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Abstract

The classical decision problem, as it is understood today, is the quest for a delineation

between the decidable and the undecidable parts of first-order logic based on elegant syntac-

tic criteria. In this paper, we treat the concept of separateness of variables and explore its

applicability to the classical decision problem. Two disjoint sets of first-order variables are

separated in a given formula if variables from the two sets never co-occur in any atom of

that formula. This simple notion facilitates extending many well-known decidable first-order

fragments significantly and in a way that preserves decidability. We will demonstrate that

for several prefix fragments, several guarded fragments, the two-variable fragment, and for

the fluted fragment. Altogether, we will investigate nine such extensions more closely. Inter-

estingly, each of them contains the relational monadic first-order fragment without equality.

Although the extensions exhibit the same expressive power as the respective originals, certain

logical properties can be expressed much more succinctly. In three cases the succinctness gap

cannot be bounded using any elementary function.

1 Introduction

In the early twentieth century David Hilbert initiated his famous program striving for a formaliza-
tion of the foundations of mathematics. At its core lay the classical decision problem of first-order
logic: Find an algorithm that determines the validity of any given first-order sentence. Nowa-
days, the classical decision problem is understood as the problem of classifying first-order logic
into fragments with a decidable or undecidable satisfiability problem.1 This quest has produced
a wealth of positive and also negative results, see [18, 11, 21] for references. We will give defini-
tions of a number of well-known decidable fragments in later sections. More recently identified
decidable fragments that are neither covered in the present paper nor in the mentioned texts are
treated in [62, 41, 49, 61, 12]. A much more detailed but still brief overview of past and recent
developments in the area is given in the beginning of Chapter 3 of [69].

In the present paper we explore the concept of separateness of variables in the context of the
classical decision problem. Two sets X,Y of variables are separated in a formula, if there are no
co-occurrences of any x ∈ X and y ∈ Y in any atom. Put more formally, we get the following
definition.

Definition 1.1 (Separateness of variables). Let ϕ be any first-order formula and let X,Y be two
disjoint sets of first-order variables. We say that X and Y are separated in ϕ if for every atom A
occurring in ϕ we have vars(A) ∩X = ∅ or vars(A) ∩ Y = ∅ or both.

This simple concept enables us to elegantly define nontrivial extensions of well-known decid-
able fragments of first-order logic. In essence, the definitions of the new fragments are careful

1For convenience, we will be less precise every now and then and speak of (un)decidable fragments.
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combinations of the concepts used in the original definitions with the concept of separateness
of quantified variables. All new fragments still have a decidable satisfiability problem. Figure 1
provides a schematic overview of the most important fragments we will introduce. All of them
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MFO – monadic first-order fragment
BSR – Bernays–Schönfinkel–Ramsey

fragment
FO2 – two-variable fragment
AF – Ackermann fragment
GKS – Gödel–Kalmár–Schütte fragment
FL – fluted fragment
GF – guarded fragment
LGF – loosely guarded fragment
GNFO– guarded negation fragment

SF – separated fragment
SBSR – separated BSR
SFO2 – separated FO2

SAF – separated AF
SGKS – separated GKS
SFL – separated FL
SGF – separated GF
SLGF – separated LGF
SGNFO– separated GNFO

Figure 1: Left-hand side: Schematic overview of well-known decidable fragments of first-order
logic. Only the partial overlaps between MFO and the other fragments are depicted. We neglect
any other partial overlaps. Moreover, the containment of AF in GKS and of GF in LGF is shown.
Right-hand side: Schematic overview of the extended fragments (in green) that are treated in the
present paper. Notice that MFO is properly contained in all extended fragments. The focus is
again on the overlaps with MFO and on the proper containment relations. Other depicted overlaps
might be unsubstantiated.

enjoy the finite model property, i.e. every satisfiable sentence in such a fragment has a finite model.
This is a sufficient condition for decidability of the associated satisfiability problem. If we can
derive a computable upper bound regarding the size of smallest models, we speak of a small model
property.

From a qualitative point of view, the extended fragments do not come with an increased ex-
pressiveness compared to the original fragments. This is witnessed by the existence of equivalence-
preserving translations from each extended fragment into the respective original. However, we
will show for several cases that there may be significant gaps regarding the length of shortest
formulas that express one and the same property. For example, the succinctness gap between
the well-known Bernays–Schönfinkel–Ramsey fragment (the ∃∗∀∗ prefix class) and an extension
of it called the separated fragment [65] (all relational sentences ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ϕ in which
x̄1 ∪ . . .∪ x̄n and ȳ1 ∪ . . .∪ ȳn are separated) is as follows [68]. For every positive natural number
n we can find some property that can be expressed in the separated fragment with a formula of
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length k · n2 for some fixed natural number k, whereas expressing the very same property in the
Bernays–Schönfinkel–Ramsey fragment requires a formula whose length is at least

22
...

22
}
height n .

Hence, some of the extended fragments enable us to describe certain logical properties much more
succinctly and elegantly. Table 1 summarizes the succinctness gaps that we will derive.

Table 1: Summary of the succinctness gaps the are explored in the present paper. The abbrevia-
tions for fragments are spelled out in Figure 1. Notice that SF ⊆ SBSR. The gap between SAF
and AF is conditional on ExpTime 6= NExpTime. All other gaps are unconditional.

More succinct fragments Less succinct fragments Succinctness gaps Reference

SF / SBSR BSR non-elementary Theorem 3.8
SF / SBSR Gaifman-local first- non-elementary Prop. 3.12

order fragment
SAF AF super-polynomial Prop. 5.12
SGKS GKS exponential Theorem 6.8
SGF LGF non-elementary Theorem 7.5

SGNFO GNFO non-elementary Theorem 8.6
SFO2 FO2 exponential Theorem 9.5

Non-trivial cases of separateness appear, for instance, in formulas where universal and exis-
tential quantifiers are nested and the variables they bind are separated. Consider the sentence
ϕ := ∀x∃y. P (x) ↔ Q(y) in which the singleton sets {x} and {y} are obviously separated. It
expresses a certain symmetry in structures A. For every domain element a there is some element
b such that a belongs to PA if and only if b belongs to QA. It turns out that the same property
can be expressed without any nesting of alternating quantifiers. Indeed, the distributivity laws of
Boolean algebra and quantifier shifting (cf. Proposition 2.1) facilitate a transformation of ϕ into
the equivalent sentence ψ :=

(
(∃x. P (x)) → (∃y1. Q(y1))

)
∧
(
(∃x.¬P (x)) → (∃y2.¬Q(y2))

)
— the

symbol |=| denotes semantic equivalence:

ϕ = ∀x∃y. P (x) ↔ Q(y)

|=| ∀x∃y.
(
¬P (x) ∨Q(y)

)
∧
(
P (x) ∨ ¬Q(y)

)

|=| ∀x∃y.
(
¬P (x) ∧ ¬Q(y)

)
∨
(
Q(y) ∧ P (x)

)

|=| ∀x.
(
¬P (x) ∧ (∃y2.¬Q(y2))

)
∨
(
(∃y1. Q(y1)) ∧ P (x)

)

|=|
(
(∀x.¬P (x)) ∨ (∃y1. Q(y1))

)
∧
(
(∃y2.¬Q(y2)) ∨ (∀x. P (x))

)

|=|
(
(∃x. P (x)) → (∃y1. Q(y1))

)
∧
(
(∃x.¬P (x)) → (∃y2.¬Q(y2))

)
= ψ

We could even shift quantifiers outwards again and finally obtain an equivalent sentence with a
∃∃∀ quantifier prefix: ψ′ := ∃y1y2∀x.

(
P (x) → Q(y1)

)
∧
(
¬P (x) → ¬Q(y2)

)
. In this example

we can not only transform nested quantification of separated variables into quantification that is
not nested. In addition, we can replace ∀∃ alternations in exchange for ∃∀ alternations, or vice
versa. In general, succinct representations of certain logical properties can be unfolded into more
verbose ones that require a lower quantifier rank (i.e. a lower nesting depth of quantifiers) or
even use fewer quantifier alternations. The sentence ψ can, using a ∀∃ alternation, represent the
symmetry property of structures more succinctly than the sentence ψ′ can with an ∃∀ quantifier
alternation. This is a key feature that we will observe for several of the extended fragments. We
will also see that such succinctness gaps can become k-fold exponential, if we start from k nested
∀∃ alternations.

The following list summarizes the main contributions of the present paper:

3



(1) Eight novel decidable fragments of first-order logic are introduced that extend well-known de-
cidable first-order fragments: the separated Bernays–Schönfinkel–Ramsey fragment (SBSR),
the separated Ackermann fragment (SAF), the separated Gödel–Kalmár–Schütte fragment
(SGKS), the separated guarded fragment (SGF), the separated loosely guarded fragment (SLGF),
the separated guarded-negation fragment (SGNFO), the separated two-variable fragment (SFO2),
and the separated fluted fragment (SFL). Moreover, it is proved that the qualitative expres-
siveness of each extended fragment coincides with the respective original.

(2) Significant gaps regarding succinctness are derived for several of the extended fragments:
SBSR, SGKS, SGF, SLGF, SGNFO, SFO2, cf. Table 1. This evidently shows that sev-
eral of the extended fragments constitute a substantial quantitative improvement regarding
expressiveness compared to the original fragments.

Note to editors and reviewers: The present paper is (except for Theorem 8.6) a conden-
sation of material taken from the author’s PhD thesis [69], mainly Chapter 3. Moreover, results
from previous conference publications are recapitulated [65, 68] (with citations).

2 Preliminaries

We mainly rely on the standard notions from first-order logic. Nevertheless, we need to agree on
some notation.

Syntax

A vocabulary Σ comprises a finite set of predicate symbols and function symbols, each equipped
with its arity. A vocabulary Σ is relational if it exclusively contains predicate symbols. We
define Σ-terms and Σ-formulas as usual, allowing the logical connectives ¬,∧,∨ and the first-order
quantifiers ∀, ∃. The two additional connectives →,↔ are used as shortcuts: ϕ → ψ abbreviates
(¬ϕ)∨ψ and ϕ↔ ψ abbreviates (ϕ→ ψ)∧ (ψ → ϕ). If not explicitly excluded, we allow equality.
A Σ-sentence is a closed Σ-formula, i.e. one without free variables. A Σ-formula / Σ-sentence
is relational, if Σ is relational. If there is no danger of confusion, we drop the explicit reference
to Σ and just speak of terms, formulas, and sentences. In order to save parentheses, we follow
the convention that negation binds strongest, that conjunction binds stronger than disjunction,
and that all of the aforementioned bind stronger than implication and equivalence. Equivalence,
in turn, binds weaker than implication. The scope of quantifiers will stretch as far to the right
as admitted by parentheses. In all formulas we tacitly assume, if not explicitly stated otherwise,
that no variable occurs freely and bound at the same time and that all distinct occurrences of
quantifiers bind distinct variables. We use ϕ(v1, . . . , vm) to denote a formula ϕ whose free first-
order variables form a subset of {v1, . . . , vm}. The variables v1, . . . , vm are assumed to be pairwise
distinct. For any formula ϕ we denote by vars(ϕ) the set of all variables occurring freely or bound
in ϕ.

Given a set Φ of Σ-formulas, we call a Σ-formula ϕ a Boolean combination of formulas from
Φ, if ϕ consist of formulas from Φ, possibly connected via the Boolean connectives ¬,∧,∨,→,↔.
If we restrict the set of Boolean connectives even further to ∧,∨, we speak of a ∧-∨-combination
of formulas from Φ.

A quantifier block is a maximal sequence Qv̄ = Qv1.Qv2. . . .Qvn of quantifiers of the same
kind occurring in a given formula. For convenience, we often identify tuples v̄ of variables with
the set containing all the variables that occur in v̄. We occasionally also use regular expressions
to describe sequences of quantifiers. For example, for any positive integer k the expression ∃∗∀k∃∃
stands for the set of all prefixes of the form ∃y1 . . . ym∀x1 . . . xk∃z1z2, where m = 0 is allowed.

A formula is in prenex normal form if all quantifiers are lined up in front of the formula,
i.e. it has the shape Q1v1 . . .Qnvn. ψ with quantifier-free ψ and Qi ∈ {∀, ∃}. A formula is in
negation normal form if it exclusively contains the connectives ∧,∨,¬ and every negation sign
occurs immediately in front of an atom; quantifiers are of course admitted.
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We use a standard notion of term and formula length, denoted len(ϕ). Notice that we have
len(ϕ→ ψ) = len(¬ϕ ∨ ψ) and len(ϕ↔ ψ) = len

(
(ϕ→ ψ) ∧ (ψ → ϕ)

)
.

Semantics

As usual, we interpret (Σ-)formulas with respect to (Σ-)structures A, consisting of a nonempty
domain A and interpretations fA and PA of all function and predicate symbols in the underlying
vocabulary. Given a term s, a structure A, and a variable assignment β over A’s domain, we
denote the evaluation of s under A and β by A(β)(s). It is defined as usual. We simply write
A(s) if s is variable free. We write A, β |= ϕ if ϕ is satisfied under A and β in the usual
sense. When there is no danger of confusion, we conveniently abbreviate expressions of the form
A, [v1 7→a1, . . . , vm 7→am] |= ϕ(v1, . . . , vm) by A |= ϕ(a1, . . . , am). We write A |= ϕ if A, β |= ϕ
holds for every variable assignment β over A’s domain. In such cases, we say that A is a model of
ϕ. For sentences ϕ we say that A satisfies ϕ if A, β |= ϕ for any β. Two sentences ϕ and ψ are
considered equisatisfiable if ϕ has a model if and only if ψ has one.

We also use the symbol |= to denote semantic entailment of two Σ-formulas, i.e. we have ϕ |= ψ
whenever for every Σ-structure A and every variable assignment β, A, β |= ϕ implies A, β |= ψ.
The symbol |=| denotes semantic equivalence of formulas, i.e. ϕ |=| ψ holds whenever ϕ |= ψ and
ψ |= ϕ.

We will frequently use the fact that quantifiers can be shifted in certain ways within formulas
under preservation of the formula’s semantics.

Proposition 2.1 (Quantifier shifting). Let ϕ, ψ, χ be formulas, and assume that x and y do not
occur freely in χ. We have the following equivalences, where ◦ ∈ {∧,∨}:

(i) ∃y. (ϕ ∨ ψ) |=| (∃y. ϕ) ∨ (∃y. ψ) (ii) ∀x. (ϕ ∧ ψ) |=| (∀x. ϕ) ∧ (∀x. ψ)
(iii) ∃y. (ϕ ◦ χ) |=| (∃y. ϕ) ◦ χ (iv) ∀x. (ϕ ◦ χ) |=| (∀x. ϕ) ◦ χ
(v) ∃y1∃y2. ϕ |=| ∃y2∃y1. ϕ (vi) ∀x1∀x2. ϕ |=| ∀x2∀x1. ϕ

A structure A is a substructure of a structure B (over the same vocabulary) if (1) A ⊆ B, (2)
cA = cB for every constant symbol c, (3) PA = PB ∩ A

m for every m-ary predicate symbol P ,
and (4) fA(ā) = fB(ā) for every m-ary function symbol f and every m-tuple ā ∈ A

m. Given a
structure A and some subset S of A’s domain, the substructure of A induced by S is the unique
substructure B of A with the domain B := S. The following is a standard lemma (see, e.g., [19],
Lemma 5.7 in Chapter III).

Lemma 2.2 (Substructure Lemma). Let ϕ be a first-order sentence without existential quantifiers
and in which no universal quantifier lies within the scope of any negation sign — we treat any
subformula ϕ1 → ϕ2 as abbreviation for ¬ϕ1 ∨ ϕ2 and any subformula ϕ1 ↔ ϕ2 as abbreviation
for (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2) to account for implicit negation signs as well. Moreover, let A be a
substructure of B. If B |= ϕ, then A |= ϕ.

Additional Notation

We use the notation [k] to abbreviate the set {1, . . . , k} for any positive integer k. The power set
of a set S, i.e. the set of all subsets of S, is denoted by P(S). The iterated application of P is given
by P0(S) := S and Pk+1(S) := Pk(P(S)) for k ≥ 0. Furthermore, we also define the tetration

operation inductively by 2↑0(m) := m and 2↑k+1(m) := 2(2
↑k(m)).

3 The Separated Fragment (SF)

Before we define the separated fragment, we first recall some details about the two well-known
decidable fragments it extends. The monadic first-order fragment (MFO) comprises all relational
first-order sentences without equality that contain only unary predicate symbols. When we refer to
the monadic first-order fragment with equality, we use the abbreviation MFO≈. The decidability of
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the respective satisfiability problems MFO-Sat and MFO≈-Sat was proved in [45, 64, 8]. Several
decades later, Löb [44] and Gurevich [34] extended the positive result to monadic first-order
sentences with unary function symbols but without equality, the Löb–Gurevich fragment. MFO
and MFO≈ possess the exponential model property: every satisfiable MFO≈ sentence ϕ has a
model whose domain size is at most exponential in ϕ’s length. Moreover, satisfiability for MFO
and MFO≈ is NExpTime-complete, cf. [11].

The Bernays–Schönfinkel–Ramsey fragment (BSR) comprises all relational first-order sentences
in prenex normal form with an ∃∗∀∗ quantifier prefix and with equality. Bernays and Schönfinkel [9]
showed that satisfiability for the relational ∃∗∀∗ prefix class without equality is decidable. Fol-
lowing up, Ramsey [57] obtained a positive decidability result in the presence of equality. This
extended class is known to posses a linear model property (cf. Proposition 3.5), and BSR-Sat is
known to be complete for NExpTime.

Now we are ready for defining the separated fragment, SF for short. Technically, it is defined
as a class of prenex sentences, but this is not an essential property. The defining principle of
SF sentences is simply that co-occurrences of universally and existentially quantified variables in
atoms are forbidden. Existential variables quantified by leading existential quantifiers are exempt
from this rule. We consider an existential quantifier leading if it does not lie within the scope of
any universal quantifier.

Definition 3.1 (Separated fragment (SF), [65]). The separated fragment (SF) consists of all
relational first-order sentences ϕ with equality of the form ∃z̄ ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-
free ψ in which the sets x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. The tuples z̄ and
ȳn may be empty, i.e. the quantifier prefix does not have to start with an existential quantifier
and it does not have to end with an existential quantifier either.

Recall that x̄ and ȳ are separated in ϕ if and only if for every atom A occurring in ϕ we either
have vars(A) ∩ x̄ = ∅ or vars(A) ∩ ȳ = ∅. Moreover, notice that the variables in z̄ are not subject
to any restriction regarding their occurrences.

It is not hard to see that SF is a proper syntactic extension of BSR. Clearly, the quantified
variables in every BSR sentence ϕ := ∃z̄∀x̄. ψ with quantifier-free ψ trivially satisfy the sepa-
rateness conditions imposed by Definition 3.1, as ȳ is empty. Similarly, every monadic sentence
without equality in prenex normal form trivially satisfies the conditions of Definition 3.1, because
any monadic atom contains at most one first-order variable. Since any MFO sentence can easily
be transformed into an equivalent sentence in prenex normal form, it is fair to say that SF also
contains MFO. On the other hand, it is an easy task to find sentences that belong to SF but
neither to BSR nor to MFO, e.g. ∀x1x2∃y1y2. P (x1, x2) ↔ Q(y1, y2).

Proposition 3.2. SF properly contains BSR and MFO.

Another interesting question is whether MFO≈ is subsumed by SF. For instance, the sentence
∀x∃y. x ≈ y is in MFO≈ but violates the separateness conditions of SF. Therefore, from the
syntactic point of view, there are MFO≈ sentences whose variables are not sufficiently separated
for SF. However, the sentence ∀x∃y. x ≈ y is equivalent to ∀x. x ≈ x, which even belongs to
BSR. Similarly, we have the MFO≈ sentence ∀x∃y. x 6≈ y, which is not in SF but equivalent to
the BSR sentence ∃y1y2. y1 6≈ y2. The following proposition witnesses that this is by no means
a coincidence. As one consequence, speaking in terms of expressiveness, MFO≈ is subsumed by
BSR and, hence, also by SF.

Proposition 3.3. For every MFO≈ sentence there is an equivalent BSR sentence.

The proof of this result can be found in [69] (Theorem 3.1.5). It is based on techniques
described by Behmann [8] in the context of second-order quantifier elimination for the monadic
second-order fragment — see [70], Section 13.2, for a modern account.

6



3.1 Translation of SF into BSR: Upper and Lower Bounds

It was first proved in [65] that every SF sentence can be transformed into an equivalent BSR
sentence. We will present such a translation for the more general case of SBSR sentences in
Section 4.1 (Lemma 4.4 and Theorem 4.5). For SF we simply state the result here.

Theorem 3.4 ([68], Lemma 12). Every SF sentence ϕ with k ∀∃ alternations is equivalent to
some BSR sentence whose length is at most k-fold exponential in ϕ’s length.

It is worth noting that [68] uses a much more fine-grained measure than the number of ∀∃
alternations. Even more details can be found in [69], Section 3.2.

Translations like the one from SF sentences to equivalent BSR sentences lead to large blowups
in the worst case. In general, the length of formulas has a significant effect on the size of smallest
models. For BSR this relation is linear.

Proposition 3.5 (cf. Proposition 6.2.17 in [11]). Let ϕ := ∃z̄ ∀x̄. ψ be a satisfiable BSR sentence
with quantifier-free ψ, containing (at most) k constant symbols. There is a model A |= ϕ such
that |A| ≤ max

(
|z̄|+ k, 1

)
.

It was proved in [68] (Lemma 24) that for satisfiable SF sentences ϕ the size of smallest models

cannot be bounded by any tower of exponents 2
...

2len(ϕ)

of a fixed height. In other words, the
asymptotic growth of the size of smallest models is non-elementary in the length of the regarded
SF sentence.

The analysis conducted in [68] yields matching upper and lower bounds that are not formulated
in terms of the number of quantifier alternations. Rather, the upper bounds are based on a measure
of how much quantified variables interact in atoms. The motivation for this fine-grained analysis
is that the upper bound is intended to also give a tight estimate for MFO sentences. It is well
known that the size of small models for satisfiable MFO sentences is exponential in their length no
matter how many quantifier alternations are present (cf. Proposition 6.2.1 in [11]). Due to space
limitations, we will not elaborate any further on this topic. The interested reader will find more
details in [68] and in [69], Sections 3.2 and 3.5.

Put together, Theorem 3.4 and Proposition 3.5 immediately entail the following small model
property for SF.

Proposition 3.6 (Small model property for SF). Every satisfiable SF sentence ϕ with k ≥ 1 ∀∃

alternations has a model with at most len(ϕ) + k ·
(
len(ϕ)

)2
·
(
2↑k(len(ϕ))

)k
domain elements.

It is well known that a small model property leads to decidability of the associated satisfiability
problem (see, e.g. Proposition 6.0.4 in [11]). Since BSR enjoys a linear model property, even if
constant symbols are allowed in the syntax, the separated fragment immediately inherits this
property. Hence, the satisfiability problem for SF (SF-Sat) is decidable.

Proposition 3.7. SF-Sat is decidable, even if we allow constant symbols in SF sentences.

The unrestricted presence of function symbols in SF would lead to an undecidable satisfiability
problem. Nevertheless, SF could easily be extended so far that it also subsumes the Löb-Gurevich
fragment (see the beginning of Section 3 for the definition) while retaining decidability (see [69],
Section 3.14.1).

Next, we complement the upper bound from Theorem 3.4 with a corresponding non-elementary
lower bound.

Theorem 3.8 ([68], Theorem 16). There is a class of satisfiable SF sentences such that for every
positive integer n the class contains a sentence ϕ with n ∀∃ quantifier alternations and with
a length polynomial in n for which any equivalent BSR sentence contains at least

∑n
k=1 2

↑k(n)
leading existential quantifiers.
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Proof. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in which
the sets {x1, . . . , xn} and {y1, . . . , yn} are separated:

ϕ := ∀xn∃yn . . . ∀x1∃y1.
4n∧

i=1

(
Pi(x1, . . . , xn) ↔ Qi(y1, . . . , yn)

)
.

Notice the orientation of the indices in the quantifier prefix! Moreover, recall that [m] with m ≥ 1
denotes the set {1, . . . ,m}. In order to construct a particular model of ϕ, we inductively define
the following sets: S1 :=

{
S ∈ P([4n])

∣∣ |S| = 2n
}
, Sk+1 :=

{
S ∈ P(Sk)

∣∣ |S| = 1
2 · |Sk|

}
for every

k > 1. Then, we observe that

|S1| =
(
4n
2n

)
≥

(
4n
2n

)2n
= 22n,

|S2| =
(

|S1|
|S1|/2

)
≥

( |S1|
|S1|/2

)|S1|/2
= 2|S1|/2 ≥ 22

2n−1

,

...

|Sn| =
( |Sn−1|
|Sn−1|/2

)
≥ 2|Sn−1|/2 ≥ 22

2

...

22n−1−1

−1

≥ 2↑n(2n− (n− 1)) = 2↑n(n+ 1),

where the inequality
(
n
k

)
≥ (n/k)k can be found in [14] (page 1097), for example.

Having the sets Sk, we now define the structure A as follows:

A :=
{
a
(k)
S , b

(k)
S

∣∣ 1 ≤ k ≤ n and S ∈ Sk

}
,

PA
i :=

{
〈a

(1)
S1
, . . . , a

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , 4n, and

QA
i :=

{
〈b

(1)
S1
, . . . , b

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , 4n.

For any choice of S1, . . . , Sn and every i, 1 ≤ i ≤ 4n, we then have

A |= Pi

(
a
(1)
S1
, . . . , a

(n)
Sn

)
↔ Qi

(
b
(1)
S1
, . . . , b

(n)
Sn

)
.

For any other choice of tuples 〈c1, . . . , cn〉, i.e. if there do not exist sets S1 ∈ S1, . . . , Sn ∈ Sn

such that 〈c1, . . . , cn〉 equals 〈a
(1)
S1
, . . . , a

(n)
Sn

〉 or 〈b
(1)
S1
, . . . , b

(n)
Sn

〉, we observe A 6|= Pi(c1, . . . , cn) and
A 6|= Qi(c1, . . . , cn) for every i. Hence,

A |=
4n∧

i=1

Pi(c1, . . . , cn) ↔ Qi(c1, . . . , cn) .

Consequently, A is a model of ϕ.
Consider the following simple two-player game with Players A and B. In the first round A

moves first by picking some domain element a
(n)
SA,n

for some set SA,n ∈ Sn. Player B answers

by picking a domain element b
(n)
SB,n

for some set SB,n ∈ Sn. The game continues for n − 1 more

rounds, where in every round Player A picks a domain element a
(j)
SA,j

with SA,j ∈ SA,j+1 and B

answers by picking some b
(j)
SB,j

∈ SB,j+1. Hence, in the last round the chosen domain elements

a
(1)
SA,1

and b
(1)
SB,1

are such that SA,1 and SB,1 are both nonempty subsets of [4n]. Player A wins

if and only if A 6|= Pi

(
a
(1)
S1
, . . . , a

(n)
Sn

)
↔ Qi

(
b
(1)
S1
, . . . , b

(n)
Sn

)
for some i ∈ [4n], and Player B wins if

and only if A |= Pi

(
a
(1)
S1
, . . . , a

(n)
Sn

)
↔ Qi

(
b
(1)
S1
, . . . , b

(n)
Sn

)
for every i ∈ [4n]. Since A is a model of ϕ,

there must exist a winning strategy for B.

Claim I: There is exactly one winning strategy for B, namely, for every j = n, . . . , 1 Player B

picks the element b
(j)
SA,j

in round n− j + 1, i.e. for every j we have SB,j = SA,j .
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Proof: It is easy to see that the described strategy is a winning strategy for B.

Assume B deviates from this strategy. More precisely, suppose there exists some j∗, 1 ≤
j∗ ≤ n, such that B did not adhere to the described strategy in the (n− j∗ +1)st round, i.e.
SB,j∗ 6= SA,j∗ . It can be shown by induction on j∗ that A has a winning strategy from this
deviation point on.

♦

Claim I would still hold true if we allowed B to freely pick any element of the domain A at

every round. The reason is that for any choice of elements a
(n)
SA,n

, . . . , a
(1)
SA,1

made by A with
SA,1 ∈ . . . ∈ SA,n ∈ Sn we know that SA,1 is nonempty. Hence, we can always find some i∗ ∈ SA,1

such that A |= Pi∗

(
a
(1)
SA,1

, . . . , a
(n)
SA,n

)
. On the other hand, for any sequence cn, . . . , c1 picked by B

that does not comply with the rules of the described game, we have A 6|= Qi∗(c1, . . . , cn). This
result leads to the following observation.

Claim II: For any of the b
(k)
S the substructure of A induced by the domain A \ {b

(k)
S } does not

satisfy ϕ.

Proof: The reason is simply that in this case player A can always prevent B from reaching a state
of the game where B can apply the described winning strategy. ♦

We have already analyzed the size of the sets Sk. Due to the observed lower bounds, we know

that A contains at least
∑n

k=1 2
↑k(n) elements of the form b

(k)
S .

Next, we argue that any ∃∗∀∗-sentence ϕ∗ that is semantically equivalent to ϕ must contain
at least

∑n
k=1 2

↑k(n) leading existential quantifiers. Let
ϕ∗ := ∃y1 . . . ym∀x1 . . . xℓ. χ∗(y1, . . . , ym, x1, . . . , xn)

with quantifier-free χ∗ be a sentence with minimal m that is semantically equivalent to ϕ. Since A
is also a model of ϕ∗, we know that there is a sequence of elements c1, . . . , cm taken from the domain
A such that A |= ∀x1 . . . xℓ. χ∗(c1, . . . , cm, x1, . . . , xn). Consequently, we can extend A to a model
A∗ (over the same domain) of the Skolemized sentence ϕSk := ∀x1 . . . xℓ. χ∗

[
y1/d1, . . . , ym/dm

]
by

adding dA∗

j := cj for j = 1, . . . ,m. On the other hand, every model of ϕSk is also a model of ϕ∗.
The vocabulary underlying ϕSk comprises exactly the constant symbols d1, . . . , dm and does not

contain any other function symbols. Suppose m <
∑n

k=1 2
↑k(n). Hence, there is some b

(k)
S with

S ∈ Sk such that for none of the dj we have dA∗

j = b
(k)
S . Then, by the Substructure Lemma, the

following substructure B ofA∗ constitutes a model of ϕSk: B := A∗\{b
(k)
S }, PB

i := PA∗

i ∩Bn = PA∗

i

and QB
i := QA∗

i ∩ B
n for every i, and dBj := dA∗

j for every j. But then B must also be a model
of both ϕ∗ and ϕ, since every model of ϕSk is a model of ϕ∗ which we, in turn, assume to be
equivalent to ϕ. This contradicts Claim II, and thus we must have m ≥

∑n
k=1 2

↑k(n).

Theorem 3.8 entails that there is no elementary upper bound on the length of the BSR sentences
that result from any equivalence-preserving transformation of SF sentences into BSR. On the other
hand, there is an elementary upper bound, if we only consider SF sentences with a bounded number
of quantifier alternations (cf. Theorem 4.5). A special case of Theorem 3.8 highlights the difference
in succinctness between BSR and MFO. The following proposition states that, in the worst case,
there is an unavoidable exponential gap between the two fragments.

Proposition 3.9. There is a class of MFO sentences such that for every positive integer n the
class contains a sentence ϕ of a length polynomial in n for which any equivalent BSR sentence
contains at least 2n leading existential quantifiers.

One witnessing class of sentences comprises ∀x∃y.
∧2n

i=1

(
Pi(x) ↔ Qi(y)

)
for n ≥ 1.
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3.2 Expressiveness of SF

We have already seen that SF is at least as expressive as BSR, MFO, and MFO≈ (cf. Proposi-
tions 3.2 and 3.3). Moreover, every ∧-∨-combination of sentences from BSR and/or MFO≈ is
equivalent to some SF sentence. On the other hand, Theorem 3.8 shows that SF sentences can be
considerably more succinct than their BSR equivalents.

Whenever it is possible to restrict our attention to bounded-size models, then SF is as expressive
as full (relational) first-order logic. This alone is not a very interesting result, as already the
existential fragment of relational first-order logic, i.e. the class of relational ∃∗ prefix sentences,
possesses this property (universal quantification can be replaced by finite conjunctions). What
makes the case of SF special is that the incurred blowup in formula length is not linear in the
bound but may be significantly lower.

Due to space limitations, we can only state the result here. The interested reader will find
the full details in [69], Section 3.3.3. Abstractly speaking, when restricted to models of the size
2↑n(m), any first-order sentence can be translated into an equisatisfiable SF sentence whose length
is polynomial in n, m, and the length of the original sentence.

Proposition 3.10. Let m ≥ 1 and n ≥ 2 be two integers. There exists an efficiently computable
SF sentence χm,n and an effective translation Tm,n mapping any relational first-order sentence ϕ
to some SF sentence Tm,n(ϕ) that satisfies the following properties.
(a) A |= χm,n entails |A| ≤ 2↑n(m).
(b) χm,n ∧ ϕ is equivalent to χm,n ∧ Tm,n(ϕ).
(c) The formula length of Tm,n(ϕ) is at most p(m,n) · len(ϕ) for some polynomial p(m,n).
(d) Tm,n(ϕ) is computable in time q(m,n, len(ϕ)) for some polynomial q(m,n, k).

Proposition 3.10 entails that SF-Sat is computationally at least as hard as the satisfiability
problem for any first-order fragment that enjoys a small model property with an elementary upper
bound on the size of small models. For instance, the Ackermann fragment (cf. Section 5), the
Gödel–Kalmár–Schütte fragment (cf. Section 6), the guarded fragment (cf. Section 7), the guarded-
negation fragment (cf. Section 8), and the two-variable fragment (cf. Section 9) fall into this
category. Even the satisfiability problem for first-order fragments enjoying a small model property
with bounds 2↑⌈c·len(ϕ)⌉(⌈d · len(ϕ)⌉) for constants c, d, such as the fluted fragment (cf. Section 10),
can be polynomially reduced to SF-Sat. Although this latter observation already yields a non-
elementary lower bound regarding the computational complexity of SF-Sat, a more accurate lower
bound was presented in [68] by encoding bounded domino problems (see also [69], Section 5.3).

Proposition 3.11. Let C be any class of relational first-order sentences for which we know con-
stants c, d ≥ 1 such that every satisfiable ϕ in C has a model whose domain size is bounded by
2↑⌈c·len(ϕ)⌉(⌈d · len(ϕ)⌉). Then, C-Sat is polynomial-time reducible to SF-Sat.

The proof of this result employs the translation Tm,n from Proposition 3.10 form := ⌈d·len(ϕ)⌉
and n := ⌈c · len(ϕ)⌉ for any given C-sentence ϕ.

Employing the ideas underlying Proposition 3.10, one can also derive other lower bounds,
similar to Theorem 3.8, regarding the length of sentences that are equivalent to SF sentences
but adhere to certain syntactic restrictions. A classical result by Gaifman [22] states that every
first-order formula is equivalent to some formula that is local in a certain sense (see, e.g. [43]). It
has been shown [16] that there is a non-elementary gap between the length of first-order sentences
and their shortest equivalents in Gaifman normal form. Using a proof approach inspired by the
one in [16], one can show that this gap also applies to SF.

Proposition 3.12. There is some vocabulary Σ and some polynomial p(h) such that for every
h ≥ 0 there is an SF Σ-sentence ϕSF,h of length p(h) satisfying the following property. Every
first-order Σ-sentence ψ in Gaifman normal form that is equivalent to ϕSF,h has length at least
2↑h(1).

Again, the interested reader will find the full details in [69], Section 3.3.3.
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4 The Separated Bernays–Schönfinkel–Ramsey Fragment

In this section we introduce the separated extension of the Bernays–Schönfinkel–Ramsey fragment
(BSR). The separated fragment can be conceived as an intermediate step, as it lies properly
between BSR and the separated Bernays–Schönfinkel–Ramsey fragment (SBSR).

Recall that SF contains relational sentences ∃z̄∀x̄1∃ȳ1 . . .∀x̄n∃ȳn. ψ in which the sets x̄1 ∪
. . . ∪ x̄n and ȳ1 ∪ . . . ∪ ȳn are separated. The exemption of the leading existential quantifier
block from the separateness conditions may lead to benign co-occurrences of existentially and
universally quantified variables in atoms, which do not pose an obstacle to deciding the satisfiability
problem. Extrapolating this emerging pattern of benign co-occurrences leads to the definition of
the separated Bernays–Schönfinkel–Ramsey fragment. Intuitively speaking, an SBSR sentence ϕ
has the form ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free ψ that may contain equality and possesses
the following properties. Each atom in ϕ only contains variables from an ∃∗∀∗ subsequence of
ϕ’s quantifier prefix. If two atoms share a universally quantified variable, the same quantifier
subsequence is used for both atoms.

Definition 4.1 (Separated Bernays–Schönfinkel–Ramsey fragment (SBSR)). Let Y,X1, X2, X3, . . .
be pairwise-disjoint, countable sets of first-order variables. The separated Bernays–Schönfinkel–
Ramsey fragment (SBSR) comprises all relational first-order sentences with equality having the
shape ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free ψ where (a) x̄i ⊆ X1 ∪ . . . ∪Xi and ȳi ⊆ Y
for every i, and (b) for every atom A in ϕ there is some i, 0 ≤ i ≤ n, such that vars(A) ⊆
ȳ1 ∪ . . .∪ ȳi ∪Xi+1. (Notice that this entails separateness of X1, . . . , Xn, and for every A there is
some i with vars(A) ⊆ ȳ1 ∪ . . . ∪ ȳi ∪ x̄i+1 ∪ . . . ∪ x̄n.)

Suppose we are given an arbitrary first-order sentence for which we intend to check membership
in SBSR without knowing a-priori how the set of occurring variables is to be partitioned. Checking
for the existence of such a suitable partition can be done deterministically in polynomial time. A
corresponding procedure can be based on a graph algorithm (see [69], Theorem 3.4.3).

The main difference between SF and SBSR lies in the concession policy regarding benign co-
occurrences of existential and universal variables. The following example gives a first impression
of SBSR sentences and how they can be translated into BSR.

Example 4.2. Consider the first-order sentence ϕ := ∃u∀x∃y∀z.
(
P (u, z) ∧Q(u, x)

)
∨
(
P (y, z) ∧

Q(u, y)
)
. It belongs to SBSR, as witnessed by the following partition of its variables: Y = {u, y},

X1 = {x}, X2 = {z}, X3 = ∅. Obviously, ϕ neither belongs to BSR nor to SF. As universal
quantification does not distribute over disjunction, the quantifier ∀z cannot be shifted inwards
with the standard quantifier shifting rules from Lemma 2.1 alone. However, it turns out that the
transformation methods that we have first met in Section 1 also facilitate translations of SBSR
sentences into BSR sentences. We will elaborate on this in Section 4.1. For ϕ we get the equivalent
BSR sentence

ϕ′ := ∃uy∀xzv.
((
P (u, x) ∨ P (y, x)

)
∧ P (u, x) ∧Q(u, x)

)

∨
((
P (u, z) ∨ P (y, z)

)
∧Q(u, y) ∧Q(u, z)

)

∨
((
P (u, v) ∨ P (y, v)

)
∧Q(u, y) ∧ P (y, v)

)
.

We have advertised SBSR as an extension of SF and, hence, also of BSR and MFO. Indeed,
given an SF sentence χ := ∃v̄1∀ū2∃v̄2 . . .∀ūn∃v̄n. χ′, we can partition the set of χ’s variables into
Y := v̄1 ∪ . . . ∪ v̄n and X1 := ∅, X2 := ū2 ∪ . . . ∪ ūn, and Xj := ∅ for j ≥ 3. We then observe for
every atom A in χ that either vars(A) ⊆ Y or vars(A) ⊆ v̄1 ∪ X2. This partition complies with
Definition 4.1. On the other hand, the sentence ϕ from Example 4.2 belongs to SBSR but not to
SF. Hence, SBSR is a proper extension of SF.

Proposition 4.3. SBSR properly contains SF and, hence, BSR and MFO.

By Proposition 3.3, SBSR in addition semantically subsumes MFO≈, like SF does.

11



4.1 Translation of SBSR into BSR

We have already advertised several times that there is an effective equivalence-preserving trans-
lation from SBSR into BSR. It is mainly based on the standard axioms of Boolean algebra and
quantifier shifting. Roughly speaking, we iteratively (re-)transform a given SBSR sentence into
particular syntactic shapes and apply quantifier shifting so that we eventually obtain a formula
in which no existential quantifier occurs within the scope of any universal quantifier. We then
shift all quantifiers outwards again — existential quantifiers first —, renaming bound variables as
necessary. The final result is a BSR sentence. Since SBSR contains SF, Theorem 3.8 entails that
there is no elementary upper bound on the blowup that we incur in any equivalence-preserving
translation from SBSR into BSR. On the other hand, the blowup for SBSR-BSR translations is
not significantly worse than in the case of SF-BSR translations. It seems that in this sense SBSR
does not offer much more succintness when describing logical properties than SF does.

The following lemma formulates the technical invariants for transforming SBSR sentences into
BSR sentences via shifting inwards quantifier blocks one after the other.

Lemma 4.4. Let Y,X1, X2, . . . be pairwise-disjoint, countable sets of first-order variables. Fix
a quantifier sequence ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn (without double occurrences of variables) such that x̄i ⊆
X1 ∪ . . . ∪ Xi and ȳi ⊆ Y for every i. Moreover, fix a set of atoms At over the variables in
x̄1, ȳ1, . . . , x̄n, ȳn such that for every atom A ∈ At there is some i, 0 ≤ i ≤ n, with vars(A) ⊆
ȳ1 ∪ . . . ∪ ȳi ∪Xi+1.

Let ϕ := Qv. ψ be any first-order formula over the atoms in At such that

(i) ϕ is in negation normal form, no variable is bound by two distinct quantifier occurrences, no
variable occurs freely and bound,

(ii) any sequence of nested quantifiers Q1u1 . . .Qkuk occurring in ϕ (from left to right) is a
subseqence of ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn,

(iii) for every subformula ∀x. χ of ψ we have vars(χ) ⊆ ȳ1 ∪ . . . ∪ ȳj∗−1 ∪Xj∗ for some j∗,

(iv) for every subformula ∃y. χ in ψ with y ∈ ȳi we have that χ does not contain any occurrences
of variables from x̄1 ∪ . . . ∪ x̄i, and

(v) any sequence of nested quantifiers Q1u1 . . .Qkuk occurring in ψ (from left to right) is a
subseqence of ∃ȳ1 . . . ∃ȳi∀x̄i+1 . . . ∀x̄n for some i.

Then, ϕ can be transformed into an equivalent formula ϕ′ such that Conditions (i) and (ii) still
apply to ϕ′ and Conditions (iii) to (v) apply to ϕ′ instead of ψ only.

Proof. First of all, we remove from ϕ (and any later formulas) any quantifiers that bind variables
which do not occur in any atom. A basic formula is any atom and any subformula (Qu. . . .) in ψ
that does not lie within the scope of any quantifier in ψ.

Suppose Qv is a universal quantifier. Then, there are indices i∗, j∗ such that v ∈ x̄i∗ ∩Xj∗ and
j∗ ≤ i∗. We transform ψ into an equivalent conjunction of disjunctions of negated or non-negated
basic formulas. This is always possible. Due to our assumptions, the constituents of the k-th
disjunction can be grouped into i∗+1 parts: χk,1∨. . .∨χk,i∗∨ηk with vars(χk,ℓ) ⊆ ȳ1∪. . .∪ȳℓ∪Xℓ+1

for 0 ≤ ℓ ≤ i∗ − 1 and vars(ηk) ⊆ ȳ1 ∪ . . .∪ ȳn ∪Xi∗+1 ∪ . . .∪Xn. Due to Conditions (ii) and (iv),
ηk can be defined so that it contains all basic formulas from ψ that have the form ∃y. η′ for any
y ⊆ ȳi∗ ∪ . . . ∪ ȳn. Hence, ϕ is equivalent to some formula of the form

∀v.
∧

k

χk,1(X1) ∨ χk,2(ȳ1, X2) ∨ . . . ∨ χk,j∗(ȳ1, . . . , ȳj∗−1, Xj∗) ∨ . . .

∨ χk,i∗(ȳ1, . . . , ȳi∗−1, Xi∗) ∨ ηk(ȳ1, . . . , ȳi∗−1) .
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We shift the universal quantifier ∀v inwards so that it only binds the (sub-)conjunctions χk,j∗(ȳ1, . . . ,
ȳj∗−1, x̄j∗). The resulting formula

∧

k

χk,1(X1) ∨ χk,2(ȳ1, X2) ∨ . . . ∨
(
∀v. χk,j∗(ȳ1, . . . , ȳj∗−1, Xj∗)

)
∨ . . .

∨ χk,i∗(ȳ1, . . . , ȳi∗−1, Xi∗) ∨ ηk(ȳ1, . . . , ȳi∗−1) .

is the sought ϕ′. It is easy to see that ϕ′ (after renaming bound variables) still satisfies Condi-
tions (i) and (ii). Moreover, we now have established Conditions (iii), (iv), and (v) for the whole
formula ϕ′ instead of only the subformula ψ.

Now suppose Qv is an existential quantifier. Then, there is an index i∗ such that v ∈ ȳi∗ .
We transform ψ into an equivalent disjunction of conjunctions of negated or non-negated basic
formulas. Due to our assumptions, the constituents of the k-th conjunction can be grouped into
two parts χk and ηk such that the variables occurring freely in ηk are a subset of ȳ1∪ . . .∪ ȳi∗ and
χk may contain free occurrences of variables from x̄1, . . . , x̄i∗−1 but none from ȳi∗ . After shifting
the quantifier ∃v inwards, we obtain the following formula ϕ′ that is equivalent to the original ϕ:

∨

k

χk(x̄1, . . . , x̄i∗−1, ȳ1, . . . , ȳi∗−1) ∧
(
∃v. ηk(ȳ1, . . . , ȳi∗−1, ȳi∗)

)
.

It is easy to see that ϕ′ (after renaming bound variables) still satisfies Conditions (i) and (ii).
Moreover, we now have established the Conditions (iii), (iv), and (v) for the whole formula ϕ′

instead of only the subformula ψ.

Lemma 4.4 provides a tool to shift single quantifiers in SBSR sentences inwards in a fashion
that, after applying the lemma iteratively, yields a sentence in which no existential quantifier lies
inside the scope of any universal quantifier. Afterwards quantifiers may be shifted outward again
so that we in the end obtain a BSR sentence.

Theorem 4.5. Every SBSR sentence ϕ := ∀x̄1∃ȳ1 . . .∀x̄n∃ȳn. ψ is equivalent to some BSR sen-
tence whose length is at most n-fold exponential in the length of ϕ.

Proof Sketch. Let Q1v1Q2v2 be the two rightmost quantifiers in ϕ’s quantifier prefix. It is easy to
check that Q2v2. ψ satisfies the prerequisites of Lemma 4.4 and, hence, can be transformed into
an equivalent formula ψ′ in accordance with that same lemma. Then, it is again easy to verify
that Q1v1. ψ

′ satisfies the lemma again. Proceeding further, quantifier by quantifier, we in the
end obtain a formula in which all sequences of nested quantifiers have the form ∃∗∀∗. Notice that
the nesting depth of distinct quantifier blocks in the final result is at most n. Since the set of
occurring atoms does not change (modulo variable renaming), the final formula cannot contain
more than n-fold exponentially many distinct, non-redundant subformulas Qv̄. χ that do not occur
within the scope of another quantifier. Consequently, shifting outwards all quantifier blocks in an
existential-quantifiers-first fashion yields a BSR sentence equivalent to ϕ whose length is at most
n-fold exponential in the length of ϕ.

On page 7 we mentioned that an analysis of the complexity of the SF-BSR translation process
can be based on a measure that is more fine-grained than the number of occurring quantifier
alternations. There is a similar measure for the setting of SBSR, which yields an improved upper
bound. Due to space limitations, we will not go any further into the details at this point. The
interested reader will find more material in [69], Sections 3.2 and 3.5.

Theorem 4.5 also holds in the presence of constant symbols: every SBSR sentence ϕ with
constant symbols is equivalent to some BSR sentence ϕ′ with the same constant symbols. Due to
Proposition 3.5, Theorem 4.5 entails the following small model property for SBSR.

Corollary 4.6. Every satisfiable SBSR sentence ϕ with n ∀∃ quantifier alternations and with or
without constant symbols has a model whose size is at most n-fold exponential in the length of
ϕ. Hence, SBSR-Sat is decidable nondeterministically in n-fold exponential time, even if we allow
constant symbols to occur.
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Regarding lower bounds, the result formulated in Theorem 3.8 immediately entails that there
are SBSR sentences that inevitably lead to a non-elementary blowup when translating them into
equivalent BSR sentences. Moreover, Proposition 3.12 is also relevant for SBSR. It means that for
every natural number k there are SBSR sentences whose shortest equivalent in Gaifman normal
form is k-fold exponentially longer than the original.

4.2 Taking Boolean Structure into Account

It is possible to liberalize the definition of SBSR while retaining decidability of the satisfiability
problem, if one takes Boolean structure into account. For instance, since every ∧-∨-combination of
BSR sentences is equivalent to some BSR sentence, we also observe that every ∧-∨-combination of
SBSR sentences is equivalent to some SBSR sentence and, ultimately, also to some BSR sentence.
Beyond such trivial observations, one may use approximations of conjunctive and disjunctive
normal forms in order to predict when quantifier shifting combined with CNF/DNF-like normal-
form transformations of the respective quantifier scopes would result in ∧-∨-combinations of SBSR
sentences.

Example 4.7. Consider the sentence
ϕ := ∀x1x2∃y∀z1z2.

((
P (x1, z1) ∨ P (z2, x2)

)
∧ P (y, z1)

)
∨
(
P (x2, z2) ∧ P (x1, x2)

)
,

which does not satisfy the conditions of SBSR, as x1, z1 and z1, y co-occur in P (x1, z1), P (y, z1),
respectively. However, the sentence ϕ can be transformed into the equivalent(

∀x1x2z1z2.
(
P (x1, z1) ∨ P (z2, x2) ∨ P (x2, z2)

)
∧

(
P (x1, z1) ∨ P (z2, x2) ∨ P (x1, x2)

))

∧
(
∀x1x2∃y∀z1z2.

(
P (y, z1) ∨ P (x2, z2)

)
∧

(
P (y, z1) ∨ P (x1, x2)

))
.

Evidently, each of the two constituents of the topmost conjunction is an SBSR sentence.

More details regarding the liberalization of SBSR based on a suitable analysis of Boolean
structure can be found in [69], Section 3.6.

5 The Separated Ackermann Fragment (SAF)

The Ackermann fragment (AF) comprises all relational first-order sentences in prenex normal
form with an ∃∗∀∃∗ quantifier prefix and without equality. Ackermann derived the finite model
property for AF in [2]. Ackermann’s decidability proof in [3] proceeds via a reduction to MFO-
Sat without any reference to AF’s finite model property. The satisfiability problem for AF is
ExpTime-complete (see [11], Section 6.3). In [18] the finite model property of AF with equality
is derived.

Gurevich [33] and Maslov and Orevkov [48] studied AF sentences with arbitrary function
symbols, which yields the Gurevich–Maslov–Orevkov fragment. While Gurevich proved the finite
model property for this fragment, Orevkov and Maslov took a proof-theoretic route based on
Maslov’s inverse method. Another extension of AF is the Shelah fragment : ∃∗∀∃∗-sentences with
equality and a single unary function symbol [63]. This class contains infinity axioms and, hence,
does not possess the finite model property. A more detailed version of Shelah’s proof can be found
in Section 7.3 in [11].

In the present section, we generalize AF to the separated Ackermann fragment (SAF). Moreover,
we devise an effective translation procedure from SAF sentences into equivalent AF sentences.
It will turn out that this procedure is compatible with function symbols and equality. That
is, our results will show that SAF with equality is equivalent to AF with equality, SAF with
arbitrary function symbols is equivalent to the Gurevich–Maslov–Orevkov fragment, and SAF
with equality and a single unary function symbol in equivalent to the Shelah fragment. Hence, all
these extensions of SAF are decidable.

Intuitively speaking, an SAF sentence is of the form ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ with
quantifier-free ψ and it satisfies the following properties. Each atom in ϕ contains only variables
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from some subsequence of ϕ’s quantifier prefix of the form ∃∗∀∃∗. If two atoms share a univer-
sally quantified variable or some variable from the trailing ∃∗-block of their respective quantifier
subsequence, then they have the same ∃∗∀∃∗-subsequence as source of all their variables. For the
formal definition, we define the index of a variable v ∈ vars(ϕ) to be idxϕ(v) := k if and only if
v ∈ x̄k ∪ ȳk ∪ ūk. We set idxϕ(v) := ∞ for all variables not occurring in ϕ. For convenience, we
drop the reference to ϕ, if ϕ is clear from the context.

Definition 5.1 (Separated Ackermann fragment (SAF)). Let Y,X,U1, U2, U3, . . . be pairwise-
disjoint, countable sets of first-order variables. The separated Ackermann fragment (SAF) com-
prises all relational first-order sentences without equality having the shape ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n
∃ȳnūn. ψ with quantifier-free ψ where (a) x̄i ⊆ X , ȳi ⊆ Y , and ūi ⊆ U1 ∪ U2 ∪ U3 ∪ . . . for
every i, (b) X = {x1, x2, . . .}, (c) for every j and every u ∈ Uj we have idx(u) ≥ idx(xj),
and (d) for every atom A in ϕ either (d.1) vars(A) ⊆ Y or (d.2) there exists some j such that
vars(A) ⊆ ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj} ∪ Uj.

(Notice that this entails separateness of the sets {x1} ∪ U1, {x2} ∪ U2, {x3} ∪ U3, . . . in ϕ and
every atom A in ϕ either contains exclusively variables from Y or there is some j such that
vars(A) ⊆ ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj} ∪ ūidx(xj) ∪ . . . ∪ ūn.)

The tuples x̄i and ȳi, ūi in ϕ may be empty, i.e. ϕ’s quantifier prefix does not have to start with
a universal quantifier and it does not have to end with an existential quantifier. Moreover, variable
u ∈ ū that occurs in ϕ is associated with exactly one reference variable x ∈ x̄, determined by the set
Ui to which u belongs. Intuitively speaking, using suitable equivalence-preserving transformations,
any quantifier ∃u with u ∈ ū can be shifted out of the scope of any universal quantifier but the
one binding u’s reference variable. This is the essence of the first step of the effective translation
procedure from SAF into AF.

The following example gives a first impression of SAF sentences and how they can be translated
into AF.

Example 5.2. Consider the first-order sentence

ϕ := ∃y∀x1∃u1∀x2∃u2u3.
(
¬P (y, x1) ∨

(
Q(x1, u1) ∧R(y, x2, u2)

))

∧
(
P (y, x1) ∨

(
¬Q(x1, u1) ∧ ¬R(y, x2, u3)

))
.

The partition of the variables in ϕ into Y := {y}, X := {x1, x2}, and U1 := {u1}, U2 := {u2, u3}
is a witness for the belonging of ϕ to SAF. Due to the Boolean structure of ϕ, the quantifiers
∃u3, ∃u2, and ∀x2 can be shifted inwards immediately but ∃u1 cannot. This yields the equivalent
sentence

∃y∀x1∃u1.
(
¬P (y, x1) ∨

(
Q(x1, u1) ∧ ∀x2∃u2. R(y, x2, u2)

))

∧
(
P (y, x1) ∨

(
¬Q(x1, u1) ∧ ∀x2∃u3.¬R(y, x2, u3)

))
.

Because of the two universal quantifiers ∀x1 and ∀x2, which are even interspersed with an existen-
tial one, ϕ does not belong to AF. However, there exists an equivalent sentence ϕ′ in which every
atom lies within the scope of at most one universal quantifier:

∃y.
(
∀x1.

(
¬P (y, x1) ∨ ∃u1. Q(x1, u1)

))
∧
((

∀x1.¬P (y, x1)
)
∨ ∀x2∃u2. R(y, x2, u2)

)

∧
(
∀x1.

(
∃u1.¬Q(x1, u1)

)
∨ P (y, x1)

)
∧
((

∀x1∃u1.¬Q(x1, u1)
)
∨ ∀x2∃u2. R(y, x2, u2)

)

∧
((

∀x2∃u3.¬R(y, x2, u3)
)
∨ ∀x1. P (y, x1)

)
∧
((

∀x2∃u3.¬R(y, x2, u3)
)
∨ ∀x1∃u1. Q(x1, u1)

)

∧
((

∀x2∃u3.¬R(y, x2, u3)
)
∨ ∀x2∃u2. R(y, x2, u2)

)

Transforming ϕ into ϕ′ requires only basic logical laws and is very similar to approaches we have
seen before: first, we shift the quantifiers ∃u3, ∃u2, ∀x2 inwards as far as possible. Then, we
construct a disjunction of conjunctions of certain subformulas using distributivity. This allows us
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to shift the quantifier ∃u1 inwards. Afterwards, we apply the laws of distributivity again to obtain
a conjunction of disjunctions of certain subformulas. This step enables us to shift the universal
quantifier ∀x1 inwards. Although the resulting sentence is not in AF, it is reasonably close to
AF. The only difference is that we get more than only one universally quantified variable in the
sentence as a whole, but at most one per atom. We will show later (Lemma 5.6) that each such
sentence is indeed equivalent to some AF sentence.

Another example of a simple SAF sentence is the sentence
ψ := ∃u∀x∃y∀z.

(
P (u, z) ∧Q(u, x)

)
∨
(
P (y, z) ∧Q(u, y)

)
.

It belongs to SBSR and SAF at the same time, while it does not belong to AF, SF, BSR, or
MFO. Hence, even the intersection of SBSR and SAF contains sentences which do not fall into
the syntactic categories offered by the standard fragments.

Suppose we intend to check membership in SAF given an arbitrary first-order sentence without
knowing a-priori how the set of occurring variables is to be partitioned. Like in the SBSR set-
ting, there is a deterministic polynomial-time procedure for this task based on a graph algorithm
(see [69], Theorem 3.7.3).

The next proposition confirms that SAF extends AF and MFO. Since the sentence ϕ from
Example 5.2 belongs to SAF but lies in neither of the other two fragments, it is immediately clear
that SAF constitutes a proper extension of both.

Proposition 5.3. SAF properly contains AF and MFO.

Proof. Let ϕ := ∃z̄ ∀x∃v̄. ψ be an AF sentence with quantifier-free ψ. We simply set Y := z̄,
X := {x}, U1 = ∅, U2 := v̄, and Ui := ∅ for every i ≥ 3. Then, ϕ trivially satisfies the conditions
for SAF.

Let ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ′ be an MFO sentence. We set Y := ȳ1∪. . .∪ȳn,X := x̄1∪. . .∪x̄n,
and Ui := ∅ for every i ≥ 1. Obviously, this partition of ϕ′’s atoms meets all the conditions for
SAF sentences.

5.1 Translation of SAF into the Ackermann Fragment

In this section we devise an effective equivalence-preserving translation from SAF into AF that
proceeds in two stages. The first stage unfolds nestings of quantifiers that bind separated sets of
variables. This results in a sentence in which every subformula lies within the scope of at most one
universal quantifier. Such sentences can easily be converted into a special syntactic form, called
SAF special form. Then, in the second stage of the translation process, a sentence in SAF special
form is transformed into an equivalent AF sentence.

The next lemma provides the central tool (including technical invariants) for the first stage of
the translation process.

Lemma 5.4. Let Y,X,U1, U2, . . . be pairwise-disjoint, countable sets of first-order variables. Fix
a quantifier sequence σ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn (without double occurrences of variables) such
that (a) x̄i ⊆ X = {x1, x2, . . .}, ȳi ⊆ Y , and ūi ⊆ U1 ∪ U2 ∪ . . . for every i and (b) every u ∈ Uj

that occurs in σ occurs somewhere right of xj . Moreover, fix a set of atoms At over the variables
in x̄1, ȳ1, ū1, . . . , x̄n, ȳn, ūn such that for every atom A ∈ At either (a) vars(A) ⊆ Y or (b) there
exists some j such that vars(A) ⊆ ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj} ∪ Uj.

Let ϕ := Qv. ψ be any first-order formula over the atoms from At such that

(i) ϕ is in negation normal form, no variable is bound by two distinct quantifier occurrences, no
variable occurs freely and bound,

(ii) any sequence of nested quantifiers Q1v1 . . .Qkvk occurring in ϕ (from left to right) is a
subseqence of ∀x̄1∃ȳ1ū1 . . .∀x̄n∃ȳnūn,

(iii) for every subformula ∀xj . χ of ψ we have vars(χ) ⊆ ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj} ∪ Uj ,

(iv) for every subformula ∃u. χ of ψ with u ∈ Uj we have vars(χ) ⊆ ȳ1∪. . .∪ ȳidx(xj)−1∪{xj}∪Uj,
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(v) for every subformula ∃y. χ of ψ with y ∈ ȳi we have that all variables occurring freely in χ
stem from Y , and

(vi) any sequence of nested quantifiers Q1v1 . . .Qkvk occurring in ψ (from left to right) is either a
subseqence of ∃ȳ1 . . .∃ȳn or a subseqence of ∃ȳ1 . . . ∃ȳidx(xj)−1∀xj ∃

(
ūidx(xj) ∩Uj

)
. . . ∃

(
ūn ∩

Uj

)
for some j.

Then, ϕ can be transformed into an equivalent formula ϕ′ such that Conditions (i) and (ii) still
apply to ϕ′ and Conditions (iii) to (vi) apply to ϕ′ instead of ψ only.

Proof Sketch. The proof works in analogy to the proof of Lemma 4.4. At any step, we remove any
quantifiers that bind variables which do not occur in their scope. A basic formula is, again, any
atom and any subformula (Qv. . . .) in ψ that does not lie within the scope of any quantifier in ψ.

Suppose Qv is a universal quantifier and, hence, v = xj∗ ∈ X for some j∗. We transform ψ
into an equivalent conjunction of disjunctions of negated or non-negated basic formulas. Due to
Conditions (iii) and (v), the constituents of the k-th disjunction can be grouped into two parts:
χk ∨ηk with vars(χk) ⊆ ȳ1∪ . . .∪ ȳidx(xj∗ )−1∪{xj∗}∪Uj∗ and vars(ηk)∩

(
{xj∗}∪Uj∗

)
= ∅. Hence,

we may shift the universal quantifier ∀v inwards so that it only binds the (sub-)conjunctions χk.
The resulting formula

∧

k

(
∀xj∗ . χk(ȳ1, . . . , ȳidx(xj∗ )−1, xj∗)

)

∨ ηk
(
x̄1, ȳ1, ū1, . . . , x̄idx(xj∗ )−1, ȳidx(xj∗ )−1, ūidx(xj∗ )−1,

(
x̄idx(xj∗ )

\ {xj∗}
))

is the sought ϕ′. It is easy to see that ϕ′ still satisfies Conditions (i) and (ii). Moreover, we now
have established the Conditions (iii), (iv), and (v) for the whole formula ϕ′ instead of only the
subformula ψ.

The cases where Qv is an existential quantifier and where either v ∈ Y or v ∈ Uj for some j
can be handled in a similar fashion.

Lemma 4.4 provides a tool to shift single quantifiers in SAF sentences inwards in a fashion that,
when applying the lemma iteratively, yields a sentence in which no universal quantifier lies inside
the scope of another universal quantifier. Any first-order sentence in this form can be further
transformed into a particular shape to which we refer as SAF special form:

∃z̄.
∧

i

(∨

j

∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)
)
∨ ηi(z̄)

where the χi,j and the ηi are quantifier free.

Lemma 5.5 (SAF special form). If ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ belongs to SAF, then we can
effectively construct an equivalent sentence of the form

∃z̄.
∧

i

(∨
j ∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)

)
∨ ηi(z̄),

where the χi,j and the ηi are quantifier free.

Proof. Let Q1v1Q2v2 be the two rightmost quantifiers in ϕ’s quantifier prefix. It is easy to check
that Q2v2. ψ satisfies the prerequisites of Lemma 5.4 and, hence, can be transformed into an
equivalent formula ψ′ in accordance with that same lemma. Then, it is again easy to verify that
Q1v1. ψ

′ satisfies the lemma again. Proceeding further, quantifier by quantifier, we in the end
obtain a formula in which no subformula lies within the scope of two distinct universal quantifiers.
We may restore the property that no two quantifiers in ϕ′ bind the same variables by appropriately
renaming bound variables in ϕ′. Hence, we can effectively construct a sentence ϕ′ that is equivalent
to ϕ and that does not contain any nested occurrences of universal quantifiers.

We now transform ϕ′ into a sentence ϕ′′ in SAF special form. First, we shift all existential
quantifiers in ϕ′ to the front that do not lie within the scope of any universal quantifier. In
the resulting sentence ∃z̄. ψ′ every existential quantifier in ψ′ lies within the scope of exactly one
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universal quantifier. We treat every subformula of the form ∀x. χ in ψ′ as indivisible unit while
transforming ψ′ into an equivalent conjunction of disjunctions of literals and such indivisible units.
The resulting formula can be brought into the desired shape by shifting existential quantifiers that
lie in the scope of a universal quantifier outwards until they form an existential quantifier block
directly right of the corresponding universal quantifier.

It is interesting to note that a sentence in SAF special form is not merely a Boolean combination
of AF sentences. The difference is that distinct subformulas ∀x∃ȳ. χ and ∀x′∃ȳ′. χ′ may share
existentially quantified variables. However, one can show that every such sentence is indeed
equivalent to some AF sentence. Therefore, every SAF sentence is equivalent to an AF sentence.
Before we make this claim precise (cf. Lemma 5.7), we develop an auxiliary result that we will
reuse later.

Lemma 5.6. Let ψ(z̄) be a first-order formula of the form ψ(z̄) :=
∨

j ∀x̄ ∃ȳ. χj(z̄, x̄, ȳ) with
quantifier-free χj(z̄, x̄, ȳ). Then, ψ(z̄) is equivalent to the formula ψ′(z̄) of the form

∃v̄1 . . . v̄q∃ȳ1 . . . ȳq.
(∨

j

q∧

k=1

χj(z̄, v̄k, ȳk)
)
∧ ∀x̄∃ȳ.

q∨

k=1

∧

A∈At

(
A(z̄, x̄, ȳ) ↔ A(z̄, v̄k, ȳk)

)
,

where At denotes the set of all atoms occurring in ψ(z̄) and q := 2|At|. In addition, we have
|v̄k| = |x̄| for every k and |ȳℓ| = |ȳ| for every ℓ.

Proof. We first prove ψ(z̄) |= ψ′(z̄). Let A be any structure, ē be any tuple of elements form A,
and j be any index such that A |= ∀x̄ ∃ȳ. χj(ē, x̄, ȳ). For every set S ⊆ At we define

DS :=
{
〈ā, c̄ 〉

∣∣ for every A(z̄, x̄, ȳ) ∈ At we have A |= A(ē, ā, c̄) if and only if A ∈ S
}
.

We write S |= χj(ē, x̄, ȳ) if DS is nonempty and if we have A |= χj(ē, ā, c̄) for every tuple 〈ā, c̄ 〉
in DS . Let S1, . . . , Sr be an enumeration of all the sets Sk with Sk |= χj(ē, x̄, ȳ). Notice that
1 ≤ r ≤ q. Let 〈b̄1, c̄1 〉, . . . , 〈b̄r, c̄r 〉 be some sequence with 〈b̄k, c̄k 〉 ∈ DSk

for every k. Then, for
every k the assumption Sk |= χj(ē, x̄, ȳ) entails A |= χj(ē, b̄k, c̄k). Hence,

A |= ∃ȳ1 . . . ∃ȳq.
r∧

k=1

χj(ē, b̄k, ȳk) ∧

q∧

k=r+1

χj(ē, b̄1, ȳk) . (1)

Let ā ∈ A
|x̄| be any tuple of length |x̄|. Because of A |= ∀x̄ ∃ȳ. χj(ē, x̄, ȳ), there is some Sk,

1 ≤ k ≤ r, and some c̄ such that 〈ā, c̄ 〉 ∈ DSk
and Sk |= χj(ē, x̄, ȳ). Therefore, we get the following

for 〈b̄k, c̄k〉:

A |= ∃ȳ.
∧

A∈At

(
A(ē, ā, ȳ) ↔ A(ē, b̄k, c̄k)

)
. (2)

Put together, (1) and (2) entail

A |= ∃ȳ1 . . . ∃ȳq.
(∨

j

r∧

k=1

χj(ē, b̄k, ȳk) ∧

q∧

k=r+1

χj(ē, b̄1, ȳk)
)

∧ ∀x̄ ∃ȳ.
r∨

k=1

∧

A∈At

(
A(ē, x̄, ȳ) ↔ A(ē, b̄k, ȳk)

)
.

This proves A |= ψ′(ē). Hence, we have shown that A |= ψ(ē) implies A |= ψ′(ē).

Next, we show ψ(z̄)′ |= ψ(z̄). Let A be any structure and let ē, b̄1, . . . , b̄q, c̄1, . . . , c̄q be tuples
for which

A |=
(∨

j

q∧

k=1

χj(ē, b̄k, c̄k)
)

∧ ∀x̄ ∃ȳ.

q∨

k=1

∧

A∈At

(
A(ē, x̄, ȳ) ↔ A(ē, b̄k, c̄k)

)
. (3)
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Then, there is some j such that A |=
∧q

k=1 χj(ē, b̄k, c̄k). Let D1, . . . ,Dq be sets defined by

Dk :=
{
ā | there is some c̄ such that for every A(z̄, x̄, ȳ) ∈ At

we have A |= A(ē, ā, c̄) if and only if A |= A(ē, b̄k, c̄k)
}
.

Note that the sets Dk are all nonempty but not necessarily pairwise disjoint. Then, because of
Assumption (3), for every ā ∈ A

|x̄| there is some k, 1 ≤ k ≤ q, such that ā ∈ Dk. Because
of A |= χj(ē, b̄k, c̄k), we therefore have A |= χj(ē, ā, c̄) for some c̄. In other words, we have
A |= ∀x̄ ∃ȳ. χj(ē, x̄, ȳ) which entails A |= ψ(ē). Hence, A |= ψ′(ē) implies A |= ψ(ē).

Lemma 5.6 is essential for the second stage in the transformation process between SAF and
AF. With this tool at hand, the following lemma is easy to prove.

Lemma 5.7. For every SAF sentence ϕ we can effectively construct an equivalent sentence ϕ′

over the same vocabulary that has the shape ∃v̄∀x∃w̄. ψ with quantifier-free ψ.

Proof sketch. By virtue of Lemma 5.5, we can transform ϕ into an equivalent sentence ϕ′′ in SAF
special form, i.e. ϕ′′ = ∃z̄.

∧
i

(∨
j ∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)

)
∨ ηi(z̄), where the χi,j and the ηi are

quantifier free. Consider any subformula of the form ψ′(z̄) :=
∨

j ∀x∃ȳ. χj(z̄, x, ȳ). By Lemma 5.6,
ψ′(z̄) is equivalent to some formula ∃v̄′ȳ′. χ′(z̄, v̄′, ȳ′) ∧ ∀x∃ȳ. χ′′(z̄, x, ȳ, v̄′, ȳ′) with quantifier-free
χ′, χ′′. Hence, ϕ′′ is equivalent to some sentence that, after shifting quantifiers outwards, is of the
form ∃z̄.

∧
i

(
∃ūi∀xi∃w̄i. ψ

′′
i (z̄, ūi, xi, w̄i)

)
∨ ηi(z̄), where the ψ′′

i and the ηi are quantifier free. A
prenex version of this sentence yields the sought ϕ′, since the universal quantifiers distribute over
the topmost conjunction.

Notice that the proofs of Lemmas 5.4 to 5.7 still work in the presence of the equality predicate
or function symbols. Therefore, we obtain the following result.

Theorem 5.8. Every SAF sentence ϕ is equivalent to some AF sentence ψ. Moreover, we get the
following for relaxed restrictions on the syntax.

(a) Every SAF sentence with equality is equivalent to some AF sentence with equality.

(b) Every SAF sentence with arbitrary function symbols and without equality is equivalent to
some Gurevich–Maslov–Orevkov sentence (cf. page 14).

(c) Every SAF sentence with equality and with a single unary function symbol is equivalent to
some Shelah sentence (cf. page 14).

In addition, constant symbols are admissible in all of the above cases.

Since AF possesses the finite model property, so does SAF, even in the first two syntactically
extended cases mentioned in Theorem 5.8. On the other hand, it is known that the Shelah fragment
contains infinity axioms. One example is the sentence ∀x∃y. f(f(y)) ≈ f(x) ∧ f(y) 6≈ x ([11],
proof of Proposition 6.5.5). Still, the satisfiability problem for the Shelah fragment is known to
be decidable (cf. [11], Section 7.3). Therefore, we get the following positive results regarding the
decidability of SAF-Sat.

Corollary 5.9. SAF-Sat is decidable, even in the syntactically more liberal cases given in The-
orem 5.8. The syntactic extensions of SAF described in items (a) and (b) of Theorem 5.8 enjoy
the finite model property.

Remark 1. The Löb–Gurevich fragment (cf. page 5) is subsumed by SAF when we in addition
allow unary function symbols. By Lemma 5.7, every such sentence is equivalent to some ∃∗∀∃∗-
sentence over the same vocabulary. The latter kind of sentences constitutes a subclass of the
Gurevich–Maslov–Orevkov fragment. Hence, Lemmas 5.4 to 5.7 also establish a translation from
the Löb–Gurevich fragment to the Gurevich–Maslov–Orevkov fragment.
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At this point we have settled the question concerning decidability of SAF-Sat, also under
certain syntactic extensions. In fact, decidability of SAF-Sat without any syntactic extensions is
already a corollary of the decidability of the satisfiability problem for Maslov’s fragment K [47, 39].
The reaon is that the latter syntactically subsumes SAF.

Definition 5.10 (Maslov’s fragment K, adapted from [39]). Let ϕ be any relational sentence
in negation normal form and let ψ(u1, . . . , um) be any subformula of ϕ in which u1, . . . , um
are exactly the freely occurring variables. The ϕ-prefix of ψ is the sequence Q1v1 . . .Qmvm of
quantifiers in ϕ (read from left to right) that bind the free variables of ψ, in particular, we
have {v1, . . . , vm} = {u1, . . . , um}. The terminal ϕ-prefix of ψ is the longest contiguous suffix of
Q1v1 . . .Qmvm starting with a universal quantifier. Put differently, if Q1v1 . . .Qmvm is of the form
∃v1 . . . vk∀vk+1Qk+2vk+2 . . .Qmvm, then the terminal ϕ-prefix of ψ is ∀vk+1Qk+2vk+2 . . .Qmvm.
Notice that the terminal prefix may be empty. The sentence ϕ belongs to Maslov’s fragment K if
there are k ≥ 0 universal quantifiers ∀x1, . . . , ∀xk in ϕ that are not interspersed with existential
quantifiers such that for every atom A in ϕ the terminal ϕ-prefix of A either (a) is at most of
length one, or (b) ends with an existential quantifier, or (c) is of the form ∀x1 . . .∀xk.

Proposition 5.11. SAF is contained in Maslov’s fragment K.

Proof. Let ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ be any SAF sentence with quantifier-free ψ. Recall
that ϕ is relational and does not contain equality. In the terminology of the definition of Maslov’s
fragment K, the terminal ϕ-prefix of any atom A in ϕ is either empty or it is a subsequence of
∀xj∃

(
ūidx(x) ∩ Uj

)
. . .

(
ūn ∩ Uj

)
for some j. Therefore, the terminal ϕ-prefix of A either is either

empty or it ends with an existential quantifier or it is of length one.

Of course, Proposition 5.11 fails for any extensions of SAF with either equality or non-constant
function symbols. We will see in the next section, how SAF can be extended in such a way
that we obtain a generalization of the Gödel–Kalmár–Schütte fragment (GKS). Although GKS is
syntactically contained in Maslov’s fragment K as well, its extension SGKS is not contained (cf.
Proposition 6.3).

We have not yet given any lower bounds on the blowup that we incur when translating SAF
sentences into AF. However, the computational complexity of AF-Sat (in ExpTime, cf. [11], The-
orems 6.3.26 and 6.3.1) and MFO-Sat (NExpTime-complete, cf. [11], Theorem 6.2.13) provide
some evidence that this blowup is at least exponential. Since MFO is a subfragment of SAF, this
entails the following conditional lower bound.

Proposition 5.12. In the worst case, there is at least a super-polynomial blowup in formula
length when translating SAF sentences into equivalent AF sentences in a uniform algorithmic way,
unless ExpTime = NExpTime

6 The Separated Gödel–Kalmár–Schütte Fragment (SGKS)

The Gödel–Kalmár–Schütte fragment (GKS) comprises all relational first-order sentences in prenex
normal form with an ∃∗∀∀∃∗ quantifier prefix and without equality. Gödel [23, 24], Kalmár [40],
and Schütte [58, 59] independently showed that the satisfiability problem for GKS is decidable.
Gödel and Kalmár established the finite model property. A probabilistic proof was later given by
Gurevich and Shelah [35], see also Section 6.2.3 in [11]. Although Gödel claimed that his proof
methods could also be applied for GKS sentences with equality, Goldfarb refuted this claim [25].
However, decidable subclasses are known, e.g. the syntactic subfragments described in [26] and
in [71], Section 12. A decidable subclass described in semantic terms is mentioned in Section 6.2.3
in [11] — AF with equality falls into this category, for instance. Satisfiability for GKS is NExp-

Time-complete ([11], Section 6.2).
It is only a tiny step from the Ackermann fragment to the Gödel–Kalmár–Schütte fragment:

simply allow two consecutive universal quantifiers in the quantifier prefix instead of only one. If
one views the definition of SAF from the right angle, it is a similarly small step to go from SAF to a
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separated generalization of GKS, which we will call the separated Gödel–Kalmár–Schütte fragment
(SGKS). Intuitively speaking, an SGKS sentence is of the form ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ with
quantifier-free ψ and satisfies the following properties. Each atom in ϕ contains only variables
from some subsequence of ϕ’s quantifier prefix of the form ∃∗∀∀∃∗. We allow only fixed pairs of
universally quantified variables to co-occur in atoms. Any two atoms that are associated with the
same pair have the same ∃∗∀∀∃∗-subsequence as source of all their variables. The same applies to
any two atoms that share some variable from the trailing ∃∗-block of their respective quantifier
subsequence. We use the same notion of index of a variable like in Definition 5.1 (cf. page 15).

Definition 6.1 (Separated Gödel–Kalmár–Schütte fragment (SGKS)). Let Y,X,U1, U2, U3, . . .
be pairwise-disjoint, countable sets of first-order variables. The separated Gödel–Kalmár–Schütte
fragment (SGKS) comprises all relational first-order sentences without equality having the shape
ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ with quantifier-free ψ where the following conditions are satisfied.
(a) x̄i ⊆ X , ȳi ⊆ Y , and ūi ⊆ U1 ∪ U2 ∪ U3 ∪ . . . for every i, (b) {x1, x′1}, {x2, x

′
2}, . . . is a

partition of X into sets of one or two variables each (xj = x′j is allowed) such that for every j
we have idx(xj) ≤ idx(x′j), (c) for every j and every u ∈ Uj we have idx(u) ≥ idx(x′j), and (d)
for every atom A in ϕ either (d.1) vars(A) ⊆ Y or (d.2) there exists some j such that vars(A) ⊆
ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj, x′j} ∪ Uj.

(Notice that this entails separateness of the sets {x1, x′1} ∪ U1, {x2, x′2} ∪ U2, {x3, x′3} ∪ U3, . . .
in ϕ and every atom A in ϕ either contains exclusively variables from Y or there is some j such
that vars(A) ⊆ ȳ1 ∪ . . . ∪ ȳidx(xj)−1 ∪ {xj , x′j} ∪ ūidx(x′

j)
∪ . . . ∪ ūn.)

Like for the other fragments the quantifier prefix of SGKS sentences does not have to start with
a universal quantifier and it does not have to end with an existential quantifier either. Another
analogy to SAF sentences is that every variable u ∈ ū1 ∪ . . . ∪ ūn that occurs in ϕ is associated
with a set {xi, x′i} ⊆ X containing at least one and at most two reference variables determined by
the set Ui in which u occurs. Intuitively speaking, like in the case of SAF, any quantifier ∃u with
u ∈ ū1 ∪ . . .∪ ūn can be shifted out of the scope of any universal quantifier that does not bind one
of u’s reference variables.

Like for SAF and SBSR, deciding membership in SGKS for a given first-order sentence can be
done deterministically in polynomial time (see [69], Theorem 3.9.2 for details).

SGKS obviously contains sentences that SAF does not, e.g. ∀x1x2. P (x1, x2). It is also easy to
see that SGKS is an extension of SAF: if we restrict the sets {xi, x′i} to singleton sets, then we
essentially obtain SAF. Hence, also AF and MFO are subsets of SGKS. Finally, consider any GKS
sentence ∃ȳ∀xx′∃ū. ψ with quantifier-free ψ. We define Y := ȳ, X := {x, x′}, U1 = ∅, U2 := ū,
and Ui := ∅ for every i ≥ 3. Then, the sets Y,X,U1, U2, . . . satisfy the conditions of Definition 6.1
and thus witness that ϕ belongs to SGKS.

Proposition 6.2. SGKS properly contains GKS, SAF, AF, and MFO.

In the previous section we have seen that SAF is contained in Maslov’s fragment K. We will
see now that we have left the realm of the latter class when going from SAF to SGKS.

Proposition 6.3. SGKS and Maslov’s fragment K are syntactically incomparable.

Proof. The following sentence witnesses that SGKS is not contained in Maslov’s fragment K:
∀x1x′1x2x

′
2. P (x1, x

′
1) ∨ Q(x2, x

′
2) belongs to SGKS but not to Maslov’s K. On the other hand,

it is easy to find sentences that belong to K but not to SGKS, e.g. ∀x1x2x3∃y. P (x1, x2, y) ∧
Q(x1, x3, y) ∧R(x1, x2, x3).

Next, we sketch an equivalence-preserving translation from SGKS into GKS, similar to the one
in Section 5.1. Again, we proceed in two stages, first transforming a given SGKS sentence into
SGKS special form and, afterwards, into an equivalent GKS sentence.

Lemma 6.4. If ϕ belongs to SGKS, we can effectively construct an equivalent sentence ϕ′ in
which every subformula lies within the scope of at most two universal quantifiers, and the scope
of every universal quantifier contains at most one more universal quantifier. Moreover, all literals
in ϕ′ occur in ϕ (modulo variable renaming).
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The transformation mentioned in the lemma is based on a straightforward adaptation of
Lemma 5.4 (the singly occurring variables xj have to be replaced with {xj , x′j} and the rest needs
to be adapted accordingly). The sentence ϕ′ can easily be further transformed into a particular
shape to which we will refer as SGKS special form:

∃z̄.
∧

i

(∨

j

∀xi,jx
′
i,j∃ȳi,j . χi,j(z̄, xi,j , x

′
i,j , ȳi,j)

)
∨ ηi(z̄)

where the χi,j and the ηi are quantifier free.

Lemma 6.5. Every SGKS sentence ϕ in SGKS special form can be effectively transformed into
an equivalent sentence ϕ′ that has the shape ∃z̄ ∀xx′∃ȳ. ψ with quantifier-free ψ.

Proof. Since ϕ is in SGKS special form, it has the shape
ϕ′′ := ∃z̄.

∧
i

(∨
j ∀xi,jx

′
i,j∃ȳi,j . χi,j(z̄, xi,j , x

′
i,j , ȳi,j)

)
∨ ηi(z̄),

where the χi,j and the ηi are quantifier free. Consider any subformula of the form ψ′ :=∨
j ∀xx

′ ∃ȳ. χj(z̄, x, x
′, ȳ), possibly containing free variables from z̄. By virtue of Lemma 5.6, ψ′

is equivalent to some formula of the form ∃v̄′ȳ′. χ′(z̄, v̄′, ȳ′) ∧ ∀xx′∃ȳ. χ′′(z̄, x, x′, ȳ, v̄′, ȳ′) with
quantifier-free χ′, χ′′. Hence, ϕ′′ is equivalent to some sentence that, after shifting some quanti-
fiers outwards, is of the form ∃z̄.

∧
i

(
∃ūi∀xix′i∃w̄i. ψ

′′
i (z̄, ūi, xi, x

′
i, w̄i)

)
∨ ηi(z̄), where the ψ′′

i and
the ηi are quantifier free. A prenex version yields the sought ϕ′.

Theorem 6.6. Every SGKS sentence is equivalent to some GKS sentence.

Since we know that GKS enjoys the finite model property, this result immediately entails
decidability of the satisfiability problem form SGKS (SGKS-Sat).

Corollary 6.7. The satisfiability problem for SGKS is decidable, and SGKS enjoys the finite
model property.

We finish the present section by proving that SGKS sentences can be substantially more suc-
cinct than equivalent GKS sentences. The following theorem formulates a lower bound regarding
the incurred blowup that comes along with any equivalence-preserving translation from SGKS to
GKS.

Theorem 6.8. There is a class of SGKS sentences and some positive integer n0 such that for every
integer n ≥ n0 the class contains a sentence ϕ with a length linear in n for which any equivalent
GKS sentence has a length that is at least exponential in n.

Proof sketch. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in
which the sets {x1, x2} and {y1, y2} are separated:

ϕ := ∀x2∃y2∀x1∃y1.
8n∧

i=1

(
Pi(x1, x2) ↔ Qi(y1, y2)

)
.

In analogy to the proof of Theorem 3.8, we construct the following model A using the sets
S1 :=

{
S ⊆ [8n]

∣∣ |S| = 2n
}
and S2 :=

{
S ⊆ S1

∣∣ |S| = 1
2 |S1|

}
. We observe that

|S1| =

(
8n

2n

)
≥

(
8n

2n

)2n

= 24n and |S2| =

(
|S1|

|S1|/2

)
≥

(
|S1|

|S1|/2

)|S1|/2

≥ 22
4n−1

.

Having the sets S1,S2, we now define the structure A as follows:

A :=
{
a
(1)
S , b

(1)
S

∣∣ S ∈ S1

}
∪
{
a
(2)
S , b

(2)
S

∣∣ S ∈ S2

}
,

PA
i :=

{
〈a

(1)
S1
, a

(2)
S2

〉 ∈ A
2
∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 8n, and

QA
i :=

{
〈b

(1)
S1
, b

(2)
S2

〉 ∈ A
2
∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 8n.
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Like in the proof of Theorem 3.8, it is easy to show that A is a model of ϕ.
For every S ∈ S1 ∪ S2 we define the structure A−S as the substructure of A induced by the

domain A−S := A \ {b
(k)
S }, where k = 1 if S ∈ S1 and k = 2 if S ∈ S2. Like in the proof of

Theorem 3.8 (Claim II), we can prove the following claim.

Claim I: For every S ∈ S1 ∪ S2 the substructure A−S of A does not satisfy ϕ. ♦

Let ϕ∗ := ∃z̄∀x1x2∃ȳ. ψ∗ with quantifier-free ψ∗ be a shortest GKS sentence equivalent to
ϕ. Suppose that the length of ϕ∗ is less than 2n. Let ψ′ :=

∨
i∈I χi(z̄, x1, x2, ȳ) be a shortest

disjunction of conjunctions χi of literals that is equivalent to ψ∗. We observe that the index set I
contains fewer than 22

n

indices and that every conjunction χi contains fewer than 2n literals, for
otherwise we could find a shorter formula with the desired properties.

Let d̄ be some tuple for which we have

A |= ∀x1x2∃ȳ.
∨

i∈I

χi(d̄, x1, x2, ȳ) .

Let D := {b
(2)
S | S ∈ S2 and b

(2)
S 6∈ d̄}. Because of |d̄| ≤ |z̄| ≤ len(ϕ∗) ≤ 2n and |S2| ≥ 22

4n−1

≥

22
3n

, we have |D| ≥ 22
2n

for sufficiently large n. By Claim I, we observe

A−S 6|= ∀x1x2∃ȳ.
∨

i∈I

χi(d̄, x1, x2, ȳ)

for every S with b
(2)
S ∈ D. Hence, for every b

(2)
S ∈ D there is some pair c1, c2 ∈ A \ {b

(2)
S },

some tuple b̄ containing b
(2)
S and some index iS ∈ I such that A |= χiS (d̄, c1, c2, b̄) and A−S 6|=

∃ȳ. χiS (d̄, c1, c2, ȳ). Because of |I| < 22
n

and |D| ≥ 22
2n

, there must be some index i∗ that appears
in the role of iS for at least

|D|

|I|
≥

22
2n

22n
= 22

2n−2n ≥ 2(2
n)2/2n = 22

n

distinct b
(2)
S ∈ D, if n is sufficiently large. Let D∗ ⊆ D be the set that comprises exactly those

elements. In other words, we have |D∗| ≥ 22
n

and for every b
(2)
S ∈ D∗ there is some pair c1, c2 and

some tuple b̄ containing b
(2)
S such that

A |= χi∗(d̄, c1, c2, b̄) and A−S 6|= ∃ȳ. χi∗(d̄, c1, c2, ȳ) . (4)

Consider some b
(2)
S ∈ D∗ with S ∈ S2 and fix it. The only atoms in χi∗ that could possibly

contribute to the effect described in (4) for b
(2)
S have the form Qj(z, y

′), Qj(y, y
′), Qj(x1, y

′),
or Qj(x2, y

′) for z ∈ z̄, y, y′ ∈ ȳ and, moreover, the variables z, y, x1, x2 need to be assigned

values b
(1)
T with T ∈ S1. Let S ′

1 be the set collecting all the T from S1 that are assigned to such
variables occurring in atoms of the mentioned kind. As χi∗ contains at most 2n such variables,
|S ′

1| ≤ 2n. Recall that S contains 1
2 |S1| ≥ 24n−1 sets of indices. By construction of S2, there must

be some S′ ∈ S2 such that for every T ∈ S ′
1 we have T ∈ S′ if and only if T ∈ S. Let b̄′ be the

tuple that results from b̄ by replacing every occurrence of b
(2)
S in the tuple by b

(2)
S′ . Then, we get

A−S |= χi∗(d̄, c1, c2, b̄
′), which contradicts (4). Consequently, the length of the sentence ϕ∗ cannot

be less than 2n.

7 Separateness and Guarded Quantification

The guarded fragment (GF) comprises all relational first-order sentences with equality that satisfy
the following properties. An atomic guard γ(ū, v̄) is an atom A such that all u ∈ ū ∪ v̄ occur in
A. We define the guarded fragment (GF) inductively: (i) every relational atom is a GF formula
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(equality is allowed); (ii) every Boolean combination of GF formulas is a GF formula; (iii) for all
tuples ū, v̄, every atomic guard γ(ū, v̄), and every GF formula ψ(ū, v̄) the following formulas belong
to GF: ∀ū.

(
γ(ū, v̄) → ψ(ū, v̄)

)
, abbreviated by

(
∀ū. γ(ū, v̄)

)
ψ(ū, v̄), and ∃ū.

(
γ(ū, v̄) ∧ ψ(ū, v̄)

)
,

abbreviated by
(
∃ū. γ(ū, v̄)

)
ψ(ū, v̄). Notice that we assume in any GF formula

(
Qū. γ(ū, v̄)

)
ψ(ū, v̄)

that all variables that occur freely in ψ also occur in γ.
The guarded fragment was introduced by Andréka, Németi, and van Benthem [4] as one charac-

terization of the fragment of first-order logic in which propositional modal logic can be embedded
via the so-called standard translation (cf. Section 2.4 in [10]). Van Benthem [67] also proposed
a more liberal form of guards, loose guards. A loose guard γ(ū, v̄) is a nonempty conjunction of
atoms γ(ū, v̄) := A1(ū, v̄) ∧ . . . ∧ Ak(ū, v̄) such that all u, v with u ∈ ū and v ∈ ū ∪ v̄ co-occur
in at least one Aj . The loosely guarded fragment (LGF) is then defined by liberalizing (iii) such
that loose guards are used instead of atomic guards. In particular, we assume in any LGF formula(
Qū. γ(ū, v̄)

)
ψ(ū, v̄) that (a) all variables that occur freely in ψ also occur in γ and (b) every

variable that is bound by Qū co-occurs with every free variable from ψ in some atom in γ. We
will occasionally use sloppy language and speak of LGF formulas when we mean loosely guarded
formulas that are not necessarily closed. Formally, LGF exclusively contains sentences. The same
applies to GF formulas.

Grädel [28] derived the tree-like model property for GF and LGF and the finite model property
for GF. Moreover, the computational complexity of the associated satisfiability problems is pin-
pointed in the same article: both are complete for deterministic doubly exponential time. More
variants of guards and guarded quantification have been proposed, which lead to the definition
of the clique-guarded fragment [27] and the packed guarded fragment [46], for instance. Hodkin-
son [38] showed that also the loosely guarded fragment, the clique-guarded fragment, and the
packed guarded fragment enjoy the finite model property.

At first glance it seems that guarded quantification and separateness of quantified variables
are two opposite properties. In particular, any guard γ(ū, v̄) in a formula

(
∀ū. γ(ū, v̄)

)
ϕ(ū, v̄) has

to ensure that every u ∈ ū co-occurs with each v ∈ v̄ in at least one atom in γ. This destroys any
separateness of variables from ū and v̄ which might be separated in ϕ. However, it turns out that
guardedness and separateness can indeed be combined in a beneficial way.

Definition 7.1 (Separated loosely guarded fragment (SLGF)). Two tuples x̄, ȳ are guard-separated
in a formula ψ with guarded quantification if x̄ and ȳ are separated in ψ and, in addition, for every
guard γ in ψ either vars(γ) ∩ x̄ = ∅ or vars(γ) ∩ ȳ = ∅.

We define the set of SLGF formulas inductively as follows.

(i) Every relational atom is an SLGF formula, equality is admitted.

(ii) Every Boolean combination of SLGF formulas is an SLGF formula.

(iii) Let ū, v̄, z̄ be tuples of variables and let γ(ū, v̄) be any loose guard. The following are SLGF
formulas: ∀ū.

(
γ(ū, v̄) → ψ(ū, v̄, z̄)

)
and ∃ū.

(
γ(ū, v̄) ∧ ψ(ū, v̄, z̄)

)
, where the sets ū and z̄ are

guard-separated in ψ.

The separated loosely guarded fragment (SLGF) is the class of all SLGF sentences. When we
restrict guards to be atomic, we obtain the separated guarded fragment (SGF).

Remark 2. Notice that every formula of the form ∀ūx̄. γ(ū, v̄) ∧ δ(x̄, ȳ) → ψ(ū, v̄, x̄, ȳ, z̄) where
ū, x̄, and z̄ are pairwise distinct and guard-separated in ψ is equivalent to the SLGF formula(
∀ū. γ(ū, v̄)

)((
∀x̄. δ(x̄, ȳ)

)
ψ(ū, v̄, x̄, ȳ, z̄)

)
. A dual observation holds true for existential quantifica-

tion. This means that, under certain restrictions, we may mix variables that are subject to distinct
guards in a single quantifier block. One could incorporate this idea into the definition of SLGF
and, hence, obtain a syntactically slightly extended version. However, for the sake of simplicity,
we adhere to the simpler definition given above.

It is easy to see that SLGF is indeed a proper syntactic extension of LGF, and that the same
applies to SGF and GF. A simple sentence witnessing the strictness of these containment relations
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is the sentence
(
∀x. x ≈ x

)(
∃y. y ≈ y

)(
P (y) ↔ ¬P (x)

)
. It belongs neither to GF nor to LGF, but

to both SGF and SLGF. Moreover, the sentence is a witness of the following observation: Every
MFO sentence can be easily turned into an equivalent SGF sentence with a length linear in the
original. We just need to add trivial equations v ≈ v as guards to subformulas Qv. χ. The result
of this transformation lies in the intersection of SGF and MFO≈.

Proposition 7.2. SGF properly contains GF and SLGF properly contains SGF, LGF, and GF.
Moreover, every MFO sentence can be turned into an equivalent SGF sentence with a length linear
in the original.

For MFO≈ sentences the matter seems to be more complicated. The sentence ∀xy. x ≈ y, for
instance, is not an SLGF sentence and cannot be directly transformed into an equivalent SLGF
sentence in the described way.

Like for all the other novel first-order fragments we have defined, there exists an effective
translation procedure that transforms SLGF sentences into equivalent LGF sentences.

Lemma 7.3. Every SLGF formula is equivalent to some LGF formula.

Proof. We prove an auxiliary result from which the lemma follows: Consider any SLGF formula
ϕ :=

(
Qū. γ(ū, v̄)

)
ψ(ū, v̄, z̄) where ψ is an LGF formula, ū, v̄, z̄ are pairwise disjoint, and ϕ’s

free variables are exactly the ones in v̄, z̄. Then, ϕ is equivalent to some LGF formula ϕ′(v̄, z̄).
Moreover, any two guard-separated sets of variables in ϕ are also guard-separated in ϕ′.

Suppose Q is a universal quantifier (the case for existential quantification is dual). Recall that,
by definition of SLGF, the tuples ū and z̄ need to be guard-separated in ψ. Since ψ is an LGF
formula and since we assume that no variable occurs freely and bound in ϕ at the same time,
we know that in every subformula χ :=

(
Qx̄. δ(x̄, ȳ)

)
η(x̄, ȳ) of ψ we either have vars(χ) ∩ ū = ∅

or vars(χ) ∩ z̄ = ∅ (or both). Moreover, since ϕ is an SLGF formula, we have vars(A) ∩ ū = ∅
or vars(A) ∩ z̄ = ∅ for every atom A in ψ. Hence, ϕ is equivalent to some formula of the form
ϕ′′ := ∀ū. γ(ū, v̄) →

∧
i

(
χi(ū, v̄)∨ ηi(v̄, z̄)

)
, where the χi and ηi are disjunctions of literals or LGF

formulas of the form
(
Qx̄. δ(x̄, ȳ)

)
η(x̄, ȳ). Applying distributivity and shifting the quantifier ∀ū

in ϕ′′, it is easy to show equivalence to ϕ′ :=
∧

i

((
∀ū. γ(ū, v̄) → χi(ū, v̄)

)
∨ ηi(v̄, z̄)

)
. This is the

sought LGF formula.

Notice that the proof works irrespectively of the structure of guards. Hence, we also observe
that every SGF formula is equivalent to some GF formula.

In connection with the fact that GF and LGF possess the finite model property [28, 38], the
obvious consequence of Lemma 7.3 is that the satisfiability problems associated with SGF and
SLGF (SGF-Sat and SLGF-Sat) are decidable.

Theorem 7.4. Both SGF and SLGF possess the finite model property. Moreover, SGF-Sat and
SLGF-Sat are decidable.

We conclude this section with an investigation of the succinctness gap between SLGF and
LGF. The following theorem entails that there is no elementary upper bound on the length of
the LGF sentences that result from any equivalence-preserving transformation of SLGF sentences
(and even SGF sentences) into LGF.

Theorem 7.5. There is a class of SGF sentences such that for every integer n ≥ 3 the class
contains a sentence ϕ with n ∀∃ alternations and with a length polynomial in n for which any
equivalent LGF sentence has at least (n− 1)-fold exponential length in n.

Proof sketch. Let n ≥ 3. Consider the following SGF sentence in which the sets {x1, . . . , xn} and
{y1, . . . , yn} are separated:

ϕ :=
(
∀xn. Rn(xn)

)(
∃yn. Tn(yn)

)
. . .

(
∀x1. R1(x1, . . . , xn)

)(
∃y1. T1(y1, . . . , yn)

)
.

4n∧

i=1

(
Pi(x1, . . . , xn) ↔ Qi(y1, . . . , yn)

)
.
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In order to construct a particular model of ϕ, we reuse the sets S1, . . . ,Sn from the proof of
Theorem 3.8 and define the structure A as follows:

A :=
{
a
(k)
S , b

(k)
S

∣∣ 1 ≤ k ≤ n and S ∈ Sk

}
,

PA
i :=

{
〈a

(1)
S1
, . . . , a

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , 4n,

QA
i :=

{
〈b

(1)
S1
, . . . , b

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , 4n,

RA
j :=

{
〈a

(j)
Sj
, . . . , a

(n)
Sn

〉 ∈ A
n
∣∣ Sj ∈ . . . ∈ Sn

}
for j = 1, . . . , n, and

TA
j :=

{
〈b

(j)
Sj
, . . . , b

(n)
Sn

〉 ∈ A
n
∣∣ Sj ∈ . . . ∈ Sn

}
for j = 1, . . . , n.

Once again, it is easy to show that A is a model of ϕ.
In analogy to the proof of Theorem 3.8, one may use a game-based argument to show the

following claim. For every S ∈ Sk, 1 ≤ k ≤ n, we define the structure A−S as the substructure of

A induced by the domain A−S := A \ {b
(k)
S }.

Claim I: For every S ∈ Sk, 1 ≤ k ≤ n, the substructure A−S of A does not satisfy ϕ. ♦

A detailed proof can be found in [69], Section 3.10 (Theorem 3.10.8).
We have already analyzed the size of the sets Sk in the proof of Theorem 3.8. Due to the

observed lower bounds, we know that A contains at least
∑n

k=1 2
↑k(n) elements b

(k)
S .

Let ϕLGF be a shortest LGF sentence that is semantically equivalent to ϕ. Next, we argue
that len(ϕLGF) is at least (n− 1)-fold exponential in n. We start by introducing some additional

notation. We divide the domain A into two disjoint parts Aa :=
{
a
(k)
S | 1 ≤ k ≤ n and S ∈ Sk

}

and Ab :=
{
b
(k)
S | 1 ≤ k ≤ n and S ∈ Sk

}
. Moreover, we subdivide Ab into parts Ab,k :=

{
b
(k)
S |

S ∈ Sk

}
with 1 ≤ k ≤ n. We define the following vocabularies

Σ := {Pi, Qi | 1 ≤ i ≤ 4n} ∪ {Rj, Tj | 1 ≤ j ≤ n} ,

ΣPR := {Pi | 1 ≤ i ≤ 4n} ∪ {Rj | 1 ≤ j ≤ n} , and

ΣQT := {Qi | 1 ≤ i ≤ 4n} ∪ {Tj | 1 ≤ j ≤ n} .

Moreover, let Σ′
PR and Σ′

QT be disjoint extensions of the vocabularies ΣPR and ΣQT , respectively,
each extended by a countably infinite number of nullary predicate symbols.

An atom is called linear if every variable in it occurs at most once. Any occurrence of a variable
v in a non-equational Σ-atom A is called a column-k-occurrence, if v is the (n−k+1)-st argument
from the right in A. For example, if we fix n to be 6, then v has a column-5-occurrence in each
of the atoms Qi(x1, x2, x3, x4, v, x6), T3(x3, x4, v, x6), T5(v, x6), but v has no column-5-occurrence
in the atoms T6(x6) or Qi(v, v, v, v, x5, v).

Starting from ϕLGF we construct the sentence ψLGF with the following properties.

(a) The sentence ψLGF is a Boolean combination of loosely-guarded Σ′
PR-sentences and loosely-

guarded Σ′
QT -sentences. Moreover, ψLGF is in negation normal form and none of the con-

stituent sentences of ψLGF properly contains a non-atomic subsentence.

(b) The vocabulary of ψLGF is Σ′
PR ∪ Σ′

QT , i.e. Σ plus fresh nullary predicate symbols.

(c) The structure A can be uniquely expanded to some model B of ψLGF over the same domain
and conserving the interpretations of all predicate symbols in Σ; for every B−S — which is

defined to be the substructure of B induced by the domain B\{b
(k)
S }— we have B−S 6|= ψLGF.

(d) len(ψLGF) ∈ O
(
len(ϕLGF)

)
.

(e) Equations in Σ′
QT -subsentences of ψLGF occur only in guards, and these consist of a single

trivial equation, say v = v, and no other atoms, and belong to top-most quantifiers in the
subsentence.
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(f) Every non-equational ΣQT -atom is linear and for every variable v occurring in it there is some
k such that all occurrences of v in non-equational ΣQT -atoms are column-k-occurrences.

(g) For all distinct variables v, v′ that occur freely in a Σ′
QT -subformula χ and have column-k-

occurrences and column-k′-occurrences, respectively, we know that k 6= k′.

Notice that every Σ′
QT -subsentence that is part of ψLGF is actually a variable-renamed version of

a loosely guarded FOn sentence (see Section 9 for a definition of n-variable logics).
The details of the construction of ψLGF can be found in [69], Theorem 3.10.8. It roughly

amounts to the following steps. Certain subformulas are simply replaced with Boolean constants
true or false, other subformulas χ are replaced with fresh nullary predicate symbols, say M , for
which definitions of the form M ↔ χ are conjoined. The final result has a length that is linear in
the length of the original.

Now, suppose that ψLGF has fewer than 2↑n−1(n) subformulas. We observed earlier that
B |= ψLGF and B−S 6|= ψLGF for every S ∈ Sn. Hence, for every S ∈ Sn there is some Σ′

QT -

subformula ψS in ψLGF of the form
(
∃ȳ. γS(ȳ, z̄)

)
χS(ȳ, z̄) and some variable assignment βS such

that the following properties hold. We have βS(y∗) = b
(n)
S for exactly one y∗ ∈ ȳ and for every

v ∈ ȳ ∪ z̄ different from y∗ we have βS(v) ∈ Ab \ Ab,n. Moreover, we have

(∗) B, βS |= γS(ȳ, z̄) ∧ χS(ȳ, z̄) and B, β′ 6|= γS(ȳ, z̄) ∧ χS(ȳ, z̄) for every β
′ that differs from βS

only in the value assigned to y∗.

The tuple βS(z̄) represents a sequence c̄S of domain elements from Ab that can be completed to a

chain b
(1)
T1
, . . . , b

(n−1)
Tn−1

, b
(n)
S with T1 ∈ . . . ∈ Tn−1 ∈ S.

Fix any S∗ ∈ Sn and consider the formula ψS∗
(z̄). There is a nonempty set Ŝ∗ such that ψS∗

(z̄)

coincides with every ψS(z̄) with S ∈ Ŝ∗. For any distinct S, S′ ∈ Ŝ∗ the sequences c̄S := βS(z̄) and

c̄S′ := βS′(z̄) must differ, for otherwise (∗) would be violated. As there are at most
∏n−1

k=1 2
↑k(n)

distinct sequences c̄S , Ŝ∗ can contain at most
∏n−1

k=1 2
↑k(n) <

(
2↑n−1(n)

)n
sets. Recall that there

are fewer than 2↑n−1(n) subformulas in ψLGF. We have just inferred that each of these can only
serve as ψS for at most

(
2↑n−1(n)

)n
sets S ∈ Sn. Hence, only

(
2↑n−1(n)

)n
· 2↑n−1(n) = 2(n+1)·2↑n−2(n) < 22

↑n−1(n) = 2↑n(n)

sets S have a corresponding subformula ψS . But then |Sn| ≥ 2↑n(n+ 1) implies that there are
S ∈ Sn such that B−S |= ψLGF, which contradicts our assumptions. Consequently, ψLGF must
have more than 2↑n−1(n) subformulas.

8 Separateness and Guarded Negation

Bárány, ten Cate, and Segoufin [6, 7] have discovered that guards can be shifted from quantification
to negation, see also [61]. This leads to the guarded-negation first-order fragment (GNFO). GNFO
comprises all relational first-order formula with equality over the Boolean connectives ¬,∧,∨ and
existential quantification. Universal quantification has to be simulated using negation, based on
the equivalence ∀x. ψ |=| ¬∃x.¬ψ. Every occurrence of the negation sign is accompanied by a
guard, i.e. negation may only occur in the form γ(ū, v̄)∧¬ϕ(v̄), where γ is an atomic guard and ϕ
is a GNFO formula. In terms of expressiveness, GNFO strictly subsumes GF [7] (Proposition 2.2
and Example 2.3). Moreover, in the same article it is shown that GNFO enjoys the tree-like
model property and the finite model property. The associated satisfiability problem is complete
for deterministic doubly exponential time. Clique-guarded variants of GNFO have also been
studied [7].

Similar to guarded quantification, guarded negation can be made compatible with separateness
of variables in a way that allows us to syntactically extend GNFO while retaining its expressive
power and the decidability of the associated satisfiability problem (GNFO-Sat).
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Definition 8.1 (Separated guarded-negation fragment (SGNFO)). Given any sequence ū1, . . . , ūn, v̄
of pairwise-disjoint tuples of first-order variables, a separated negation guard γ(ū1, . . . , ūn, v̄) is a
conjunction of n atoms A1(ū1, v̄) ∧ . . . ∧ An(ūn, v̄) (possibly equations) such that for every i,
1 ≤ i ≤ n, all variables from ūi occur at least once in Ai(ūi, v̄).

We define the set of SGNFO formulas inductively:

(i) every relational atom is an SGNFO formula, equality is admitted;

(ii) every ∧-∨-combination of SGNFO formulas is an SGNFO formula;

(iii) for every tuple ȳ and every SGNFO formula ψ(ȳ) the formula ∃ȳ. ψ(ȳ) is an SGNFO formula;

(iv) for every separated negation guard γ(ū1, . . . , ūn, v̄), and every SGNFO formula ψ(ū1, . . . , ūn)
the formula γ(ū1, . . . , ūn, v̄)∧¬ψ(ū1, . . . , ūn) is an SGNFO formula if the following conditions
are met. Let Z be the set of variables that are quantified in ψ(ū1, . . . , ūn). We require that
Z can be divided into pairwise disjoint, possibly empty subsets Z1, . . . , Zn such that the sets
Z1 ∪ ū1, . . . , Zn ∪ ūn are all pairwise separated in ψ(ū1, . . . , ūn).

The separated guarded-negation fragment (SGNFO) is the set of all SGNFO sentences.

It is obvious that GNFO is contained in SGNFO and that there are SGNFO sentences that do
not belong to GNFO. Moreover, every MFO sentence ϕ can be easily turned into an equivalent
SGNFO sentence with a length linear in the original. We first transform ϕ into negation normal
form and add trivial equations v ≈ v as guards to negated atomic subformulas ¬P (v). The result
lies in the intersection of SGNFO and MFO≈. For MFO≈ sentences the matter seems to be more
complicated. The sentence ∃xy. x 6≈ y, for instance, is not an SGNFO sentence and does not seem
to have an SGNFO equivalent.

Proposition 8.2. SGNFO properly contains GNFO. Moreover, every MFO sentence ϕ can be
turned into an equivalent SGNFO sentence of length O

(
len(ϕ)

)
.

After we have seen the results obtained for the other novel first-order fragments, it should not
come as a surprise that there is an effective translation from SGNFO to GNFO.

Definition 8.3 (Strict separateness). Let ϕ be any first-order formula and let X,Y be two disjoint
sets of first-order variables. We say that X,Y are strictly separated in ϕ if X and Y are separated
in ϕ and, in addition, for every subformula χ := (Qv. . . .) of ϕ we either have vars(χ) ∩X = ∅ or
vars(χ) ∩ Y = ∅.

Lemma 8.4. Every SGNFO formula is equivalent to some GNFO formula.

Proof. We infer two auxiliary results from which the lemma follows:

Claim I: Consider any SGNFO formula ϕ(ū1, . . . , ūn, v̄) := γ(ū1, . . . , ūn, v̄)∧¬ψ(ū1, . . . , ūn) where
ψ(ū1, . . . , ūn) is any GNFO formula, and the ū1, . . . , ūn are pairwise strictly separated in
ψ(ū1, . . . , ūn). Then, ϕ(ū1, . . . , ūn, v̄) is equivalent to some GNFO formula ϕ′(ū1, . . . , ūn, v̄)
in which ū1, . . . , ūn are pairwise strictly separated.

Proof: Let basic formulas in ψ be subformulas that do not lie in the scope of any quantifier
or negation sign in ψ and that are either guarded negation formulas δ(x̄1, . . . , x̄k, ȳ) ∧
¬χ(x̄1, . . . , x̄k), quantified formulas ∃ȳ. χ(ȳ, x̄), or atoms. Transform ψ into a conjunction
ψ′ :=

∧
i∈I ηi(ū1, . . . , ūn) of disjunctions ηi of basic formulas. Since we assumed ψ(ū1, . . . , ūn)

to be a GNFO formula in which the ū1, . . . , ūn are pairwise strictly separated, we conclude
that every basic formula χ(x̄) in ψ satisfies x̄ ∩ ūℓ 6= ∅ for at most one ℓ, 1 ≤ ℓ ≤ n. Hence,
the disjuncts ηi in ψ

′ can be regrouped such that ψ′ has the form

∧

i∈I

ηi,1(ū1) ∨ . . . ∨ ηi,n(ūn) .
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Therefore, γ(ū1, . . . , ūn, v̄) ∧ ¬ψ(ū1, . . . , ūn) is equivalent to the following sentence, where
A1(ū1, v̄), . . . , An(ūn, v̄) is the list of atoms that γ(ū1, . . . , ūn, v̄) comprises:

A1(ū1, v̄) ∧ . . . ∧ An(ūn, v̄) ∧ ¬ψ′(ū1, . . . , ūn)

|=| A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) ∧ ¬
∧

i∈I

ηi,1(ū1) ∨ . . . ∨ ηi,n(ūn)

|=| A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) ∧
∨

i∈I

¬ηi,1(ū1) ∧ . . . ∧ ¬ηi,n(ūn)

|=|
∨

i∈I

(
A1(ū1, v̄) ∧ ¬ηi,1(ū1)

)
∧ . . . ∧

(
An(ūn, v̄) ∧ ¬ηi,n(ūn)

)

This is the sought GNFO formula. ♦

Claim II: Consider any SGNFO formula ϕ(x̄, v̄) := ∃ȳ. ψ(ȳ, x̄, v̄) where ψ(ȳ, x̄, v̄) is any GNFO
formula in which the sets ȳ ∪ x̄ and v̄ are strictly separated. Then, ϕ(x̄, v̄) is equivalent to
some GNFO formula ϕ(x̄, v̄) in which ȳ ∪ x̄ and v̄ are strictly separated.

Proof: Let basic formulas in ψ be defined like in the proof of Claim I. Transform ψ into a
disjunction ψ′ :=

∨
i∈I ηi(ȳ, x̄, v̄) of conjunctions ηi(ȳ, x̄, v̄) of basic formulas. Since we

assumed ψ to be a GNFO formula in which the sets ȳ∪ x̄ and v̄ are strictly separated, every
basic formula χ(ū) in ψ satisfies ū ∩ (ȳ ∪ x̄) = ∅ or ū ∩ v̄ = ∅. Hence, the conjuncts ηi in ψ

′

can be regrouped such that ψ′ has the form

∨

i∈I

ηi,1(ȳ, x̄) ∧ ηi,2(v̄) .

Therefore, ∃ȳ. ψ(ȳ, x̄, v̄) is equivalent to the sentence

∃ȳ.
∨

i∈I

ηi,1(ȳ, x̄) ∨ ηi,2(v̄) |=|
∨

i∈I

(
∃ȳ. ηi,1(ȳ, x̄)

)
∧ ηi,2(v̄) .

This is the sought GNFO formula. ♦

Now consider any SGNFO formula ϕ that is not a GNFO formula. Let χ(ū1, . . . , ūn, v̄) :=
γ(ū1, . . . , ūn, v̄) ∧ ¬χ′(ū1, . . . , ūn) be a smallest subformula of ϕ that violates the conditions of
guarded negation in GNFO. Hence, the set Z of variables quantified in χ′(ū1, . . . , ūn) can be
divided into pairwise disjoint sets Z1, . . . , Zn such that Z1∪ ū1, . . . , Zn∪ ūn are pairwise separated
in χ′. Further suppose that in χ′ the sets Z1 ∪ ū1, . . . , Zn ∪ ūn are not strictly separated. Let
η(x̄) := ∃ȳ. η′(ȳ, x̄) be a smallest subformula of χ′ that violates this strict-separateness condition.
Then, we can subdivide ȳ into pairwise disjoint parts ȳ1, . . . , ȳn such that ȳi ⊆ Zi for every i.
Moreover, we can subdivide x̄ into pairwise disjoint parts x̄1, . . . , x̄n such that x̄i ⊆ Zi∪ūi for every
i. Then, η(x̄) can be rewritten into ∃ȳ1∃ȳ2 . . . ∃ȳn. η′(ȳ1, x̄1, . . . , ȳn, x̄n). Since we assume η(x̄) to
be minimal, the sets ȳ1 ∪ x̄1, . . . , ȳn ∪ x̄n are pairwise strictly separated in η′(ȳ1, x̄1, . . . , ȳn, x̄n).
By Claim II, η(x̄) is equivalent to some η′′(x̄) in which the Z1 ∪ ū1, . . . , Zn ∪ ūn are pairwise
strictly separated. Therefore, the formula χ′(ū1, . . . , ūn) can be transformed into an equivalent
formula χ′′(ū1, . . . , ūn) in which Z1 ∪ ū1, . . . , Zn ∪ ūn are pairwise strictly separated. By Claim I,
γ(ū1, . . . , ūn, v̄) ∧ ¬χ′′(ū1, . . . , ūn) can be transformed into an equivalent formula that belongs to
GNFO and in which the sets ū1, . . . , ūn are pairwise strictly separated.

By iterative and exhaustive application of the outlined transformation, we can derive a GNFO
formula that is equivalent to the SGNFO formula ϕ.

Since GNFO is known to possess the finite model property [7], Lemma 8.4 entails the same for
SGNFO. Of course, this also means that SGNFO-Sat is decidable.

Theorem 8.5. SGNFO possesses the finite model property and, hence, SGNFO-Sat is decidable.
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We conclude this section with an investigation of the succinctness gap between SGNFO and
GNFO. The following theorem entails that there is no elementary upper bound on the length of the
GNFO sentences that result from any equivalence-preserving transformation of SGNFO sentences
into GNFO.

Theorem 8.6. There is a class of SGNFO sentences such that for every integer n ≥ 3 the class
contains a sentence ϕ with a length polynomial in n for which any equivalent GNFO sentence has
at least (n− 1)-fold exponential length in n.

Proof sketch. Let n ≥ 3. The following SGNFO sentence is equivalent to the sentence ϕ given
in the proof of Theorem 7.5. In the sentence the sets {x1, . . . , xn} and {y1, . . . , yn} and {z} are
separated:

∃z. z = z

∧ ¬∃xn. Rn(xn) ∧ ¬∃yn. Rn(xn) ∧ Tn(yn)

∧ ¬∃xn−1. Rn−1(xn−1, xn) ∧ Tn(yn) ∧ ¬∃yn−1. Rn−1(xn−1, xn) ∧ Tn−1(yn−1, yn)

. . .

∧ ¬∃x1. R1(x1, . . . , xn) ∧ T2(y2, . . . , yn) ∧ ¬∃y1. R1(x1, . . . , xn) ∧ T1(y1, . . . , yn)

∧
4n∧

i=1

(
R1(x1, . . . , xn) ∧ T1(x1, . . . , xn) ∧ Pi(x1, . . . , xn) ∧Qi(y1, . . . , yn)

)

∨
(
R1(x1, . . . , xn) ∧ T1(x1, . . . , xn) ∧ ¬

(
Pi(x1, . . . , xn) ∨Qi(y1, . . . , yn)

))
.

The subformulas z = z, Rn(xn), and the more complexRi(xi, . . . , xn)∧Ti(yi, . . . , yn) andRi(xi, . . . ,
xn) ∧ Ti+1(yi+1, . . . , yn) serve as separated negation guards for negated subformulas. We need to
introduce a bit of redundancy in order to meet the syntactic requirements of SGNFO. Neverthe-
less, it is easy to see that the above sentence is equivalent to the sentence ϕ used in the proof
of Theorem 7.5. The rest of the proof works in analogy to that proof. Details can be found in
Appendix A.

9 Separateness and Finite-Variable First-Order Logic

Classes of first-order formulas over a fixed finite set of variables have been studied extensively
(see, e.g., [52, 32, 15, 31, 42] and also [43], Section 11, and [29], Sections 1.1.3, 2.7, and 2.8).
If the number of variables is restricted to two, we even obtain a decidable fragment. The two-
variable fragment (FO2) comprises all relational first-order sentences with equality that are build
up using at most two variables. It is important to understand that this restriction allows reusing
variable names in quantifiers — be they nested or not. Therefore, in the formulas in the present
section we explicitly allow variables to occur free and bound in a formula, and to reappear in
distinct occurrences of quantifiers in the same formula. For example, the sentence ∀x∃y.

(
E(x, y)∧

∃x.
(
E(y, x) ∧ ∃y. E(x, y)

))
belongs to FO2.

Scott gave a reduction of FO2Sat to GKS-Sat [60]. This reduction works only for sentences
without equality. In 1975 Moritmer [50] proved that FO2 with equality possesses the finite model
property. The computational complexity of the satisfiability problem for FO2 has been determined
by Grädel, Kolaitis, and Vardi [30]: it is NExpTime-complete. A recent survey of FO2 and various
extensions is [42].

We will see in the present section that also in the context of finite-variable logics separateness
can give us more syntactic freedom and the ability to express certain properties in a substantially
more succinct way.

Definition 9.1 (Separated finite-variable formulas). For every positive integer k we define FOk

to be the set of all relational first-order formulas with equality in which all variables are taken
from a finite sequence x1, . . . , xk of pairwise distinct first-order variables.
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For every k ≥ 1 we define the class SFOk of relational first-order formulas as follows. Let
V1, V2, V3, . . . be a sequence of pairwise disjoint sets Vi of first-order variables, each containing
exactly k pairwise distinct variables. For every m ≥ 1 we define the set SFOk,m to be the set of all
relational first-order formulas ϕ with equality in which all variables are taken from V1∪. . .∪Vm and
in which all sets V1, . . . , Vm are pairwise separated. The class SFOk is the union

⋃
m≥1 SFO

k,m.

It is easy to see that FOk is a special case of SFOk. Moreover, MFO is a proper subset of SFOk

for k = 1. In contrast, for every positive integer k the MFO≈ sentence ∀x1 . . . xk∃y.
∧

k y 6≈ xk
does not belong to SFOk.

Proposition 9.2. For every positive k, SFOk contains FOk and MFO.

In the following lemma we establish the equivalence between SFOk and FOk for every positive
k by devising an equivalence-preserving translation between the two fragments.

Lemma 9.3. Every SFOk sentence is equivalent to some FOk sentence.

Proof. Let m be any positive integer and consider any sentence ϕ from SFOk,m. Then, vars(ϕ) ⊆
V1∪ . . .∪Vm and all V1, . . . , Vm are pairwise separated in ϕ. Without loss of generality, we assume
that ϕ is in negation normal form.

We prove an auxiliary result from which the lemma follows.

Claim I: Consider any subformula ψ = Qv̄. χ of ϕ with v̄ ⊆ Vi for some i. If the sets V1, . . . , Vm
are pairwise strictly separated in χ (cf. Definition 8.3), then we can construct a formula ψ′

that is equivalent to ψ and in which all sets V1, . . . , Vm are pairwise strictly separated.

Proof: A basic formula is any atom and any subformula (Q′v. . . .) in χ that does not lie within
the scope of any quantifier in χ. Suppose Q is an existential quantifier. (The case of Q = ∀
can be treated in an analogous way.)

Let z̄ be the tuple collecting all variables that occur freely in ψ. We first transform χ into an
equivalent disjunction of conjunctions of negated or non-negated basic formulas. This is al-
ways possible. Since the sets V1, . . . , Vm are pairwise strictly separated in χ, the constituents
of the j-th conjunction can be grouped into m parts: ηj,1

(
V1∩(v̄∪ z̄)

)
, . . . , ηj,m

(
Vm∩(v̄∪ z̄)

)

with vars(ηj,ℓ) ⊆ Vℓ. This is possible because of our assumption that the sets V1, . . . , Vm are
all pairwise strictly separated in χ. Hence, since v̄ ⊆ Vi, ψ is equivalent to a formula of the
form

∃v̄.
∨

j

ηj,1
(
V1 ∩ z̄

)
∧ . . . ∧ ηj,i

(
Vi ∩ (v̄ ∪ z̄)

)
∧ . . . ∧ ηj,m(Vm ∩ z̄) .

We shift the existential quantifier block ∃v̄ inwards so that it only binds the (sub-)conjunc-
tions ηj,i

(
Vi ∩ (v̄ ∪ z̄)

)
. The resulting formula

∨

j

ηj,1
(
V1 ∩ z̄

)
∧ . . . ∧

(
∃v̄. ηj,i

(
Vi ∩ (v̄ ∪ z̄)

))
∧ . . . ∧ ηj,m(Vm ∩ z̄) .

is the sought ψ′ in which the sets V1, . . . , Vm are all pairwise strictly separated. ♦

The sets V1, . . . , Vm are pairwise strictly separated in any quantifier-free subformula of ϕ. Hence,
applying Claim I iteratively, we can transform ϕ into an equivalent sentence ϕ′ in which the
sets V1, . . . , Vm are pairwise strictly separated. Since ϕ′ is a sentence, the strict separateness
condition leads to the observation that for every subformula Qv̄. χ in ϕ′ there is some j such
that vars(Qv̄. χ) ⊆ Vj . As each of the Vi contains exactly k variables, we can rename the bound
variables in ϕ′ such that ϕ′ is an ∧-∨-combination of FOk sentences. Since FOk is closed under
Boolean combinations, ϕ′ is an FOk sentence.

Since FO2 possess the finite model property [50, 30], Lemma 9.3 entails the same for the class
of SFO2 sentences and, hence, SFO2-Sat is decidable.
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Theorem 9.4. The class of SFO2 sentences possesses the finite model property and, hence, the
satisfiability problem for SFO2 sentences is decidable.

Having established the equivalence between FOk and SFOk regarding expressiveness, it remains
to investigate the succinctness gap between the two fragments. We will do this for the special case
of SFO2 sentences compared to the class of FO2 sentences.

Theorem 9.5. There is a class of SFO2 sentences and some positive integer n0 such that for every
integer n ≥ n0 the class contains a sentence ϕ with a length linear in n for which any equivalent
FO2 sentence has a length that is at least exponential in n.

Proof. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in which
the sets {x1, x2} and {y1, y2} are separated:

ϕ := ∀x2∃y2∀x1∃y1.

2(n+1)∧

i=1

(
Pi(x1, x2) ↔ Qi(y1, y2)

)
.

In analogy to the proof of Theorem 3.8, we construct a model A using the sets S1 :=
{
S ⊆

[2(n+ 1)]
∣∣ |S| = n+ 1

}
and S2 :=

{
S ⊆ S1

∣∣ |S| = 1
2 |S1|

}
. We observe

|S1| =

(
2(n+ 1)

n+ 1

)
≥

(
2(n+ 1)

n+ 1

)n+1

= 2n+1 and |S2| =

(
|S1|

|S1|/2

)
≥

(
|S1|

|S1|/2

)|S1|/2

≥ 22
n

.

Claim I: Let Ŝ be any subset of S2 such that for every S ∈ Ŝ there is some T ∈ S ⊆ S1 which does
not belong to any S′ ∈ Ŝ \ {S}. Then, Ŝ contains at most |S1| ≤ 22(n+1) sets as elements.

Proof: Obvious. ♦

Let A be the structure with

A :=
{
a
(1)
S , b

(1)
S

∣∣ S ∈ S1

}
∪
{
a
(2)
S , b

(2)
S

∣∣ S ∈ S2

}
,

PA
i :=

{
〈a

(1)
S1
, a

(2)
S2

〉 ∈ A
2
∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 2(n+ 1), and

QA
i :=

{
〈b

(1)
S1
, b

(2)
S2

〉 ∈ A
2
∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 2(n+ 1).

Like in the proof of Theorem 3.8, it is easy to show that A is a model of ϕ, and that the
following claim holds.

Claim II: For every S ∈ S2 the substructure A−S of A induced by A−S := A \
{
b
(2)
S

}
does not

satisfy ϕ. ♦

Let ϕFO2 be a shortest FO2 sentence that is semantically equivalent to ϕ. Next, we argue that
len(ϕFO2) is at least exponential in n. In [60] a normal form for FO2 sentences was introduced,
which is referred to as Scott normal form in the literature. For instance, Lemma 8.1.2 in [11]
states that there is some relational FO2 sentence ψFO2 that has the following properties:

(a) ψFO2 is of the form
(
∀uv. χ(u, v)

)
∧
∧m

i=1 ∀x∃y. ηi(x, y) with quantifier-free χ and ηi,

(b) the vocabulary underlying ψFO2 is that of ϕFO2 extended with fresh unary predicate symbols
R1, . . . , Rκ with κ ∈ O

(
len(ϕFO2)

)
,

(c) ψFO2 |= ϕFO2 ,

(d) every model of ϕFO2 can be uniquely expanded to a model of ψFO2 over the same domain
and conserving the interpretations of all predicate symbols in ϕFO2 , and

(e) len(ψFO2) ∈ O
(
len(ϕFO2)

)
.
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Let B be the unique expansion of A for which B |= ψFO2 and B = A. Claim II can be extended

to B, because of ψFO2 |= ϕFO2 . The set {b
(2)
S | S ∈ S2} can be partitioned into at most 2κ parts,

each containing elements that are indistinguishable by their belonging to the sets RB
k . Let D̂ be

the largest of these parts and let Ŝ := {S | b
(2)
S ∈ D̂}. Hence, for all b, b′ ∈ D̂ and every k with

1 ≤ k ≤ κ we have b ∈ RB
k if and only if b′ ∈ RB

k .

Claim III: Let n be sufficiently large. If κ is polynomial in n, then there is some S∗ ∈ Ŝ such

that b
(2)
S∗

∈ D̂ and for every T ∈ S∗ there is some S′ ∈ Ŝ \ {S∗} that also contains T and we

have b
(2)
S′ ∈ D̂.

Proof: D̂ contains at least 22
n

/2κ = 22
n−κ domain elements. Hence, |Ŝ| ≥ 22

n−κ. Moreover, we
observe 22

n−κ > 22(n+1) for sufficiently large n, if κ is polynomial in n. By Claim I, there is
some S∗ ∈ Ŝ such that for every T ∈ S∗ there is some S′ ∈ Ŝ \ {S∗} with T ∈ S′. Claim III

follows by definition of D̂ and Ŝ. ♦

We fix some S∗ ∈ Ŝ as specified in Claim III. Let B−S∗
be the substructure of B induced by the

domain B∗ := B \
{
b
(2)
S∗

}
. By Claim II (extended to B), there is some maximal nonempty set

J ⊆ [m] such that for every j ∈ J we have B−S∗
6|= ∀x∃y. ηj(x, y). Consequently, for every j ∈ J

there is some domain element c ∈ B∗ such that B |= ηj
(
c, b

(2)
S∗

)
and B 6|= ηj(c, d) for every d ∈ B∗.

Regarding the domain element c, we distinguish two cases.

Consider any j ∈ J and any c ∈ {b
(2)
S | S ∈ S2, S 6= S∗} ∪ {a

(1)
S | S ∈ S1} ∪ {a

(2)
S | S ∈ S2}

for which we have B 6|= ηj(c, d) for every d ∈ B∗. Let S
′ be some set from Ŝ that is different from

S∗ and for which c 6= b
(2)
S′ . Notice that ηj is quantifier free and, hence, exclusively contains atoms

over two variables x, y. Moreover, for every binary atom A(x, y) of the form Pi(x, y), Pi(y, x),

Qi(x, y), or Qi(y, x) we have B 6|= A(c, d) for every d ∈ {b
(2)
S | S ∈ S2}, including b

(2)
S∗

and b
(2)
S′ .

Since all other non-equational atoms occurring in ηj are monadic and because of b
(2)
S∗
, b

(2)
S′ ∈ D̂, we

conclude the following. For every non-equational atom A occurring in ηj we have B |= A
(
c, b

(2)
S∗

)

if and only if B |= A
(
c, b

(2)
S′

)
(more precisely: B 6|= A(c, b

(2)
S∗

) and B 6|= A(c, b
(2)
S′ )). Consider any

equation x ≈ y. Because of c ∈ B−S∗
, we have B 6|= c ≈ b

(2)
S∗

. On the other hand, we also have

B−S∗
6|= c ≈ b

(2)
S′ . But then, we all in all get B−S∗

|= ηj
(
c, b

(2)
S′

)
, which entails B−S∗

|= ∃y. ηj(c, y).
This leads to a contradiction and, hence, there cannot be any pair j, c as described.

Consider any j ∈ J and any c = b
(1)
T with T ∈ S1 for which B 6|= ηj(c, d) for every d ∈ B∗.

Suppose T 6∈ S∗. Then, for every binary atom A(x, y) of the form Pi(x, y), Pi(y, x), Qi(x, y),

Qi(y, x), or x ≈ y we have B 6|= A(c, b
(2)
S∗

) but also B 6|= A(c, b
(2)
S ) for every S ∈ S1 \ {T }. Like

in the above case we conclude B−S∗
|= ∃y. ηj(c, y), yielding a contradiction. Suppose T ∈ S∗. By

Claim III, there is some S′ ∈ Ŝ \ {S∗} such that T ∈ S′ and b
(2)
S′ ∈ D̂ \ {b

(2)
S∗

} ⊆ B∗. Then, we have

B |= Qi

(
b
(1)
T , b

(2)
S∗

)
if and only if i ∈ T

and
B |= Qi

(
b
(1)
T , b

(2)
S′

)
if and only if i ∈ T .

For every other binary atom A(x, y) of the form Qi(y, x), Pi(x, y), Pi(y, x), or x ≈ y we have

B 6|= A
(
b
(1)
T , b

(2)
S∗

)
and B 6|= A

(
b
(1)
T , b

(2)
S′

)
. For every monadic atom A(x, y) occurring in ηj we have

B |= A
(
b
(1)
T , b

(2)
S∗

)
if and only if B |= A

(
b
(1)
T , b

(2)
S′

)
. All in all, this leads to

B |= ηj
(
b
(1)
T , b

(2)
S∗

)
if and only if B |= ηj

(
b
(1)
T , b

(2)
S′

)
.

Therefore, we get B−S∗
|= ∃y. ηj

(
b
(1)
T , y

)
, which constitutes a contradiction.

This means, the number κ of unary predicate symbols occurring in ψFO2 cannot be polynomial
in n, for otherwise we get B−S∗

|= ψFO2 and A−S∗
|= ϕFO2 . Since κ ∈ O

(
len(ϕFO2)

)
, it follows

that len(ϕFO2) cannot be polynomial in n but must be at least exponential, in order to satisfy
22

n

≤ 22(n+1)+κ for growing n.
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10 Separateness and Fluted Formulas

The fluted fragment (FL) comprises all relational first-order sentences without equality that satisfy
the following properties. Let x1, x2, x3, . . . be a fixed ordered sequence of pairwise distinct vari-
ables. For every nonnegative integer k we define the set FL(k) inductively as follows. Any atom
P (xℓ, . . . , xk) with ℓ ≥ 1 belongs to FL(k) — notice that xℓ, . . . , xk is asserted to be a gap-free
subsequence of x1, x2, x3, . . .. The set FL(k) is closed under Boolean combinations, i.e. if ϕ and
ψ belong to FL(k), then so do ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ. Given any FL(k+1) formula
ϕ(x1, . . . , xk+1), then ∀xk+1. ϕ and ∃xk+1. ϕ belong to FL(k). The fluted fragment (FL) is the
set FL(0), which contains exclusively sentences. Notice that every sentence ϕ from FL(k) can be
turned into an equivalent FL(0) sentence ∀x1 . . . xk. ϕ by adding vacuous quantifiers ∀x1 . . . xk.

The fluted fragment was introduced by Quine in two steps [55, 56]. In an attempt to extrapo-
late an extension of MFO, Quine [55] considered so-called homogeneous k-adic sentences, i.e. FL
sentences in which all predicate symbols have arity k. Decidability of FL-Sat was shown via an
extension of Herbrand’s decidability proof for MFO [36]. Later on, namely at the very end of [56],
Quine claimed that the same proof would work for full FL. This claim turned out to be wrong [51].
Only recently, a proof including a correct complexity analysis was published [53, 54], showing that
FL-Sat is non-elementary.

Herzig [37] considered a class of relational first-order sentences that is very similar to the
fluted fragment. Herzig’s ordered fragment consists of all relational first-order sentences without
equality in which every atom P (v1, . . . , vm) satisfies the following property. For every i the (unique)
quantifier Qvi binding vi lies within the scope of any quantifier Q′u if and only if Q′u binds one
of the vj with j < i, i.e. u ∈ {v1, . . . , vi−1}. Notice that the definition implies that the v1, . . . , vm
are pairwise distinct. While atoms in fluted formulas ϕ ∈ FL(k) need to contain a contiguous
suffix of the variable sequence x1, . . . , xk, any atom A in Herzig’s ordered formulas must contain
a contiguous prefix of the variables bound by the quantifier sequence governing A.

As the two fragments seem to be so similar, one could ask whether they are equivalent in
expressiveness. Indeed, using the concept of separateness of variables, we can reconcile the two
fragments while, at the same time, extending both of them to a common superclass, called the
separated fluted fragment (SFL).

In the first-order formulas in this section we allow bound variables to reappear in distinct
occurrences of quantifiers in the same formula. Before we formulate the definition of SFL, we
adapt the following notation from the definition of Maslov’s fragment K (Definition 5.10). Let
ψ(u1, . . . , um) be any subformula of a first-order sentence ϕ. We assume that u1, . . . , um are
exactly the variables occurring freely in ψ and that they are pairwise distinct. The ϕ-prefix of
ψ is the sequence Q1v1 . . .Qmvm of quantifiers in ϕ (read from left to right) that bind the free
variables of ψ, in particular, we have {v1, . . . , vm} = {u1, . . . , um}.

Definition 10.1 (Separated fluted fragment (SFL)). Let V1,V2,V3, . . . be disjoint ordered se-
quences of pairwise distinct variables Vi = xi1, x

i
2, x

i
3, . . .. In what follows, we occasionally treat

the sequences Vi as sets.
The separated fluted fragment (SFL) comprises all relational first-order sentences ϕ without

equality in which every atom A satisfies the following properties.

(a) A is of the form P (xiℓ, . . . , x
i
k) for some predicate symbol P and certain integers i, k, ℓ with

i ≥ 1, k ≥ 0, and 1 ≤ ℓ ≤ k.

(b) The ϕ-prefix of A is of the form Qℓx
i
ℓ, . . . ,Qkx

i
k with Qj ∈ {∃, ∀}.

Although separateness is not explicitly mentioned in the definition of SFL, it implicitly plays
an important role. For every atom A in any SFL sentence ϕ, we find one sequence Vi from which
all variables in A stem, i.e. vars(A) ⊆ Vi. Since the V1,V2,V3, . . . are pairwise disjoint, they are,
hence, also pairwise separated in ϕ.

Example 10.2. A fluted sentence:

∀x1∃x2.
(
∀x3. P (x1, x2, x3)

)
∧
(
∃x3∀x4. Q(x2, x3, x4

)
.
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An SFL sentence that is not fluted:

∀x1∃x2.
(
∀x2∀x3. P (x1, x2, x3)

)
∧
(
∃x3∀x4. Q(x2, x3, x4

)
.

It is not hard to see that every FL sentence also belongs to SFL. The simple monadic sentence
∀x11∃x

2
1. P (x

1
1) ↔ Q(x21) is neither fluted nor does it belong to Herzig’s fluted fragment. However,

it belongs to SFL. Indeed, every MFO sentence can be turned into an SFL sentence by renaming
bound variables. Consider any MFO sentence ϕ and suppose that all quantifiers in ϕ bind distinct
variables. Let u1, . . . , uk be an enumeration of all the first-order variables occurring in ϕ. Let ϕ′

be the sentence that results from ϕ by renaming every ui into x
i
1. This sentence ϕ

′ clearly belongs
to SFL.

Finally, consider any sentence ψ that belongs to Herzig’s ordered fragment. Let P (u1, . . . ,
um) and Q(v1, . . . , vm′) be two atoms in ψ. Let j, j′ be any two indices with 1 ≤ j ≤ m and
1 ≤ j′ ≤ m′ such that uj and vj′ are bound by the same quantifier Qjuj = Q′

j′vj′ in ψ. By
definition of Herzig’s ordered fragment, these quantifiers Qjuj and Q′

j′vj′ are exactly in the scopes
of Q1u1, . . . ,Qj−1uj−1 and Q′

1v1, . . . ,Q
′
j′−1vj′−1, respectively, and no other quantifier scopes. As

the quantifiers Qjuj and Q′
j′vj′ coincide, the sets {u1, . . . , uj} and {v1, . . . , vj′} must be equal.

Applying this argument iteratively, we infer j = j′ and that the sequences u1, . . . , uj and v1, . . . , vj′

coincide. Suppose j∗ ≥ 1 is the maximal index such that uj∗ and vj∗ are bound by the same
quantifier. For any indices ℓ, ℓ′ > j∗ we have that neither of the quantifiers Quℓ and Q′vℓ′ binding
the variables uℓ and vℓ′ , respectively, lies in the scope of the other. For otherwise, assume that
Quℓ were in the scope of Q′vℓ′ . Hence, ℓ′ < ℓ and there is some uℓ′′ with ℓ

′′ < ℓ such that uℓ′′ is
also bound by the quantifier Q′vℓ′ . By the above argument, we have that ℓ′ = ℓ′′ and that the
sequences u1, . . . , uℓ′ and v1, . . . , vℓ′ must coincide. But since j∗ is maximal and j∗ < ℓ′, we get
a contradiction. Consequently, we can rename the bound variables in ψ in such a way that every
atom A has the form P (x11, . . . , x

1
k) for some k and the ψ-prefix of A is of the form Q1x

1
1, . . . ,Qkx

1
k.

Proposition 10.3. SFL properly contains (modulo renaming of bound variables) FL, MFO, and
Herzig’s ordered fragment.

The following lemma stipulates that every SFL sentence has an equivalent in FL. As usual,
this result is established via an effective equivalence-preserving translation from SFL to FL.

Lemma 10.4. Every SFL sentence is equivalent to some FL sentence.

Proof. For every nonnegative integer k and every positive integer i we define the set FL(k)(Vi)
inductively as follows. Any atom P (xiℓ, . . . , x

i
k) with 1 ≤ ℓ ≤ k belongs to FL(k)(Vi). The set

FL(k)(Vi) is closed under Boolean combinations. Given any FL(k+1)(Vi) formula ϕ(xiℓ, . . . , x
i
k+1),

then ∀xk+1. ϕ and ∃xk+1. ϕ belong to FL(k)(Vi).
Consider any SFL sentence ϕ and letm be the smallest integer such that vars(ϕ) ⊆ V1∪. . .∪Vm.

Then, all V1, . . . ,Vm are pairwise separated in ϕ. Without loss of generality, we assume that ϕ is
in negation normal form.

Claim I: Consider any subformula ψ = Qxik. χ of ϕ with Q ∈ {∀, ∃} that satisfies the following
properties:

(a) χ is a Boolean combination of formulas from
⋃

k′,i′ FL
(k′)(Vi′) — which we will call

basic formulas in what follows;

(b) each of these basic formulas that contains xik is an FL(k)(Vi) formula;

(c) every subformula of χ that is of the form Q′′xik. χ
′′ is an FL(k−1)(Vi) formula.

Then, we can construct a formula ψ′ such that

(1) ψ′ is equivalent to ψ,

(2) ψ′ is a Boolean combination of formulas from
⋃

k′,i′ FL
(k′)(Vi′), and

(3) every subformula Qxik. χ
′ occurring in ψ′ belongs to FL(k−1)(Vi).
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Proof: We treat the case where Q is an existential quantifier; the case of Q = ∀ can be treated
dually.

First, we transform χ into an equivalent disjunction of conjunctions of basic formulas that
is of the form ∨

j

ηj,i,k
(
xi1, . . . , x

i
k

)
∧

∧

i′ 6=i

∧

k′

η′j,i′,k′(xi
′

1 , . . . , x
i′

k′ ) ,

where we group the basic formulas in accordance with their belonging to the sets FL(k′)(Vi′).
More precisely, the conjunctions ηj,i,k contain exactly those basic formulas from the j-th
disjunct in which the variable bound by Qxik occurs freely. Moreover, any basic formula

from FL(k′)(Vi′) that occurs in the j-th disjunct and does not contain xik as free variable is
a conjunct of η′j,i′,k′ . By assumption, each ηj,i,k belongs to FL(k)(Vi), as we assumed that

every basic formula in which xik occurs is an FL(k)(Vi) formula.

Hence, ψ is equivalent to a formula of the form

∃xik.
∨

j

ηj,i,k
(
xi1, . . . , x

i
k

)
∧

∧

i′ 6=i

∧

k′

ηj,i′,k′(xi
′

1 , . . . , x
i′

k′ ) .

We shift the existential quantifier ∃xik inwards so that it only binds the (sub-)conjunctions
ηj,i,k. The emerging subformula ∃xik. ηj,i,k belongs to FL(k−1)(Vi). The result

∨

j

(
∃xik. ηj,i,k

(
xi1, . . . , x

i
k

))
∧

∧

i′ 6=i

∧

k′

ηj,i′,k′(xi
′

1 , . . . , x
i′

k′ )

is the sought ψ′ that is a Boolean combination of formulas from
⋃

k′,i′ FL
(k′)(Vi′). ♦

By Definition 10.1, every atom in ϕ is an FL(k′)(Vi′) formula for certain k′, i′. Hence, every
subformula Qxik. χ of ϕ with quantifier-free χ satisfies the conditions of Claim I. Consider any
subformula ψ := Qxik. χ of ϕ such that χ is a Boolean combination of atoms and of formulas

ψ′ := Q′xi
′

k′ . χ′ that satisfy the preconditions of Claim I. By Claim I, we can transform all these
ψ′ into equivalent formulas ψ′′ in such a way that ψ, after all these transformations, satisfies the
preconditions of Claim I. Due to this observation, we can iteratively apply Claim I to transform
the sentence ϕ into an equivalent sentence ϕ′ that is a Boolean combination of sentences from⋃

k′,i′ FL
(k′)(Vi′ ). Since every sentence χ ∈ FL(k′)(Vi′) is equivalent to the sentence ∀xi

′

1 . . . x
i′

k′ . χ,
we can transform ϕ′ into an equivalent sentence ϕ′′ that is a Boolean combination of sentences from⋃

i′ FL
(0)(Vi′ ). In ϕ′′ the sets V1, . . . ,Vm are pairwise strictly separated. Hence, we can rename

bound variables in ϕ′′ in such a way that the result ϕ′′′ is a Boolean combination of sentences
from FL(0)(V1). This sentence ϕ

′′′ belongs to the fluted fragment.

Since FL enjoys the finite model property [53], Lemma 10.4 implies that the same holds true
for SFL. Hence, SFL-Sat is decidable.

Theorem 10.5. SFL possesses the finite model property and, hence, SFL-Sat is decidable.

11 Conclusion

In the present paper we have treated separateness of first-order variables in the context of the
classical decision problem. Separateness turned out to be an enabler for the definition of significant
syntactic extensions of nine of the best-known decidable first-order fragments — see Figure 1 in
Section 1. Hence, separateness opens a new perspective on the landscape that research activity
around the classical decision problem has revealed over the course of about a hundred years. It
seems likely that separateness facilitates more extensions of decidable first-order fragments. For
instance, Maslov’s fragment K may be an interesting candidate for being extended, as may be the
more recent unary-negation fragment [62] and the uniform one-dimensional fragment [41].
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Interestingly, each and every of the novel fragments discussed in the present paper subsumes
MFO. The inclusion of MFO yields a litmus test for the generality of definitions based on sepa-
rateness: if MFO is not covered, then the definition is not yet liberal enough. Another peculiarity
is that each of our extended fragments exhibits the same expressiveness as the underlying origi-
nal fragment does. This is witnessed by the equivalence-preserving translation procedures that we
have devised for each extended fragment, say F , into the respective original fragment, sayG. From
this perspective, the syntax of G could be conceived as a normal form of F -sentences: there is a
procedure bringing any F -sentence into G-normal form, so to speak. Furthermore, we have seen
that this translation in some cases inevitably leads to a super-polynomial or even non-elementary
blowup of the formula length in the worst case — take a look at Table 1 again for a summary. This
shows that separateness provides the ability to express certain logical properties in significantly
more succinct ways.

In the present paper the main method for proving decidability of the newly introduced frag-
ments is based on syntactic transformations. In [69], Chapter 4, this syntactic point of view is
complemented with a semantic perspective, based on an investigation of dependences between
existentially and universally quantified variables in sentences. In general, nested first-order quan-
tification introduces such dependences. For example, consider the first-order sentence ϕ :=
∀x∃y. P (x) ↔ Q(y). Skolemization of the quantifier ∃y removes the quantifier and replaces every
occurrence of y with the Skolem term f(x). The result is the equivalent second-order sentence
ϕSk := ∃f. ∀x. P (x) ↔ Q(f(x)), where the dependence of the argument of Q on x is explicit. We
distinguish two kinds of dependences that occur between existentially quantified variables and
universally quantified variables. Roughly speaking, such a dependence in a sentence ϕ is strong,
if there are models (with an infinite domain) where the range of the Skolem function f has to
be infinite. On the other hand, we speak of weak dependence of existentially quantified y on
universally quantified x in the following case. If the values of all other variables are fixed and only
x does not have a fixed value, then the range of y (and the Skolem function f) can always, i.e.
in all models, be restricted to a finite set of values. The following definition makes this intuition
more precise.

Definition 11.1 (Weak dependence). Consider any satisfiable relational first-order sentence ψ
that contains some subformula χ := ∃y. χ′(ū, v̄, x̄, y) such that the variables from ū and x̄ are
universally quantified in ψ, and the variables from v̄ are existentially quantified in ψ. Let ψSk be
the result of replacing every occurrence of y in ψ with the Skolem term f(ū, x̄) for some fresh Skolem
function f . Then, y depends weakly on the variables in x̄, if every model A |= ψSk can be turned
into a model B |= ψSk by replacing fA with some mapping fB satisfying the following property.
There exists a finite family of mappings

(
gi : A

|ū| → A
)
i∈I

and some mapping h : A|x̄| → I such

that fB(ā, b̄) := gh(b̄)(ā) for all ā ∈ A
|ū| and b̄ ∈ A

|x̄|.

Regarding weak dependences, BSR, SF, and SBSR are special fragments, since all dependences
in such sentences are weak. In addition, and less obvious, every sentence in which all dependences
are weak is equivalent to some BSR sentence [69] (Theorem 4.2.1 and Remark 4.2.12). Hence, it is
fair to say that the property of containing exclusively weak dependences between existential and
universal variables is a semantic characterization of BSR (and also of its syntactic extensions SF
and SBSR).

Integrating the analysis of weak dependences into Skolemization strategies could make them
sensitive to weak dependences. This might offer interesting and valuable directions for research
in the fields of automated reasoning and proof complexity, where improvements to Skolemization
strategies can have tremendous effects on the length of proofs [5, 20].

Possible connections of weakness of dependences in the sense of Definition 11.1 to the field of
dependence logic (broadly construed) [66, 1] remain to be investigated.

Separateness may turn out to be even more versatile in future investigations. Some hints are
given in [69] (e.g. in Chapter 7). We will conclude with a sketch of one more idea. We have
emphasized time and again that, compared to BSR sentences, SF sentences can express certain
logical properties much more succinctly. This holds true in particular for properties that exhibit
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a high degree of structural regularity. An example for such a property is the one described by the
family of SF sentences

(
ϕn

)
n≥1

with

ϕn := ∀xn∃yn . . . ∀x1∃y1.
∧n

i=1

(
Pi(x1, . . . , xn) ↔ Qi(y1, . . . , yn)

)
.

We have already encountered variants of this class of sentences in all the proofs of succinctness
gaps (Theorems 3.8, 6.8, 7.5, 8.6, 9.5). Although the domain size of the following family of models(
An

)
n≥1

with An |= ϕn grows massively with increasing n, its interpretation of the predicate

symbols Pi and Qi is given by a rather simple pattern and, hence, each An is very regular in an
intuitive sense — the latter is witnessed by the shortness of the following definition of An:

An :=
⋃n

k=1

{
a
(k)
S , b

(k)
S

∣∣ S ∈ Pk([n])
}
, where Pk is the k-fold power set operator,

PAn

i :=
{
〈a

(1)
S1
, . . . , a

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , n, and

QAn

i :=
{
〈b

(1)
S1
, . . . , b

(n)
Sn

〉 ∈ A
n
∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn

}
for i = 1, . . . , n.

Any of the structures An neatly captures the essence of the logical property described by ϕn, as

every domain element a
(k)
S has a corresponding twin element b

(k)
S that mirrors in the predicates

QAn

i exactly the role that a
(k)
S plays in the predicates PAn

i .
More generally, consider any logical property πn that is parameterized by some positive integer

n and that can be expressed by a (uniform) family of BSR sentences. Let f(n) be the function
representing the length of a shortest BSR sentence ψ that describes πn. Let g(n) be the function
that denotes the length of a shortest SF sentence describing πn. By Theorem 3.8, we know that
there are properties πn such that g(n) can be bounded from above by some polynomial but we
cannot find any integer k such that f(n) is bounded from above by any k-fold exponential function.
In such a case we would say that πn is structurally fairly regular, as we can describe it with an
SF sentence of polynomial length. Now imagine a property π′

n accompanied with corresponding
functions f ′(n) and g′(n) for which we have g′(n) ∈ Ω

(
f ′(n)

)
, i.e. the length of shortest SF

sentences describing π′
n is asymptotically of the same order as the length of shortest BSR sentences

describing π′
n. On an intuitive level, this means that the relaxed syntactic conditions of SF do not

provide a significant edge over BSR when π′
n is to be described. It seems that π′

n requires a more
sophisticated and lengthy description than, for instance, πn does, or, viewed from the opposite
angle, π′

n exhibits a lower degree of structural regularity than πn. A possible measure for this
lack of regularity might be provided by the gap between f ′(n) and g′(n): the smaller the gap, the
higher the structural irregularity of π′

n.
Instead of the comparison SF versus BSR, one could also use the comparison between SF

sentences and equivalent Gaifman-local sentences. Of course, the above said is also relevant to
other fragments and not exclusively to SF — for instance, to SLGF versus LGF, to SFO2 versus
FO2, or to the full class of relational first-order sentences versus relational Gaifman-local sentences.

The general idea of measuring structural regularity by means of the asymptotic length of
shortest logical descriptions appears to have some similarity to concepts investigated in the field of
algorithmic information theory and Kolmogorov complexity (see [17, 13] for introductory material).
Potential connections and interrelations remain to be studied.
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A Proof of Theorem 8.6

Proof sketch. Let n ≥ 3. The following SGNFO sentence is equivalent to the sentence ϕ given
in the proof of Theorem 7.5. In the sentence the sets {x1, . . . , xn} and {y1, . . . , yn} and {z} are
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separated:

∃z. z = z

∧ ¬∃xn. Rn(xn) ∧ ¬∃yn. Rn(xn) ∧ Tn(yn)

∧ ¬∃xn−1. Rn−1(xn−1, xn) ∧ Tn(yn) ∧ ¬∃yn−1. Rn−1(xn−1, xn) ∧ Tn−1(yn−1, yn)

. . .

∧ ¬∃x1. R1(x1, . . . , xn) ∧ T2(y2, . . . , yn) ∧ ¬∃y1. R1(x1, . . . , xn) ∧ T1(y1, . . . , yn)

∧
4n∧

i=1

(
R1(x1, . . . , xn) ∧ T1(x1, . . . , xn) ∧ Pi(x1, . . . , xn) ∧Qi(y1, . . . , yn)

)

∨
(
R1(x1, . . . , xn) ∧ T1(x1, . . . , xn) ∧ ¬

(
Pi(x1, . . . , xn) ∨Qi(y1, . . . , yn)

))
.

The subformulas z = z, Rn(xn), and the more complexRi(xi, . . . , xn)∧Ti(yi, . . . , yn) andRi(xi, . . . ,
xn) ∧ Ti+1(yi+1, . . . , yn) serve as separated negation guards for negated subformulas. We need to
introduce a bit of redundancy in order to meet the syntactic requirements of SGNFO. Neverthe-
less, it is easy to see that the above sentence is equivalent to the sentence ϕ used in the proof of
Theorem 7.5. We will refer to it as ϕ as well.

The rest of the proof works in analogy to the proof of Theorem 7.5. We therefore take over
definitions and notation from that proof, in particular the sets Sk, the model A with the domain el-

ements a
(j)
S , b

(j)
S and subdomains Aa,Ab,Ab,k, the notation A−S , the vocabularies Σ,ΣPR,ΣQT and

their extensions Σ′
PR,Σ

′
QT with nullary predicate symbols, and the notion of column-k-occurrence.

Let ϕGNFO be a shortest GNFO sentence that is semantically equivalent to ϕ. In analogy to
the proof of Theorem 7.5, our goal is to show that len(ϕGNFO) is at least (n−1)-fold exponential in
n. Indeed, we can transform ϕGNFO into an equivalent GNFO sentence ψGNFO with the following
properties.

(a) The sentence ψGNFO is a Boolean combination of GNFO Σ′
PR-sentences and GNFO Σ′

QT -
sentences. Moreover, none of the constituent sentences of ψGNFO properly contains a non-
atomic subsentence.

(b) The vocabulary of ψGNFO is Σ′
PR ∪ Σ′

QT , i.e. Σ plus fresh nullary predicate symbols.

(c) The structure A can be uniquely expanded to some model B of ψGNFO over the same domain
and conserving the interpretations of all predicate symbols in Σ; for every B−S — the

substructure of B induced by the domain B \ {b
(k)
S } — we have B−S 6|= ψGNFO.

(d) len(ψGNFO) ∈ O
(
len(ϕGNFO)

)
.

(e) Equations in Σ′
QT -subsentences of ψGNFO occur only in guards, and these consist of a single

trivial equation, say v = v, and no other atoms.

(f) Every non-equational ΣQT -atom is linear and for every variable v occurring in it there is some
k such that all occurrences of v in non-equational ΣQT -atoms are column-k-occurrences.

(g) For all distinct variables v, v′ that occur freely in a Σ′
QT -subformula χ and have column-k-

occurrences and column-k′-occurrences, respectively, we know that k 6= k′.

The transformation of ϕGNFO into ψGNFO proceeds in analogy to the corresponding transformation
in the proof of Theorem 7.5, except that the transformation into negation normal form is postponed.
When we next transform ψGNFO into negation normal form, we obtain the equivalent sentence ψ,
which does not necessarily belong GNFO anymore, but still shares the properties that are essential
for the rest of the proof.

Now, suppose that ψ has fewer than 2↑n−1(n) subformulas. By (c), we have B |= ψ and
B−S 6|= ψ for every S ∈ Sn. Hence, for every S ∈ Sn there is some Σ′

QT -subformula ψS in ψ
of the form ∃ȳ. χS(ȳ, z̄) and some variable assignment βS such that the following properties hold.
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We have βS(y∗) = b
(n)
S for exactly one y∗ ∈ ȳ and for every v ∈ ȳ ∪ z̄ different from y∗ we have

βS(v) ∈ Ab \ Ab,n. Moreover, we have
(∗) B, βS |= χS(ȳ, z̄) and B, β′ 6|= χS(ȳ, z̄) for every β

′ that differs from βS only in the
value assigned to y∗.

The tuple βS(z̄) represents a sequence c̄S of domain elements from Ab that can be completed to a

chain b
(1)
T1
, . . . , b

(n−1)
Tn−1

, b
(n)
S with T1 ∈ . . . ∈ Tn−1 ∈ S.

Fix any S∗ ∈ Sn and consider the formula ψS∗
(z̄). There is a nonempty set Ŝ∗ such that ψS∗

(z̄)

coincides with every ψS(z̄) with S ∈ Ŝ∗. For any distinct S, S′ ∈ Ŝ∗ the sequences c̄S := βS(z̄) and

c̄S′ := βS′(z̄) must differ, for otherwise (∗) would be violated. As there are at most
∏n−1

k=1 2
↑k(n)

distinct sequences c̄S , Ŝ∗ can contain at most
∏n−1

k=1 2
↑k(n) <

(
2↑n−1(n)

)n
sets. Recall that there

are fewer than 2↑n−1(n) subformulas in ψ. We have just inferred that each of these can only serve
as ψS for at most

(
2↑n−1(n)

)n
sets S ∈ Sn. Hence, only

(
2↑n−1(n)

)n
· 2↑n−1(n) = 2(n+1)·2↑n−2(n) < 22

↑n−1(n) = 2↑n(n)

sets S have a corresponding subformula ψS . But |Sn| ≥ 2↑n(n+ 1) implies that there are S ∈ Sn

such that B−S |= ψLGF, which contradicts our assumptions. Consequently, there must be more
than 2↑n−1(n) subformulas in ψ and in ψGNFO and, by (d), also in ϕGNFO.
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