the above
theorem as applied at optimal work, implies:

Ŵlost = T0∆totŜ. (40)

Now, the total entropy produced per cycle (of a given
time t) is the sum of entropies produced at the hot and
cold steps. Under optimal work:

∆totŜ = ∆irŜh +∆irŜc, (41)

=
σh

γ̂Tht
+

σc

(1 − γ̂)Tct
,

=

[√
σh

Th

+

√
σc

Tc

] √
σh +

√
σc

t
,

=

[

γ̂

Th

+
1− γ̂

Tc

]

(
√
σh +

√
σc)

2

t
. (42)

Comparing Eq. (39) with (42), we obtain:

T0 =

[

γ̂

Th

+
1− γ̂

Tc

]

−1

, (43)

a weighted harmonic mean of the reservoir temperatures.
Clearly, Tc ≤ T0 ≤ Th. It may be noted that the ap-
parent form of T0 as a harmonic mean, holds for the
case when the dissipation constants σj , and hence the
weights {γ̂, 1 − γ̂}, are temperature-independent. The
specific form of T0 is different if γ̂ depends on tempera-
tures. For instance, based on a general, microscopic ap-
proach [9], the dissipation constants are found to obey:
σc/σh = (Tc/Th)

2α, where α ∈ R. Thereupon, T0 comes
out in the form:

T0 =
Tα
h + Tα

c

Tα−1

h + Tα−1
c

, (44)

which is known by the name of Lehmer mean [35].
Clearly, some standard means are subsumed in this gen-
eral case. In particular, for α = 0, we obtain the symmet-
ric harmonic mean. For α = 1/2, we obtain the geometric
mean, T0 =

√
ThTc, and the arithmetic mean, for α = 1.

Finally, it is interesting to rewrite Eq. (42), as follows:

T0∆totŜ =
(
√
σh +

√
σc)

2

t
. (45)

Thus, we note that if the lost work is minimized for a
fixed cycle time, it yields a concrete expression for the
reference temperature relating the lost work to the to-
tal entropy produced (Gouy-Stodola theorem). Secondly,
the total entropy produced is rendered inversely propor-
tional to the cycle time, which is reminiscent of the low-
dissipation behavior, but now applied to the cycle as a
whole. Consequently, one may as well identify an effec-
tive dissipation constant for the total cycle, in Eq. (45),
as (

√
σh +

√
σc)

2. In this sense, the first step of opti-
mizing work may be seen as a natural step, since it ex-
tends the low-dissipation behavior from the individual
processes to the overall cycle.

VII. CONCLUSIONS

We have proposed and demonstrated the utility of
an alternate, two-step optimization procedure for low-
dissipation thermal machines, whereby the irreversible
work is optimized first for a given cycle time, and then a
second objective function is optimized, yielding the opti-
mal cycle time for the operation of the device. It is im-
portant to emphasize that, in general, the optimum with
the alternate procedure will not coincide with the global
optimum of the chosen objective function in the stan-
dard approach (simultaneous variation of the two con-
tact times), except in case of power output. Actually,
the standard approach may not yield a tractable solution
for the global optimization problem, such as χ-criterion
for low-dissipation refrigerators [10]. Further, a two-
parameter optimization problem may not be well-defined
for some objective function, e.g. cooling power of low-
dissipation refrigerator. On the other hand, the present
approach yields, rather easily, closed-form expressions as
well as bounds of figures of merit for such functions. In-
terestingly, these bounds match with the corresponding
bounds (whenever these can be derived) from the stan-
dard approach. We have applied this approach to a few
objective functions, such as efficient power, per-unit-time
efficiency, and χ-criterion, which are not easy to treat
within the standard approach.

Further, it is observed for various objective functions
that the optimal results come out equivalent to those
obtained from other models, such as the endoreversible,
minimally nonlinear irreversible approaches and global
linear-irreversibile framework. This analogy between the
low-dissipation and the endoreversible models [18] as well
as other approaches [10, 12, 28] needs to be further ex-
plored. One reason is that the constraints for optimiza-
tion, such as keeping ∆S fixed [36], are the same in some
procedures. It is hoped that the proposed scheme will
provide insights into the connections between optimal
behavior of different irreversible models. Finally, it is
straightforward to extend the present analysis to a multi-
reservoirs scenario [13].
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