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Abstract. Incomplete cusp edges model the behavior of the Weil–Petersson metric on the
compactified Riemann moduli space near the interior of a divisor. Assuming such a space is
Witt, we construct a fundamental solution to the heat equation, and using a precise description
of its asymptotic behavior at the singular set, we prove that the Hodge–Laplacian on differential
forms is essentially self-adjoint, with discrete spectrum satisfying Weyl asymptotics. We go
on to prove bounds on the growth of L2-harmonic forms at the singular set and to prove a
Hodge theorem, namely that the space of L2-harmonic forms is naturally isomorphic to the
middle-perversity intersection cohomology. Moreover, we develop an asymptotic expansion for
the heat trace near t D 0.
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1. Introduction

On a compact manifold M with boundary @M which is the total space of a fiber
bundle

Z ,! @M
�
���! Y; (1.1)

withZ; Y closedmanifolds, an incomplete cusp edge metric gice is, roughly speaking,
a smooth Riemannian metric on the interior ofM which near the boundary takes the
form

gice D dx
2
C x2kgZ C �

�gY C zg; k > 1; (1.2)
where gY is a metric on the base Y , gZ is positive definite restricted to the fibers,
x is the distance to the boundary (to first order), and zg is a higher order term.
Thus near the boundary .M; gice/ is a bundle of geometric horns over a smooth
Riemannian manifold Y . When k D 3, such metrics model the singular behavior of
the Weil–Petersson metric on the moduli space of Riemann surfaces, as we discuss
below.

In this paper, we study the Hodge–Laplacian

� WD �gice D dı C ıd (1.3)

acting on differential forms. Our first result shows that under conditionswhich contain
themain examples of interest, one need not impose “ideal boundary conditions” at @M
in order to obtain a self-adjoint operator.
Theorem 1.1. Let .M; gice/ be an incomplete cusp edge manifold that is “Witt,”
meaning that either dimZ D f is odd or

Hf=2.Z/ D f0g: (1.4)

Assume furthermore that g D gice satisfies (2.7)–(2.8) below and that the parameter k
in (4.1) satisfies

k � 3: (1.5)
Then theHodge–Laplacian�gice acting on differential forms is essentially self-adjoint
and has discrete spectrum.

Thus, by the spectral theorem [36], there exists an orthonormal basis ofL2.�p.M//

of eigenforms �gice˛j;p D �2j;p˛j;p . We also prove that the distribution of
eigenvalues satisfies “Weyl asymptotics,” concretely, for fixed degree p

#fj j �2j;p < �
2
g D cnVol.M; gice/�n C o.�n/ as �!1: (1.6)

See §4.2 for the proofs of Theorem 1.1 and of the asymptotic formula in (1.6).
Having established these fundamental properties of the Hodge–Laplacian on such

spaces, we turn to the next natural topic: Hodge Theory. Here the object of study is
“Hodge cohomology,” or the space of L2 harmonic forms,

H
p

L2
.M; gice/ D f˛ 2 L

2.�p.M/; gice/ j d˛ D 0 D ı˛g; (1.7)
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and one phrasing of the Hodge theory problem is to find a parametrization for
H�
L2
.M; gice/ in terms of a topological invariant. As described in [18], in analogous

settings the relevant topological space for Hodge theoretic statements is not the
manifold M , but the stratified space X obtained by collapsing the fibration at the
boundary over the base,

X WDM=fp � q j p; q 2 @M and �.p/ D �.q/g: (1.8)

In §4.3 we will prove the following.

Theorem 1.2. For a cusp edge space .M; gice/ whose link Z satisfies the Witt
condition (1.4), there is a natural isomorphism

H�
L2
.M; gice/ ' IH xm.X/; (1.9)

where IH xm is the middle perversity intersection cohomology of X . Furthermore,
differential forms  2 H�

L2
.M; gice/ admit asymptotic expansions at the boundary

ofM .
Moreover, if Z ' Sf , the sphere of dimension f , then X is homeomorphic to a

differentiable manifold and the isomorphism (1.9) becomes

H�
L2
.M; gice/ ' H

�
dR.X/; (1.10)

where the latter is the de Rham cohomology of X .

We recall the relevant facts about intersection cohomology, originally defined
by Goresky and MacPherson in [13, 14], in §4.3 below. The equivalence in (1.9)
will follow using the arguments from Hunsicker and Rochon’s recent work [20] on
iterated fibered cusp edge metrics (which are complete, non-compact Riemannian
manifolds). To elaborate on the asymptotic expansion for L2-harmonic forms  , we
will show in Lemma 4.5 below that in fact

H�
L2
.M; gice/ D f˛ 2 L

2.�p.M/; gice/ j �
gice˛ D 0g;

(that the former is included into the latter is obvious), and we show that elements in
the L2 kernel of �gice have expansions at @M analogous to Taylor expansions but
with non-integer powers, a statement which can be be interpreted as a sort of elliptic
regularity at the boundary ofM:

One application of these results, and to putative further work we describe below,
is to the analysis on the Riemann moduli spaces M;` of Riemann surfaces of genus
 � 0 with ` � 0 marked points. These spaces carry a natural L2 metric, the Weil–
Petersson metric gWP , which near the interior of a divisor is an incomplete cusp edge
metric with k D 3. In general divisors may intersect with normal crossings, but in at
least two cases only one divisor is present.
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Theorem 1.3. Let M1;1 (also known as the moduli space of elliptic curves) and M0;4

be the spaces of, respectively, once punctured Riemann surfaces of genus 1 and 4
times punctured Riemann surfaces of genus zero, modulo conformal diffeomorphism.
Then the Hodge–Laplacian �gWP on differential forms is essentially self-adjoint
on L2 with core domain C1c;orb (see Theorem 3.7) with discrete spectrum and Weyl
asymptotics, and if SM1;1 and SM0;4 denote the Deligne–Mumford compactifications
(see e.g. [17, 38]). Then the de Rham cohomology spaces HdR. SM1;1/ are naturally
isomorphic to H�

L2
. SM1;1; gWP /, and the same holds for SM0;4.

We discuss the proof at the end of §4.3, though this is really a direct application
of our results together with the recent work on the structure of the Weil–Petersson
metric near a divisor in [27] and [32].

This article is partly motivated by Ji, Mazzeo, Müller, and Vasy’s work [21] on
the spectral theory of the (scalar) Laplace–Beltrami operator on the Riemann moduli
spacesMg , for which it was shown bymethods different from ours that it is essentially
self-adjoint and its eigenvalues satisfy a Weyl asymptotic formula. Here they analyze
incomplete cusp edge spaces with normal crossings, and find in particular that the
value k D 3 in (1.5) is critical; indeed for values k < 3 one does not expect self-
adjointness. It would be interesting (though more complex) to find a parametrization
of the space of closed extensions of incomplete cusp edge Laplacians with k < 3,
which is expected to be infinite dimensional, e.g. by [3].

In contrast with [21], since our eventual goal is Hodge and index theory on moduli
space, our main technical contribution is the construction and detailed description of
the heat kernelH D exp.�t�gice/. Indeed, our approach to establishing Theorem 1.1
(which justifies the use of the word “the” in the previous sentence) and Theorem 1.2,
is to develop in Theorem 3.7 below a precise understanding of the behavior of a
fundamental solution to the heat equation, which we only conclude is the heat kernel
after using it to prove Theorem 1.1; we establish asymptotic expressions for it at the
singular set, uniformly down to time t D 0, obtaining in particular in Corollary 4.4,
an asymptotic formula for its trace (which has potential applications to index theory,
since our method for analyzing�gice may be used for other natural elliptic differential
operators on these spaces as well) and fine mapping properties of �gice which allow
us to analyze its kernel, i.e. harmonic forms. This is all described in detail in §4.

Essential self-adjointness of a differential operator P is typically a statement
about the decay of L2 sections u for which Pu 2 L2. (Here the derivative is taken
in the distributional sense.) The set of such sections is denoted

Dmax WD Dmax.�
gice/ D fu 2 L2 j Pu 2 L2g: (1.11)

This is the largest subset of L2 which is a closed subspace in the graph norm
kuk� D kukL2 C kPukL2 . On the other hand, the smallest such closed extension
from the domain C1c .M/ is the closure, i.e. the minimal domain

Dmin WD Dmin.�
gice/ D fu 2 L2 j 9uk 2 C

1
c .M/ with lim

k!1
kuk � uk� D 0g:

(1.12)
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The essential self-adjointness statement in Theorem 1.1 says that the smallest closed
extension is equal to the largest, i.e. that

Dmax D Dmin; (1.13)

and therefore there is exactly one closed extension. On the other hand, Dmax is dual
to Dmin with respect toL2 and thus if (1.13) holds then P with core domain C1c .M/

has exactly one closed extension, whichwe denote byD D Dmin D Dmax and .P;D/

is a self-adjoint, unbounded operator on L2. Equation (1.13) is a statement about
decay in the sense that to prove it we will show that a differential form ˛ 2 Dmax
decays fast enough near @M that it can be approximated in the graph norm by
compactly supported smooth forms. This we do using the heat kernel.

Recall that the heat kernel H is a section of the form bundle …WEnd.ƒ/ �!
M ı � M ı � Œ0;1/, where M ı is the interior of M and End.ƒ/ is the vector
bundle whose fiber over .p; q; t/ is End.ƒ�q.M/Iƒ�p.M//, smooth on the interior
M ı �M ı � Œ0;1/t , which solves

.@t C�
gice/H D 0 and Ht �! Id; strongly as t # 0: (1.14)

For a compactly supported smooth differential form ˛, the differential form

ˇ.!; t/ WD

Z
M

H.w; zw; t/˛. zw/ dVolgice. zw/

solves the heat equation .@t C �gice/ˇ D 0 with initial data ˇjtD0 D ˛. One
consequence of our precise description of H in Theorem 3.7 below will be the
following.
Theorem 1.4. On a Witt incomplete cusp edge space .M; gice/ with metric satisfying
the assumptions in (2.7)–(2.8) below together with (1.5), there exists a fundamental
solution to the heat equation Ht D H.w; zw; t/ in the sense of (1.14) such that
for t > 0

Ht WL
2.M I��.M// �! Dmin; (1.15)

and such thatHt and @tHt are bounded, self-adjoint operators on L2.
Theorem 1.4 implies the essential self-adjointness statement; indeed the

fundamental solutionHt directly gives a sequence (indeed a path) of sections onDmin
which approaches a given form in Dmax. Namely,

˛ 2 Dmax H) Ht˛ ! ˛ in Dmin as t # 0: (1.16)

As we see now, the proof of this is straightforward functional analysis given the
conclusions of Theorem 1.4.

Proof of essential self-adjointness using Theorem 1.4. The proof has nothing to do
with the fine structure of incomplete cusp edge spaces, it depends only on the soft
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properties of the fundamental solution H in Theorem 1.4. To emphasize this,
let .M; g/ be any Riemannian manifold andP a differential operator of order 2 acting
on sections of a vector bundle E with hermitian metric G, such that P is symmetric
on L2.M IE/. For t > 0, let Ht be a smooth section of End.E/! M �M , which
depends smoothly on t and satisfies

.@t C P /Ht D 0; lim
t!0

Ht D Id; and Ht WL
2.M IE/ �! Dmin; (1.17)

where the above limit holds in the strong topology on L2, and furthermore such that
Ht and @tHt are self-adjoint on L2.

Let u 2 Dmax.P /, i.e. u 2 L2, Pu 2 L2. We will show that u 2 Dmin.P / as
well, and thus Dmin D Dmax. Indeed, we will show that

Htu! u in Dmax; i.e. thatHtu! u and PHtu! Pu in L2: (1.18)

This suffices to prove that u 2 Dmin since Htu 2 Dmin by assumption and Dmin is
a closed subspace of Dmax in the graph norm. To prove (1.18), we note first that
Htu! u in L2 trivially sinceHt ! Id in the strong topology onL2. Also note that
since u 2 Dmax, Pu 2 L2, so HtPu! Pu in L2 also. Of course, this is not what
we want; we want PHtu! Pu, but in fact we claim that

u 2 Dmax H) PHtu D HtPu; (1.19)

which will establish (1.13).
It remains to prove (1.19). Note that for u 2 Dmax and v 2 L2, then hHtPu; viL2

DhPu;HtviL2 by self-adjointness ofHt onL2, while hPu;HtviL2Dhu; PHtviL2 .
Indeed, the adjoint domain of Dmin is Dmax, so for any f 2 Dmin, g 2 Dmax,
hPf; giL2 D hf; PgiL2 . But, then since PHt D �@tHt we see that

hHtPu; viL2 D �hu; @tHtviL2 :

But @tHt is self-adjoint on L2 so

hu; @tHtviL2 D h@tHtu; viL2 D �hPHtu; viL2 ;

and thus hHtPu; viL2 D hPHtu; viL2 for all u 2 Dmax; v 2 L
2, i.e. (1.19) holds.

The central vehicle for the construction of the heat kernel is the construction of
a manifold with corners M 2

heat via iterated radial blowup of the natural domain of
the heat kernel, namely the spaceM �M � Œ0;1/t ; thus the interiors of these two
spaces are diffeomorphic, and the blowup process furnishes a “blowdown” map

ˇWM 2
heat �!M �M � Œ0;1/t ; (1.20)
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which encodes deeper information about the relationship between the various
boundary hypersurfaces (codimension one boundary faces) of M 2

heat and those of
M �M � Œ0;1/t . The upshot is that the heat kernel H , which lives a priori on
the latter space, pulls back via ˇ to be “nice” (precisely to be polyhomogeneous, see
Appendix A) on M 2

heat. In fact, in §3 we will construct a parametrix K for the heat
equation directly on M 2

heat. To obtain the actual heat kernel H we use a Neumann
series argument to iterate away the error.

The latter process builds on what is now a substantial body of work on analysis
(in particular the structure of heat kernels) on singular and non-compact Riemannian
spaces, going back at least to the work of Cheeger on manifolds with conical
singularities [8–10]. Our approach here is more closely related to Melrose’s
geometric microlocal analysis on asymptotically cylindrical manifolds [30] (a non-
compact example) and Mooers’ paper [33] on manifolds with conical singularities
(an incomplete, singular example). The general procedure, which one sees in both
the parabolic and elliptic settings, is to express the relevant differential operator as
an element in the universal enveloping algebra of a Lie algebra of vector fields, and
to “resolve” this Lie algebra via radial blowup of the underlying space.

It is useful to compare our work with Mazzeo–Vertman [28], in which the authors
study analytic torsion on incomplete edge spaces, which are the k D 1 case of
incomplete cusp edges, as their work also involves a heat kernel construction using
blowup analysis, which is slightly simpler in their context as the resolved double
space has one less blowup (and thus the triple space is simpler). Still, the basic
outline of the proof is analogous in both cases; a parametrix for the heat kernel
is constructed and this parametrix is modified by a Neumann series argument to
construct a fundamental solution to the heat equation.

One phenomenon revealed by our results is that the space of self-adjoint extensions
of the Hodge–Laplacian can be much smaller for incomplete cusp edge spaces than it
is for related incomplete edge spaces. For example, a Witt space (this is a topological
condition and has nothing to do with the value of k) that is incomplete edge may
have infinitely many self-adjoint extensions if the family of induced operators on the
fibers have small non-zero eigenvalues [3]. One expects that the zero mode in the
fiber (the space of fiber harmonic forms) makes a similar contribution in both the
cusp and cone cases, in particular that an incomplete cusp edge space which is not
Witt will have an infinite dimensional space of closed extensions on which “Cheeger
ideal boundary conditions” must be imposed to make the operator self-adjoint, as is
the case in [3].

A second closely related work is Grieser–Hunsicker [16], which uses also
quasihomogeneous radial blowups, in this case to construct a Green’s function
for elliptic operators on a certain class of complete Riemannian manifolds (called
“�-manifolds”) which require similar analysis. There are many other related works in
a similar vein including, just to name a few, Albin–Rochon [4], Brüning–Seeley [7],
Gil–Krainer–Mendoza [12], Lesch [23], Schultze [35], and Grieser’s notes on
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parametrix constructions for heat kernels [15]. For analysis of moduli space, to
give just a sample recent work, we refer the reader to the papers of Liu–Sun–Yao, for
example [24, 25].

2. Incomplete cusp edge differential geometry

We begin be recalling the differential topology of the underlying singular space X ,
which we take to be a smoothly stratified space in the sense of [2, Sec. 2.1, Def. 1]
with only a single singular stratum Y . This means in particular, as described in
loc. cit., that X n Y is dense in X , that there is a tubular neighborhood Y � T

and a retraction �Y WT �! Y which is a locally trivial fibration with fibre the
cone C.Z/ WD Œ0; 1/ � Z=f0g � Z with Z a closed manifold, and that we are
given a “radial function” �WT �! Œ0;1/which is proper and such that ��1.0/ D Y .
Moreover, Y is given a fixed atlas of chartsUY D f.�;U/gwhere � is a trivialization
��1.U/ �! U � C.Z/, the transition functions of which preserve the rays of each
conic fibre as well as the radial variable �. As explained in [2, Sect. 2], there is
a resolution 'WM �! X , obtained essentially by opening up the tips of the cone
fibers, such that '�1.Y / D @M and such that the radial function � lifts to a smooth
boundary defining function of M which we call, henceforth, x. The boundary @M
then becomes the total space of a smooth fibration with base Y and typical fibre Z.
A choice of boundary defining function x, meaning a function x 2 C1.M/ with
fx D 0g D @M and dx non-vanishing on @M , fixes (after possibly scaling x by a
constant) a tubular neighborhood of @M

U ' @M � Œ0; 1/x; (2.1)

and U forms a locally trivial fibration over �.@M/ D Y with typical fiber C1.Z/. A
local trivialization near a point p 2 Y then takes the form

V � C.Z/; (2.2)

with V a neighborhood of p in Y , for local coordinates y on the base and z on Z,
then

.x; y; z/ form a coordinate chart onM in a neighborhood of ��1.p/. (2.3)

Let
f WD dimZ; b WD dimY: (2.4)

We will consider differential forms and vector fields which are of approximately
unit size with respect to Riemannian metrics of the type in (4.1). These are the
incomplete cusp edge forms, which are sections of the incomplete cusp edge form
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bundle, iceƒ�.M/, whose smooth sections are generated locally over the base by the
forms

dx; dyi .i D 1; : : : ; b D dimY /; xkdz˛ .˛ D 1; : : : ; f D dimZ/: (2.5)

Correspondingly, we will use the space of vector fields which are locally C1.M/

linear combinations of the vector fields

@x; @yi ; x�k@z˛ : (2.6)

These vector fields are local sections of a bundle iceTM which is dual to iceT �M D
iceƒ1.M/. We denote sections of iceTM by Vice.

We considermetricsg onM which are positive-definite sections of Sym0;2.iceT �M/.
This means that they are smooth linear combinations of the symmetric products
of dx; dyi and xkdz˛ which are positive-definite up to and including over the
boundary x D 0. We will assume slightly more structure at x D 0 than merely
assuming g is positive definite; to discuss this structure we first build some examples.
Specifically, we consider those metrics arising from submersion metrics on @M .
Concretely, consider a metric ��h C k, where h is a Riemannian metric on Y and
k 2 Sym0;2.@M/, has the property that its restriction to any fiber is positive definite.
Then the metrics ��hC x2kk form a family of metrics on @M and thus we obtain a
metric g0 D dx2 C ��hC x2kk on U. The metric g0 is an exact incomplete cusp
edge metric. Note that in coordinates .x; y; z/ such a metric takes the form

g0 D
�
dx dyi xkdz˛

�0@1 0 0

0 .hij / xk.ki˛/
0 xk.k˛i / k˛ˇ

1A0@ dx

dyj

xkdzˇ

1A : (2.7)

In general we consider a metric g of the form

g � g0 D O.x
k; g0/; (2.8)

where g0 is an exact incomplete cusp edge metric and O.xk; g0/ refers to a O.xk/
norm bound with respect to the exact incomplete cusp edge metric g0 as in (2.7),
and furthermore we assume that the O.xk; g0/ term is polyhomogeneous conormal,
a regularity assumption defined precisely in Appendix A, which roughly speaking
means that the coefficients have an asymptotic expansion at x D 0 analogous to a
Taylor expansion but with non-integer powers and with precise derivative bounds
on the error terms. Metrics satisfying these assumptions are what we refer to
henceforth as incomplete cusp edge metrics. (Note that the assumptions on g are
stronger than merely assuming that g 2 Sym0;2.iceT �M/, as the latter space contains
e.g. x.xkdz ˝sym dx/, which does not obey the error bound.)
Remark 2.1. As is shown in [27] (see the introduction for further discussion) with
previous results for example in [38, 39], the Weil–Petersson metric on moduli space
takes the form (2.8) near the interior of a divisor and satisfies the polyhomogeneity
assumption.
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To understand the form the Hodge–de Rham operator takes on U, we use the
decomposition for the exterior derivative from [5, Prop. 10.1], elaborated in [6,
Prop. 3.4] to show that there is a flat connection on the bundle of fiber harmonic
forms. Note that the choice of a submersion metric ��h C k on @M induces a
connection on the bundle T @M , i.e. a choice of horizontal space TH@M on which
the map �� restricts to an isomorphicm of the fibres to T Y . (Indeed this is just
the space perpendicular to the vertical tangent bundle T .@M=Y /.) Correspondingly
there is a decomposition of the form bundle

ƒd .@M/ D
X

pCqDd

ƒp;q.@M/;

whereƒp;q.@M/ D ƒpT �H M ˝ƒ
qT �.@M=Y /, and where T �H M D ��T �Y

and T �.@M=Y / is its orthocomplement. Thus differential forms on @M can be
written as linear combinations

��˛ ^ ˇ; ˛ 2 �p.Y /; ˇ 2 �qT �.@M=Y /; (2.9)

and, for y 2 Y , identifying ƒT �.@M=Y / over ��1.y/ with ƒ.��1.Y // via the
inclusion �W��1.y/ �! @M , we can define a fiber exterior derivative

d@M=Y .�
�˛ ^ ˇ/ D ��˛ ^ d@M=Y ˇ (2.10)

(where on the right-hand side d@M=Y is the differential on the fibre).
There is a decomposition of the exterior derivative, which we denote using the

convenient notation from [3, Sect. 1]

d@M D d
0;1
@M
C d

1;0
@M
C d

2;�1
@M

;

where d0;1
@M
D d@M=Y while d1;0

@M
is the operator (denoted by ıY in [5, Prop. 10.1])

defined using a connection @M=Yr on the vertical tangent space T .@M=Y / — in
particular we can fix a submersion metric g@M and define our vertical connection
using its vertical projections and Levi-Civita connection. Here d2;�1

@M
D R is defined

in terms of the curvature of the fibration. Their crucial properties in this context are
that d1;0

@M
d
0;1
@M
D �d

0;1
@M
d
1;0
@M

and that (having chosen a connection on the fibration)
they behave nicely with respect to the decomposition of differential forms

�r.@M/ D
M
pCqDr

�p;q.@M/;

where �p;q is the C1.@M/ linear span of homogeneous forms ˛ ˝ ˇ where ˛ is a
horizontal form of degree p and ˇ is a vertical form of degree q; specifically

d
j;k

@M
W�p;q.@M/ �! �pCj;qCk.@M/:
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We now discuss vertical harmonic forms. Let .d@M=Y /� denote the adjoint
of d@M=Y with respect to our fixed submersion metric, and write

Ä@M=Y D d@M=Y C .d@M=Y /�:

Over the base Y we have the bundle of vertical harmonic forms H�.@M=Y / �! Y

whose fibers are ker Ä@M=Y . A fiber harmonic form can be thought of as a linear
combination of forms as in (2.9) where ˇ satisfies Ä@M=Y ˇ � 0, in particular the
smooth sections ofH�.@M=Y / are naturally isomorphic to a subspace of the sections
of ��.@M/, and we denote by…0 the L2-orthogonal projection onto the closure of
the subspace generated by these forms. Thus, incidentally, H�.@M=Y / inherits a
flat connection from the operator…0d

1;0
@M
…0:

Shifting the focus back to our collar neighborhood U of @M , we can, by thinking
of the Œ0; 1/x factor in Œ0; 1/x � @M as lying in the base of the induced fibration with
typical fibreZ (and base Œ0; 1/x �Y ), repeat the above argument and obtain a bundle
of vertical harmonic forms over Œ0; 1/x � Y , sections of which, again, my be thought
of as linear combinations of forms as in (2.9), but now with ˛ 2 ��.Œ0; 1/x � Y /.
For us it is most convenient to work with fiber harmonic forms living over our tubular
neighborhood U which are also of bounded length with respect to our ice-metric g.
Thus we take H to be the direct sum of the spaces

H D

fM
qD0

Hq; where Hq
WD ���.Œ0; 1/x � Y / ^ x

kqH
q

@M=Y
: (2.11)

Denote the projection onto the space of fiber harmonic forms by

…H W x
s0L2.iceƒ�/ �! xs0H ; (2.12)

where …H is the L2-orthogonal projection onto the closure of the subspace of
��ice.U/ WD C

1.UI iceƒ�/ given by viewing sections of H as lying over U. Then a
form � 2 ��ice.U/ can be written locally as a linear combination of forms

� D adx ^ ��˛ ˝ xkpˇ C b ^ ��˛0 ˝ xkpˇ0;

a; b 2 C1.Œ0; 1/x � Y /; ˛; ˛
0
2 ��.Y /; ˇ; ˇ0 2 ƒp.@M=Y /;

and
…H� D adx ^ �

�˛ ˝ xkp…0ˇ C b ^ �
�˛0 ˝ xkp…0ˇ

0;

with…0 as above. Since

…0ˇ D 0 ” 9; �@M=Y  D ˇ;

solving termby term for a form� expanded inx near @M shows that for�2xs0��ice.U/,
p 2 N,

…H� D Oiceƒ�.x
s0Cp/ ” 9 2 xs0Cp��ice.U/; such that �@M=Y  D �:

(2.13)
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We now compute the Hodge–de Rham operator for an exact ice-metric g0. There
are decompositions of dM and the dual ıM on U corresponding to that of d@M ,
obtained by the orthogonal decomposing of the ice-tangent bundle

iceT D TH@M � x
�kT .@M=Y / � T Œ0; 1�x :

Writing differential forms ˛ D �.dx/dx ^ ˛ C dx ^ �.dx/˛, we then have

d jU D

�
x�kd@M=Z C ıY C x

kR 0

@x C kx
�1N �.x�kd@M=Z C ıY C x

kR/

�
; (2.14)

and taking adjoints with respect to g0 and writing ı@M=Z WD .d@M=Z/�,

ıjU D

�
x�kı@M=Y C .d

1;0
@M
/� C xkR� �@x � kx

�1.f � N/
0 �.x�kı@M=Y C .d

1;0
@M
/� C xkR�/

�
:

(2.15)
To state themain result wewill need regarding the structure of theHodge–deRham

operator, we first point out that the operators d and ı are both elements in the algebra
of differential operators Diff�ice.M I iceƒ�M/ generated by the ice-vector fields Vice
and the smooth (or more generally polyhomogeneous) endomorphisms of iceƒ�M .
In fact, for any X 2 Vice, the operator rX 2 Diff1ice.M I iceƒ�M/; indeed, one can
check that rX 2 Diff1ice.M I iceTM/ using the the Koszul formula, from which the
claim follows.

Proposition 2.2. Let g be an incomplete cusp edge metric as above, in particular
satisfying (2.8) for some exact ice-metricg0. TheHodge–deRhamoperatorÄ D dCı
decomposes as

Ä D Ä0 C P CE; P 2 xkDiff1ice; E 2 xk�1 End.iceƒ�M/; (2.16)

where Ä0 D d C ıg0 is the Hodge–de Rham operator for g0, so

Ä0 D
�
x�kÄ@M=Y C Ä1;0

@M
C xkS �@x � kx

�1.f � N/
@x C kx

�1N �.x�kÄ@M=Y C Ä1;0
@M
C xkS/

�
;

where Ä1;0
@M
D d

1;0
@M
C .d

1;0
@M
/� and S D R C R�. Here Ä@M=Y depends on the

base Y parametrically, and acting on vertical differential forms is equal to the
Hodge–de Rham operator for the Riemannian manifold kjy .

We remark further on the space xkDiffice.M I
iceƒ�M/ of operators among which

the error P in the proposition lies. Such operators are in particular b-differential
operators on ice-forms with polyhomogeneous coefficients

P 2 Diff1b;phg.M I
iceƒ�M/: (2.17)
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This is the space of differential operators generated by Vb;phg, the polyhomogeneous
vector fields tangent to the boundary @M . Concretely, it satisfies

P D ax@x C b
i@yi C c

˛@z˛ C d (2.18)

for polyhomogeneous, bounded endomorphisms a; bi ; c˛; d , and where repeated
indices are summed over. This follows from xkVice � Vb . In general, an element
Q 2 Diffmb;phg.M I iceƒ�M/ also satisfies

Q.xk/ D O.xk/ (2.19)

for  2 C1.M I iceƒ�M/, and is given locally by polyhomogeneous linear
combinations of x@x; @y ; @z , i.e.

Q D
X

iCj˛jCjˇ j�m

ai;˛;ˇ .x@x/
i@˛y@

ˇ
z ;

where ai;˛;ˇ is a polyhomogeneous bounded endomorphism of iceƒ�M .

Proof of Proposition 2.2. Wewill write the Hodge-de Rham operators dCı in terms
of the Levi-Cevita connection and exterior multiplication � (defined as the operator
which takes a differential form! to the endomorphism� 7! !^�. By [5, Prop. 3.53]
we canwrite dCı D Tr clg ıgr where cl D ��� for � exterior multiplication onƒ�,
� its dual with respect to g, and gr is the Levi-Cevita connection on differential forms.
We choose an orthonormal frame for the exact metric g0 in the standardway, i.e. let g0
be induced by a submersionmetric g@M on @M and let ff ˛g[feig be an orthonormal
frame of T �.@M/ where the f ˛ are horizontal and the ei vertical differential forms.
Then fdx; f ˛; xkeig is an orthonormal basis for g0 and by Gram-Schmidt there is
an orthonormal basis of the form˚

!0 D dx CO�1ice
.xk/; !˛ D f ˛ CO�1ice

.xk/; �i D xkei CO�1ice
.xk/

	
;

where �1ice.xk/ a polyhomogeneous differential 1-form ˇ with kˇkg D O.xk/.
Correspondingly the dual vector fields satisfy !0 � @x; !˛ � f˛; �i � ei 2 xkVice.
Moreover, for X 2 Vice, the tensor grX � g0rX is O.xk�1/ as an endomorphism
of iceƒ�M , while clg � clg0 D O.xk/, so

d C ı D clg.�/
g
r� C

bX
˛D1

clg.!
˛/gr!˛ C x

�k

fX
iD1

clg.�
i /gr�i

D clg0.dx/
g
r@x C

bX
˛D1

clg0.f
˛/grf˛ C x

�k

fX
iD1

clg0.e
i /grei C x

kDiff1ice
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D clg0.dx/
g0r@x C

bX
˛D1

clg0.f
˛/g0rf˛ C x

�k

fX
iD1

clg0.e
i /g0rei

COEnd.iceƒ�/.x
k�1/C xkDiff1ice;

(2.20)

which is what we wanted.

The Hodge–Laplacian � D Ä2 D dı C ıd can now be decomposed along the
same lines. Proposition 2.2 together with the anti-commutation of Ä@M=Y and ÄH
gives:
Proposition 2.3. Locally over the base, � can be decomposed as follows

� D �0 C x
�k zP C x�1 zE; (2.21)

where �0 D Ä20, i.e.

�0 D Id2�2
�
� @2x �

kf

x
@x C

1

x2k
�@M=Y C�H

�
C

�
k N.1 � k.f � N//x�2 �2kx�k�1d@M=Z
�2kx�k�1ı@M=Y k.f � N/.1 � k N/x�2

�
; (2.22)

where �H D .Ä1;0@M /
2, �@M=Y D Ä2

@M=Y
, and

zP D Ä@M=YP C PÄ@M=Y

with P as in Proposition 2.2 and zE 2 Diff2b;phg.M/.

3. The heat kernel

In this section we construct a manifold with cornersM 2
heat as in (1.20) together with

a fundamental solution to the heat equation which is a polyhomogeneous conormal
distribution onM 2

heat with prescribed leading order terms in its asymptotic expansions
at the various faces (see Theorem 3.7). To do so, after the construction of M 2

heat,
we perform a parametrix construction and then use this parametrix to obtain the
fundamental solution itself via a Neumann series.

3.1. Heat double space. The spaceM 2
heat is obtained by performing three consecu-

tive quasihomogeneous radial blowups ofM �M � Œ0;1/t . HereM 2
heat is a manifold

with corners which is a resolution of M �M � Œ0;1/t in the sense that there is a
map ˇ as in (1.20) with the property that ˇ�C1.M �M � Œ0;1/t / � C1.M 2

heat/

is a proper subset — exactly which “additional” smooth functions appear on M 2
heat
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is the main content of the construction, as we discuss now in detail. To describe the
construction we follow the development in [16] closely.

A quasihomogeneous blowup of a manifold with corners (mwc) X is a mwc
ŒX IY �q-hom constructed from: (1) a boundary p-submanifold Y � X , and (2) an
extension of Y of order a in X . We define these objects in detail now.

Recall that as X is a mwc, near every point p 2 X there is a neighborhood V

which is diffeomorphic to a an open subset of RkC � Rn�k , and thus there exist
coordinates functions .x1; : : : ; xk; y1; : : : ; yn�k/ with xi � 0 for all i D 1; : : : ; k

with independent differentials onV . A p-submanifold Y is an embeddedmwc Y � X
such that for each p 2 Y there exist such local coordinates on an open set V 3 p

such that

Y \ V D fx0 D .x1; : : : ; xr/ D 0; y
0
D .y1; : : : ; ym/ D 0g;

where r < k;m � n � k; (3.1)

so y00 D .xrC1; : : : ; xk; ymC1; : : : ; yn�k/ are local coordinates on Y . Given a
boundary p-submanifold Y (i.e. a p-submanifold Y which is a subset of a boundary
hypersurface (bhs) of X ), we need in addition an extension of Y to a an interior
p-submanifold zY with zY \ @X D Y . Given such zY , locally we can take a coordinate
neighborhood V with coordinates z D .x0; y0; y00/ as above such that,

Y \ V D fx0 D 0 D y0g and zY \ V D fy0 D 0g:

To add flexibility to the choice of the extension, we define an extension of Y or order
a 2 N to be an equivalence class of p-submanifolds zY with @X\ zY D Y which agree
to order a at Y , in the sense that for zY ; zY 0 two such extension and coordinates chosen
as above for zY , then zY 0 \ V D fy0 D G.x0; y00/g satisfiesDx0;y00G D O.jx0ja/.

Given such data, i.e. an mwc X , a boundary p-submanifold Y � X and zY an
interior extension to order a of Y , one can define the quasihomogeneous blowup

ˇW ŒX; Y �q-hom �! X (3.2)

as follows. On each coordinate chart inV in the previous paragraph, with coordinates
z D .x0; y0; y00/we define the quasihomogeneous cylindrical decomposition (see [16,
eq. 12],

R WD .x2a1 C � � � C x
2a
r C y

2
1 C � � � C y

2
m/
1=2a;

SCa WD f.!; �/ 2 RrC �Rm W R.!; �/g D 1;
(3.3)

so that, in an open rectangle V 0 � V 00 � V where V 0 D f.x0; y0/ W jx0j; jy0j < cg,
V 00 D fy00 W jy00j < cg, we have the map

ˇjloc W ŒV IY \ V �q-hom D S
C
a � Œ0; �/R � V 00 �! V

..!; �/; R; y00/ 7�! .R!;Ra�; y00/:
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The open mwc’s can be patches together to invariantly define the total space of a the
resolution in (3.2).

From this construction it is clear that the function R in (3.3) is smooth on
ŒV IY \ V �q-hom. The locus fR D 0g is a boundary hypersurface of the (open) mwc
ŒV IY \ V �q-hom. Picking a covering of Y by a finite collection of such coordinate
charts, Vi ; i 2 I , each with its corresponding function Ri , and choosing a partition
of unity subordinate to Vi , the function � D

P
i2I �iRi is then a boundary defining

function for an introduced boundary hypersurface. More precisely, define, for a
mwc X ,

M1.X/ DM.X/ D fH �M W H a bhs of Xg:
Then

M.ŒX; Y �q-hom/ DM.X/ [ ffY ; ffY WD f� D 0g; (3.4)
where each H 2 M.X/ lifts to a bhs by taking the closure of the pullback of lift,
cl.ˇ�1.H n @H//. (Alternatively one can take M.X/ to be the set of open bhs, and
then write f� D 0gı instead.) Here � is a boundary defining function for ffY , in
particular � is smooth on ŒX; Y �q-hom whereas it is not smooth as a function on X .
Moreover the ratios of functions vanishing at Y are now smooth on certain open
subsets of ŒV ;V \Y �q-hom, for example, notation as in the previous paragraph, yi=xaj
(defined is smooth away from the closure of the lift of xj D 0 via ˇV . When a D 1
this is just a homogeneous radial blow up.

For a detailed definition of such spaces we refer to Melrose’s work [31, Chapter 5]
which contains a more general construction which does not assume that one has in
particular a fixed extension for the manifold N away from the boundary, (whereas
here we fix once and for all a boundary defining function x as in (2.1), which will
give all the desired extensions below). See also [16, 22].

We will need a slight extension of the concept of quasihomogeneous blowup,
which are sufficient for the elliptic equations studied in [16], to include the presence
of the time variable t . There will be an additional defining function s for the
boundary p-submanifolds Y will blow up at a different homogeneity than that of
the other defining functions; that is, with x0; y0; y00 coordinates as in (3.1), we will
have x0 D .s; x1; : : : ; xr/, and we will want to blow up so that s=x2ai is smooth for
i D 1; : : : ; r . Luckily, in all cases below, the function s can be defined on a full
tubular neighborhood of Y � V in such a way that for some (open) mwc V 0 we have
V D RCs �V 0. This gives a special bhsHs WD fs D 0g in the openmwcRCs �V 0. We
then blow up quasihomogeneously but with s being “parabolic” with respect to the y
variables, namely we will have a boundary defining function, first defined locally on
coordinate charts in O � V 0, by

zR D .s C x2a1 C � � � C x
2a
r C y

2
1 C � � � C y

2
m/
1=2a; (3.5)

and, parallel to the simpler quasihomogeneous case above, defining
zSCa WD f.�; !; �/ 2 RrC1C �Rm W zR.�; !; �/g D 1;



Vol. 94 (2019) Spectral and Hodge theory of “Witt” incomplete cusp edge spaces 717

the (locally defined) resolutions

Œ0; �/ zR �
zSCa �! RCs �O; .R; .�; !; �// 7! .�R2a; R!;Ra�; y00/

patch together to form a global resolution which we continue to call ŒX; Y �q-hom. We
continue to refer to these as quasihomogeneous blow ups.

We now construct the heat double space M 2
heat via three blow ups. We first

define the blow ups iteratively, so that M 2
heat is at least defined, and then circle

back to discuss each blow up in detail, defining explicit coordinate charts near each
introduced boundary hypersurface which will be used in subsequent computations.

We begin by consideringM �M � Œ0;1/t . Consider the subset

B0 WD @M �fib @M � f0g �M �M � Œ0;1/t (3.6)

where the fiber diagonal @M �fib�@M is the inverse image of diagY via ��� W @M �
@M �! Y �Y . Blowing up homogeneously to form ŒM �M � Œ0;1/t IB0� gives a
manifold with corners with new bhs ff1. We let �0 be a bdf of ff1 andwrite �t for bdf of
the lift of ft D 0g to the blow up. We may also define the fiber diagonal of the tubular
neighborhood of the boundary U�U� f0g �M �M � Œ0;1/t using the fibration
U D @M � Œ0; 1/x �! Y � Œ0; 1/x , so that U�fib U D @M �fib �@M � Œ0; 1/x and
consider the proper tranforms of this set, and intersect it with ff1, i.e. define

B1 WD ff1\ cl.@M �fib �@M � .0; 1/x � f0gt /:

This we blow up quasihomogeneously so that �t plays the role of the slow bdf t in (3.5)
to form ŒŒM �M � Œ0;1/t IB0�IB1�q-hom Finally we blow up, homogeneously, the
lift of the diagonal at t D 0, that is the proper transform of diag.M/�ft D 0g; setting
B2 WD cl.diag.M ı/ � f0gt / with the closure in ŒŒM �M � Œ0;1/t IB0�IB1�q-hom
we have

M 2
heat D ŒŒŒM �M � Œ0;1/t IB0�IB1�q-homIB2�: (3.7)

We nowdiscuss this space inmore detail at each step, including explicit coordinate
functions.
1. The blow up of B0, the fiber diagonal in the corner. This is the subset of
@M �@M �f0g �M �M � Œ0;1/t consisting of points .p; q; 0/with �.p/ D �.q/
where � is the projection of the fibration @M onto its base. If local coordinates
.x; y; z/ are chosen as in (2.3) and identical local coordinates . Qx; Qy; Qz/ are fixed on
the second copy ofM in the productM �M � Œ0;1/t , then in this local coordinate
chart B0 is given by fx D zx D t D y � zy D 0g. We can define the intermediate
blow up space

M 2
heat;1 WD ŒM �M � Œ0;1/t IB0�; (3.8)

with t � x2 � zx2 � jy � zyj2 at the introduced bhs. To be precise, M 2
heat;1 is the

parabolic blowup in time of the setB0 as defined in [30, Chapter 7]. In particular there
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is a blowdown map ˇ1WM 2
heat;1 �! M 2 � Œ0;1/t , and polar coordinates onM 2

heat;1
near ˇ�11 .B0/ (once coordinates y; z are chosen on @M ) are given by

� D
�
t C x2 C zx2 C jy � zyj2

�1=2
;

� D

�
t

�2
;
x

�
;
zx

�
;
y � zy

�

�
D .�t ; �x; �zx; �y/; along with zy, z, zz:

(3.9)

The set f� D 0g is a boundary hypersurface onM 2
heat;1 introduced by the blowup; we

call it ff1; we will see that only the projection of the heat kernel onto the zero mode
inZ is relevant at the face ff1. Letting s D x=zx, the interior of ff1 is the total space of
a fiber bundle over Y � .0;1/s , which is the fiber product @M �fib @M �fib T Y �Rt 0
where t 0 is a rescaled time variable (see (3.11) below). Indeed, the map from ff1 to
the base Y is simply ˇ1jff1
2. Blow up of B1. The preceding blow up does not resolve the term t

x2k
�@M=Y in

t .@t C �/ (see (2.22)). To accomplish this, we blowup the subset of ff1 defined in
polar coordinates by

B1 WD f� D 0; �t D �y D 0; �x D �zxg; (3.10)

i.e. by � D 0; � D .0; 1=
p
2; 1=
p
2; 0/, quasihomogeneously so that near the new

face, ff, the function t=x2k is smooth, and furthermore so that t@2x is non-degenerate,
the latter condition being satisfied if .x � zx/=

p
t is smooth up to the interior of ff.

Near B1 we can use projective coordinates

zx; s D x=zx; � D
y � zy

zx
; t 0 D t=zx2; (3.11)

along with zy; z; zz. The quasihomogeneous blow up of B1 creates another
intermediate spaceM 2

heat;2. This space has t 0 � j�j2 � .s � 1/2 � zx2.k�1/, and we
have polar coordinates near ff given by

x� D
�
.t=zx2/C zx2.k�1/ C .s � 1/2 C .jy � zyj=zx/2

�1=2.k�1/
;

x� WD .x�t ; x�zx; x x; x y/ D

�
t

zx2x�2.k�1/
;
zx

x�
;
x � zx

zxx�.k�1/
;
y � zy

zxx�.k�1/

�
along with zy; z; zz:

(3.12)

Let
ˇ2WM

2
heat;2 �!M �M � Œ0;1/t (3.13)

denote the blowdown map. Then, similar to the setup at ff1, if we define � D
.x � zx/=zx, the interior of ff is a bundle over Y � R� whose fiber over p 2 Y is
isomorphic to TpY �Z2 �R zT for zT the rescaled time variable below.

See Remark 3.4 below for further discussion of the need for the two distinct blown
up faces ff and ff1.
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3. Blow up of the time equals zero diagonal, B2 WD cl.ˇ2.diag.M ı/ � ft D 0g//.
Note thatB2 intersects the face ff at x� D .1; 0; 0; 0/, so near the intersection, defining
the functions

zx; � D
s � 1

zxk�1
D
x � zx

zxk
; z� D

y � zy

zxk
; zT D

t 0

zx2.k�1/
D

t

zx2k
; (3.14)

we have the projective coordinates

zx; zy; �; z�; zT ; z; zz: (3.15)

The full heat space is M 2
heat is the parabolic blow up of B2 in M 2

heat;2, and has has
zT � �2 � .z�zz/2 at the introduced bhs. The face tf introduced by the final blowup
satisfies

tfı ' iceTM; (3.16)

where iceTM is the incomplete cusp edge tangent bundle defined in (2.6). Concretely,
in coordinates .x; y; z/ if we set

� D
x � zx
p
t
; �i D

yi � zyi
p
t
; �˛ D

z˛ � zz˛
p
t
zxk; � D

p
t

zxk
; (3.17)

then .x; y; z; �; �; �; �/ (or .zx; zy; zz; �; �; �; �/) form local coordinates near the
intersection of tf with ff and away from t D 0, and the association � 7! @x , �i 7! @yi ,
�˛ 7! x�k@z˛ induces the map.

In summary, we have constructed a manifold with corners M 2
heat, depicted in

Figure 1, with a blowdown map ˇ as in (1.20), such that M 2
heat has six total faces,

three of them being the lifts of the standard faces

lf WD cl.ˇ�1.fx D 0gı//; rf WD cl.ˇ�1.fzx D 0gı//;
tb WD cl.ˇ�1.ft D 0gı//;

(3.18)

and then the three faces ff1;ff; and tf constructed (in that order) by radial blowup as
described above. Denoting the set of the six boundary hypersurfaces by M.M 2

heat/ D

flf; rf; tb;ff1;ff; tfg, and given � 2M.M 2
heat/, below we will let �� denote a boundary

defining function for �, so �� 2 C1.M 2
heat/ satisfies that f�� D 0g D � and d��

is non-vanishing on � and �� � 0. We can take �ff D x� as in (3.12). Note also
that x vanishes at lf;ff1; and ff, and although it is not a boundary defining function
of any of these three boundary hypersurfaces, for any choice of boundary defining
functions �lf; �ff1 ; an �ff , it holds that f WD x=�lf�ff1�ff is a smooth, positive function
on M 2

heat. It follows, for example by setting ��lf D f � �lf that one can choose these
three boundary defining functions so that

�lf�ff�ff1 D x; �rf�ff�ff1 D zx: (3.19)
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The same argument applies to �, which vanishes on ff1 and ff, i.e. we can take

�ff1�ff D �; i.e. �ff D �=x�:

In Theorem 3.7 we will show that the heat kernel lifts to be polyhomogeneous
onM 2

heat.

M 2
heat

tf

ff

ff1

R D fzx D 0g L D fx D 0g

tb

� D
p
t

zxk

� D x�zxp
t

� D y�zy
p
t

� D .z�zz/zxk
p
t

zx; zy; zz

x zx

tˇ

� is a b.d.f. for tf

zx is a b.d.f. for ff

zx

� D x�zx

zxk

zT D t

zx2k

zx

s � 1 D x�zx
zx

T D t
zx2

ff1ff

Figure 1. The heat double space (upper left) and the various intermediate blowups together with
their blow down maps.

3.2. Model operators. The blown up spaceM 2
heat is useful in the construction of a

parametrix for the heat equation in part because the operator @tC� (more specifically
t .@tC�/) behaves nicely at the three introduced boundary hypersurfaces ff;ff1; and tf;
in particular, the first steps in the parametrix construction involve finding the right
asymptotic behavior for the heat kernel so that the heat equation (1.14) is satisfied at
least to leading order at ff;ff1; and tf.

Thus, we consider the operator � acting on the left spacial factor of M �M �
Œ0;1/t , and the pullback ˇ�.t.@t C�// toM 2

heat, and show that this restricts to an
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operator at tf. To be precise, fix a point p 2M and consider the fiber tfp D ��1.p/
where

� W tf �! diagM DM

is the projection onto the diagonal (or more concretely it is ˇjtf). In the interior
of tf, i.e. away from the intersection with ff, this is standard [30], so we concern
ourselves only with an open neighborhood of the intersection of tf with ff. Indeed,
working locally over the base in both spacial factors, consider a subset of tf of the
form f.zx; zy; zz; �; �; �; �/ W .zx; zy; zz/ 2 Og. Now note

p
t@x D @� ;

p
t@y D @�;

p
t

xk
@z D @� CO.�/; (3.20)

and
t@t D

1

2
.�@� �R/ ; (3.21)

where R D �@� C � � @� C �@� is the radial vector field on the fiber. Letting

�L; �RWM �M � Œ0;1/t �!M

denote the projections onto the left and right M factors, and End �! M �M the
endomorphism bundle, whose fiber at .p; q/ 2M ı�M ı is End.ƒ�q Iƒ�p/, for t > 0,
the heat kernel restricted to the interior will be a smooth section of this bundle. To
study the heat kernel at the boundary we use the incomplete cusp edge forms and the
corresponding endomorphism bundle End.iceƒ�/ back toM �M � Œ0;1/t and then
toM 2

heat via the blowdown ˇ. As usual, restricting to the spacial diagonal gives the
“little endomorphism” bundle

End.iceƒ�/jdiag.M/ ' end.iceƒ�/;

where end.iceƒ�/ �!M is the endomorphism bundle of the exterior algebra ofM .
The restriction to the time face, ˇ� Endjtf , is isomorphic to the pullback of end.ƒ�p/
to the tangent bundle ofM via the projection map.

Writing w D .x; y; z/, zw D .zx; zy; zz/, sections of ˇ� End near the fiber of tf
over p can be written

˛ D
X
I;J

aIJdwI ˝ @ zwJ ; (3.22)

where I; J run over all multi-indices and @ zwJ is dual to dwJ , and here aIJ D
aIJ .w; zw; t/. We claim that, writing sections of ˇ� End near tf as sections of
ˇ� Endjtf ' ƒ�.M/˝ƒ.M/,

t .@t C�/ D
�1
2
.�@� �R/C �.�/

�
˝ IdCO.�/; (3.23)
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where �.�/ is a constant coefficient differential operator in the coordinates „ D
.�; �; �/ depending on the metric g at p D .zx; zy; zz/, namely

�.�/ D .d„ C ?
�1
g.p/d„?g.p//

2; (3.24)

acting on differential forms on the vector space iceƒ�p.M/ with metric g.p/. Indeed,
let w be geodesic normal coordinates. In the interior of tf away from ff we have
coordinates „ D .w � zw/=

p
t ; zw;
p
t . Then

t .@t C�/˛ D
�
t .@t C�/

X
I;J

aIJdwI

�
˝ @ zwJ

and moreover

?dwI ˝ @ zwJ D .?dwI /˝ @ zwJ

D ˙dwIc ˝ @ zwJ CO.w � zw/

D ˙.d zwIc C
p
td„Ic /˝ @ zwJ CO.

p
t„/

D .?g.p/d zwI /˝ @ zwJ CO.zt /: (3.25)

Similarly, letting the exterior derivative act on the left gives

d.adwI ˝ @ zwJ / D .@„iad zwi ^ zwI /˝ @ zwJ :

To motivate our construction of the heat kernel further, in a neighborhood of tf
let  be a section of End with the property that  j diagM D Id on the form bundles,
and consider the section of ˇ� End onM 2

heat of the form

K.p; q; t/ D
1

.2�t/n=2
e�G.p;q/=2t; (3.26)

such that G.p; q/ satisfies that ˇ�.G.p; q/=t/jtf D k„k2g ; that is, that G.p; q/=t
restricts to the metric function on tf. Such a form  and functionG can be constructed
but we neither prove nor use this; we merely use it as motivation. It is straightforward
to check that for any smooth compactly supported form ˛

lim
t!0

Z
M

K.p; q; t/˛.q/ dVolq D .4�/�n=2
Z
M

e�k„k
2
g.p/=4˛.p/

p
g.p/jd„j

D ˛.p/; (3.27)

and in fact the convergence takes place in L2. (In fact, such an endomorphism  can
be constructed easily by taking the identity map on iceƒ� overM , pulling this back
via ˇ to ˇ� Endjtf and extending off smoothly in a neighborhood. On each exterior
algebra ƒ�pM , the identity can be expressed in terms of a basis ei with dual basis e�i
as
P
I eI ˝ e

�
I . In a neighborhood of tf\ff we can take the basis ei to be dx, dyi ,

xkdz˛ , i.e. we can take the ei to be a basis of forms for iceƒ� all the way down
to x D 0.)
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Working in the coordinates (3.17), since t�n=2 D ��nzx�nk , the Taylor expansion
of the heat kernel at tf should take the form

1

.4�/n=2zxkn
��n

1X
jD0

�j bj ; (3.28)

where the bj D bj .zx; zy; zz; �; �; �/ are sections of ˇ� End, which we again write in
a neighborhood of tf\ff as sections of End.iceƒ�/ pulled back to the fibers of tf.
Writing each bj as a finite sum of terms of the form

˛ ˝ g�1ˇ; (3.29)

where ˛ and ˇ are sections of iceƒ� and g�1 indicates taking the dual vector field,
we see that by (3.23) we have,��n

2
�
1

2
RC �.�/

�
˝ Id

�
b0 D

��
n

2
�
1

2
RC

�
�„ 0

0 �„

��
˝ Id

�
b0: (3.30)

The only solution to this equation which gives the identity operator at t D 0 is

b0 D e
�jj„jj2=4

� Id : (3.31)

The procedure of solving for the remaining bj is standard [30, Chapter 7]; letting
the Laplacian act on this expansion we show that on each term aj it acts fiberwise
like a constant coefficient, second order elliptic differential operator plus the radial
vector field plus a constant corresponding to the order of the term in the expansion.
We have the following
Lemma 3.1. There exist sections bj of Aphg.Endjtf/ satisfying

bj D e
�k„k2=4zbj .zx; zy; zz; �; �; �/;

where zbj is a polynomial in �; �; � and a polyhomogeneous section of End over tf,
such that for any distribution H 0 in Aphg.End/ with asymptotic expansion near tf
given by (3.28) we have

t .@t C�/H
0
D O.�1/;

i.e. t .@t C �/H 0 vanishes to infinite order at the blown up t D 0 diagonal, and,
moreover, the asymptotic sum of the bj exists and yields such anH 0.

The existence of a distribution H 0 as in Lemma 3.1 is only a first step in
constructing a parametrix for the heat kernel. We will discuss the rest of the process
in §3.3.

A useful double check of the order of blowup of the heat kernel at ff is the
following. Near ff\ tf we have

ı.x � zx/ı.z � zz/ı.y � zy/ D ı.�� zxk/ı.�� zxk/ı.��/ D
1

�nzx.n�f /k
ı.�/ı.�/ı.�/:
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Since Id D limt&0H dVolg � limt&0H zxkf d zxd zydzz, we confirm that H should
have order �nk at ff. In fact, we can deduce more; considering zxknH jff , on the
interior of ff we can use coordinates in (3.15), we get that

ı.x � zx/ı.y � zy/ı.z � zz/ D zx�.n�f /kı.�/ı.z�/ı.z � zz/; (3.32)

which means that, on the face ff, we expect that the restriction zxnkH jff will be given
by ı.�/ı.z�/ı.z � zz/ at least as the time variable zT D t=zxk goes to zero, as that is
the region in which the action of H is definitively approximated by the identity. On
the other hand, zx commutes with the heat operator @t C�. As we will see in (3.35),
t .@t C �/ restricts to an operator on ff and defines a fiber-wise heat type operator
on ff, so we expect to have

t .@t C�/jff.zx
nkH/jff D 0: (3.33)

This, together with (3.32), implies that an ansatz for the heat kernel should include
that on each fiber of ff, zxnkH jff is the fundamental solution to the induced heat
equation on the fiber, more precisely, it is the solution which equals ı�D0ız�D0 IdZ
at time equals zero. The induced heat equations are translation invariant in � and z�,
thus induced by convolution operators, and the heat kernels we speak of are the
convolution kernels in � and z�.

As for the blowup at ff1, as we will see below, the operator acts as a modified heat
operator in @x and Y on the bundle of fiber harmonic forms, so in the coordinates
in (3.11) we will have

ı.x � zx/ı.y � zy/ı.z � zz/ D
1

zx1Cb
ı.s � 1/ı.z � zz/ı.�/: (3.34)

In this case, t .@t C�/ only admits a restriction to ff1 on the fiber-harmonic forms H ,
on which ı.z � zz/ becomes projections …Z;y onto the kernel of �@M=Y . Thus we
expect that zx1CbCkfH jff1 on fiber harmonic forms is given by the convolution kernel
for the heat kernel in �, times the dilation invariant kernel for the heat kernel in s
with limit ısD1 at time 0.

We now compute the asymptotic behavior of t .@t C �/ at the faces ff and ff1.
First we will work at ff.
Proposition 3.2 (The model problem on ff). The operator

Nff.t.@t C�
g// D t .@t C�

g/jff

acts fiberwise on ff, and is expressed in the coordinates in (3.15) by

Nff.t.@t C�
g// D zT

�
@ zT C

�
�@2� C�� C�@M=Y 0

0 �@2� C�� C�@M=Y

��
(3.35)

on the fiber above y 2 Y . Here �� is the constant coefficient Hodge–Laplacian
on the tangent space TyY with translation invariant metric h.y/, and �@M=Y is the
Hodge–Laplacian on .Z; ky/.
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The situation is more delicate at ff1. As we will see in §3.3, near ff1, it will
suffice to consider t .@t C�/ restricted to fiber harmonic forms. Thus let  2 xsH
(see (2.11)) and so by assumption ı@M=Y ; d@M=Y  D 0. From (2.21) it follows that
for such fiber harmonic forms,

� D z�0 C x
�kÄ@M=YP CO.xs�1/; (3.36)

where z�0 acts on forms decomposed as in (2.14), as

z�0 D �@
2
x�
kf

x
@xC�HC

�
k N.1 � k.f � N//x�2 �2kx�k�1d@M=Z
�2kx�k�1ı@M=Y k.f � N/.1 � k N/x�2

�
:

The term x�kÄ@M=YP acts on polyhomogeneous forms as operators of order x�k ,
and thus in the heat operator t .@t C�/ there are term behaving like tx�k (on fiber
harmonic forms) but t=x�k is not a bounded function at ff1! On the other hand, if we
project back to the fiber harmonic forms we kill these terms; concretely, with …H

the fiber harmonic projector in (2.12), we have

…H�…H D
z�0 C x

�1 zE 0 (3.37)

where zE 0 2 Diff2b;phg (see (2.17)), and thus does not decrease the order of vanishing
of polyhomogeneous distributions. Defining

PA;B WD �@
2
s �

A

s
@s C

B

s2
: (3.38)

and

˛.N/ WD kf; ˇ.N/ WD k N.1�k.f �N//; .N/ D k.f �N/.1�k N/; (3.39)

we have the following.
Proposition 3.3 (Heat operator on fiber harmonic forms at ff1). Restricted to the fiber
harmonic forms H as defined through (2.11),

Nff1.t.@t C�
g// WD …H t .@t C�/…H jff1 (3.40)

restricts to the face ff1 in the coordinates (3.11) as

Nff1.t.@t C�
g// D t 0

�
@t 0 C

�
P˛.N/;ˇ.N/ C�� 0

0 P˛.N/;.N/ C��

��
: (3.41)

Remark 3.4. Analysis of the fiber harmonic forms is necessary in particular because
the structure of the operator �g is such that, off of the fiber harmonic forms, the
leading order term is x�2k�@M=Y , while restricted to the fiber harmonic forms
the leading order term drops in order. Indeed, if it weren’t for the presence of the
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term x�k zP in (2.21), which presents complications in the analysis, on fiber harmonic
forms �g would be given by to leading order by z�0. Indeed, the need for the two
different regimes represented by the boundary hypersurfaces ff and ff1 is exactly
this change in asymptotic order of the operator on and off the fiber harmonic forms.
Correspondingly, we will see below in the proof of Lemma 3.5 that the operator
t .@t C�/ restricted to ff has a fundamental solution which vanishes at ff1 to infinite
order off the fiber harmonic forms.

The heat equation for the regular singular ODEs in (3.38) has been studied in
detail. To such an operator there corresponds a pair of indicial roots given by the
order of vanishing of homogeneous solutions, specificallyPA;B.s`/ D 0 if and only if

` D
�.A � 1/˙

p
.A � 1/2 C 4B

2
: (3.42)

The numbers ` give important information about the operator PA;B , in particular
they give the order of vanishing of the Green’s function at s D 0. The operators that
will arise in our work are those in the matrices in (3.41). We define the indicial set

ƒ D

f[
ND1

�
�.˛ � 1/˙

p
.˛ � 1/2 C 4ˇ

2
;
�.˛ � 1/˙

p
.˛ � 1/2 C 4

2

�
D

f[
ND1

˚
� .kf � 1/=2˙ jk.N � f=2/C 1=2j;

� .kf � 1/=2˙ jk.N � f=2/ � 1=2j
	
:

(3.43)

Letting

�2 D B C

�
A � 1

2

�2
> 0 (3.44)

where � > 0, from [36,Vol. 2, Eqn. 8.60] there is a fundamental solutionHA;B.s; zs; t/

.@t C PA;B/HA;B.s; zs; t/ D 0 and H ! Id as t ! 0 on L2.sAds/: (3.45)

Indeed, one has the explicit formula

HA;B.s; zs; t/ D .szs/
�.A�1/=2 1

2t
e�.s

2Czs2/=4tI�

� szs
2t

�
(3.46)

where I� is the modified Bessel function of order � of the first kind [1, Chap. 9].
As discussed below (3.34), at the face ff1 we expect the heat kernel to be of order

zx�1�b�kf . Thus we expect to have

0 D t .@t C�/H D
1

zx1CbCkf
.t.@t C�//.zx

1CbCkfH/; (3.47)

and since …H t .@t C �/…H defines a differential operator on section of H ˝ SH�

restricted to ff1, we include in our ansatz for the fundamental solution (1.14), and
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indeed prove in Theorem 3.7 below, that there is a fundamental solutionH satisfying
that zx1CbCkfH has a smooth restriction to ff1, and writing

Nff1.H/ WD .zx
1CbCkfH/jff1 ; we have Nff1.t.@t C�//Nff1.H/ D 0: (3.48)

Furthermore, again as discussed below (3.34), it is sensible to include in the
ansatz for H that Nff1.H/ is the fundamental solution for the model operator
Nff1.t.@t C�//, meaning specifically that Nff1.H/ is a section of the restriction
of the sub-bundle End.H / to ff1 and is given using the fundamental solutions to
the model heat equations HA;B from (3.45)–(3.46). Specifically, we will have as an
ansatz that Nff1.H/ D �ff1 , where

�ff1;y WD

�
H˛;ˇ .s; 1; t

0/ 0

0 H˛; .s; 1; t
0/

�
.4�t 0/�b=2e�j�j

2
y=4t

0

; (3.49)

where ˛, ˇ,  are as in (3.39), and in particular continue to be operators depending
on the fiber form degreeN. The distributionNff1.H/ is polyhomogeneous on ff1, and
the leading order behavior at s D 0 satisfies that for 0 < c � t 0 � C <1, for some
smooth a.t 0/; b.t 0/,

H˛;ˇ .s; 1; t
0/ � s�.kf �1/=2a.t 0/s�.˛;ˇ/; H˛; .s; 1; t

0/ � s�.kf �1/=2b.t 0/s�.˛;/

(3.50)
with � as in (3.44)

�.˛; ˇ/ D

(
k.f=2 � N/ � 1=2 if N < f=2;
k.N � f=2/C 1=2 if N � f=2;

�.˛; / D

(
k.f=2 � N/C 1=2 if N � f=2;
k.N � f=2/ � 1=2 if N > f=2;

(3.51)

and thus by (3.50) on ff1 in the region 0 < c � t 0 � C <1,

�ff1 D O.s
x�/; where x�.N/ D

˚
�kN if N < f=2;
�kNC 1 if N D f=2;
�k.f � N/ if N > f=2:

(3.52)

In words, each P˛;ˇ has two indicial roots, the order ofH˛;ˇ for fixed zs; t > 0 is the
larger of these two, and p is the smaller of the leading orders ofH˛;ˇ andH˛; .

The behavior of the heat kernel at ff1 also shows what to expect at the left face,
the lift of x D 0. There we should just have the projection onto the fiber harmonic
forms times the leading order behavior of the H˛;ˇ and H˛; , acting appropriately
on iceƒ�, times the lifted heat kernel of the base Y . Indeed, we expect

…HH…H ' � WD

�
H˛.N/;ˇ.N/.x; zx; t/ 0

0 H˛.N/;.N/.x; zx; t/

�
HY ; (3.53)
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where HY is the heat kernel on .Y; h/ lifted to the tubular neighborhood U in (2.1)
via the projection and � acts on sections of the bundle of fiber harmonic forms H

with its grading by fiber form degree N (see §2). In fact, with x� D x�.N/ the fiber
degree dependent weight in (3.52), this � defines a section near the corner @M � @M
of the endomorphism bundle of the vertical harmonic forms:

�jU�U 2 x
z�.N/C1

�
U �UI˚

f
ND0H

N
˝ . zHN/�

�
(3.54)

where H and zH , respectively, the pullbacks of the fiber harmonic form bundle
(defined on a neighborhood U of the boundary) via the left and right projections of
U �U onto U. This is all cooked up so that

zx1CbCkf �jff1 D �ff1 ; (3.55)

indeed, extracting matrix components from the definition of �, using ˛ � kf , and
writing x=zx D s; t=zx2 D t 0 gives

zx1CbCkfH˛.N/;ˇ.N/.x; zx; t/HY

Dzx1CbCkf .xzx/�.kf �1/=2
1

2t
e�.x

2Czx2/=4tI�

�
xzx

2t

�
1

tb=2
edist.y;zy/

2=4t .1CO.t1=2//

D.x=zx/�.kf �1/=2
1

2t=zx2
e�.x

2Czx2/=4tI�

�
xzx

2t

�
1

.t=zx2/b=2
edist.y;zy/

2=4t .1CO.t1=2//

Ds�.kf �1/=2
1

t 02
e�.s

2C1/=4t 0I�

� s
2t 0

� 1

.t/0b=2
ej�j

2/2=4t 0.1CO.�ff1//;

which implies (3.55). Below, we mean by � a form which restricts to U �U to be
as above and extends to all ofM �M polyhomogeneously with the same index set
as �. (This is easily arranged, and the index set of � is well defined since U �U

intersects all bhs’s ofM �M .)
As discussed below (3.33), on the face ff, we expect that the heat kernel will have

leading asymptotic zx�nk , so we expect and prove that

Nff.H/ WD .zx
nkH/jff H) Nff.t.@t C�//Nff.H/ D 0: (3.56)

Again, we will set Nff.H/ equal to a fundamental solution to the heat equation,
namely, using the decomposition in (3.41), we expect to have Nff.H/ D �ff where

�ff;y.�; �; z; z
0; zT / WD Id2�2.4� zT /�.bC1/=2e

�.�2Cj�j2
h1
/=4 zT

HZ;y ; (3.57)

whereHZ;y D HZ;y.z; z0; zT / is the heat kernel for �@M=Y .

3.3. Parametrix construction and the asymptotic behavior of the heat kernel.
We now construct, and describe in detail the asymptotic behavior of, a parametrix
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for the heat kernel. Then, using a Neumann series argument and composition
properties for operators which are formally similar to our parametrix (established
in Appendix B), we upgrade this to a description of the heat kernel itself.

To begin our discussion of the parametrix construction for the heat kernel, let us
briefly recall the notion of an index set, which by definition is a E.�/ D f.; p/g �

C �N associated with each face � 2 flf; rf; tb;ff1;ff; tfg such that:
(i) each half-plane Re  < C contains only finitely many  ;
(ii) for each  , there is a number P./ 2 N0 such that .; p/ 2 E.�/ for every

0 � p � P./ and .; p/ … E.�/ if p > P./;
(iii) if .; p/ 2 E.�/, then . C j; p/ 2 E.�/ for all j 2 N.
We recall the full definition of polyhomogeneity inAppendixA, but roughly speaking,
we call a differential form ˛ polyhomogeneous with index family

E D fE.�/ j � 2 flf; rf; tb;ff1;ff; tfgg

if it has an expansion at each boundary hypersurface � with exponents determined
by the corresponding index set E.�/ and coefficient functions which are themselves
polyhomogeneous (with exponents determined byE). For example, smooth functions
onM 2

heat are polyhomogeneous with indicial set satisfying E.�/ D Z � f0g for all �,
and if a polyhomogeneous function vanishes to infinite order at a particular boundary
hypersurface �, then it is polyhomogeneous with an index set E satisfying E.�/ D ¿.
We define

inf E.�/ D inffRe  j .; p/ 2 E.�/g:

Our first step is to establish the existence of a polyhomogeneous distributionwhose
behavior at the various boundary hypersurfaces matches the behavior we expect from
the heat kernel.
Lemma 3.5. There exists a distribution K1 2 Aphg.M

2
heatIˇ

�.End//, polyhomogen-
eous with respect to an index set E satisfying the following properties:
(1) K1 satisfies (3.28) for the indicated bj . In particular,

E.tf/ D N � dim.M/; E.tb/ D ¿:

and thinking of K1.t/ as an operator on differential forms onM for each t ,

K1.t/˛ ! ˛ in L2 as t ! 0: (3.58)

(2) At the faces ff and ff1, we have inf E.ff1/ � �1 � b � kf and inf E.ff/ � �kn;
more precisely

.zx1CbCkfK1/jff1 D �ff1 ; .zxknK1/jff D �ff; (3.59)

with �ff1 and �ff the model heat kernels defined in (3.49) and (3.57).
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(3) In the neighborhood of the corner defined by U � U (for our fixed tubular
neighborhood U of @M ), in an open neighborhood of lf and rf,

K1 � �; (3.60)

where � is as in (3.53).

Moreover for the behavior at the codimension 2 face lf\ rf, the leading order
behavior is the product of that at lf and rf, i.e. K1 D O..�lf�rf/

�kf=2C1/. In
particular,

inf E.lf/ � �
kf

2
C 1: (3.61)

Furthermore, K1 can be taken fiber harmonic in a neighborhood of ff1.

Proof. Proving the existence of a polyhomogeneous distribution with prescribed
leading order behavior at the boundary hypersurfaces of a manifold with corners
boils down to showing that certain matching conditions hold at the intersections of
the bhs’s. For example, for smooth functions on a manifold with corners, a set of
functions fi WHi �! R admits an extension to a smooth function u (i.e. ujHi D fi )
if and only if fi jHi\Hj D fj jHi\Hj for all i; j with Hi \ Hj ¤ ¿. For the
convenience of the reader we include the general matching condition in Lemma A.1
below, and we verify these now.

Such a K 0 will exist by Lemma A.1 in Appendix A provided the hypotheses
are satisfied, meaning that the following matching conditions hold. We must find a
set f��g of boundary defining functions for the boundary hypersurfaces, � D lf, rf,
tf, tb, ff, ff1 ofM 2

heat such that

�ff D
1

.4�/n=2
��n

X
j2N

�j zbj jff;

zxkn�ff1 D zx
1CbCkf �ff on ff\ff1;

(3.62)

and that �ff; �ff1 and the bj vanish to infinite order at tb. Indeed, in the notation
of Lemma A.1 we have �1 D .�ff1=zx/

1CbCkf �ff1 and �2 D .�ff=zx/
kn�ff , and the

matching conditions in terms of �1 and �2 in Lemma A.1 are exactly (3.62). We
use boundary defining functions �ff D x�; �ff1 D �=x� for the faces ff and ff1 defined
in (3.12) and (3.9). Finally, we use � in (3.17) as �tf; though it is not valid at tb\ tf,
all the distributions in question will vanish to infinite order there and there will be no
conditions to check.

The first matching condition in (3.62) follows easily since the coefficients of the
expansion of �ff1 are determined by the same differential equation which determines
the bj , and the coefficients in both expansions are uniquely determined by their being
equal to polynomials times Gaussians on the fibers of tf\ff.
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Finally we check that the second condition in (3.62) holds. First we consider
�ff1 D �ff1;zy.s; 1; �; t

0/ above the point zy 2 Y (i.e. restricted to ff1 zy). In the polar
coordinates in (3.12) and using the boundary defining functions above (3.19), we
have

s D
x x�

k�1
ff
�lf

C 1; t 0 D
x�t�

2.k�1/
ff
�2lf

; � D
x y�

k�1
ff
�lf

: (3.63)

Using [1, Eqn. 9.7.1], we have that the modified Bessel function satisfies

I�.z/ D .e
�z=
p
2�z/.1CO.1=z//;

and thus

�knff .�lf�ff/
�1�b�kf �ff1;zy D

�
�kf
lf

.4� x�t /.bC1/=2
e
�.j x 2xCj

x y j
2
zy
/=4x�t .1CO.�ff//: (3.64)

On the other hand, above each base point zy 2 Y , �ff;zy.�; �0; z; z0; zT / can be written
using separation of variables with respect to the spectrum of �@M=Y . Indeed,
since HZ;y has discrete spectrum, it is standard that HZ;y.z; zz; t/ D …0 C E,
where …0 is projection onto the kernel of �@M=Y and jEj < e��0t as t ! 1, �0
being the smallest non-zero eigenvalue of �@M=Y . Thus

�ff;y D .2� zT /
�.bC1/=2e

�.�2Cj�0j2
h1
/=2
…0 CE

0; (3.65)

where E 0 is exponentially decaying. Now we have

zT D x�t�
�2.k�1/
ff1 ��2klf ; �0 D x�t�

�.k�1/
ff1 ��klf ; � D x x�

�.k�1/
ff1 ��klf ; (3.66)

and thus

�
1CbCkf
ff1 .�lf�ff1/

�kn�ff D
�
�kf
lf

.4� x�t /.bC1/=2
e
�.j x 2xCj

x y j
2
zy
/=4x�t ; (3.67)

so the matching condition at ff\ff1 holds.
On the other hand, zx1CbCkf �jff1 D �ff1 by (3.55). Since we have not yet

prescribed K 0 near lf and rf, we may set K 0 equal to � in an open neighborhoods of
lf\ff1 and rf\ff1 and the compatibility condition will be satisfied there.

Next we correct this distribution K1 by adding terms to it, so that the resulting
distribution K satisfies appropriate decay estimates for the error .@t C �/K. Our
distributionK will have the same asymptotic properties at the boundary hypersurfaces
enumerated in Lemma 3.5 as K1 does, except that (3) must be modified to include
error terms of order O.�klf/.
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Proposition 3.6. There exists a polyhomogeneous sectionK 2 Aphg.M
2
heatIˇ

�.End//
satisfying properties (1) and (2) of the distributionK1 in Lemma3.5, and satisfying (3)
with the exception of (3.60), instead satisfying

K D �
�
1CO.�klf/

�
(3.68)

in a neighborhood of lf,nn such that the “error”Q WD t .@t C�/K is polyhomogen-
eous with index set E 0 satisfying

inf E 0.ff1// � �1 � b � kf C 1; inf E 0.ff/ � �knC 1;
E 0.lf/ D E 0.tf/ D E 0.tb/ D ¿:

(3.69)

Proof. Taking a distribution K1 provided by Lemma 3.5, we study t .@t C �/K1.
Automatically we have that t .@t C �/K1 vanishes to infinite order at tf and tb, as
follows from Lemma 3.1. Furthermore, t .@t C�/K1 vanishes to order�knC1 at ff
by (3.35) and the fact that the leading order term �ff there solves the model problem.

At ff1 things are again more delicate. Recall that K1 D O.�
�1�b�kf
ff / at ff1,

where �ff1 is the boundary defining function for ff1 in, e.g. �ff1 D �=x� with � as
in (3.9) and x� as in (3.12). Since K1 is fiber harmonic near ff1, by (2.12) and (3.36)
we have

�K1 D z�0K1 C x
�2k�@M=YK1 C x

�kÄ@M=YPK1 C x�1 zEK1
D z�0K1 C x

�kÄ@M=YPK1 C x�1 zEK1 C x�kÄ@M=YPK 0

CO
�
�
�1�b�kfC2k
ff1

�
:

Furthermore, by (3.37) we have that…H t .@t C�/…HK1 is order �1� b � kf C 1
since its leading order term solves the model problem.

We assert the existence of a polyhomogeneous distribution A of order �1 � b �
kf C k such that t .@t C�/.K1 �A/ itself vanishes to order �1� b � kf C 1 at ff1.
Indeed, since the leading order term in t .@tC�/ is tx�2k�@M=Y , and since by (2.13)
we can find B such that

�@M=YB D Ä@M=YPK 0 C Ä@M=YPK1; (3.70)

where B is polyhomogeneous with asymptotic expansion determined by the
expansion of the right hand side, in particularB D O.��1�b�kfff1 /. We takeA D xkB
and thus obtain, with zP as in (2.21),

t .@t C�/.K1 � x
kB/ D t .@t C z�0/.K1 � x

kB/C tx�1 zE.K1 � x
kB/

� tx�k zPxkB C tO
�
�
�1�b�kfC2k
ff1

�
D t .@t C z�0/.K1 � x

kB/C tO
�
�
�1�b�kf
ff1

�
C tx�1O

�
�
�1�b�kf
ff1

�
C tO

�
�
�1�b�kf
ff1

�
D O

�
�
�1�b�kfC1
ff1

�
:
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Since the expansion of B at ff has the same order as K1, the distribution

K2 D K1 � x
kB

has all of the desired properties of K in the statement of the proposition except that
.@t C�/K2 is not rapidly decreasing at lf. Note that, since �1CbCkfff1 K1 D O.s

x�.N//

where x� is the (fiber degree dependent) order of � computed in (3.52). We claim
that B also satisfies B D O.�x�lf/. Indeed, B is determined by solving (3.70), i.e. by
inverting an elliptic differential operator on the space orthogonal to its cokernel; by
the basic elliptic regularity estimate, for any m 2 R there is a C such that

�@M=Bu D Äf H) kukHm.@M=B/ � Ckf kHm�1.@M=B/:

Thus if f is a parametrized family satisfying f D OHm�1.�x�lf/ then u D OHm.�x�lf/,
and the same goes for B , and sincem can be taken arbitrarily large the claim follows
by Sobolev embedding.

To deal with the expansion at lf we argue along similar lines, but there we iterate
the argument to get a parametrix K with .@t C�/K vanishing to infinite order at lf.
(We work in the interior of lf though the arguments at the intersection of lf and ff1
are the same in the projective coordinates

s0 D x=zx; �0 D .y � zy/=zx; � 0 D t=zx2

together with z; zx; zy; zz.) Recall thatK1 � � near lf and thusK2 D ��xkB near ff1.
Again with zP as in (2.21), we have

.@t C�/K2 D x
�k zP� C xk�2 zE� � x�k�@M=YB � x

�k zPxkB CO.xx�Ck/

D x�kÄ@M=YP� � x�k�@M=YB CO.xx�Ck�2/; (3.71)

where x� is the leading order power of � computed in (3.52). As in the argument
at ff1, since the RHS of (3.71) manifestly gives that…H ..@tC�/K2/ D O.x

x�Ck�2/,
by (2.13) there is distribution A0 such that

xx��@M=YA0 D Ä@M=YP� ��@M=YB CO.xx�Ck/:

Here the factor xx� in front makes it so that A0 is O.1/. Thus

.@t C�/.K2 � x
x�CkA0/ D O.x

x�Ck�2/ � x�k zPxx�CkA0 D O.x
x�/:

We will now solve away iteratively to decrease the order of the error. For this
we assume for the moment that we are given, for some q > x� C �, any distribution
A1 D xq zA1 C O.x

qC�/ with zA1 smooth and non-vanishing up to the boundary as
an ice-form. First, we find a distribution B1 so that

xqA2 WD .@t C�/.x
qC2kB1/ � A1
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is fiber harmonic. We can do this by solving

.I �…H /A1 D �@M=YB1 CO.x
k/

as in (2.13), where…H is the projection onto the fiber harmonic forms, since then

.@t C�/x
qC2kB1 D x

q�@M=YB1 CO.x
qCk/:

We then construct a term C1 with .@t C�/xqC2C1 � A2, as follows. Decomposing
A2 D A

1
2 C A

2
2dx with �.dx/A12 D 0, write

C1 D
�
.�.qC2/2�.˛�1/.qC2/Cˇ/1A�12 ; .�.qC2/

2
�.˛�1/.qC2/C/�1A22

�
;

then �
P˛;ˇ 0

0 P˛;

�
xqC2C1 D x

qA2:

(The numbers we divided by above are non-zero, since the indicial roots of P˛;ˇ
and P˛; are bounded above by x� � �, as explained below (3.52).) For this C1 we
have

xqA2 � .@t C�/x
qC2C1 D x

qA2 � z�0x
qC2C1 C x

�k zP 0xqC2C1 CO.x
qC2/

D O.xqCı/C x�k zP 0xqC2C1 CO.x
qC2Ck�2/;

where qCı can be taken to be the order of the subsequent term in the expansion ofA2
where z�0 is in (3.36) and zP is as in (2.21), and thus by (2.13) we see that the left
hand side lies in the image of�@M=Y to order xk . We can thus find a distributionD1
such that

xqA2 � .@t C�/.x
qC2C1 � x

qC2CkD1/

D O.xqC1/ � xqC2�k�@M=YD1 C x
k zP 0xqC2C1

D O.xqC1/;

which gives

.@t C�/.x
q.x2kB1 � x

2C1 C x
2CkD1// D x

qA1 CO.x
qCı/: (3.72)

It is straightforward to check that the added terms do not increase the order of blowup
at ff1. Thus we can kill off the leading order term of xqA, and in fact can kill off
all terms iteratively by this process. (If there are log terms present the argument is
analogous and left to the reader.)

From the previous two paragraphs, it follows that we can find a distribution K 0
such that K WD K2 � K

0 satisfies the requirements of the lemma, specifically such
that t .@t C�/K, in addition to having the same leading order asymptotics at tf and
ff and ff1 that t .@t C �/K2 has, also vanishes to infinite order at lf. Indeed, since
we can solve away terms to obtain errors of succesivly decreasing order, taking the
Borel sum [31] of these distributions gives K 0.
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Finally we establish our main structure theorem for the heat kernel.
Theorem 3.7. There exists a section H 2 AE

phg.M
2
heatIˇ

� End/ satisfying all of the
properties of the distributions K from Proposition 3.6, and which is a fundamental
solution to the heat equation, meaning that in the interior ofM 2

heat, .@t C�/H D 0,
while the operatorHt defined initially on forms ˛ 2 C1c .M I��.M// by

Ht˛.w/ D

Z
M

H.w; zw; t/˛. zw/ dVol zw (3.73)

extends to a bounded map of L2.��.M/; d Volg/, and for such ˛ Ht˛ ! ˛ as
t ! 0 in L2.

We will prove the theorem now modulo arguments in Appendix B.

Proof. Consider the parametrixK whose existence is established in Proposition 3.6.
This K satisfies all but one of the properties of the H in the theorem, namely
.@t C �/K is not equal to zero. (Indeed, the statement about convergence to the
identity in (3.73) follows from the behavior of K at tf described in (3.28).

We now invert errorQ D t .@tC�/K from Proposition 3.6 via a Neumann series.
To be precise, it will be convenient to think of distributional kernels A.p; p0; t / on
M �M � RC acting on C1c .M ı � .0;1// by operating as convolution kernels in
the time variable, so for � 2 C1c .M ı � .0;1// by

.A ? �/.p; t/ WD

Z
M

Z t

0

A.p; p0; t � s/�.p0; s/ ds dVolp0 : (3.74)

Then
.@t C�/ zK D I C t

�1Q; (3.75)
and the right hand side can be inverted via a Neumann series, i.e.

.IdCt�1Q/.I CQ0/ D Id;

whereQ0 D
P1
jD1.�1/

j .t�1Q/j and .t�1Q/j D t�1Q? � � �? t�1Q, j -times. We
then show that

H WD K.I CQ0/

satisfies all of the properties claimed in the theorem, but now it is automatic that
.@t C�/H D 0; what it will remain to show is that K.I CQ0/ continues to satisfy
the properties of K from Proposition 3.6.

We use Proposition B.5 below to analyze the summands .t�1Q/j . Note
that t�1 is a polyhomogeneous distribution on M 2

heat; indeed t D �tb�
2
tf�
2
ff1�

2k
ff a

with a 2 C1.M 2
heat/ with a > c � 0. Thus t�1Q is polyhomogeneous with index

set E 00 given by shifting the index set E 0 of Q from Proposition 3.6 by appropriate
integers, namely

inf E 00.ff1// � �2 � b � kf; inf E 00.ff/ � �kn � 2k C 1;
E 00.lf/ D E 00.tf/ D E 00.tb/ D ¿:

(3.76)
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Proposition B.5 then implies that .t�1Q/j is polyhomogeneous with index set E.j /

satisfying, for any � > 0,

inf E.j /.ff1// � j.1 � �/ � 3 � b � kf; inf E.j /.ff/ � �kn � 2k C 1; (3.77)

in addition to E.j /.lf/ D E.j /.tf/ D E.j /.tb/ D ¿: There for the .t�1Q/j admit a
Borel sum, i.e. a sumQ0 D

P1
jD1.�1/

j .t�1Q/j with the property that the difference
of a partial sum up to j D N withQ0 is polyhomogeneous and vanishes at each face
to the order of .t�1Q/j at each bhs. Moreover, as discussed in [5, 30], this series
is convergent in C1, indeed the uniform bounds in [5, Theorem 2.23] hold in this
setting, and the infinite order of vanishing of t�1Q at lf is preserved in the sum,
i.e. Q0 vanishes also to infinite order there. The form of the distributional kernel
H D K.I CQ0/ is analyzed as in [28]. There it is shown that polyhomogeneous
with the index set E satisfying the properties of Theorem 3.7.

4. Spectral and Hodge theoretic properties of the Hodge–Laplacian

In this section we deduce the main theorems from the introduction. We begin with a
detailed analysis of the polyhomogeneous forms in the maximal domain.

4.1. Polyhomogeneous forms in Dmax and Dmin. Recall the definition of Dmax
and Dmin from the introduction, and the space Aphg.

iceƒ�/ of polyhomogeneous
ice-forms (below denoted simply by Aphg) discussed in Appendix A. We also recall
that the incomplete cusp edge manifold .M; gice/ is assumed to satisfy the Witt
condition (1.4) and that the metric gice takes the form

gice D dx
2
C x2kgZ C �

�gY C zg;

where the exponent k � 3.
We determine conditions which assure that a given polyhomogeneous differential

form  2 Aphg is contained in the maximal domain Dmax of �g . This will be used
to show, with an additional assumption on the index set of a phg form, that

 2 Dmax \Aphg H)  2 Dmin \Aphg: (4.1)

Let  2 Aphg be contained in the maximal domain, i.e. we assume that  2 L2
and �g 2 L2. Let  D xs z where z D z0.y; z/ C O.x�/. Here notation such
as O.x�/ indicates that the differential form  is locally a combination of basis forms

dyI ^ x
k NdzA and dx ^ xk NdyI ^ x

k NdzA;

where I and A are multi-indices on the base and fiber, respectively. with coefficient
functions which are bounded by cx� pointwise in norm when x & 0, and z0 is a
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form onM whose coefficient functions are independent of x. Let us determine the
possible range of values s. From (2.7)–(2.8) it follows that in a neighborhood of the
boundary, the volume form of the cusp edge metric g is

dVolg D xkf � dx ^ dy ^ dz;

where � D a.y; z/C O.xk/ and a is a non-vanishing positive function. It follows
that

xs z 2 L2.M; g/ ” s > �
1

2
.kf C 1/: (4.2)

We begin by analyzing the indicial roots of �g , specifically we find the order
of vanishing of fiber harmonic homogeneous forms in the kernel of �g . By
Proposition 2.3, the leading order part of �g restricted to fiber harmonic forms is

…H�
g
0…H �WD

�
P˛.N/;ˇ.N/ 0

0 P˛.N/;.N/

�
;

with P˛.N/;ˇ.N/, P˛.N/;.N/ the operators, depending on fiber degree, defined
in (3.38)–(3.39) We note that

P˛.f �N/;ˇ.f �N/ D P˛.N/;.N/ .N D 0; : : : ; f /: (4.3)

Using (3.43), a straightforward calculation shows that P˛.N/;ˇ.N/xs D 0 if

s 2

f[
ND1

˚
1 � k.f �N/;�k.f �N/;�kN; 1 � kN

	
:

It in addition satisfies condition (4.2) if

s D

„
�k N and N < 1

2
.f C 1

k
/;

1 � k N and N < 1
2
.f C 3

k
/;

�k.f � N/ and N > 1
2
.f � 1

k
/;

1 � k.f � N/ and N > 1
2
.f � 3

k
/:

(4.4)

Proposition 4.1. Suppose the differential form D.1; 2/D.xs1 z1; xs2 z2/2Aphg

and that  D zj0 .y; z/CO.x�/ is contained in the maximal domain Dmax. (Thus the
leading order term is assumed not to have a logarithm, as is a priori allowed for phg-
distributions.) Then each sj is an indicial root of P˛.N/;ˇ.N/ for some 0 � Nj � f
or sj > 1

2
.�kf C 3/. In either case, sj � 1

2
.�kf C 3/.

Proof. Recall from Proposition 2.3 the decomposition � D �0 C x
�k zP C x�1 zE

and write

�0 D

�
P˛.N/;ˇ.N/ 0

0 P˛.N/;.N/

�
C

 
1

x2k
�@M=Y C�H �2kx�k�1d@M=Z

�2kx�k�1ı@M=Y
1

x2k
�@M=Y C�H

!
:

(4.5)
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In view of the symmetry (4.3) it suffices to consider the image of the the component
1 D xs1 z1 under �g . The discussion naturally falls into several cases.
(1) The form z10 is not fiber harmonic. Then the lowest nonvanishing term in (4.5)
is x�2kCs1�@M=Y z10 , which is contained in L2 if and only if

s1 >
1

2

�
4k �

1

2
kf � 1

�
:

(2) The form z10 is fiber harmonic. We then consider the following subcases.
(2.a) s1 is an indicial root of P˛.N1/;ˇ.N1/ and hence equals the number in (4.4).

(2.b) s1 is not an indicial root of P˛.N1/;ˇ.N1/, i.e. P˛.N1/;ˇ.N1/.xs1 z1/ ¤ 0. We
claim that at least one of the following two statements holds true:
– The polyhomogeneous expansion of z1 contains a term z1

`
of orderO.xı/where

ı � 2k < s1 � 2 and z1` is not fibre harmonic.
– The lowest nonvanishing term in the first component of �g is of order xs1�2.

If this claim holds true we conclude that the lowest nonvanishing term in the first
component of �g is of order at most xs1�2. To prove the claim, assume that the
first statement is false. Then the second one must hold true as is clear from the form
of the Laplacian �0 in (4.5). To be specific, collecting the terms of order xs1�2 in
the first component of �0 we obtain

P˛.N1/;ˇ.N1/.x
s1 z1/C x�2k�@M=Y �

1
C x�k�1d@M=Y �

2

C x�kÄ@M=YP�3 C x�kPÄ@M=Y �4 (4.6)

for suitable differential forms �1; : : : ; �4 of orders

�1 D O.xs1C2k�2/; �2 D O.xs1Ck�1/; and �j D O.xs1Ck�2/ .j D 3; 4/:

By Hodge theory, the term Ä@M=Y �4 vanishes, since otherwise a nonvanishing term
x�2k�@M=Y �

4 would occur, which is of order strictly less than s1 � 2, contradicting
our initial assumption. Considering the remaining three terms in (4.6) it follows from
Hodge theory and the assumption that z10 is fibre harmonic that the sum

x�2k�@M=Y �
1
C x�k�1d@M=Y �

2
C x�kÄP�3 (4.7)

is orthogonal, over each fibre, to P˛.N1/;ˇ.N1/.xs1 z1/. Hence we conclude that the
nonzero term P˛.N1/;ˇ.N1/.x

s1 z1/ cannot cancel with the sum (4.7). It follows that
the second statement is true, whence the claim.
The asserted statement follows by inspection of each of the above cases. In case (1)
it follows from

s1 >
1

2

�
4k �

1

2
kf � 1

�
>
1

2
.�kf C 3/;
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using that k � 3. In case (2.b) the lowest nonvanishing term in �g is of order at
most s1 � 2. Since  2 Dmax it follows from (4.2) that

s1 � 2 > �
1

2
.kf C 1/” s1 > �

1

2
.kf C 3/:

In case (2.a), the form z10 is fibre harmonic and therefore by theWitt conditionN ¤ f
2
.

We continue by discussing each of the four possible cases in (4.4) separately. Suppose
first that s1 D �k N and N < 1

2
.f C 1

k
/. If f is even this implies that the integer

N � f
2
� 1 (here we use the Witt condition) and consequently

s1 � �k
�f
2
� 1

�
� �

kf

2
C
3

2
;

since k � 3. If f is odd then N � f
2
�
1
2
and

s1 � �k
�f
2
�
1

2

�
� �

kf

2
C
3

2
;

where the last inequality follows again from the assumption k � 3. Similarly, in the
case s1 D �k.f �N/ and N > 1

2
.f � 3

k
/ it follows that if f is even that N � f

2
C 1

(using the Witt condition). This implies the estimate

s1 � �k
�
f �

f

2
� 1

�
� �

kf

2
C
3

2
;

using that k � 3. If f is odd then we conclude that N � f
2
C

1
2
and hence

s1 � �k
�
f �

f

2
�
1

2

�
� �

kf

2
C
3

2
;

using again that k � 3. The conclusion in the remaining two caseswhere s1 D 1�k N
or s1 D 1 � k.f � N/ follows analogously.

Lemma 4.2. Assume k � 3. Then Dmin \Aphg D Dmax \Aphg.

Proof. It suffices to prove the inclusion Dmax \Aphg � Dmin \Aphg. For " > 0 we
define the logarithmic cutoff function �"W Œ0;1/! Œ0; 1� by

�".x/ WD

�
0; x � "2;

�
log.x="2/
log."/ ; "2 < x < ";

1; x � ":

For "2 < x < " it satisfies

�0".x/ D �
1

log."/x
and �00" .x/ D

1

log."/x2
: (4.8)
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Let  2 Dmax \Aphg and set " D �� . Then

�g" D �"�
g � .@2x�"/ � .@x�"/.@x/ �

kf

x
.@x�"/

C Aj .@x�"/.@zj /C B
i .@x�"/.@yi/; (4.9)

where Aj D O.xk/ and B i D O.x2k/ are bounded functions with that order of
decay in x. We show that

k�g" ��
gkL2.M;g/ ! 0 as "! 0; (4.10)

hence establishing that  2 Dmin. It is clear that

k�"�
g ��gkL2.M;g/ ! 0 as "! 0;

and thus it suffices to consider the next three terms in (4.9) and to show that

1

log2."/

Z "

"2

1

x4
j j2xkf dx C

1

log2."/

Z "

"2

1

x2
j@x j

2xkf dx

C
k2f 2

log2."/

Z "

"2

1

x4
j j2xkf dx (4.11)

converges to 0 as " ! 0. Let  D xs z for some z D O.1/. A short calculation
shows that each integrand in (4.11) is of order x�1Cı for some ı > 0 and hence
converges to 0 as "! 0 if

s > �
kf

2
C
3

2
: (4.12)

In the borderline case s D �kf
2
C

3
2
we still get convergence since then the first

integral in (4.11) becomes

1

log2."/

Z "

"2

1

x
dx D

1

log2."/
.log."/ � log."2// D �

1

log."/
! 0 as "! 0;

and analogously for the second and third integral. Hence

s � �
kf

2
C
3

2
H)  2 Dmin

for any  D xs z 2 Dmax \Aphg. On the other hand, Proposition 4.1 shows that

 D xs z 2 Dmax \Aphg H) s � �
kf

2
C
3

2
;

and hence the claim follows.
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4.2. Spectral theory.

Proof of Theorem 1.4. LetH 2 AE
phg.M

2
heatIˇ

� End/ be as in 3.7; we will show that
suchH has the properties stated in Theorem 1.4.

First note that, as we show in a moment, H maps into Dmin and hence the
following three properties hold:
� .@t C�g/H D 0,
� limt!0Ht D Id,
� H.L2/ � DF , where DF is the Friedrichs domain.
From [28, p. 21], these three properties characterize the Friedrichs heat kernel of �.
HenceHt is automatically symmetric.

Since Ht and @tHt are formally self-adjoint (i.e. symmetric), to show that they
are self-adjoint it suffices to show that they are compact operators. But indeed they
are, as follows from [34, Thm. VI.23–24] together with

Ht ; @tHt 2 L
2.EndIM �M/;

where, given a smooth section A of End, then A 2 L2.EndIM �M/ ifZ
kA.p; q/k2End dVolM .p/ dVolM .q/ <1:

For t > 0, Ht is given by an L2 integral kernel, so is a compact operator; indeed,
by (3.68), the index set F of Ht 2 Aphg.M �M/ restricted to t > 0 constant is
F .lf/ D E.lf/ and F .rf/ D E.rf/, for E the index family of H . From (3.61), these
satisfy the lower bound

inf F .lf/; inf F .rf/ � �
kf

2
C 1 (4.13)

(meaningHt is a bounded endomorphism) and

dVolM .p/ dVolM .q/ ' xkf zxkf dx d zx dy d zy dz dzz; (4.14)

so the kernel ofHt is square integrable.
It remains to establish (1.4), i.e. that Ht .˛/ 2 Dmin for every ˛ 2 L2. In

fact, Ht .˛/ is a polyhomogeneous distribution with index set E.lf/. This is
straightforward: writing the expansion of Ht at x D 0 up to some order N we
have

Ht D
X

.s;p/2E.lf/
jsj�N

xs logp.x/as;p.y; z; zw/CEN ;

where zw D .zx; zy; zz/, and the coefficients as;p are polyhomogeneous endomorphisms
on the manifold with boundary @M � M and EN is a polyhomogeneous
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endomorphism onM �M with EN D o.xN /. Thus

Ht .˛/ D

Z
M

� X
.s;p/2E.lf/
<s�N

xs logp.x/as;p.z; y; zw/˛. zw/CEN˛. zw/
�
dVolg. zw/:

(4.15)
For example by [26, Proposition 3.20], since the x�NEN are given by a
polyhomogeneous integral kernel, they define bounded maps of L2, and the
conormality estimates (see (A.3)–(A.4)) follow by differentiating x�NEN . The
integrals coming from the partial expansion terms are finite and give the expansion
coefficients ofHt .˛/. This shows thatHt .˛/ 2 Aphg, and moreover that the leading
order term has no logarithmic factor. Thus, In view of Lemma 4.2 it suffices to
prove Ht .˛/ 2 Dmax in order to conclude that Ht .˛/ 2 Dmin. But indeed, inf E.lf/
satisfies the lower bound (4.13), hence it follows that the lowest order term in the
polyhomogeneous expansion (4.15) is of order at least �kf

2
C 1 which by (4.2) is

sufficient to conclude Ht .˛/ 2 L2. Because Ht is a fundamental solution of the
heat equation, it follows that �gHt .˛/ D �@tHt .˛/ which by the same argument is
contained in L2 since @tHt has the same index set asHt for t > 0.

It now follows that the fundamental solution Ht from Theorem 3.7 is in fact the
heat kernel in the following sense.
Proposition 4.3. The heat kernel exp.�t�g/ defined by applying the spectral
theorem to the self-adjoint operator .�g ;D/ has Schwartz kernel equal to the
fundamental solutionHt in Theorem 3.7, meaning

.e�t�
g

˛/.w/ D

Z
M

Ht .w; zw; t/˛. zw/ dVolg. zw/:

Using this we may finish the proof of Theorem 1.1.

Proof of Theorem 1.1. As discussed below the statement of Theorem 1.4, Theo-
rem 1.4 itself establishes essential self-adjointness of �g . It remains to prove that
the spectrum is discrete, but this follows immediately from the spectral theorem and
the fact thatHt is a compact operator (hence has discrete spectrum.)

Moreover, the Weyl asymptotic formula in (1.6) follows from the standard heat
kernel argument in [36, §8.3] togetherwith the heat trace asymptotics inCorollary 4.4.

Corollary 4.4 (Heat trace asymptotics). For each t > 0, the fundamental solutionHt
in Theorem 3.7 is trace class and satisfies that F.t/ WD TrHt is a polyhomogenous
conormal distribution on RC satisfying

F.t/ D t�n=2Vol.M; g/C
� fDdimZX

jD1

aj t
�n=2Cj=2

�
C c0t

�.bC1/=2C1=2k

CO.t�.bC1/=2C1=2kC�/: (4.16)
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The proof of Corollary 4.4, which uses Theorem 3.7 and Melrose’s pushforward
theorem, is deferred to Section A.2 below.

4.3. Harmonic forms and Hodge theory. We begin our discussion of Hodge theo-
ry by pointing out that elements  2 L2 satisfying �g D 0, admit asymptotic
expansions at the boundary ofM . Indeed, for such forms  , by the spectral theorem
and the fact thatHt is the heat kernel (Corollary 4.3), we see that

 D Ht D

Z
M

Ht .w; zw; t/. zw/ dVolg. zw/: (4.17)

By the proof of Theorem 1.4, specifically (4.15), we have the following.
Lemma 4.5. Assume that  2 ker.�g WL2 �! L2/. Then  is polyhomogeneous
conormal and  D O.1/, i.e. is bounded in norm.

Lemma 4.5 allows us to conclude that the L2 kernel of �g is equal to the Hodge
cohomology in (1.7).
Lemma 4.6. Notation as above, HL2.M; g/ D ker.�g WL2 �! L2/.

Proof. If  2 HL2.M; g/ then  is in the maximal domains of both d and ı, and so
for smooth compactly supported ˇ,

h�g; ˇiL2 WD h;�
gˇiL2 D h; dıˇiL2 C h; ıdˇiL2 D 0C 0 D 0;

so  2 ker.�g WL2 �! L2/. On the other hand, if  2 ker.�g WL2 �! L2/, then
by Lemma 4.5 we can integrate by parts to obtain

0 D h�g; iL2 D kdk
2
L2
C kık2

L2
;

so  2 H�
L2
.M; g/.

We can now follow the arguments in [18,20] to prove Theorem 1.2 above. Before
we begin we recall some facts about intersection cohomology, a cohomology theory
that applies to stratified spaces. We do not attempt to make a full explanation of it
here, but mention only that there is in fact a family of intersection cohomology groups
for our stratified spaceX defined in (1.8) (obtained by collapsing the boundary of @M
over the baseY ) depending on a function pWN �! N called the “perversity,” which is
non-decreasing and whose values matter only on the codimensions of the strata ofX .
Here we have only one singular stratum, Y � X , the image of the boundary @M via
the projection ontoX , and its codimension is f C 1, where dimZ D f . The “upper
middle degree” perversity xm is a special example of a perversity, which satisfies

xm.f C 1/ D

(
.f � 1/=2 if f is odd;
f =2 � 1 if f is even:

(4.18)
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The “lower middle perversity” m differs from xm only when f is even, in which case
m.f C 1/ D f=2. As we will rely on the spectral sequence arguments from [18,20]
during the proof, we will only need to study the intersection cohomology locally,
specifically on a basis of open sets of X . Concretely, from [18], for canonical
neighborhoods U D V � C1.Z/ as in (2.2) with contractible V , we have

IHpp .U / D

(
Hp.Z/ if p < f � 1 � p.f C 1/;

f0g if p � f � 1 � p.f C 1/:

From the Witt condition (1.4), we see that

IHp
xm.U / D IHpm.U / D

(
Hp.Z/ if p < f=2;
f0g if p � f=2;

(4.19)

regardless of the parity of f .

Proof of Theorem 1.2. Although Theorem 1.2 describes a relationship between the
Hodge cohomology and the intersection cohomology, to prove it we go through the
standard route and use the intermediary of L2-cohomology. Thus consider the chain
complex

� � � �! L2d�
p�1.M; g/ �! L2d�

p.M; g/ �! L2d�
pC1.M; g/ �! � � � ; (4.20)

where L2
d
�p.M; g/ is the maximal domain of the exterior derivative d , specifically

L2d�
p.M; g/ D

˚
˛ 2 L2�p.M; g/ W d˛ 2 L2�pC1.M; g/

	
:

Then the L2-cohomology is the quotient

L2Hp.M; g/ D
f˛ 2 L2

d
�p.M; g/ W d˛ D 0g

fd� W � 2 L2
d
�p�1.M; g/g

:

As explained in [20, p. 6], it suffices to show that

L2Hp.M; g/ ' IHp
xm.X IR/; (4.21)

for then the L2-cohomology is finite dimensional, which implies that the range of d
(and thus its adjoint ı) is closed. From [18, §2.1] it then follows using the Kodaira
decomposition theorem that H

p

L2
.M; g/ is isomorphic to L2Hp.M; g/ and thus

by (4.21) Theorem 1.2 holds.
Thus it suffices to prove (4.21), and for this we also follow the arguments in [20,

pp. 5–6], where it is explained that it suffices to show that for canonical neighborhoods
U D V � C1.Z/ as in (2.2) with contractible V , the local chain complex

� � � �! L2d�
p�1.U; g/ �! L2d�

p.U; g/ �! L2d�
pC1.U; g/ �! � � � ; (4.22)



Vol. 94 (2019) Spectral and Hodge theory of “Witt” incomplete cusp edge spaces 745

satisfies
L2Hp.U; g/ ' IHp

xm.U /: (4.23)

Here L2Hp.U; g/ is defined as above with U replacing M . The intersection
cohomology groups for xm are computed in (4.19), and thus we need only to analyze
the groups on the left. To see (4.23) we use the Künneth formula of Zucker, [40,
Corollary 2.34], whose assumptions are satisfied here by the fact that the exterior
derivative on Z is closed on its maximal domain. Thus, in the notation of [20, p. 5],
we have

L2Hp.U; g/ D

1M
iD0

WH i
�
.0; 1/; dx2; k.p � i � f=2/

�
˝Hp�i .ZIR/; (4.24)

where WH i ..0; 1/; dx2; a/ is the cohomology of the complex

0 �!
�
xaL2�0..0; 1/; dx2/

� d
�! xaL2�1..0; 1/; dx2/ �! 0; (4.25)

where the space on the left is the maximal domain of d on xaL2�0..0; 1/; dx2/.
Again from [20] (via [18]),

WH 1..0; 1/; dx2; a/ D 0 if a ¤ 1=2;
WH 0..0; 1/; dx2; a/ D R if a < 1=2, and
f0g if a � 1=2:

When i D 1, k.p � i � f=2/ ¤ 1=2 since k > 1, so the i D 1 terms do not
contribute. When i D 0, we have k.p � i � f=2/ D k.p � f=2/ which satisfies

k.p � f=2/ < 1=2 if p � f=2 and k.p � f=2/ > 1=2 if p > f=2:

Using the Witt condition then gives

L2Hp.U; g/ D

(
Hp.Z/ if p < f=2;
f0g if p � f=2;

(4.26)

matching (4.19) and completing the proof.

We now discuss the proof of Theorem 1.3. As the spaces in the theorem are
incomplete cusp edge spaces in a neighborhood of the divisor by [32], our results
would apply to these spaces, if not for the fact that moduli spaces such as these have
interior orbifold points. This is not a problem, since, as in [21] we may lift to a finite
cover with no such points. One can then work on the space C1c;orb.M1;1/ of functions
which near each orbifold point are smooth when lifted to a local finite cover resolving
the singularity. Constructing a heat kernel on the lift and averaging over the group
action then gives a fundamental solution to the heat kernel downstairs which has all
the desired properties. We leave the details of this simple extension to the reader.
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A. Manifolds with corners

In this section we recall some of the facts about distributions on manifolds with
corners (mwc’s) used in this paper. This material is due largely to Melrose, and the
reader is referred to his book [30] for more details. See also [19].

The objects considered here, for example the ice-metrics, have polyhomogeneous
regularity, which we define now. The sheaf of polyhomogeneous conormal (or
polyhomogeneous, or simply phg) functions Aphg.X/ is defined as follows. First,
an index set E on a manifold with corners X is an association to each boundary
hypersurfaceH of X a set

E.H/ � C �N satisfying that the subset
f.z; p/ 2 E.H/ W Re z < cg is finite for all c 2 R. (A.1)

Given an index setE , for a boundary faceF D\ıiD1Hi for boundary hypersurfacesHi ,
define the subset E.F / � Cp � Np by .z; p/ D .z1; : : : ; zı ; p1; : : : ; pı/ 2 E.F /

if and only if .zi ; pi / 2 E.Hi /. We define the Frechet space AE
phg.X/ as follows. We

write u 2 AE
phg.X/ if and only if for each boundary face F D \ıiD1Hi , writing �i

for a boundary defining function ofHi , u satisfies

u �
X

.z;p/2E.F /

az;p�
z logp � (A.2)

where

�z D

ıY
iD1

�
zi
i ; logp � D

ıY
iD1

logpi �i ;

and the symbol � means that

EN D u �
X

.z;p/2E.F /
Re zi<N 8i

az;p�
z logp �: (A.3)

Here EN is a smooth function on the interior of X which is O.j�jN /, where

j�j D .�21 C � � � C �
2
ı /
1=2:

Moreover, EN is conormal, meaning that if Vb D Vb.X/ denotes the set of smooth
vector fields on X that are tangent to all boundary hypersurfaces, then

j�j�NVk
bE � L

1: (A.4)

Note that if a phg function u vanishes to infinite order at H , then u is
polyhomogeneous with index set E satisfying E.H/ D ¿.
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Lemma A.1. Let X denote a mwc, M.X/ D fHigi2I its boundary hypersurfaces,
and for each i 2 I, let �i denote a boundary defining function ofHi . Given a smooth
vector bundle E �! X , if �i are polyhomogeneous sections onHi , then provided

�
ci
i �j jHi\Hj D �

cj
j �i jHi\Hj (A.5)

there exists a polyhomogeneous conormal distribution K on X satisfying

�
ci
i KjHi D �i : (A.6)

Assume moreover that at a particular boundary hypersurface which we take to
be H1, that we are given an index set F1 � C � N and polyhomogeneous sections
bj;p 2 Aphg.EjH1 IH1/. Then given functions �i on Hi , i ¤ 1, there exists a
distribution K satisfying (A.6) for i ¤ 1 and such that

K �
X
s;p2F1

�s1 log
p.�1/bs;p (A.7)

provided (A.5) holds for i; j ¤ 1 and furthermore for i ¤ 1

�i � �
ci
i

X
s;p2F1

�s1 log
p.�1/bs;pjHi : (A.8)

Remark A.2. (1) Note the converse; ifK D ��cii �
�cj
j a for some positive function a

near Hi \ Hj then setting �cl
l
KjHl D �l for l D i; j , we have �cjj �i D �

ci
i �j

onHi \Hj .

(2) The matching condition (A.5) implies further matching conditions on multifold
intersections, e.g. it implies that

�
ci
i �

cj
j �l D �

ci
i �

cl
l
�j D �

cl
l
�
cj
j �i onHi \Hj \Hl :

(3) The second matching condition (A.8) merely says that the desired data on a
bhs Hi has the same asymptotic expansion at H1 as the the desired distribution
restricted toHi .

Proof. Denote the number of boundary hypersurfaces of X by m D jMj. There
is a number ı and boundary defining functions �i such that the set f�i < ıg is
diffeomorphic as mwc’s to Hi � Œ0; ı/. Without loss of generality we take ı D 1.
Following the remark, for a collection of bhs’Hi1 ; : : : ;Hip , the distribution

�i1:::ip D
� Y
i¤ik

�ci
�
�ik j�i1D���D�ipD0

is well-defined independently of the choice of ik 2 f1; : : : ; mg.
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Let �.x/ be a cutoff function with � � 1 for x � 1=3 and � � 0 for x � 2�=3.
For the distribution K we may take

K D

mX
pD1

.�1/p�1
X

1�i1<���<ip�m

�i1:::ip

� Y
j2fi1;:::;ipg

�.�j /�
�cj
j

�
:

For example if m D 2 then

K D �.�1/�
�c1
1 �1 C �.�2/�

�c2
2 �2 � �.�1/�.�2/�

�c1
1 �

�c2
2 �12:

Note that each term in the sum defining K defines a polyhomogeneous conormal
distribution on all of X , as the distribution �i1:::ip is defined on a neighborhood of
Hi1 \ � � � \Hip off which the product

Q
j2fi1;:::;ipg

�.�j / vanishes.
Letting Ai1:::ip be the term corresponding term in the definition ofK, note that if

i 62 fi1; : : : ; ipg then �cii Ai1:::ip D �
ci
i Ai1:::i :::ip j�iD0. Fixing i , multiplying by �ciK

and restricting to �i D 0 gives

�
ci
i Kj�iD0

D �i C

m�1X
p

.�1/p�1�
ci
i

� X
1�i1<���<ip�m
i 62fi1:::ipg

Ai1:::ip �
X

1�i1<���<ipC1�m

i2fi1:::ipC1g

Ai1:::ipC1

�
j�iD0

D �i ;

which establishes (A.6).
We now prove the final statement of the lemma. Let � be the cutoff function

defined above. First, we claim that under the stated assumptions there exists a
distributionK 0 supported in f�1 � 1g satisfying both (A.7) (withK replaced byK 0)
and that

�
ci
i K

0
jHi D �.�1/�i (A.9)

for each i ¤ 1. To see this, take any distribution K 00 supported in f�1 � 1g

satisfying (A.7), and note that ai WD �cii K
00jHi ��.�1/�i D O.�

1
1 /. By the support

condition, the distributionK 0 D K 00�
P
i¤1 �.�i /ai is defined globally, has the same

asymptotic expansion at H1 as K 00, and satisfies (A.9). This K 0 will play the role
of�.�1/��c1�1 from the previous paragraph. Concretely, for 1 < i1 < � � � < ip � m,
let ai1:::ip D .…j2fi1;:::;ip�

cj
j K

0/jHi1\���\Hip
. Then we may take

K D

mX
pD1

.�1/p�1
X

1<i1<���<ip�m

�i1:::ip

� Y
j2fi1;:::;ipg

�.�j /�
�cj
j

�
CK 0 C

mX
pD1

.�1/p�1
X

1<i1<���<ip�m

ai1:::ip

� Y
j2fi1;:::;ipg

�.�j /�
�cj
j

�
:
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Again, for example if m D 2 then

K D K 0 C �.�2/�
�c2
2 �2 � .�

c1
2 K

0/jH2�
�c2
2 �.�2/:

The given expression for K can be directly checked to satisfy (A.6) and (A.7).

A.1. Melrose’s pushforward theorem. Given a map ˇWX �! Y between mani-
folds with corners, if M.�/ with � D X; Y denotes the space of boundary
hypersurfaces, then ˇ is a b-map if it is smooth and if for each H 2M.Y / with �H
a boundary defining function forH then

ˇ��H D a…H 0
j
2M.X/�

e.H 0
1
;H/

H 0
1

�
e.H 0

2
;H/

H 0
1

: : : �
e.H 0

N
;H/

H 0
1

;

where a 2 C1.X/ is non-vanishing andN is the number of boundary hypersurfaces
of Y and the e.H 0;H/ are non-negative integers. This means foremost that �H pulls
back to a smooth function, and the numbers e.H 0;H/ simply keep track of the order
of vanishing of ˇ��H at each face of X . The function

eWM.X/ �M.Y / �! N0 (A.10)

is the exponent matrix of ˇ, and e.H 0;H/ > 0 meansH 0 maps intoH via ˇ.
If a b-map has a few additional properties then it pushes forward polyhomogeneous

distributions (more accurately, densities) to polyhomogeneous distributions and their
index sets change in a way dictated by the exponent matrix. Note that it follows from
the definition of a b-map that every boundary face F of X (meaning an intersection
of boundary hypersurfaces), can be associated to a face x̌.F / of Y defined to be
the unique face with ˇ.x/ 2 x̌.F /ı for every x 2 F ı. A b-map ˇWX �! Y is
a b-fibration if:
� ˇ does not increase the codimension of faces, i.e. for each boundary face F of X ,
the associated face x̌.F / in Y satisfies that codim.F / � codim. x̌.F //.

� Restricted to the interior of any face F ı, ˇWF ı �! . x̌.F //ı is a fibration of open
manifolds in the standard sense.
According to a theorem of Melrose [29] which we state below, a b-fibration

pushes forward phg densities to phg densities in a manner we describe now. First,
on a manifold with corners we choose a non-vanishing b-density �, meaning a
section of jƒjn.bT �X/, the density bundle of the b-cotangent bundle. The b-tangent
bundle bTX is the bundle whose smooth sections are Vb , the vector fields tangent
to the boundary. The bundle bT �X is the dual bundle of bTX , and near a face
F D \ıiD1Hi where �i are bdf’s and y are coordinates on F then, the sections
of bT �X take the form X

i

�i
d�i

�i
C � dy:
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It follows that near any intersection F D \j2JHjq of boundary hypersurfaces for
J � I where I indexes M.X/ (i.e. any face of X ) that a non-vanishing b-density
takes the form

� D

ˇ̌̌̌
a
dy
Q
j2J d�jQ
j2J �j

ˇ̌̌̌
(A.11)

for some smooth non-vanishing function a on X . A polyhomogeneous b-density
u 2 AE

phg.X/ ˝ jƒj
n.bT �X/ can be written as f� for a phg function f and the

index set of u is by definition the index set of f .
Theorem A.3 (Melrose [29]). Let u 2 AE

phg.X/ ˝ jƒj
n.bT �X/ be a polyhomo-

geneous b-density on X with index set E , let f WX �! Y be a b-fibration with
exponent matrix e, and define the pushforward f�u to be the distribution on smooth
functions v 2 C1comp.Y / acting by hf�u; viY D hu; f �viX . Then provided for each
H 2M.X/ we have

e.H;H 0/ D 0 8H 0 2M.Y / H) E.H/ > 0; (A.12)

then f�u 2 AE0

phg.Y /˝ jƒj
n.bT �Y / where

E 0.H/ D
[

H 0

n� z

e.H 0;H/
; p
�
W .z; p/ 2 E.H/

o
;

with the (extended) union taken overH 0 with e.H 0;H/ > 0.
The extended union, defined in [30], contains the standard union and possibly

more log terms.

A.2. Heat trace asymptotics. WenowuseTheoremA.3 to prove the heat trace form-
ula in Corollary 4.4 above. The heat trace is equal to

Tr.e�t�/ D
Z
M

Ht .w;w/ dVolg D ��..��Ht / dVol/; (A.13)

where �WM � Œ0;1/ �! M �M � Œ0;1/ is the diagonal inclusion and � WM �
Œ0;1/ �! Œ0;1/ is the projection onto the right factor. The natural space here on
which to considerHt isM 2

heat, and thus to evaluate this pushforward we must see how
� and � act on the natural blown up spaces. The following may be easily verified.
(1) The closure

.M 2
heat/� WD cl.�.M ı � .0;1///

is a manifold with corners with 4 boundary hypersurfaces, sf;ff1
d ;ffd ; tfd , equal to

the intersection of cl.�.M ı � .0;1/// with rf\ lf;ff1;ff; and tf, respectively

(2) The map � extends form the interiorM ı � .0;1/ to a b-fibration

� W .M 2
heat/� �! Œ0;1/
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with exponent matrix

e� .sf/ D 0; e� .ff1
d / D 2; e� .ffd / D 2k; e� .tfd / D 2:

To apply the pushforward theorem, we note that the volume density

� D
ˇ̌̌
dVolg

dt

t

ˇ̌̌
D xkfC1

jdxdydzdt j

xt

is equal on .M 2
heat/� to

� D a .�sf�ff1d �ffd /
kfC1�0;

where�0 is a non-vanishing b-density on .M 2
heat/�. Thus .��H/� is phg on .M 2

heat/�
with index family Ed satisfying

inf Ed .sf/ D 3; inf Ed .ff1
d / D �b;

inf Ed .ffd / D k.f � n/C 1; Ed .tfd / D f�n;�nC 1; : : : g:

Note that Tr e�t� dt
t
D ��..�

�Ht /�/. The integrability condition (A.12) must be
checked only for sf and thus holds by Theorem 3.7, and we apply the pushforward
theorem to obtain that Tr e�t� is polyhomogeneous with index set

f.�1=2; p1/W .�1; p1/ 2 Ed .ff1
d /g S[ f.�2=.2k/; p2/W .�2; p2/ 2 Ed .ffd /g

S[ f.�3=2; p3/W .�3; p3/ 2 Ed .tfd /g:

In particular,

F.t/ D
� fX
jD0

aj t
�n=2Cj=2

�
C c0t

�.bC1/=2C1=.2k/
CO.t�.bC1/=2C1=.2k/C�/;

for some � > 0. As discussed in [28, Section 3.3], the heat kernel in fact lies in an
even calculus and thus the terms for odd j in this sum are equal to 0, giving the trace
formula (4.16). The fact that the leading order term is the volume is standard.

B. Triple space

Wewill now analyze composition properties for “Volterra” type convolution operators
as described in (3.74). To do so, following [16, 30], we construct a “triple space,”
which we denote byM 3

heat, which is designed specifically to accommodate the process
of composing operators which have the structure of the error terms in (3.75). The
structure of our triple space is analogous to that constructed by Grieser and Hunsicker
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in [16], with slightly different homogeneities and with the added complication that
there are time variables involved.

Note that, given Ai , i D 1; 2, we want is to make sense of the integralZ
M

Z t 0

0

A1.w;w
0; t 0/A2.w

0; zw; t � t 0/ dVolg.w0/dt 0: (B.1)

Define the wedge
W WD ft � t 0 � 0g � RCt �RCt 0 ; (B.2)

and define the left, center, and right projections

�LWM �M �M �W �!M �M � Œ0;1/t;

.w;w0; zw; t; t 0/ 7�! .w;w0; t 0/;

�C WM �M �M �W �!M �M � Œ0;1/t;

.w;w0; zw; t; t 0/ 7�! .w; zw; t/;

�RWM �M �M �W �!M �M � Œ0;1/t;

.w;w0; zw; t; t 0/ 7�! .w0; zw; t � t 0/:

(B.3)

Then, formally, the integral in (B.1) says that the integral kernel of A1A2 (as an
operator acting by convolution in time) is

.A1A2/.w; zw; t/ D .�C /�.�
�
LA1/.�

�
RA2/; (B.4)

where .�C /� denotes the pushforward, i.e. the integral along the fibers of �C (which,
by the way we have set up the problem, requires the choice of a metric on the fibers
which we come to shortly.) Analysis of (B.4) becomes tractable if the spaceM 3�W

is blown up so that the pushforward theorem described in §A.1 applies.
Note thatM 3 �W is a manifold with corners with 5 boundary hypersurfaces

L D fx D 0g; C D fx0 D 0g; R D fzx D 0g;
tb01 D ft

0
D 0g; tb02 D ft � t

0
D 0g:

It is easy to check that, in the language ofAppendixA, themaps��with � 2 fL;C;Rg
are b-maps fromM 3 �W toM 2 � Œ0;1/t and the exponent matrices are also easy
to compute,

e�L.�; �
0/ D

„
1 � D L; �

0
D lf;

1 � D C; �
0
D rf;

1 � D tb01; �
0
D tb;

0 otherwise;

e�C .�; �
0/ D

�
1 � D L; �

0
D lf;

1 � D R; �
0
D rf;

0 otherwise;

(B.5)
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e�R.�; �
0/ D

„
1 � D C; �

0
D lf;

1 � D R; �
0
D rf;

1 � D tb02; �
0
D tb;

0 otherwise:

(B.6)

We blowupM 3 �W to form a space žWM 3
heat �! M 3 �W in a sequence of steps

as follows.
First, consider the three pullbacks of the submanifold

B0 D fx D zx; y D zy; zt D 0g �M
2
� Œ0;1/zt

defined in (3.6)
��1L .B0/; ��1C .B0/; ��1R .B0/: (B.7)

These three sets intersect pair-wise in the triple intersection:

��1L .B0/\�
�1
C .B0/ D �

�1
C .B0/\�

�1
R .B0/ D �

�1
L .B0/\�

�1
R .B0/ D S ; (B.8)

where
S D fx D x0 D zx D t D t 0 D y � y0 D y0 � zy D 0g: (B.9)

We blowup the set S , with appropriate homogeneities, specifically letting

M 3
heat;0 D ŒM

3
�W IS �q-hom; (B.10)

with t � x2 � .x0/2 � zx2 � jy�y0j2 � jy0� zyj2, and let ž0WM 3
heat;0 �!M 3�W

denote the blowdown map. Call the introduced boundary hypersurface ff1
\. Near

to ff1
\, we have polar coordinates

�\ D
�
t C x2 C .x0/2 C zx2 C jy � y0j2 C jy0 � zyj2

�1=2
;

�\ D
� t 0
�2\
;
t � t 0

�2\
;
x

�\
;
x0

�\

zx

�\
;
y � y0

�\
;
y0 � zy

�\

�
DW
�
�\t 0 ; �

\
t�t 0 ; �

\
x ; �

\
x0 ; �

\
zx ; �

\
y�y0 ; �

\
y0�zy

�
; along with y0; z; z0; zz:

(B.11)

The asymmetry of the y; y0; zy in the coordinates is spurious in the sense that if one
defines �\

y�zy
D .y � zy/=�\, then any two of the �\y�y0 ; �

\
y0�zy

can be used in �\ by
redefining �\ using e.g. jy�y0j2 and jy� zyj2 (and then using �\y�y0 ; �

\
y0�zy

). Either
set of coordinates is defined in a collar neighborhood of ff1

\.
We then blowup the closures of the lifts

S� WD cl..�� ı ž0/�1.B0/ n ff1
\/;

i.e. the rest of the lifts of the B0 via the three projections, where � 2 fL;C;Rg.
These are disjoint subsets and we blow them up in any order, setting

M 3
heat;1 D ŒM

3
heat;0I [�DL;C;RS��q-hom; (B.12)
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with the appropriate homogeneities, e.g. for SL we have t 0 � x2 � .x0/2 � jy�y0j2.
Again, we have a blowdown map

ž
1WM

3
heat;1 �!M �M �M �W: (B.13)

The new faces we call ff�1 with � 2 fL;C;Rg. Coordinates at ff
L
1 can be determined

as follows. Note that SL is given in the coordinates (B.11) by �\t 0 D �\x D �\x0 D

�\y�y0 D 0, and that in a neighborhood of SL away from ff1
\, �\t 0 � t 0. Thus, to

match homogeneities with the blowups of the double space, we want to blow this up
so that the following give polar coordinates near the intersection of ffL1 and ff1

\:

�L D
�
�\t 0 C .�

\/2x C .�
\/2x0 C j.�

\/y�y0 j
2
�1=2

;

�L D
� �\t 0

.�L/2
;
�\x
�L
;
�\x0

�L
;
�\y�y0

�L

�
DW
�
�Lt 0 ; �

L
x ; �

L
x0 ; �

L
y�y0

�
; along with y0; z; z0; zz; �\; �\zx ; �

\
y0�zy ; �

\
t�t 0

(B.14)

with functions as in (B.11). It is also possible to use simpler projective coordinates,
as we will see below. Coordinates near ffR1 can be derived similarly by switching �\t 0
with �\t�t 0 and �

\
x with �\

zx
. The situation at ffC1 is slightly different since, writing

�\t D �
\
t 0 C�

\
t�t 0 , the pullback of �

\
t onM 2

heat;1 via �C vanishes at �\t 0 D 0 D �
\
t�t 0 ,

and thus SC is codimension 1 higher than S� for � D L;R.
Here we blowup so that the following give coordinates

�C D
�
�\t C .�

\/2x C .�
\/2
zx C j�

\
y�zy j

2
�1=2

;

.�\/C D
� �\t 0

.�C /2
;
�\t�t 0

.�C /2
;
�\x
�C
;
�\
zx

�C
;
�\
y�zy

�C

�
DW
�
�Ct 0 ; �

C
t�t 0 ; �

C
x ; �

C
zx ; �

C
y�zy

�
; along with y0; z; z0; zz; �\; �\x0 ; �

\
y0�zy :

(B.15)

Lemma B.1. With terminology as in Appendix A.1, the maps �� extend from the
interior to b-maps

z��WM
3
heat;1 �!M 2

heat;1 (B.16)

for � 2 fL;C;Rg with exponent matrices ez�� satisfying

ez��.ff
\
1 ;ff1/ D 1; ez��.ff

�0

1 ;ff1/ D ı�;�0 ; ez�C .ff
L
1 ; lf/ D 1; e�C .ff

R
1 ; rf/ D 1;

ez�R.ff
L
1 ; lf/ D 1; ez�L.ff

R
1 ; rf/ D 1; ez�R.ff

C
1 ; tb/ > 0; ez�L.ff

C
1 ; tb/ > 0;

(B.17)
where ı�;�0 D 1 if � D �0 and zero otherwise. When � 2 fL;C;R; tb01; tb

0
2g, i.e. when

it is the pullback of a boundary hypersurface ofM �M �M �W via the blowdown
map, then the exponent matrix satisfies (B.5) with z� replacing � .

Moreover, z�C is a b-fibration in the sense of Appendix A.1.
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Remark B.2. The significance of the inequalities in (B.17) involving tb is that all the
distributions under consideration vanish to infinite order at tb, and thus the pullbacks
of these distributions via �R will vanish to infinite order at ffC1 , and the same for �L.

Proof. We verify the lemma for for z�C and leave the other nearly identical
calculations to the reader. That z�C extends to a b-map follows easily by writing
the pulling back the coordinates in (3.9) and writing them in terms of those in (B.11).
In particular, note that the pullback

z��C� D �\�
C ; (B.18)

so the exponent matrix claim holds. The rest of the definitions of b-fibration are easy
to check.

Remark B.3. The extended map z�L is not a b-fibration as it maps the interior of ffC1
to the interior of the face tb\ lf due to the fact that t D 0 on W implies that t 0 D 0
also, thus the map increases the codimension of a face. The same holds for z�R,
i.e. z�R.ffC1 / � tb\ rf.

Next we must blowup the lifts of B1 in (3.10). Since by (B.17), z�� only maps ff�01
to ff1 if � D �0, any of the pair-wise intersections is again equal to the triple
intersection

S 0 D z��1L .B1/ \ z�
�1
C .B1/ D z�

�1
C .B1/ \ z�

�1
R .B1/ D z�

�1
L .B1/ \ z�

�1
R .B1/:

Indeed, each is a subset of ff\1 , and in the polar coordinates defined on the interior
of ff\1 , using the definition of B1 in (3.10)

S 0 D
˚
� D �\t 0 D �

\
t�t 0 D 0; �

\
x D �

\
x0 D �

\
zx ; �

\
y�y0 D �

\
y�zy D 0

	
; (B.19)

with no restrictions on y0; z; z0; zz. We form a space ŒM 3
heat;1IS

0�q-hom with appropriate
homogeneities. To understand this space, note first that near S 0 we can use projective
coordinates on ff1

\, concretely we can take for example zx to be a boundary defining
function of ff1\ and coordinates zx, t 0=zx2, .t � t 0/=zx2, x=zx, x0=zx, .y � y0/=zx,
.y0 � zy/=zx to replace the polar coordinates in (B.11). Then the homogeneities are
determined by those in the ff blowdown of the double space, and one has coordinates

x�\ D
�
zx2.k�1/ C

t

zx2
C

�x � zx
zx

�2
C

�x0 � zx
zx

�2
C

�
jy � zyj

zx

�2
C

�
jy0 � zyj

zx

�2�1=2.k�1/
;

x� WD
�
x�zx; x�t 0 ; x�t�t 0 ; x�x�zx; x�x0�zx; x�y�zy ; x�y0�zy

�
D

�
zx

x�\
;

t 0

zx2x�
2.k�1/
\

;
t � t 0

zx2x�
2.k�1/
\

x � zx

zxx�
.k�1/
\

;
x0 � zx

zxx�
.k�1/
\

y � zy

zxx�
.k�1/
\

;
y0 � zy

zxx�
.k�1/
\

�
along with zy; z; z0; zz:

(B.20)
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One can also take coordinates in which x; x0; zx are permuted, and the same with y,
y0, zy.

We let ff\ denote the introduced boundary hypersurface.
The lifts of the z��1� .B1/ minus their intersections now have disjoint closures.

For example, we have

z��1L .B1/ \ ff1
\
nff\ D fx�t 0 D x�x�x0 D x�y�y0 D 0g;

while
z��1C .B1/ \ ff1

\
nff\ D fx�t D x�x�zx D x�y�zy D 0g;

where x�t D x�t 0 C x�t�t 0 and x�x�zx D x�x�x0 C x�x0�zx and for z�R we have x x0 D
 t�t 0 D 0,  y0 D 0; since jx�j D 1, these sets are disjoint. Furthermore, the
pullbacks satisfy that

z��1� .B1/ \ ff�01 D ı�;�0 ;

for �; �0 2 fR;C;Lg, and each intersection is straightforward to write down, e.g. with
coordinates as in (B.15),

z��1C .B1/ \ ffC1 D
˚
�C D �Ct 0 D �

C
t�t 0 D �

C
x � �

C
zx D 0; �

C
y�zy D 0

	
:

We will blowup first the z��1� .B1/ \ ff\1 and then the z��1� .B1/ \ ff�1 with for � 2
fL;C;Rg.

In the interior of ff�1 with � 2 fL;Rg the blowups of the pullbacks of B1 are
particularly easy to understand as therewe can just pullback the projective coordinates
in (3.14) and use these together with the other unaffected coordinates to obtain
projective coordinates e.g. near �L ı ž

�1
0 .B1/ \ ffL1 valid near the interior of the

introduced boundary hypersurface.

x0; � D
s � 1

.x0/k�1
D
x � x0

.x0/k
; �0 D

y � y0

.x0/k
; T 0 D

t 0

.x0/2k
; (B.21)

together with zw; t on the introduced boundary hypersurface. In the interior of ffC1 ,
one needs only to remember that the vanishing of the pullback of the �t coordinate
implies the vanishing of both �t 0 and �t�t 0 . One can use zx as a boundary defining
function and then twoprojective time coordinatesT 0 D t 0=zx2k and zT D .t � t 0/=zx2k .
In the interior of ff\1 but away from ff\, we want the same homogeneities, but
now the pullback of ex0 in the interior of ff\ is proportional to �\ and in the
interior of the introduced blowup we will have coordinates as in (B.21) with all
the functions replaced by their � counterparts, e.g. x0 replaced by �x0 and y�zy

.x0/k

replaced by  y�y0=�x0 .
We focus at the intersection ff1

\
\ff1

�, first with � D C . Near SC , we can
simplify things slightly by using projective coordinates, derived from (B.15) by
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noting that �\
zx
is non-zero at ff1

\
\ff1

�
\ SC and can thus be used as a boundary

defining function. Specifically, take

zX D �\
zx ; X D

x

zx
; T D

t

zx2
; Y D

y � zy

zx
;

together with the other (non-polar) coordinates in (B.15). Blowing up to introduce a
face ff\;C , have

P D
�
T C �

2.k�1/
\ C .X � 1/2 C jYj2

�1=.2.k�1//
;

‰ D
�
T =P 2.k�1/; �\=P ; .X � 1/=P

k�1;Y=P k�1
�
;

but it follows that S1 \ ff1
C intersects ff\;C at ‰ D .0; 1; 0; 0/ and thus �\ can be

used as a boundary defining function. Again working near SC we can take �\ as a
boundary defining function for ff\;C and use projective coordinates �\ , T =�

2.k�1/
\ ,

.X � 1/=�k�1\ , Y=�k�1\ . Using these we blow up S1 \ ff1
C with

xP D
� T

�
2.k�1/
\

C .�\
zx /
2.k�1/

C
.X � 1/2

�k�1\
C
jYj2

�k�1\

�1=.2.k�1//
;

S‰ D
� T

. xP�\/2.k�1/
;
�\
zx

xP
;

X � 1

. xP�\/k�1
;

Y

. xP�\/k�1

�
D

� t

zx2. xP�\/2.k�1/
;
zx

xP�\
;

x � zx

zx. xP�\/k�1
;

y � zy

zx. xP�\/k�1

�
;

and this is the final blowup of SC . The blowups for SL;SR are similar and left to
the reader.
Proposition B.4 (Incomplete cusp edge heat triple space). The above construction
yields a space and blowdown map

žWM 3
heat �!M �M �M �W; (B.22)

such that the maps z�� from (B.16) extend to b-maps x��WM 3
heat �! M 2

heat;2 with
exponent matrix satisfying (B.5), (B.17) (with � and z� replaced by x�), and

ex��.ff\;ff/ D 1; ex��.ff\;�
0

;ff/ D ex��.ff�
0

;ff/ D ı�;�0 ;
ex�L.ff

\;R;ff1/ D ex�R.ff
\;L;ff1/ D ex�C .ff

\;R;ff1/ D ex�C .ff
\;L;ff1/ D 1;

ex�L.ff
R; rf/ D ex�R.ff

L; lf/ D ex�C .ff
R; rf/ D ex�C .ff

L; lf/ D 1;
ex�L.ff

\;C ; tb/; ex�L.ff
C ; tb/; ex�R.ff

\;C ; tb/; ex�R.ff
C ; tb/ � 1:

(B.23)

Moreover, apart from components of ex��.ff\;C ; �0/ and ex��.ffC ; �0/ with � 2 fL;Rg,
all other components are zero.

Again, x�C is a b-fibration.
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Proof. Again, we focus on x�C . To check that z�C extends to a b-map, we pull back
the polar coordinates x�; x�; zy; z; zz; from (3.12) defined at ff in M 2

heat;2. First, we
compute

z��C x� D z�
�
C

��
.t=zx2/C zx2.k�1/ C .s � 1/2 C .jy � zyj=zx/2

�1=2.k�1/�
D
�
T C zx2.k�1/ C .X � 1/2 C jYj2

�1=2.k�1/
D xP�\;

and then note that

z��C
x� D z��C

� t

zx2x�2.k�1/
;
zx

x�
;
x � zx

zxx�.k�1/
;
y � zy

zxx�.k�1/

�
D

� t

zx2. xP�\/2.k�1/
;
zx

xP�\
;

x � zx

zx. xP�\/.k�1/
;

y � zy

zx. xP�\/.k�1/

�
D S‰:

This establishes both claims for x�C . The R;L case are left to the reader.

PropositionB.5. For i D 1; 2, letAi 2 A
Ei
phg.M

2
heat;2/with the index setsEi satisfying

Ei .ff1/ � �3�b�kf; Ei .ff/ � �kn�2k; Ei .lf/ D Ei .tb/ D ¿; and Ei .rf/

satisfying (3.68). Then

A3 WD

“ t

0

A1.w;w
0; t 0/A2.w

0; zw; t � t 0/ dVolw0 dt 0

lies in A
E3
phg.M

2
heat;2/ where for any � > 0,

inf E3.ff1/ � inf E1.ff1/C inf E2.ff1/C 3C b C kf � �;

inf E3.ff/ � inf E1.ff/C inf E2.ff/C knC 2k � �:
(B.24)

Remark B.6. The constants knC2k and 3CbCkf in (B.24) should be interpreted,
for instance in the case of ff, as saying that the (Volterra type) composition of two
operators given by Schwartz kernels as in the theorem has Schwartz kernel whose
leading order asymptotic behavior at ff increases relative to the rate �kn � 2k, in
particular if both the composed operators grow like �kn � 2k then so does the
composition. These are, incidentally, the exact rates of blowup of the heat kernel
times t�1 at the faces ff and ff1, and furthermore the fact that the errors t�1Q in (3.75)
vanish one order faster than t�1H means, as described above, that taking powers
makes them vanish at increasing rates at both ff and ff1.
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Proof. WewriteA3 as the pushforward of a b-density and then apply the Pushforward
theorem from Section A.1. First we define a non-vanishing b-density �0 on M �
M �M � W as follows. We let � be a non-vanishing b-density on M satisfying
� D ajdxdydz

x
j for a smooth nonvanishing function a near the boundary, and consider

�0 D � �
0
z�
ˇ̌̌ dt 0dt

t 0.t � t 0/

ˇ̌̌
where �0; z� are equal to � in the primed and tilded coordinates, respectively. Since
the blowdown map ž from (B.22) is a b-map, ž��0 is a b-density onM 3

heat, and one
checks that

ž��0 D G x�0; (B.25)

for a non-vanishing b-density x�0 on M 3
heat and G 2 C1.M 3

heat/ satisfying that for
some non-vanishing smooth function G0,

G D G0.�ff1L�ff1C �ff1R/
b�2bff1\

.�ffL�ffC �ffR/
kbCk�1

� .�ff\;L�ff\;C �ff\;R/
.kC1/bCk�1�

2kbC2.k�1/

ff\ :

Then we can write the desired pushforward as a pushforward of a b-density,
specifically

A3

�
� z� j

dt

t
j

�
D .�C /�

�
��LA1�

�
RA2 � ..t

0=t/.t � t 0//F.w0/�0
�

D .x�C /�
�
x��LA1x�

�
RA2 �

ž�..t 0=t/.t � t 0/F.w0/�0/
� (B.26)

where F is the function defined by dVolg D F� and in particular

F D a xkfC1;

where a is a non-vanishing polyhomogeneous function on M , and �; z� are the
pullbacks of the density � above to the left and right spacial factors ofM �M �RC.
To find the asymptotics ofA3 itself we must compute the asymptotics of the densities
on the left hand side of (B.26); Letting ˇ2 again denote the blowdown map

M 2
heat;2 �!M �M � Œ0;1/

in (3.13), we check that

ˇ�2

�
.� 0L/

�� .� 0R/
��
dt

t

�
D �bff1�

bkCk�1
ff �2;

where�2 is a non-vanishing b-density onM 2
heat;2. Thus from (B.26), if the distribution

.x�C /�
�
x��LA1x�

�
RA2 �

ž�..t 0=t/.t � t 0/F.w0/�0/
�
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is polyhomogeneous with index set E 03 then A3 is phg with index set E3 satisfying

E3.ff1/ D E 03.ff1/ � b; E3.ff/ D E 03.ff/ � .kb C k � 1/; (B.27)

and E3.�/ D E 03.�/ otherwise.
Thus the index family of x��LA1x�

�
RA2�

ž�..t 0=t/.t�t 0/F.w0//must be determined.
To determine x��LA1, we see that, at a bhsH ofM 3

heat, the index set of x��LA1 is simply
the index set of A1 at the bhs H 0 ofM 2

heat;2 at which H is incident. Thus from our
work above we see that x��LA1 has index set xE1 satisfying

xE1.L/ D E1.lf/ D ¿;
xE1.C/ D xE1.ff1

R/ D xE1.ffR/ D E1.rf/;
xE1.tb01/ D xE1.ff1

C / D xE1.ff\;C / D xE1.ffC / D E1.tb/ D ¿;
xE1.ff1

\/ D xE1.ff1
L/ D xE1.ff\;R/ D E1.ff1/;

xE1.ff\/ D xE1.ff\;L/ D xE1.ffL/ D E1.ff/;
xE1.R/ D Z;

the last line coming from the fact that x��LA1 is independent of zx, in particular is
smooth up to R. The index set xE2 of x��RA2 has the same expression in terms
of E2 but with all ‘R’s switched with ‘L’s, all lf’s with rf’s, and all 1’s with 2’s
(except of course for the 1 in the subscript of ff1). For example, (c.f. the second line
above) xE2.C/; xE2.ff1

L/; xE2.ffL/ are all equal to E2.lf/, which is assumed to be ¿.
If we define the operation E1 ˚ E2 on index sets to denote the index set whose
elements are sums of elements of the two index sets, It follows that x��LA1 x�

�
RA2 is

polyhomogeneous with index set F satisfying˚
F .C/;F .L/;F .ff1

L/;F .ffL/;F .tb01/;F .tb
0
2/;F .ff1

C /;F .ff\;C /;F .ffC /
	
D ¿;

F .ff1
\/ D E1.ff1/˚ E2.ff1/; F .ff\/ D E1.ff/˚ E2.ff/; F .R/ D E2.rf/;

F .ff1
R/ D E1.rf/˚ E2.ff1/; F .ffR/ D E1.rf/˚ E2.ff/;

F .ff\;R/ D E1.ff1/˚ E2.ff/; F .ff\;L/ D E1.ff/˚ E2.ff1/:
(B.28)

We now compute the asymptotics of the term

ž�...t 0=t/.t � t 0//F.w0/�0/ D ž
�...t 0=t/.t � t 0//F.w0//G x�0

with G in (B.25). First, write

ž�..t.t � t 0//F.w0// D x��L.t/x�
�
R.t/x�

�
R.F /;

where F is thought of as a function of the left factor ofM �M � Œ0;1/. Recalling
�, x� from (3.9) and (3.12), respectively, and letting a denote a polyhomogeneous
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function which is smooth and non-vanishing up to boundary hypersurfaces � for
which F .�/ ¤ ¿ (and whose value will change from line to line), we compute

ž�
� t 0.t � t 0/

t
F .w0/

�
D a

x��L.�
2x�2k/x��R.�

2x�2k/

x��C .�
2x�2k/

x��R..�lf�x�/
kfC1/

D a
.�ff1\�ff1L�ff\;R/

2.�ff\�ff1\;L�ffL/
2k

.�ff1\�ff1C �ff\;R�ff\;L/
2.�ff\�ff1\;C �ffC /

2k

� .�ff1\�ff1R�ff\;L/
2.�ff\�ff1\;R�ffR/

2k

� .�C�ff1L�ffL�ff1\�ff1R�ff\;L�ff\�ff\;R�ffR/
kfC1

D a .�ff1L/
2.�ff1\;L�ffL/

2k.�ff1\�ff1R/
2.�ff\�ff1\;R�ffR/

2k

� .�C�ff1L�ffL�ff1\�ff1R�ff\;L�ff\�ff\;R�ffR/
kfC1

D a .�ff1\�ff1R/
2.�ff\�ff\;L�ff\;R�ffR/

2k

� .�ff1R�ff1\�ff\�ff\;R�ff\;L�ffR/
kfC1:

Putting this all together, we see that x��LA1x�
�
RA2 �

ž�...t 0=t/.t � t 0//F.w0/�0/ is
polyhomogeneous with index set SF

SF .ff1
\/ D E1.ff1/˚ E2.ff1/C .3C kf C 2b/;

SF .ff\/ D E1.ff/˚ E2.ff/C .1C 2k C kf C 2kb/;
SF .R/ D E2.rf/
SF .ff1

R/ D E1.rf/˚ E2.ff1/C .3C kf C b/;

SF .ffR/ D E1.rf/˚ E2.ff/C .1C 2k C kf C kb/
SF .ff\;R/ D E1.ff1/˚ E2.ff/C .1C 2k C kf C .k C 1/b/;
SF .ff\;L/ D E1.ff/˚ E2.ff1/C .1C 2k C kf C .k C 1/b/;

(B.29)

and SF .�/ D ¿ for all other values of �.
Now we apply Theorem A.3 to analyze

.x�C /�
�
��LA1�

�
RA2 � ..t

0=t/.t � t 0//F.w0/�0
�

from (B.26). To check that the conditions of the theorem hold, we first recall that x�C
is a b-fibration. Also, note that

ex�C .C;H
0/ D ex�C .tb

0
1;H

0/ D ex�C .tb
0
2;H

0/ D 0

for allH 0 2M.M 2
heat;2/, and so we must check the integrability condition there, but

by below (B.29) we have

SF .C/ D SF .tb01/ D SF .tb
0
2/ D ¿;
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so the integrability condition holds. Thus A3.� 0L/
�� .� 0R/

�� is phg onM 2
heat;2 with

index set E 03 satisfying

E 03.lf/ D SF .L/ S[ SF .ff1
L/ S[ SF .ffL/ D ¿;

E 03.rf/ D SF .R/ S[ SF .ff1
R/ S[ SF .ffR/;

E 03.ff1/ D SF .ff1
\/ S[ SF .ff1

\/ S[ SF .ff\;L/ S[ SF .ff\;R/;
E 03.ff/ D SF .ff

\/ S[ SF .ff\;C / S[ SF .ffC / D SF .ff\/;
E 03.tb/ D ¿;

(B.30)

where we used from below (B.29) that various bhs’s have infinite order vanishing.
From this we see that the bounds in Proposition B.5 hold, in particular that for
any � > 0,

inf E 03.ff1/ � inf E1.ff1/C inf E2.ff1/C 3C kf C 2b � �;

E 03.ff/ D inf E1.ff/C inf E2.ff/C 1C k C kn � �;

and thus by (B.27) the actual index set E3 of A3 satisfies (B.24), and the proof is
complete.
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