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ABSTRACT

The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of
solids and also for predicting the neutral excitations of small molecules. We here present an all-electron implementation of the GW+BSE
formalism for molecules, using numeric atom-centered orbital (NAO) basis sets. We present benchmarks for low-lying excitation energies
for a set of small organic molecules, denoted in the literature as “Thiel’s set.” Literature reference data based on Gaussian-type orbitals are
reproduced to about one millielectron-volt precision for the molecular benchmark set, when using the same GW quasiparticle energies and
basis sets as the input to the BSE calculations. For valence correlation consistent NAO basis sets, as well as for standard NAO basis sets for
ground state density-functional theory with extended augmentation functions, we demonstrate excellent convergence of the predicted low-
lying excitations to the complete basis set limit. A simple and affordable augmented NAO basis set denoted “tier2+aug2” is recommended
as a particularly efficient formulation for production calculations. We finally demonstrate that the same convergence properties also apply to
linear-response time-dependent density functional theory within the NAO formalism.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123290

I. INTRODUCTION the context of many-body perturbation theory (MBPT).'*’ EOM-

CC and CASPT2 have been shown to produce highly accurate val-

Predicting the neutral (including optical) excitations of
molecules and materials is of fundamental importance in pho-
tovoltaics, optoelectronics, and other technologically relevant
areas. Several distinct types of computational formalisms are fre-
quently employed in the community for this purpose, includ-
ing wavefunction-based methods, e.g., equation-of-motion coupled
cluster (EOM-CC),' ™ complete active space second-order pertur-
bation theory (CASPT2)," ” the quantum Monte Carlo method,* "
linear-response time-dependent density functional theory (LR-
TDDFT),"” " or the Bethe-Salpeter equation (BSE) approach in

ues for small and mid-sized molecules, when combined with suf-
ficiently high-quality basis sets. They are therefore often used as a
trusted reference,” > although their applicability to larger sys-
tems is somewhat limited by the associated computational cost.
LR-TDDFT has been widely applied to predict optical excitations
for molecules due to its computational efficiency and often reason-
able accuracy, especially when combined with carefully designed
exchange-correlation (XC) functionals.”*" However, LR-TDDFT
calculations can encounter problems for charge-transfer (CT) exci-
tations,””* especially when used with a simple XC functional such
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as the adiabatic local density approximation (LDA)" and general-
ized gradient approximations (GGAs).”" In LR-TDDFT, including
long-range exact exchange in the XC functional can mitigate this
problem, 25303

The BSE approach is founded upon MBPT, based on Green’s
function (G) theory and the idea of using the screened Coulomb
interaction W.'° The BSE formalism was originally proposed in
the field of nuclear physics in the 1950s."” Combined with the
GW approximation in MBPT, ' the BSE approach has been shown
to successfully approximate the optical spectra of solids'””***~*
and nanosystems and later work demonstrates similar appli-
cability to excitations in atoms and molecules.””*"”" The GW
approach'®*""**" allows one to predict fundamental gaps—i.e., gaps
between highest occupied molecular orbital (HOMO) and low-
est unoccupied molecular orbital (LUMO) quasiparticle states—as
well as single-quasiparticle excitation spectra that are more accu-
rate than those obtained by standard density functional theory
(DFT) for a wide range of systems, including both solids and
molecules.” *® The description of optical excitations within the
BSE approach then uses charged excitations, i.e., electron removal
and addition excitations, from the GW approach as its input.
The BSE method based on the GW method has several formal
advantages over LR-TDDFT. The electron-hole interaction in the
BSE approach has the correct asymptotic behavior in the so-called
“Mulliken limit™® for both solids and molecules [ie., Ref. 66:
“Ecro(D) = EA(acceptor) — IP(donor) — 1/D, where EA(acceptor)
and IP(donor) are the acceptor electronic affinity and the donor ion-
ization energy” for large acceptor-donor distance D, all in atomic
units]. This limit is not captured by the LR-TDDFT formalism with-
out a long range exchange component.”””" CT excitations, which
are problematic for LR-TDDFT especially with LDA and GGA
functionals, can be efficiently and accurately predicted by the BSE
approach.”**®*>7! This has been demonstrated for CT excitations
including both intermolecular and intramolecular types in systems
such as simple dipeptides,””’” and more complex fullerene/polymer
aggregatesf b

Calculations of BSE excitation energies within MBPT usually
adopt a three-step procedure: (i) Evaluate the Kohn-Sham (KS)™
or generalized Kohn-Sham (gKS)T4 DEFT orbitals. (ii) Apply self-
energy corrections at the G* W level or partially self-consistent™ "'
GW level (G0 W'@DFT or GW@DFT; G° stands for Green’s func-
tion of a noninteracting reference system and W° is the screened
Coulomb interaction of that reference system).'”**"* (iii) Solve
the BSE (in practice, an approximate version thereof, see below)
based on the G°W® or GW quasiparticle energies and screened and
unscreened Coulomb integrals of (g)KS orbitals (BSE@G’ W’ @DFT
or BSE@GW@DFT)."***** BSE implementations exist in differ-
ent computational packages based on different basis functions, e.g.,
MolGW,”® Fiesta,”””® and Turbomole,*”””® which are based on
Gaussian-type orbital (GTO) basis sets, BerkeleyGW,ﬂ) Yambo,”’
ABINIT,”" VASP,” and Quantum Espresso,”* which are based
on plane waves, or Exciting“‘“’ and Elk,”” which are based on
augmented plane waves.

The present work introduces an accurate implementation of
the BSE formalism utilizing compact and efficient numeric atom-
centered orbital (NAO) basis sets"* in the context of the all-
electron electronic structure code FHI-aims.”***”""" This paper
focuses on spin-unpolarized systems (spin-polarized calculations
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are not yet possible in the present implementation). To obtain the
two-electron Coulomb and screened Coulomb interaction matrix
elements, we use an efficient and highly accurate variant of the
resolution-of-identity (RI) technique.”” In FHI-aims, this RI tech-
nique is the numerical foundation for all methods beyond semilocal
DFT, including Hartree-Fock (HF), hybrid density functionals, the
random-phase approximation (RPA), second-order Moller-Plesset
perturbation theory (MP2), and the GW method.”*”" Our current
implementation also uses the ELSI infrastructure’” and the ELPA
eigenvalue solver”” for parallel eigenvalue solutions.

This paper is organized as follows: In Sec. II, we introduce
the GW+BSE formalism in the context of MBPT. In Sec. I1], we
discuss the details of our implementation. In Sec. IV, we demon-
strate the numerical correctness of our BSE implementation by com-
paring the excitation energies computed by FHI-aims and by the
MolGW code™”” with GTO correlation-consistent basis sets for
Thiel’s molecular benchmark set.”**" In assessing our BSE imple-
mentation, we emphasize the dependence of the BSE results on the
GW quasiparticle energies. We then study the convergence behav-
ior of excitation energies to the complete basis set limit, combining
standard NAO basis sets for ground state DFT (FHI-aims-2009)"
or valence correlation consistent NAO basis sets (NAO-VCC-nZ)*
with extended augmentation functions (NAO+aug). We demon-
strate that the standard FHI-aims-2009 basis sets give essentially
basis set converged numerical results for low-lying optical excita-
tion energies when combined with a few extended augmentation
functions (NAO+aug basis sets) that are also commonly included
in Gaussian-type basis sets. Finally, similar convergence behav-
ior is @)r\nonstrated for LR-TDDFT with adiabatic LDA as the
kernel.”’

Il. METHODS

Typical calculations of the neutral (optical) excitation energies
of molecules using the BSE approach adopt the following three-step
procedure, which is utilized by a wide range of electronic structure
packages for calculations of neutral (optical) excitation properties in
the framework of MBPT;"**07%808283,83

(i) The initial step is performed by solving the self-consistent
(2)KS equations with an approximate functional for the exchange-
correlation energy Ex.. Common choices for Ey. are the LDA, GGAs,
HF, and hybrid functionals. In KS theory (e.g., LDA and GGAs), we
define ¥y as the functional derivative of Ex. with respect to the elec-
tron density. In the gKS case (HF and hybrid functionals), ¥« is the
functional derivative with respect to the set of orbitals y;. In either
case, the y; are constructed as

fl(g)KS

ly1) = aly), (1)

POKS bt Ve + V1 + e (2)

Equation (1) states the electronic (g)KS single-particle equations for
the effective single-particle orbitals y; and eigenvalues ¢ (I = 1, 2,
-« o> Nowit). Equation (2) details the gKS Hamiltonian R®%S includ-
ing the effective single-particle kinetic energy (with relativistic cor-
rections) f;, the external potential Vex, the electrostatic or Hartree
potential of the electron density ¥4, and the exchange-correlation
potential ¥x.. The underlying orbitals {y;} are here expanded on the
basis of NAOs {gi, i =1, 2, ..., Npus} as
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Vi = Z Clii, (3)

where the NAOs are of the form®”

¢i(r) = @Yzm(ﬂ), )
where r is a position vector with respect to the nucleus, r is its mod-
ulus, and Q is the corresponding angular coordinate on the unit
sphere. In the FHI-aims code, the u; are numerically tabulated func-
tions, defined as cubic splines in units of a logarithmic grid. Yy,
are the real-valued spherical harmonics, and I and m are implicitly
included in the basis function index i. The eigenvalues and eigen-
functions produced by the initial step serve as a first guess for the
quasiparticles and are used to evaluate the Coulomb interaction, the
screened Coulomb interaction, and the GW self-energy in the subse-
quent GW and BSE@GW steps. Although, in the nonperiodic case,
y; can be chosen to be real-valued, we include complex conjugates
in the derivations below.

(ii) A perturbative GW approach is then applied to obtain the
quasiparticle energies as follows:**

e = e+ (w=" (™) - Ixclwa), (5)

where ¢" is the quasiparticle energy. By convention, the arguments
7" used to evaluate the self-energy " on the right-hand side are
updated self-consistently until they match the " values obtained
on the left-hand side, even though the function =W (w) itself is not
further updated in the process. The GW self-energy is calculated
from the Green’s function G and the screened Coulomb potential
W following the GW approximation proposed by Hedin:'®

ZGW(r, r',w) = é / dw'G(r, o+ w')W(r, r',w')eiw’”. (6)

In the single-shot perturbative GW (i.e, G°W®) approach, the
Green’s function G is approximated by the noninteracting Green’s
function G°, which is calculated from single-particle orbitals y; and
orbital energies &,

Tl
Fler ) 5 MO

T w— g —insgn(er — &)

™)

where ¢r is the Fermi energy and # is a positive infinitesimal. The
screened Coulomb potential W° is calculated from the dielectric
function ¢ as*

Wo(r,r',w/):/dr"s_l(r,r",w')v(r",r/), (8)

where the dielectric function ¢ is obtained at the RPA level, using
DFT results. The G°W° self-energy can be calculated using an exact
analytic treatment on the real axis, which is the case in the MolGW
package.”””” We refer to Sec. IIL.C of Ref. 60 for the details of this
formalism. This treatment is limited to small systems. Instead, two-
pole” and Padé”® approximations are implemented in the FHI-aims
code for the evaluation of the self-energy on the real axis.”” Both of
these approximations are based on an exact treatment of G°, W°,

and the self-energy 29" on the imaginary frequency axis. 2O s
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then extended to the real axis by performing an analytic fit of the
data on the imaginary axis to a function with a form that has poles
on the real axis. This process is usually referred to as “analytic con-

tinuation.” The smooth behavior of all quantities (GO, wo, ZGO Wo)
on the imaginary frequency axis significantly reduces the number
of frequency points needed, compared to a full frequency integra-
tion along the real frequency axis.”” Specifically, the self-energy
is approximated to have the following mathematical form in the
complex plane in the two-pole approximation:”

2
Zij(z) ~ Z 9

an
= z+by

where the values of a, and b, depend on the indices i and j. In the
Padé approximation, the self-energy is expressed as

apg+aiz+---+ a(N,z)/z(Z)(N_z)/z

Z,j(Z) ~ 5 (10)

L+biz + -+ by (2)N/?

where N denotes the total number of parameters in the Padé approx-
imation. We note already here that the Padé approximation can be
more accurate than the two-pole approximation to represent the
true self-energy but that the Padé approximation is also, in prac-
tice, more prone to numerical problems, including nonunique solu-
tions that can be difficult to control without manual inspection of all
resulting eigenvalues. In addition to the two approaches mentioned
above, another, more elaborate approach to evaluate the self-energy
directly on the real axis by contour deformation (CD) was imple-
mented in FHI-aims by Golze and co-workers™ while this paper
was being completed. We do not assess this approach here because
our empbhasis here is on the BSE, but we note that essentially exact
G°W? input data to the BSE are expected from the CD approach.
On the other hand, the analytical continuation of X according to
Eq. (9) or Eq. (10) is advantageous over the CD approach in terms of
computational cost, both in terms of the base cost (often called the
prefactor) and in terms of the scaling exponent with system size if
the number of needed G*W" eigenvalues scales with the size of the
system.%

Here, we perform one-shot perturbative G°W° calculations
based on a fixed DFT or HF reference. The quasiparticle energy in

Eq. (5) is thus rewritten as elGO W Some studies investigate the effect
of iterating the GW equations by updating the eigenvalues in Eq. (7)
by those calculated from Eq. (5), whereas the wavefunctions y; are
kept at the DFT level.****”” This procedure, denoted eigenvalue self-
consistent GW, is reported to give better agreement with experimen-
tal results and wavefunction-based reference methods compared
with single-shot G°W° for some systems.***>*%

(iii) The BSE is a Dyson-like equation for the two-particle
correlation function L,

L(12;12") = Loy(12;1"2") + /d(3456)L0(14;1'3)
x K(35;46)L(62;52"), (11)

where the set of variables 1, 2, etc. is short for position, time, and
spin (r1, t1, 01), (r2, t2, 02), etc. L(12; 1'2) is the electron-hole
correlation function which describes the probability amplitude of
an electron propagating from 1’ to 2 and a hole propagating from
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1 to 2'.%" Lo(12; 1'2') represents the correlation function of the
noninteracting system defined below in Eq. (12). K(35; 46), usually
called the electron-hole interaction kernel, is the screened interac-
tion between the electron and the hole (including bare exchange). Lo
and K can be expressed in the following equations:*’

Lo(12;12") = G°(1,2)G°(2,1"), (12)
) _ OM(3,4)
K(35;46) = 3G(6.5)" (13)

where G is the one-particle Green’s function and M is equal to the
sum of the self-energy and the Hartree potential,

M(3,4) = v (3)8(3,4) + 2(3,4). (14)

By applying Eq. (14) to Eq. (13), performing a time-energy Fourier
transformation and ignoring the dynamical properties of W,” the
BSE kernel can be simplified to

K(r3,15,14,16) = —iv(rs — 15)0(r3 — 14)8(x5 — 16)
+ iW(r3,r4,w = 0)6([‘3 - 1‘6)6(1‘4 — 1‘5), (15)

where the variables 3, 4, etc. are reduced to r3, r4, etc., v is the
bare Coulomb interaction, and W is the screened Coulomb interac-
tion, with the frequency-dependence ignored.”’ This approximation
means that the actual BSE part (once the GW quasiparticle ener-
gies are fixed) is independent of a particular analytical continuation
choice since only the w = 0 value of W enters the approximated
BSE.

In practical implementations, the BSE is usually rewritten in the
following matrix form in a transition space spanned by the products
of occupied and unoccupied orbitals:”"****

A B

B R 1 S
where E; are the optical excitation eigenvalues and (X, Y;) are the
eigenvectors. The X, and Y are expressed in electron-hole space of
the unperturbed system with elements X, and Y4, i.e., the actual
BSE wavefunctions are linear combinations of the product of (g)KS
orbitals. The excitation wavefunctions X, Y can be taken to be real-
valued in finite (molecular) systems without an external field. Blocks
A and AT correspond to resonant transitions from occupied to
unoccupied orbitals and the antiresonant transitions, respectively.'”’
Blocks B and —B' describe the coupling between blocks A and —AT.
In the BSE, the diagonal matrices A(—AT) and off-diagonal matrices

B(-B") are defined as follows:*"***
AP = (87 — 650, — &/ (ia| V|jb) + (if| W (w = 0)|ab), (17)

BY = —a*" (ia|V|bj) + (ib|W (w = 0)|aj). (18)

The indices i and j denote occupied states and a and b denote unoc-
cupied states. 5" and €V are the quasiparticle energies denoted
7" in Eq. (5). The coefficient a®' is equal to 2 for singlet excitations
and 0 for triplet excitations. The index conventions for the bare and
screened Coulomb interactions V and W are as follows: "

(ialV|jb) = > c};cachrczs(pqhs), (19)
pqrs
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(il Wlab) = 3" clcigcarch (pal Wlrs), (20)
pqrs

where (pq|rs) are the two-electron integrals in a basis set representa-
tion,

(palrs) = f 9o (D) Qg (- (F)ps(x) 1)

e —r'|
and the same convention (Mulliken notation) for r and r’ is used
in the notation of the screened Coulomb integrals (pg| W|rs) as well.
The neglect of the coupling blocks B(~B') in Eq. (16) is known as
the Tamm-Dancoff approximation (TDA).”'"" In the TDA, which
also we compare below, the relevant equation becomes simply,

AX; = E-X.. (22)

The oscillator strength f can be calculated from the eigenvalues
and eigenvectors obtained by solving the BSE eigenvalue problem as
follows:'" 5

=3B % (), @3)
U=X,),2
where ds,, can be calculated as'”?

dsy = V2 Z(V’iw%)(xs,ia + Ysia)- (24)

Since we are dealing with finite systems, the dipole operator j is
simply taken to be the position operator, i.e., i = (x,y,z). For con-
venience, we reference the coordinates x, y, z to the center (average
of atomic positions) of the molecule.

We will also compare our observations for the BSE to analogous
results for LR-TDDFT, which is widely used in chemistry. We there-
fore briefly recapitulate the LR-TDDFT formalism, the mathemati-
cal structure of which is similar to the BSE, albeit with a two-point
kernel instead of the four-point kernel of BSE. A deeper discussion of
the mathematical similarities and differences of both levels of theory
is given in Ref. 22. LR-TDDFT is often expressed as the Casida eigen-
value equation,'”” which is formally equivalent to Eq. (16). Here, the
LR-TDDEFT formalism becomes

QF, = E’F.. (25)

In LR-TDDFT, Q is called the Casida matrix, which has the same
dimension as A or Bin Eq. (16). E? are squares of the neutral many-
body excitation energies and F; are the eigenvectors of this eigen-
value problem, which can also be related to the oscillator strengths
via the dipole operator.'” The Casida matrix can be written in the
basis of products of (g)KS orbitals as

Qiajp () = 810,5(ea — &)° + 21/ (80 — &) Kiajp (0)\/ (26 — &), (26)

where § denotes the Kronecker delta. The kernel Kj, j, is defined as

)= [ 1
Kagp(@) = [[ v} <r)wa(r>[|r_r,|

+ fxc[10] (1, r',w):lv/j(r')l//g(r')drdr', (27)
where fyc[n0] is the exchange correlation kernel and ny is the (g)KS

ground state electron density. As in the case of the BSE approach,
the LR-TDDFT method can also employ the TDA approximation
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as discussed in Ref. 105. Then, an analogous equation to Eq. (22) is
solved but with the matrix A being

Aia,jh(w) = 8i,j5a,b(€ﬂ - €,‘) + Kia,jh(w)' (28)

The kernel is formally defined through the functional derivative of
the time-dependent Kohn-Sham exchange and correlation potential
vxe[1](r, ) with respect to the time-dependent density n(r’, t') such
that

felml(r0) = [ -y Rel®D) g

In practice, the so-called adiabatic approximation'” is employed in

Eq. (29), as we do here, and the exchange-correlation kernel reads

n _ Ovxe[n](r)
fielno)(r,x') = on()

This approximation makes the exchange-correlation kernel
frequency-independent.

| (30)

I1l. IMPLEMENTATION

In our implementation, the two-electron Coulomb interaction
in Egs. (17), (18), and (26), the static screened Coulomb interac-
tion in Eqgs. (17) and (18), and the two-electron integrals of the
exchange correlation kernel in Eq. (26) are calculated employing
the RI approach.”®'””"''" The RI represents pair products of atomic
basis functions ¢,(r) - @4(r) in terms of auxiliary basis functions
(ABFs),

9p(1)9q(r) » 3 CpyPu(r), €2)

“
where P,(r) (4 = 1, 2, ..., Naux) are the ABFs and ng are the
expansion coefficients. The construction of the ABFs in FHI-aims
is explained in Ref. 68 and in detail in Ref. 91. The evaluation of the
integrals (21) then reduces to
(pqlrs) = Y Chy(u|v)Cy, with (32)

uv

() = f D2 gy 53

The computation of the expansion coefficients Cj, requires three-
center integrals involving the ABFs and the pair products of the

NAGO:s,
ng = Z(pq‘v)(VL”)_l» where (34)
p,
(palv) = /f (Pp(r)%(r) (r )d dr’, (35)
and (v| #)‘1 denotes the inverse of the Coulomb matrix in ABF repre-

sentation. Thus, the expensive computation of four-center integrals
(pq|rs) is reduced to the computation of much cheaper three-center
and two-center ones,

(pglrs) ~ Y 05y Of, (36)
“
using
O = 2 Cral) ™7, (37)
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where (v|u)™"/? denotes the square root of the inverse Coulomb
matrix. This enables the efficient computation of the Coulomb
matrix elements both in time and in memory. The screened
Coulomb interaction W can be represented in terms of the ABFs
in a similar way to the Coulomb interaction V as follows:

(pq|W|rs) = Zogq(e_l)wors- (38)
uv

The dielectric function ¢ can be calculated as

e = S — 3 (ula) P x0s (BIV) 7, (39)
ap

where y° is the noninteracting density response function. In real
space and for a non-spin-polarized system, y° is defined as

K (eriw) - zzii%“”“ﬂ%u>wu>

W+ & — €&

.c.:|, (40)

where “c.c.” denotes the complex conjugate. We refer to Ref. 68 for
more details. The current BSE implementation in FHI-aims uses
global RL® In the future, use of the localized RI formalism’’ is
expected to facilitate scalability to larger systems as well as support
for extended (periodic) systems.

IV. RESULTS
A. Numerical validation

We quantify the precision of our BSE implementation by cal-
culating the neutral excitation energies of the molecular benchmark
set published by Schreiber et al.,”* known in the literature as “Thiel’s
set.” This set (see Fig. 1 in Ref. 24) includes N = 28 small and
medium-sized organic molecules, the largest of which is naphtha-
lene with 18 atoms. The chemical elements represented in these
organic molecules are H, C, N, and O. The atomic coordinates for
the included molecules are taken from the supplementary material
of Ref. 24. Schreiber et al. focused on obtaining “Best Estimate (BE)”
values for singlet and triplet excitation energies of these molecules
from ab initio calculations, including rather demanding multirefer-
ence, coupled cluster, or complete active space approaches of their
own or from the literature. While the BE values have been used as
reference data by both Thiel’s and other groups for implementa-
tions, evaluation and development of a variety of methods,””**** our
present study is aimed at establishing the numerical precision of our
approach at a fixed level of theory, i.e., BSE or LR-TDDFT. The pri-
mary objective of this paper is therefore not to compare to the BE
results but rather to compare the BSE excitation energies calculated
by our present NAO-based implementation to results obtained at
the same level of theory, using the MolGW code as a benchmark.
Regarding the basis set, Schreiber et al” (and therefore, also some
of the results from other methods available for comparison in the
literature) employed a relatively limited basis set level for correlated
calculations, the TZVP basis set by Schifer et al.''” A previous study
by Bruneval et al."” indicates that BSE@G° W @DFT-B3LYP' " exci-
tation energies for ethene and pyrrole, obtained with the TZVP basis
set, overestimate the analogous results from the much larger aug-cc-
pVQZ basis set''* by about 0.45-0.65 eV. Therefore, the goal of our
following investigation is twofold. We first establish the numerical
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precision of our own implementation in comparison with MolGW
using the TZVP basis set.'” We then discuss basis set conver-
gence for low-lying singlet and triplet excitations using NAO basis
sets.

In Fig. 1, we compare the numerical precision of the present
BSE implementation and that in MolGW using the TZVP basis set.
Specifically, we show state-resolved mean absolute error (MAE) val-
ues of the BSE-approximated energies of the lowest ten singlet and
triplet excited states, respectively, of all molecules in Thiel’s set.
The state-resolved MAE, MAE(i), of a given dataset D = {D;,} in
comparison with a reference set R = {R;,} is defined as

N
MAE(i) = N Z |Din — Rinl, (41)
n=1

wherei=1, ..., 10 is the index for the stateand n =1, ..., N is the
index for the molecules in Thiel’s set. For the MAE plotted in Fig. 1,
the dataset D is the set of BSE excitation energies calculated using the
FHI-aims implementation. The reference set R is the set of BSE exci-
tation energies calculated by MolGW. The Perdew-Burke-Ernzerhof
(PBE)™ exchange-correlation functional is used for the initial DFT
calculations, and the G®W?® quasiparticle energies that enter the BSE
are taken from MolGW in both sets. Panels (a) and (b) show the
results for singlet excitations with and without TDA, respectively.
Panels (c) and (d) show the results for triplet excitations with and
without TDA, respectively. The BSE results from the present imple-
mentation agree with the results of the MolGW package at the level
of 1 meV or below.

Next, Fig. 2 compares BSE oscillator strengths, Eqgs. (23) and
(24), from both implementations for singlet states in the TDA. The
MAEs for the oscillator strengths are at the level of 107 or below, i.e.,
numerically negligible. The actual value of the excitation energy and
oscillator strength investigated in this section for all the molecules
in Thiel’s set can be found in Tables S1-S5 of the supplementary
material. Since the calculation results of the FHI-aims and MolGW
package agree within 1 meV for the excitation energy and 10™* for

—_
(=)

(a) Singlet w/ TDA

sttt bl

0 (c) Triplet w/ TDA (d) Triplet w/o TDA

(b) Singlet w/o TDA

—_

(=]
—_

—_

Mean Absolute Error (meV)

0'112345678910 12345678910

State

FIG. 1. Mean absolute error MAE(j) [Eq. (41)] of the BSE@QG’W°@PBE low-
est 10 singlet/triplet excitation energies from our implementation, compared with
reference values from MolGW. The GTO-type TZVP basis set''” is used. The
G*WP quasiparticle energies for the FHI-aims BSE calculations are here taken
from MolGW, ensuring that the comparison is specific to the BSE part of the cal-
culations. Panels (a) and (b) show the MAE of the singlet states with and without
the Tamm-Dancoff approximation (TDA), respectively. Panels (c) and (d) show the
MAE of the triplet states with and without TDA, respectively.
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FIG. 2. Mean absolute error MAE(j) of the BSE@G° W @PBE oscillator strengths
from the present implementation compared to that of MolGW, using the TDA and
the GTO-type TZVP basis set'' for the lowest 10 singlet excitation states, aver-
aged over all molecules in Thiel’s set. Asin Fig. 1, the G°W? quasiparticle energies
for the FHI-aims BSE calculations are here taken from MolGW.

the oscillator strength, the values in Tables S1-S5 are valid for both
packages within the significant digits given. In short, Figs. 1 and 2
validate our implementation.

B. Effects of the frequency dependence
of the self-energy in GW

We next investigate how the BSE energies are impacted by
different treatments of the frequency dependence of the G°W?°

self-energy 2" In Sec. 1V A, we took the G®W?° quasiparticle
energies calculated by MolGW as the input for the FHI-aims BSE

calculations. G*W? calculations in MolGW employ an exact analytic

0 T
treatment of ¢ " on the real axis.”"”” A similarly precise result is

expected from the CD technique by Golze et al.” In this section,
we investigate the impact of two frequently employed inexact but
potentially cost-saving”® approximations to the self-energy on the
real axis, namely, the two-pole approximation,% Eq. (9), and the
Padé approximation,” Eq. (10), with 16 parameters.

In Fig. 3, we show mean absolute errors MAE(i) of the G'w?
quasiparticle energies of the HOMO-3 to LUMO+3 states, calcu-
lated using either the two-pole approximation [Fig. 3(a)] or the
16-parameter Padé approximation [Fig. 3(b)] and compared to the
MolGW reference values. The G° W results are based on DFT calcu-
lations using the PBE™ exchange-correlation functional and employ
the Gaussian-type TZVP basis set.''” We see that the two-pole
approximation gives MAE values up to 0.3 eV in the investigated
states. Although not a small value, this must be viewed in the context
of the overall change from plain DFT single-particle energies to cor-
related G°W° quasiparticle energies, which are typically of the order
of several eV. The 16-parameter Padé approximation can reduce
this error by a factor of two or more, as shown in Fig. 3(b). Most
of the quasiparticle energies agree with the MolGW results within
0.1 eV, except for the state LUMO+2, where the MAE is around
0.12 eV. The performance of both approximations can be compared
with a broader analysis performed in Ref. 97 (the “GW100” bench-
mark). For a different set of molecules, Ref. 97 reports MAE val-
ues of 0.125 eV for HOMO levels and 0.071 eV for LUMO levels
when comparing FHI-aims’ two-pole approximation with the 16-
parameter Padé approximation. These values are somewhat worse
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FIG. 3. Impact of two different self-energy extrapolation schemes in FHI-aims on
G*WP quasiparticle energies for the HOMO-3 to LUMO+3 states, compared to
the formally exact self-energy treatment in MolGW (reference). Mean absolute
errors MAE(/) for Thiel's molecular benchmark set were computed using the GTO-
type TZVP basis set.''” (a) MAE(j) using the two-pole approximation, Eq. (9). (b)
MAE(i) using the Padé approximation, Eq. (10), for N = 16.

than the precision of the two-pole approximation for our molecu-
lar set in Fig. 3(a). Additionally, Fig. 3(a) includes states away from
the HOMO and LUMO (not considered in Ref. 97), with somewhat
higher MAEs. Given the differences in assessed molecules and lev-
els, the two-pole approximation precision reported in Fig. 3(a) is
thus very much in line with that found in Ref. 97. For FHI-aims’
16-parameter Padé approximation, Ref. 97 finds MAE values of
0.003 eV (HOMO) and 0.006 eV (LUMO) when comparing to an RI-
free implementation in the Turbomole code and covering a subset of
the smaller molecules in the GW100 benchmark. Although this find-
ing is consistent with our general finding that the 16-parameter Padé
approximation significantly improves over the average error asso-
ciated with the two-pole approximation, the MAE values reported
for the present test set in Fig. 3(b) still amount to a few tens of
millielectronvolt for the HOMO and LUMO. The remaining dis-
crepancy (though small) between our MAE values and those from
the GW100 benchmark could partially be attributable to the dif-
ferent molecular test subsets considered in the assessment of the
16-parameter Padé approximation. Additionally, as also discussed
in more depth in Sec. V A of Ref. 97, the Padé approximation can
result in serious ambiguities for individual eigenvalues &’ if there
are multiple solutions for the self-consistency condition between the
left and the right sides of Eq. (5). In our own assessment, we did
not pursue the question of different solutions of Eq. (5) between

ARTICLE scitation.orgljournalljcp

the 16-parameter Padé approximation in FHI-aims and the numer-
ically exact self-energy in MolGW. While our overall reported MAE
values in Fig. 3(b) are evidently small, it is conceivable that multi-
ple solutions of Eq. (5) for individual eigenvalues contribute to the
observed MAE, as they would in a practical simulation, where exist-
ing implementations typically also do not screen specifically for mul-
tiple solutions. In fact, despite its higher MAE, a practical advantage
of the two-pole approximation is its relative numerical simplicity
and therefore its relative robustness against numerical ambiguities,
compared to the Padé approximation. Thus, the two-pole approxi-
mated self-energy can be preferable for simple reasons of stability, at
the price of reduced precision compared to a formally exact G*W°
self-energy. However, one should bear in mind that the two-pole
approximation can in some cases also fail dramatically as was shown
in Ref. 97.

As shown in Fig. 4, the different approximate G W° self-energy
treatments affect the BSE excitation energies, which take the G*W°
quasiparticle energies as input. We compare BSE results based on
G*W? quasiparticle energies calculated using the self-energies of
Egs. (9) and (10) to BSE results based on the MolGW G*w? eigen-
values with the exact analytic self-energy treatment.”””” Panels (a)
and (b) show the MAE(i) values for the ten lowest singlet and triplet
BSE excitation energies, respectively, using the two-pole approxi-
mation and averaged over all molecules in Thiel’s set. Panels (c)
and (d) show the analogous results obtained using the 16-parameter
Padé approximation. We see that the 16-parameter Padé approxi-
mation yields smaller MAE(3) (~0.1 eV across all investigated states)
than the two-pole approximation [MAE(i) of 0.1-0.4 eV]. The dif-
ference is a direct reflection of the different MAE(i) of the G°W?°
quasiparticle energies (Fig. 3), which constitute the input for the BSE
calculations.

o~ 04 - 0.4 -
> (a) two-pole singlet (b) two-pole triplet
O 03 03
N
*5 02 02
LE 0.1 0.1
o 00 0.0
S 12345678910 12345678910
B 0.4 0.4
B (c) 16-parameter (d) 16-parameter
< 0 Padé singlet 03 Padé triplet
o 02 0.2
8 0.1 0.1
2 0.0 0.0
12345678910 12345678910
State

FIG. 4. Mean absolute errors MAE(j) of the lowest ten BSE@G® W°@PBE exci-
tation energies, averaged over Thiel's set of molecules, comparing results using
G°W? eigenvalues from analytically continued self-energies and results using the
formally exact G°W? self-energy in MolGW as a reference. TZVP basis sets''?
and the TDA are used in all calculations. (a) MAE(i) of singlet states using G°W°
quasiparticle energies from the two-pole approximation, Eq. (9). (b) MAE() of
triplet states using the two-pole approximation. (c) MAE(/) of singlet states using
G WP quasiparticle energies from the 16-parameter Padé approximation, Eq. (10).
(d) MAE(i) of triplet states using the 16-parameter Padé approximation.
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In addition to the MAE of the BSE@G°W'@PBE results
between FHI-aims and MolGW, we can also define the state-
dependent mean signed error MSE(i) as

N
MSE(i) = % > (Din — Rip). (42)
n=1

Justasin Eq. (41), iand n are indices for states and molecules, respec-
tively, averaging over N = 28 molecules in Thiel’s set. Table I sum-
marizes the overall MSE and MAE (averaged over states i in addition
to averaging over molecules) of the BSE@G® W°@PBE results using
the two-pole and 16-parameter Padé approximation vs MolGW as a
reference. As noted above, the MAE of BSE results based on quasi-
particle eigenvalues from the 16-parameter Padé approximation is
less by a factor of two than the MAE of BSE results from two-pole
approximated quasiparticle eigenvalues. The MSE indicates that BSE
results from the two-pole quasiparticle eigenvalues overestimate the
expected BSE@GW" excitation energies based on an exact G°W°
self-energy.

It is interesting to compare the errors incurred from the
different G°W° self-energy treatments to the errors associated
with the BSE approach itself. Bruneval et al.”’ show that the
BSE@G’ W @PBE singlet excitation energies at the TZVP basis set
level give an MSE of —0.8 eV and an MAE of 0.8 eV compared
to the BE results of Schreiber et al.”* The MSE and MAE of the
BSE@G® W°@PBE triplet excitation energies are around —1.2 eV and
1.2 eV, respectively.”’ In comparison, the error incurred through
the approximate G°W? self-energies in Table I is rather small for
the two-pole approximation and negligible for the 16-parameter
Padé approximation. Additionally, the sign of the MSE from both
self-energy approximations is the opposite of that of the MSE com-
pared to the BE values, i.e., especially the two-pole approxima-
tion would actually reduce the MSE compared to the BE values,
as a result of fortuitous error cancellation. However, this reduc-
tion should not be trusted systematically. For a true improvement
over the reported small-molecule BSE excitation energies, it would
obviously be preferable to pursue higher-level approaches than
BSE@G® W @PBE at the TZVP basis set level—in terms of the DFT
starting point, in terms of the theoretical treatment of the neutral
excitation, and in terms of the basis set.

Even for the small-molecule systems in Thiel’s set, the BSE
correction still accurately captures the vast majority of the change
between straight differences of HOMO and LUMO levels from

TABLE |. Mean absolute error and mean signed error of the BSE@G®W°@PBE
excitation energies using analytical continuations (two-pole or 16-parameter Padé
approximation) for the GYW? quasiparticle eigenvalues. The values are averaged
over the lowest ten states and all molecules in Thiel's set, using the exact GOW? self-
energy treatment in MolGW as a reference. Results are shown for both singlet and
triplet excitation energies.

GOWo Two-pole 16-Parameter Padé

self-energy Singlet Triplet Singlet Triplet
MSE 0.10eV 0.15eV 0.01eV 0.04 eV
MAE 0.16 eV 0.22eV 0.06 eV 0.08 eV
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G°W? calculations and actual neutral excitation energies. This cor-
rection is much larger than the differences incurred above as a result
of the approximate G°W® self-energies. In our calculations, the
BSE@G’ W°@PBE results using both 16-parameter Padé approxima-
tion and two-pole approximations reduce the lowest G° W° HOMO-
LUMO gap by about 57%, averaged over all molecules in Thiel’s set.
For the He atom, essentially basis set converged results by Li et al.”’
show a G"W°@Hartree-Fock (HF) fundamental gap of 24.69 eV,
compared to significantly lower lowest-lying triplet and singlet exci-
tation energies of 19.82 eV and 21.22 eV, respectively. Even in this
extreme case of an isolated two-electron atom, these essentially basis
set converged BSE@G’ W @HF results agree with the exact result
better than ~0.01 Ha (~0.3 eV). For larger molecules, such as free-
base porphyrin and tetraphenylporphyrin,''” BSE@G’ W LDA exci-
tations can match experimental absorption spectra to a similarly
good degree (essentially exact within the remaining approximations
made in Ref. 115). Here, the BSE again corrects the simple G*W°
HOMO-LUMO energy difference by several eV, much more than
the magnitude of changes due to analytical corrections to the G*W°
self-energies reported above.

C. Basis set convergence

We now address the basis set convergence of the NAO basis sets
for the BSE calculation, in comparison with cc-pVnZ basis sets''®
and aug-cc-pVnZ basis sets''* by Dunning and co-workers. Two
types of NAO basis sets have been constructed in the context of
FHI-aims. The first, denoted “FHI-aims-2009,” was introduced in
Ref. 88 and aimed at ground-state DFT calculations. The FHI-aims-
2009 basis sets come in different tiers (i.e., levels) n = 1, 2, 3, 4 (in the
case of H, a fourth tier does not exist and the molecular results for
tier4 below employ tier3 for H). These basis sets allow one to achieve
total-energy convergence corresponding to fast qualitative calcula-
tions to few-millielectronvolts per atom''” calculations in a single,
hierarchical basis set scheme (i.e., for a given element, each basis
set level contains the exact basis functions from all lower-accuracy
basis set levels as a subset). For first- and second-row elements, FHI-
aims’ “tight” settings employ all FHI-aims-2009 basis functions up
to and including tier 2, as shown in Table S6 in the supplementary
material. The second type of basis set is denoted NAO-VCC-nZ with
n=23,4,5" The NAO-VCC-nZ basis functions are constructed
in analogy to the cc-pVnZ correlation-consistent (CC) basis sets by
Dunning,'® but employing the numerically tabulated shape of
NAOs (nodeless hydrogen-like radial functions with a numerical
confinement potential applied to the tails). The NAO-VCC-nZ basis
sets are optimized to be suitable for converging electronic total-
energy calculations based on valence-only correlation methods that
include sums over unoccupied states, e.g., RPA or MP2.” In the fol-
lowing, the above two types of NAO basis sets, as well as cc-pVnZ
(n=2,3,4,5)"°and aug-cc-pVnZ (n = 2, 3, 4, 5) basis sets,''* are
compared to the aug-cc-pV5Z basis sets as the benchmark reference
in the BSE calculations.

In Fig. 5, we show the difference between the BSE excitation
energy computed with different basis sets and that of the aug-cc-
pV5Z basis set for the lowest five singlet excitations of the ethene
molecule in Thiel’s set. The different investigated basis set types
and levels are identified on the x axes of all three panels. The size
of the different basis sets for the ethene molecule is plotted on the

J. Chem. Phys. 152, 044105 (2020); doi: 10.1063/1.5123290
Published under license by AIP Publishing

152, 044105-8


https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5123290#suppl
https://doi.org/10.1063/1.5123290#suppl

The Journal
of Chemical Physics

ARTICLE scitation.org/journalljcp

a) 600
( ?t\], 500
- 400
.« 300
2200 FIG. 5. Difference between the BSE exci-
A 100 -.-Il .-.-l-l tation energy computed with different
0 basis sets and that of the aug-cc-pV5Z
(b) 25 . . basis set for the lowest 5 singlet excita-
2. 0f - w2 LK tions of the ethene molecule in Thiel's
> 1.5}, set. Panel (a) shows the basis size of
\é’/ 1.0 I l I all basis sets. Panel (b) and panel (c)
0.5 I I l I | give the difference of the BSE excitation
< o opEME J I— [.n'—-—-t i I —I—l l. . I-i Iijl l i el energy without and with TDA, respec-
-0.5 tively. The excitation energy calculated
(c) 25 r — using the aug-cc-pV5Z basis set by Dun-
L 2.0f w1 = o 3w s TDA ning and co-workers'' is used as the
= 1.5lp reference value. The “tier” notation corre-
het 1.0 Ik | b1 - ) sponds to the basis set tiers of the “FHI-
< 8(5) | I l I_L .- i j_I_L I LIl I_. i l bon .. aims-2009" basis sets,” either unmod-
05 ¥ ified or with additional augmentatlon
PN NN NN NN NNNY N ST LR B9 o functions from the “aug-cc” basis sets as
% = % > % = % = 8 8 8- 8 2 2 2 82 8 § § +g described in the text.
8353845888333 3 T3 %
EREEEEE s
8BS RS ZZZZ

y axis in panel (a). The difference AE; between the BSE excitation
energy computed using different basis sets and that computed using
the aug-cc-pV5Z basis set is identified on the y axes in panels (b)
and (c),

AE; E:_Jasis _ E?ug—cc—pVSZ.

(43)
The AE; of the lowest five singlet states (i = 1-5) are plotted in
Fig. 5(b) without the TDA and in Fig. 5(c) with the TDA. In both
Figs. 5(b) and 5(c), we see that the results obtained with the cc-pVnZ
basis sets converge slowly toward the reference value as the basis size
increases. The remaining discrepancy is greater than 0.5 eV even for
the very expensive cc-pV5Z basis set. Although the magnitude of
this discrepancy is unsatisfactory, its occurrence is not surprising.
The stated reason for developing the augmented cc basis sets was
an improved description of electron affinities,'* a key constituent
of the BSE@GW@DFT excitation energies discussed here. Accord-
ingly, the results obtained with the aug-cc-pVnZ basis sets converge
much faster. This is in line with the literature:"** e.g., in Fig. 3 of
Ref. 43, the LR-TDDFT and BSE@G’ W @B3LYP' "’ excitation ener-
gies of the ethene and pyrrole molecules using the aug-cc-pVDZ and
aug-cc-pVQZ basis sets show differences less than 0.1 eV for ethene
and about 0.2 eV for pyrrole, for both LR-TDDFT and BSE. In
Figs. 5(b) and 5(¢), the results obtained with the NAO-VCC-nZ basis
sets, which are constructed analogously to the cc-pVnZ basis sets,
display a similarly unsatisfactory convergence behavior as that of the
results from cc-pVnZ basis sets. The other type of NAO basis sets,
i.e., the FHI-aims-2009 “tier” basis sets, behaves slightly differently
compared to the NAO-VCC-nZ basis sets. The FHI-aims-2009 tier2
basis set improves the BSE excitation energies significantly com-
pared to the FHI-aims-2009 tierl results, in fact even slightly bet-
ter than the two unaugmented cc basis set prescriptions. However,
the FHI-aims-2009 tier3 and tier4 results are very similar to those

obtained using the tier2 basis set, displaying no further significant
improvement.

The results discussed so far confirm the importance of the aug-
mentation functions. We thus extend the FHI-aims-2009 tier2 basis
set with different numbers of Gaussian-type augmentation functions
obtained from the aug-cc-pV5Z basis set. The label “tier2+augl”
in Fig. 5 denotes the basis set generated by adding the first Gaus-
sian augmentation function from the aug-cc-pV5Z basis set (angular
momentum quantum number / = 0) to the FHI-aims-2009 tier2
basis set. Similarly, the label “tier2+aug2” denotes the basis set
obtained by combining the FHI-aims-2009 tier2 basis set with the
first two Gaussian augmentation functions (I = 0, 1) from the aug-
cc-pV5Z basis set. We see that the addition of the augmentation
functions significantly improves the accuracy of the FHI-aims-2009
tier2 results compared to the reference aug-cc-pV5Z values. Specif-
ically, the tier2+aug2 basis set already yields essentially basis set
converged values for the excitation energies of ethene shown in
Fig. 5, with a remaining discrepancy of 0.1 eV or less compared
to aug-cc-pV5Z. This conclusion is independent of whether or not
the TDA is used in the BSE calculation, as shown in Fig. 5(c).
As an important main result, the tier2+aug2 basis sets can here
provide rather well converged values, comparable to the aug-cc-
pV5Z reference values for low-lying neutral excitations. As will be
shown below, this result can be generalized to the remainder of
the molecules in Thiel’s set. Interestingly, the tier2+aug basis sets
thus provide a recipe allowing one to use a basis set that is pre-
cise but affordable for ground-state DFT''” and, with a very limited
modification, sufficient to achieve highly converged BSE results for
low-lying excitations at the same time. For the lowest-energy exci-
tations, which are often those of the greatest interest, we can thus
use a very similar NAO basis set prescription as in ground-state
DFT.
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It is instructive to analyze the origins of the BSE@G’ W’ @PBE
basis set convergence behavior in Fig. 5 in terms of the underlying
electronic structure steps. We therefore next discuss the convergence
of the HOMO and LUMO levels of ethene as well as of the HOMO-
LUMO gap for DFT-PBE (Fig. S1 in the supplementary material)
and for G’W°@PBE (Fig. S2 in the supplementary material). Not
surprisingly, the DFT-PBE results are all significantly better con-
verged than the BSE@G’ W @PBE results in Fig. 5. The LUMO con-
verges slightly less well than the HOMO, not unexpectedly since
it lies only a bit more than 1 eV below the vacuum level and is
thus weakly bound. Much in line with the motivation of Kendall et
al.''" to address electron affinities in their construction of the aug-
mented cc basis sets, the addition of two augmentation functions
converges the LUMO to the visual resolution of Fig. S1(b), ie., a
scale of roughly 0.01 eV. As is well known,” the convergence of
G°W? quasiparticle energies is much slower with basis set size than
that of the DFT single-particle energies. All the correlation consis-
tent basis sets show noticeable improvements of the quasiparticle
HOMO, LUMO, and gap values in Fig. S2, up to the largest basis
sets investigated here. However, they do not yet reach visual con-
vergence for the LUMO and, thus, for the gap, even for the largest
basis sets. The same is true for the FHI-aims-2009 “tier” basis sets,
although this group of basis sets was constructed for ground-state
DFT* and is thus, technically, not designed to converge explicitly
correlated methods with the same degree of systematicity as the cc
basis sets.”” The augmentation functions added to “tier2” do not
contribute to the convergence of the quasiparticle HOMO, whereas
they do contribute somewhat to the convergence of the quasiparticle
LUMO. In the cases of cc basis sets, basis set extrapolation strategies
could be employed as done in Ref. 97 for G°W® quasiparticle lev-
els. However, the BSE@G’ W @PBE results using augmented basis
sets in Fig. 5 appear to converge well without extrapolation, which
is initially surprising given the slow convergence of the quasipar-
ticle energies. Regarding BSE@G’ W’@PBE convergence, the most
striking insight arises from the quasiparticle gap behavior in Fig.
S2(c). The gap for all nonaugmented basis sets converges slowly,
as seen in Fig. 5. In contrast, the slow convergence of quasiparti-
cle HOMO and LUMO cancels nearly exactly for the augmented
cc basis sets as well as for the tier2+aug2 and tier2+aug3 basis

v 1200
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sets. Since G°W?° quasiparticle energy differences are key terms in
BSE@G’W" excitation energies, the quasiparticle gap behavior in
Fig. S2(c) indicates that, at least for ethene, both error cancella-
tion between HOMO and LUMO G°W? correlation energies and
the better description of the LUMO by the augmentation functions
contribute to low-lying BSE@G’ W" excitation energies. As a result,
the latter is largely numerically converged already for the relatively
small tier2+aug2 basis set as well as for the augmented cc basis
sets.

Fig. 6 shows the convergence of the MAE(i) of the five lowest-
lying excitation energies as a function of the size of various basis
sets in BSE calculations, employing the TDA and averaged over all
molecules in Thiel’s set. The reference is, again, the aug-cc-pV5Z
basis set. The different investigated basis set types and levels are
identified on the x axes of panels (a) and (b). The basis size Nyasis
of different basis sets, averaged over all molecules in Thiel’s set, is
plotted as the y axis in Fig. 6(a). Nyasis is defined as

Nmol
\ — J
Nbasis = Nimol Z; Nbasis’ (44)
m Jj=

where Ny is the number of molecules in Thiel’s set and N{)asis is
the basis size for the molecule j in the benchmark set. We see that
the convergence of different basis sets is similar to the earlier obser-
vations made for ethene in Fig. 5. Specifically, the tier2+aug2 basis
set produces rather well converged results for all molecules inves-
tigated here. The lowest five singlet excitation energies calculated
by BSE@G’ W'@PBE using the aug-cc-pV5Z and tier2+aug2 basis
sets are also listed in Table S7 in the supplementary material for all
molecules in Thiel’s set.

D. Convergence with respect to the BSE matrix size

In the BSE calculations presented in this work so far, we include
the orbital pairs of all occupied and unoccupied orbitals in the con-
struction of the BSE matrix. The dimension of the matrix problem
Eq. (16) thus grows quadratically with the basis set size and also
(for a fixed basis set level) with molecular size. Solving this full
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set [see Eq. (44)]. (b) MAE(/) values of
the lowest five BSE@G° W' @PBE exci-
tation energies computed with different
basis sets, using results from the aug-
cc-pV5Z basis set as the reference. The
TDA is employed.
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BSE matrix problem produces an excitation spectrum of the stud-
ied molecule that includes very high excitation energies. In many
practical applications, however, we are interested in only the low-
lying part of the excitation spectrum. In such a situation, one
might suspect that the high-lying unoccupied quasiparticle states
do not contribute much to the low-lying optical excitations. This
can, in fact, not be entirely true, since single-quasiparticle like
GW observables such as the ionization potential can depend sig-
nificantly on high-lying parts of the spectrum being included in
unoccupied-state sums in the relevant perturbation expressions.''
All-electron approaches to G°W° band gaps suffer from similar con-
vergence issues with basis set size, specifically the basis set resolu-
tion in those regions of space that are closer to a nucleus.'” How-
ever, neutral excitations are not the same objects, and the question
thus remains how many quasiparticle states, especially the high-
lying unoccupied orbitals, should be included in the construction
of the BSE matrix, in order to obtain sufficiently precise results
for low-lying optical excitation energies. Previous investigations on
leaving away states in the calculation of excitation energies exist.
For instance, this was done in Ref. 115, already referenced above.
As another common example, various studies show how to effi-
ciently select the desirable orbital space in the study of complete
active space approaches.”’”"'”* As a final example, in the calcula-
tion of the electronic spectra of molecules in solution or surfaces,
Besley developed an approach within LR-TDDFT and single exci-
tation configuration interaction that limits electronic excitations
to include only those between orbitals localized on the solute or
adsorbent.'”’

In Fig. 7, we show the errors incurred in the BSE low-lying
singlet and triplet excitation energies obtained when applying dif-
ferent values of a cutoff energy E..: for unoccupied states, limiting
the number of states a and b entering the matrix construction in
Egs. (17) and (18). Here, E. denotes a cutoff energy above which
the high-lying unoccupied quasiparticle states are omitted from the
BSE matrix (however, such cutoffs are not applied in the construc-
tion of the quantities entering the BSE matrix). The average numbers
of unoccupied states included for different choices of E, are tabu-
lated in Table II. Figure 7 shows MAE(i) values for the lowest ten
singlet (a) or triplet (b) excitation energies for the different cutoff
energy values, using the tier2+aug?2 basis set for all calculations and
the excitation energies from the full calculation (no cutoff imposed)
as areference. In these calculations, all occupied states are kept in the
construction of the BSE matrix, i.e., no cutoff threshold is applied to
the occupied quasiparticle states. Figure 7 shows that the error of the
results calculated with Ec,; = 20 eV is about 20-30 meV. Setting Ec.:
= 40 eV yields excitation energies with an error closer to 10 meV.
Larger E, values of 60 and 80 eV lead to further small improve-
ments. In view of the remaining errors of these calculations (due to
the level of theory for underlying DFT, quasiparticle energies, and
neutral excitation formalism itself), these results suggest that one
may use 40 eV as a threshold beyond which the impact of high-lying
unoccupied quasiparticle states becomes negligible in BSE calcula-
tions of low-lying excitations. This can reduce the computational
effort significantly because of the reduction of the number of states
needed in construction of the BSE matrix. Specifically, the time com-
plexity and memory complexity of constructing the BSE matrix in
Eqs. (17) and (18) scale as Nﬁu X Nﬁnm, where Ny and N0 denote
the number of occupied and unoccupied (g)KS single-particle states,
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FIG. 7. (a) MAE(j) of the BSE@G’W°@PBE excitation energies of the lowest
ten singlet states using different energy cutoff values E, (20, 40, 60, 80 eV) for
unoccupied states, using the case where all unoccupied states are included as a
reference. The basis set is the tier2+aug2 basis set, and the values are averaged
over all molecules in Thiel's set. (b) Analogous MAE(j) for triplet states.

respectively. By setting E..; = 40 eV and for the tier2+aug2 basis sets,
the number of unoccupied states is reduced to about 1/3 of the anal-
ogous number if no threshold energy values are used (see Table II).
Additionally, the formal effort for solving the full BSE, Eq. (16),
would scale as O(N 6), where N is a measure of system size, due to
the same considerations of how Noc and Nypo. impact the matrix
dimension. While imposing Ec,: will not reduce the formal scaling,
the actual computational effort will nevertheless be reduced substan-
tially in the limit of large systems where the BSE solution must even-
tually dominate. In short, both the time and the memory require-
ments of the BSE calculation of low-lying excitations are expected to
be reduced significantly by imposing E.., without sacrificing much
accuracy.

E. Comparison to LR-TDDFT

In this section, we first investigate the basis set convergence
of LR-TDDFT excitation energies for the molecules in Thiel’s set,

TABLE II. The number of unoccupied states, Nynocc, averaged over all molecules
in Thiel's set, when imposing threshold values E.; = 20, 40, 60, and 80 eV or no
threshold (. . .”) in the BSE@G° WO @PBE calculations. The tier2+aug2 basis set is
used.

Threshold (eV) 20 40 60 80 .
Nunoce 64 95 117 142 292
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using the strategy already employed for the BSE in Sec. IV C. The
LR-TDDFT in FHI-aims was implemented following Egs. (25)-
(30). The exchange-correlation kernel used is the LDA, employ-
ing the parametrization of the correlation energy by Perdew and
Wang,””* provided by the Libxc library.””*'" Note that the
LR-TDDFT formalism leaves one with the freedom to choose dif-
ferent prescriptions of the XC functional for (i) the self-consistent
solutions of single-particle orbitals and energies and (ii) the XC
kernel f [Eq. (30)] used in the actual LR-TDDFT construction.
In this section, the exchange correlation functional for the self-
consistent solutions of single-particle orbitals is PBE.”* We will use
the notation “LR-TDDFT-LDA@PBE” in the following to denote
this approach. To maintain consistency, the TDA is employed in the
LR-TDDFT calculations shown in the main text of this paper, as this
is widely done for BSE calculations as well. Additionally, LR-TDDFT
calculations without making the TDA are included in the SM.
Figure 8 provides state-dependent MAE(i) values for the lowest
five LR-TDDFT excitation energies computed with different basis
sets, averaged over Thiel’s set. Excitation energies computed with
the aug-cc-pV5Z basis sets are used as reference values. The dif-
ferent investigated basis set types and levels are identified on the
x axes of both panels (a) and (b). Figure 8(a) for singlet states
and Fig. 8(b) for triplet states show essentially identical behav-
ior. The overall convergence pattern associated with all the basis
sets investigated here is also very similar to the behavior seen
for the BSE in Fig. 6. Excitation energy values derived from both
the cc-pVnZ basis sets and the NAO-VCC-nZ basis sets converge
slowly toward the reference value as the basis size increases. The
largest error is about 0.5 eV for the very expensive cc-pV5Z basis
set for singlet excitation energies and 0.3 eV for triplet excitation
energies. The aug-cc-pVnZ basis sets, again, converge much faster.
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As for the BSE, the FHI-aims-2009 basis sets improve significantly
toward the reference results from tierl to tier2, but not further
using tier3 and tier4. Finally, by adding augmentation functions
to the FHI-aims-2009 tier2 basis sets, one can obtain well con-
verged LR-TDDFT results by including only one or two augmen-
tation basis functions. The tier2+aug?2 basis set, already discussed
for BSE calculations above, leads to compellingly good basis set con-
vergence as a production recipe. The lowest five singlet and triplet
excitation energies calculated by LR-TDDFT-LDA@PBE using aug-
cc-pV5Z and tier2+aug2 basis sets are provided in Tables S8
and S9 in the supplementary material for all molecules in Thiel’s
set.

As pointed out by a reviewer of this work, it is initially
somewhat surprising that the convergence of LR-TDDFT and of
BSE@G"W? is qualitatively so similar since LR-TDDFT contains
no quasiparticle energies and no screened Coulomb interaction.
Indeed, in our discussion of ethene above (Fig. 5 as well as Figs. S1
and S2 in the supplementary material), we traced the slow con-
vergence of BSE@G’W" excitation energies to the quasiparticle
energies as well as the need for augmentation functions to bet-
ter capture the quasiparticle LUMO level. However, the underly-
ing concepts of BSE and LR-TDDEFT are of course similar—see, for
instance, Ref. 22 for a detailed derivation. Indeed, the derivation of
LR-TDDEFT is based on the linear response function y of the sys-
tem [see Eq. (5.7) and following in Ref. 22 for details], and the lin-
ear response x° of the underlying generalized Kohn-Sham system
is common to both BSE@G’W? and LR-TDDFT. It was shown by
Bruneval ** that treating only y° in a larger basis set can enhance the
convergence of G'W quasiparticle eigenvalues, indicating that this
is the quantity that determines the common convergence behavior
of both approaches.
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We next compare the results of BSE@G" W°@PBE with those
of LR-TDDFT-LDA@PBE, implemented in FHI-aims and using the
tier2+aug2 basis set validated above. While the primary focus of
the present work is numerical and basis set convergence, we pro-
vide this comparison here because LR-TDDFT is widely used in
quantum chemistry as a computationally efficient method for opti-
cal excitation calculations. We note that similar comparisons can be
found in the literature,** albeit not using the same basis sets. In
our comparison, the underlying DFT calculations for both BSE and
LR-TDDFT are carried out using the PBE™ exchange-correlation
functional. Figure 9 shows the MSE(i) and the MAE(i) between
LR-TDDFT-LDA@PBE results and BSE@G’ W' @PBE results, aver-
aged over all molecules in Thiel’s set. The BSE@G’ W°@PBE results
are taken as the reference. The lowest ten singlet and triplet
excitation energies are compared. The MSE between LR-TDDFT-
LDA@PBE and BSE@G’ W @PBE results for singlet and triplet exci-
tation states is plotted in Figs. 9(a) and 9(b), respectively. The MAE
between LR-TDDFT-LDA@PBE and BSE@G’ W @PBE results for
singlet and triplet excitation states is plotted in Figs. 9(c) and 9(d),
respectively. We see from Fig. 9 that the MAE between LR-TDDFT-
LDA@PBE and BSE@G® W°@PBE for singlet excitation energies is
less than 0.5 eV, whereas the MAE for triplet excitations energies can
be as large as 0.7 eV. Singlet excitation energy values obtained from
LR-TDDFT-LDA@PBE tend to be lower than those obtained from
BSE@G’ W @PBE, whereas LR-TDDFT-LDA@PBE triplet excita-
tion energies appear to be larger by up to 0.7 eV than those obtained
from BSE@G’W@PBE. Previous studies of BSE and LR-TDDFT
show that the excitation energies computed by BSE and LR-TDDFT
depend highly on the DFT starting point.”>** Bruneval et al.”’ com-
pare the MSE of both BSE@G’ W’ @B3LYP and LR-TDDFT@B3LYP
excitation energies with the BEs of Thiel’s set, showing that the
MSE of LR-TDDFT is about 0.4 eV lower than the MSE of BSE.”**’
However, there are several differences between their comparison
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FIG. 9. Mean signed errors MSE(i) and mean absolute errors MAE(i) between LR-
TDDFT-LDA@PBE and BSE@G’W°@PBE (reference) results, averaged for all
molecules in Thiel's set, using the tier2+aug2 basis set in the TDA for the lowest
ten singlet and triplet states. Panels (a) and (b) show the MSE of the singlet and
triplet states, respectively. Panels (c) and (d) show the MAE of the singlet and
triplet states, respectively.
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and the comparison shown in this work. First, the dataset used by
Bruneval and co-workers is the BEs of Thiel’s set,”* which con-
tains 103 singlet and 63 triplet excitation energies. In our work, we
have a larger dataset to include the lowest ten singlet and triplet
states of each molecule in Thiel’s set. Second, the BSE and LR-
TDDFT calculations analyzed in this section rely on the TDA, which
is not employed in the comparison performed by Bruneval et al.”’
Finally, we here use a basis set that is essentially converged for
both BSE and LR-TDDFT calculations. Another set of compara-
ble results is therefore those of Jacquemin and co-workers,” who
compare BSE@G’W°@PBEO and LR-TDDFT@PBEO in a bench-
mark paper using the aug-cc-pVTZ basis set, which has similar con-
vergence behavior as the tier2+aug2 basis set used here. Different
MAE values between BSE@G’ W @PBEO and LR-TDDFT@PBEO
excitation energies are reported for different categories of molecules
in Thiel’s set: 0.27 eV for unsaturated aliphatic hydrocarbons;
0.51 eV for aromatic compounds; 0.37 eV for aldehydes, ketones,
and amides; and 0.47 eV for nucleobases. The reported values
are comparable to the values that we find in Fig. 9, in the range
of 0.2-0.7 eV for different states of singlet and triplet excitation
energies.

Finally, we briefly return to the overall accuracy of both
BSE@G’W'@PBE and LR-TDDFT-LDA@PBE compared to BE**
values. In the literature and for TZVP basis sets, the reported error
for BSE@G°W°@PBE can be around 0.8 eV (singlets) or 1.2 eV
(triplets)," as already alluded to in Sec. IV B. In Fig. 10, we show
results using our own recommended basis set, tier2+aug2, compar-
ing to BE values for the lowest singlets and (where available) triplets
for all molecules in Thiel’s set. Interestingly, the BSE@G’ W @PBE
energies appear to deviate even somewhat more from the BE val-
ues as a result of the, arguably improved, basis set than those
reported for the TZVP basis set.”’ In comparison, the LR-TDDFT-
LDA@PBE level of theory performs better for this set of molecules
[Fig. 10(b)], shown using the TDA, albeit still off on average by
several tenths of electronvolts. This observation does not depend
on the TDA, as shown in Fig. S3 in the SM, which compares LR-
TDDFT-LDA@PBE data with and without the TDA to the same set
of BE data as used in Fig. 10. As noted earlier, the primary objec-
tive of this paper is not a discussion of the accuracy compared to
the BE value but rather the assessment of basis set convergence
and other methodological aspects of our approach. Nevertheless, the
results shown in Fig. 10 should be borne in mind by users of the
approaches. Significant improvements to both BSE and LR-TDDFT
for molecules are of course possible and documented in the liter-
ature, e.g., by changing the underlying density functional approxi-
mation"" and/or (for BSE) the underlying level of the GW approach
applied.”””’

F. Remarks on time and memory cost of the BSE
and LR-TDDFT implementation

While the present work does not include a performance opti-
mization of either the BSE or the LR-TDDFT implementations
reported above, we provide some individual timings indicative of the
computational cost of our (not fully optimized) BSE and LR-TDDFT
implementations. The results should only be understood as quali-
tative indicators of the current implementation, since no dedicated
optimization was carried out, but nevertheless give some idea of the
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relative cost of different steps at present and indicate avenues for the
future work in our own implementation. In this section, we consider
a series of acene molecules of increasing size: benzene, naphthalene,
and anthracene. Both BSE and LR-TDDFT calculations were per-
formed using the “tier2+aug2” basis sets described in Secs. IV C and
[V E, respectively, and employing the TDA.

In Table III, we show the timings of BSE@G’W'@PBE and
LR-TDDFT-LDA@PBE performed for the three acene molecules
selected. We apply a cutoff energy Ec,r =40 eV to limit the number of
unoccupied states entering the BSE and Casida matrix construction
as described in Sec. IV D. The calculations are performed using a
single node with 44 cores (Intel Xeon, Broadwell microarchitecture,
2.4 GHz) on the Dogwood cluster at University of North Carolina,
Chapel Hill. The total time is decomposed into three parts, i.e., RI
basis setup denoted by “Basis” (precomputed three-center and two-
center integrals in Sec. I1I), BSE/LR-TDDFT matrix construction or
building denoted by “Build Mat.,” and solving the BSE/LR-TDDFT
matrix as eigenvalue problems in Egs. (22) and (25) denoted by
“Solver.” The “Build Mat.” timing accounts for the computational
effort in building the BSE matrix as outlined in Eqgs. (17) and (18)
vs the LR-TDDFT matrix in Eq. (26). We note that the timings com-
prise the BSE/LR-TDDFT step only, whereas the timings for the pre-
ceding steps are not counted, such as the G’ W and DFT-PBE steps
in the BSE@G® W°@PBE calculation and the DFT-PBE step in the
LR-TDDFT-LDA@PBE calculation. Table IIT shows that the major-
ity of the total timing is attributed to the product basis setup step

in both subfigures.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

for both BSE and LR-TDDFT calculations. Both the total timing and
the timings for each step are comparable for BSE and LR-TDDFT
calculations, which is expected due to the similar formalisms. How-
ever, as will be seen below in Table IV, the difference of timings
for the matrix building step between BSE and TDDFT becomes
more significant in our present implementations if the matrix size
is increased.

To demonstrate how the cutoff energy E..: = 40 eV reduces the
computational timings, we show in Table I'V the timings for the same
systems without using any cutoff energy for both BSE@G’ W @PBE
and LR-TDDFT-LDA@PBE calculations. All other computational
details remain the same as those used to obtain Table III. We see
in Table IV that, by using all the unoccupied states in the BSE
and LR-TDDFT calculations, the timings for building and solving
matrix steps increase significantly compared to those in Table III.
In contrast, the timings for the product basis setup step stay almost
unchanged, which is expected since the number of basis func-
tions and auxiliary basis functions is not affected by applying the
cutoff energy to limit the number of unoccupied states. As men-
tioned above, the matrix building step in the present implementation
reveals a difference between the BSE and the LR-TDDFT timings
in Table IV. Specifically, the matrix building step for LR-TDDFT
requires the calculations of the kernel Kj, 3 [Eqs. (26) and (27)].
In our parallel implementation, the state indices i, g, j, and b are
distributed among different processors, as are the RI two- and three-
center integrals, and the calculation of Kj,j, requires significant

TABLE IlI. Timings of BSE@G°W'@PBE and LR-TDDFT-LDA@PBE calculations performed for the neutral singlet excita-
tions of benzene, naphthalene, and anthracene. The “tier2+aug?2” basis set is used, and a cutoff energy Es = 40 eV for
unoccupied states is applied. Calculations are performed using one node with 44 cores on the Dogwood cluster at UNC-
Chapel Hill (Intel Broadwell microarchitecture, 2.4 GHz). All values are given in seconds (s). The TDA is employed for BSE
but not for LR-TDDFT; however, the matrix dimensions are identical in Casida’s Equation vs. in BSE(TDA).

BSE@G’ W°@PBE LR-TDDFT-LDA@PBE
Molecules Basis  Build Mat.  Solver  Total  Basis  Build Mat.  Solver  Total
Benzene 270 9 1 280 293 7 1 301
Naphthalene 1200 44 1249 1184 39 1228
Anthracene 3089 142 16 3247 2907 129 19 3055
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TABLE IV. Timings as in Table IlI, but without any energy cutoff applied for unoccupied states.

BSE@G’ W°@PBE LR-TDDFT-LDA@PBE
Molecules Basis  Build Mat.  Solver  Total  Basis  Build Mat.  Solver  Total
Benzene 276 31 7 313 292 22 7 321
Naphthalene 1205 314 72 1592 1200 173 71 1443
Anthracene 3175 1531 407 5113 3010 824 405 4239

TABLE V. Memory (in Megabytes) used to store the BSE or LR-TDDFT matrix in the BSE@G’W°@PBE or LR-TDDFT-
LDA@PBE calculations of neutral singlet excitations of benzene, naphthalene, and anthracene. The column labeled “Full”
denotes the memory required if all unoccupied states enter the BSE or LR-TDDFT matrix. The column labeled “E; = 40 eV”
denotes the memory required when applying the cutoff energy of 40 eV for unoccupied states. The column labeled “Ratio”
denotes the ratio of the value in the “Full” column over the value in the “Egy; = 40 eV” column. Other computational details

are the same as those in Tables Ill and IV.

BSE@G’W°@PBE LR-TDDFT-LDA@PBE
Molecules Full Et=40eV Ratio Full E.i=40eV Ratio
Benzene 400 45 8.9 400 49 8.2
Naphthalene 2549 261 9.8 2549 282 9.0
Anthracene 9129 876 104 9129 979 9.3

interprocessor communication to get the correct state indices. For
BSE, the analogous interprocessor communication has to be con-
ducted twice in the calculations of (ia|V | jb) and (ij| W|ab) because
the state index order is different in (ia| V | jb) and (ij| W|ab), and thus,
they are calculated in separate steps. As a result, the timing of the
matrix building step in the BSE is significantly larger than that in the
LR-TDDFT calculations.

Finally, we verify how the cutoff energy Ec.; = 40 eV reduces
the memory requirements for the BSE and LR-TDDFT matrices.
In Table V, we compare the memory used to store the BSE or
LR-TDDFT matrix using all unoccupied states and the memory
requirements for the matrices when applying E.. = 40 eV, indicat-
ing a reduction by a factor of ~9-11. This is consistent with that in
Sec. IV D, where E: = 40 eV was shown to reduce the number of
unoccupied states to about 1/3 of the full number of states if no cut-
off energy values are used. Since the BSE and LR-TDDFT matrix
size scales as N2, X N2 [Egs. (17) and (18)], the overall reduc-
tion amounts to (1/3)* = 1/9, which is confirmed by the memory
reduction shown in Table V.

V. CONCLUSIONS

We describe an implementation of the Bethe-Salpeter equa-
tion approach to neutral excitations in small molecules based on
numeric atom-centered basis sets in an all-electron electronic struc-
ture framework (the FHI-aims code). Benchmarks performed using
Thiel’s set of small molecules™ demonstrate the numerical correct-
ness of the implementation. Mean absolute errors less than 1 meV
are obtained compared to the reference values computed using
the MolGW code when exactly the same basis set and underlying

technical approximations are used. We next investigate the impact
of analytical approximations to the G’ W self-energy (the two-pole
and 16-parameter Padé approximations) on the G° W° quasiparticle
energies entering the BSE. The MAE of the BSE@G" W° @PBE results
with these analytical approximations is around 0.05-0.20 eV, com-
pared with the exact G’ W? self-energy used in the MolGW reference
code. The 16-parameter Padé approximation is more precise than
the two-pole approximation where it can be used, but (due to the
possible occurrence of multiple solutions in the quasiparticle equa-
tion, discussed elsewhere’’) the two-pole approximation offers an
overall numerically more stable avenue (with the caveats laid out in
Ref. 97). Ultimately, the differences due to either approximation are
smaller than typical basis set errors and errors due to the level of the-
ory itself as assessed in other benchmark publications. The basis set
convergence behavior of the predicted low-lying excitations is inves-
tigated for the cc-anZ,Hh FHI-aims-2009,”° NAO-VCC-nZ,"’ and
aug-cc-pVnZ'" literature basis sets, as well as for a simple modifica-
tion of the FHI-aims-2009 tier2 basis set by adding two augmenta-
tion functions from the aug-cc basis sets,''* called “tier2+aug2.” For
both BSE@G® W @PBE and LR-TDDFT-LDA@PBE, adequate pre-
cision requires the use of augmentation functions, as expected from
the literature. The “tier2+aug2” basis set provides high precision for
both BSE and LR-TDDFT calculations while remaining applicable
in production calculations. Furthermore, the convergence is inves-
tigated with respect to the number of unoccupied states included
in the BSE or LR-TDDFT matrix construction. A threshold of Ec,;
= 40 eV is suggested, above which the unoccupied states are dis-
carded in the construction of either the BSE or the LR-TDDFT
matrix. This threshold significantly reduces the time and memory
consumption while maintaining high precision of the results for
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low-lying excitations. Finally, BSE@G"W°@PBE and LR-TDDFT-
LDA@PBE results are compared using the tier2+aug?2 basis set for
Thiel’s set of molecules. The difference between BSE@G" W @PBE
and LR-TDDFT-LDA@PBE is quantified by an MAE in the range
of 0.2-0.7 eV for different singlet and triplet states calculated for
molecules in Thiel’s set. In agreement with the literature, devia-
tions from higher-level “best estimate” values are of a similar mag-
nitude; one likely mitigation strategy is the selection of a better
starting-point density functional for BSE@G’ W’ @DFT.

SUPPLEMENTARY MATERIAL

See the supplementary material for excitation energies of the
molecules in Thiel’s set using the BSE with and without the TDA;
corresponding oscillator strengths of singlets within the TDA; def-
inition of the “tier2” basis sets and numerical settings; DFT and
G*W? single-particle HOMO, LUMO, and gap data for the ethene
molecule; and basis set convergence of excitation energies of the
molecules in Thiel’s set using the BSE and LR-TDDFT; comparison
of LR-TDDFT results with and without the TDA to BE data. We fur-
thermore provide numerical versions of the data shown in the sup-
plementary material, Tables S1-S5 and §7-S9, in a comma-separated
value (csv) format as file “si_tab.csv.”
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