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Abstract

Federated Learning (FL) systems are gaining popularity as
a solution to training Machine Learning (ML) models from
large-scale user data collected on personal devices (e.g., smart-
phones) without their raw data leaving the device. At the core
of FL is a network of anonymous user devices sharing train-
ing information (model parameter updates) computed locally
on personal data. However, the type and degree to which
user-specific information is encoded in the model updates is
poorly understood. In this paper, we identify model updates
encode subtle variations in which users capture and generate
data. The variations provide a strong statistical signal, al-
lowing an adversary to effectively deanonymize participating
devices using a limited set of auxiliary data. We analyze result-
ing deanonymization attacks on diverse tasks on real-world
(anonymized) user-generated data across a range of closed-
and open-world scenarios. We study various strategies to mit-
igate the risks of deanonymization. As random perturbation
methods do not offer convincing operating points, we propose
data-augmentation strategies which introduces adversarial bi-
ases in device data and thereby, offer substantial protection
against deanonymization threats with little effect on utility.

1 Introduction

Advances in machine learning (ML) is increasingly fueled by
accessibility to data sources capturing rich representations of
the world e.g., 9M photographs [49], 1.6M tweets [30], etc.
While such large-scale data advances learning fundamental
ML models (e.g., visual object recognition), the representa-
tions also encode a massive amount of unnecessary individual-
specific information (e.g., person identities) [33,61]. For sit-
uations where the data is decentralized (e.g., user-generated
photos on edge devices), Federated Learning [54] provides a
solution based on the principles of data minimization [43, 60]
towards training a ML model. The core idea is participants
distill from raw private data residing on individuals’ device
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Figure 1: Deanonymization in Federated Learning. In this
paper, we study how subtle user-biases captured in model
parameter updates leads to deanonymization of their devices.

the information necessary to train the model, and intermit-
tently communicate them to a server. The information com-
municated by the participants take the form of model updates
computed locally on-device.

To prevent privacy violations, it is crucial that model
updates reveals information solely necessary for the train-
ing task (e.g., visual features to identify cats) and nothing
about the participants (e.g., person identities). To ensure this,
federated learning is combined with additional steps to re-
strict the amount of data- and participant-specific informa-
tion revealed in the process. In the specific case of restrict-
ing participant-specific information encoded in model up-
dates, typical steps include: stripping the data of PII infor-
mation [83], de-identifying the updates and auxiliary meta-
data [35, 54, 83], and avoiding authentication via user-identity
prior to participation [16]. Hence, it is assumed that model up-
dates received by the server contains minimal non-identifiable
information to improve the model.

However, it is in the nature of many real-world feder-
ated settings, that the clients represent diverse users with
different interests, preferences and habits. Hence, the under-
lying data distributions of the users are not identically dis-
tributed and as a consequence, is characteristic of the users.
Therefore, we find that the model updates nonetheless en-



code individual-specific information and introduce significant
deanonymization risks. Apart from constituting a privacy vio-
lation, deanonymization in federated learning undermines ex-
isting mechanisms to ensure the source of model updates are
masked. Furthermore, deanonymization amplifies effective-
ness of recent inference attacks (e.g., attribute inference [56]),
as identities can be tied to sensitive attributes inferred from
the participants’ private training data.

We investigate deanonymization risks and consequences by
following the popular Federated Averaging algorithm [15,54],
where participating devices intermittently communicate de-
identified model parameter updates to a server. Here, the
high-dimensional updates are a product of multiple gradient
steps on multiple batches of the local device data. We as-
sume honest-but-curious server who intends to deanonymize
participating devices (Fig. 1¢) with limited access to prior in-
formation of users (Fig. 1d). Central to our deanonymization
attack is exploiting subtle, but inherent, individual- specific
biases introduced when participants collect data on personal
devices. For instance, Alice capturing more photos of automo-
biles on her mobile device compared to Bob, who photographs
food. Our approach learns a suitable representation where the
biases (modeled from limited prior data) can be leveraged to
re-identify individuals via their model updates.

We evaluate deanonymization risks in a federated learn-
ing setup when training complex models (e.g., MobileNet
CNNss [44]) involving numerous participants (53-327 users).
Furthermore, we use real-world (anonymized) user-generated
datasets (e.g., PIPA, Blog) to closely emulate existing feder-
ated learning applications [54,55]. Our evaluation indicates
that participants can be consistently deanonymized across
a range of scenarios. For instance, individuals transmitting
model updates for an image classifier (with output classes e.g.,
chair, umbrella) on PIPA dataset are re-identified with high
accuracy (19-175x chance-level). Furthermore, we find the
attacks surprisingly possible in spite of a range of data-limited
scenarios, such as when the adversary has only a single prior
example of the targeted individual.

Moreover, we propose a novel cross-modal attack which
tackles a challenging scenario when the attacker’s prior infor-
mation varies in modality from the private data used during
training by the participants. For instance, the attacker lever-
ages text information, while the participants are training using
image data. Our experiments indicate that in spite of the cross-
modal challenge, attacks are quite effective (0.76 AUC).

It is worth noting that our deanonymization attack can also
amplify the performance of recent attacks that infer sensitive
properties of the training data. For example, we show that
learning an attack model to jointly perform deanonymization
and attribute inference [56] are synergistic, with a consistent
improvement of up to 4% accuracy on both tasks. These
results are further concerning, as sensitive attributes can be
linked to identities of participants in federated learning.

After demonstrating the the risks of deanonymization in

federated learning, we explore countermeasures to mitigate
the threat. We propose augmenting users’ data distribution
with an adversarial bias to decouple users’ subtle variations
from their prior information. As a result, we propose the first
mitigation strategy that directly operates on the user data it-
self, while maintaining utility of the task. We find our strategy
mitigate attacks with up to 95% effectiveness and incurs only
negligible cost on the underlying task performance. In con-
trast, we find perturbation- and DP-based training approaches
(e.g., DP-FedAvg [55]) incur large privacy and utility costs
in our setup as they are typically effective only when training
with a massive number of users (in the order of thousands).

2 Related Work

In this section, we position our paper with existing literature
on anonymization and privacy in ML.

Deanonymizing (Insufficiently) Anonymized Data. Or-
ganizations have largely believed that explicitly stripping
away key identification information (e.g., names, SSN) from
data records is sufficient to de-identify and provide anonymity
of participating individuals. Instances of this strategy to
anonymize databases include Hospital Discharge dataset
(GIC) [75], Netflix prize dataset [10], and AOL search logs [4].
However, a long of line work, dating back to [74,75] high-
light that although the de-identified database by itself might
seem anonymous, joining with auxiliary publicly available
data on a set of quasi-identifiers (e.g., zip-code, gender) leads
to effectively re-identifying individuals. Consequently, in the
aforementioned instances, many identities of participating in-
dividuals were re-identified using a public voter database [75],
IMDb movie ratings [57], and search keywords [8] respec-
tively. This has motivated significant research in the area of
identifying factors that potentially lead to deanonymization
of individuals, such as in social networks [58], programmatic
code [2], and product reviews [39]. Research has also identi-
fied various sources of quasi-identifiers in unstructured data:
profile attributes [65], geo-location [66], social graph struc-
ture [48], content [31], stylometric features [3], or RNA ex-
pressions [6]. In this paper, we tackle deanonymization of
devices within Federated Learning, which enables users to
anonymously participate towards the learning of an ML model
using their private data.

Attacks against Machine Learning Models. Advances
in ML has led to state-of-the-art statistical models being de-
ployed ‘in the wild’ to perform a variety of tasks such as
autonomous driving, fraud detection, and medical diagnosis.
Attacks against such ML models can be targeted towards
compromising the integrity of the model (such as by evasion
attacks [5,13,18,32,63,76,79,84,87]), or its privacy and con-
fidentiality. Our focus is on the latter, since ML models need
to obviously learn something as a result of training on (po-
tentially private and confidential) data sources. Attacks that



compromise privacy of models in this setting include: model
stealing [52,62,77], membership inference [66,67,71] which
identifies if a particular example was used during training, at-
tribute inference [28, 56] to identify properties that holds true
for subsets of data, and model inversion [27,41] to reconstruct
training class exemplars. In this work, we address a problem
similar to membership and attribute inference, where we wish
to identify properties that holds for subsets of data. While
membership inference intends to identify whether a particular
example was used during training, our adversarial goal can
be cast as ‘userbase inference’: to identify which particular
individual participated in training.

Attacks in Federated Learning. Distributed ML on de-
centralized private user-generated data sources — also referred
to as Collaborative ML [70], or Federated Learning [15,54]
—is gaining popularity as it securely enables large-scale ML
on private data sources. While such approaches minimizes
the privacy risks by keeping user in control of the raw private
data, understanding the extent of privacy risks is gaining trac-
tion in the research community. Understanding these risks
in this setting is crucial since FL is designed to learn from
private data spanning hundreds to tens of thousands of users.
Unfortunately, research in this area is minimal and work has
only recently started to quantify these risks.

Given the considerable complexity of FL systems exposing
many attack surfaces, we specifically focus on the anony-
mous gradient information communicated by devices to the
server. One line of work studies malicious devices who ex-
ploit anonymity and secure aggregation protocols to mount
poisoning and backdoor attacks [7, 12, 82] on the system. Or-
thogonal to this line of work, are attacks [56,59] where the
server is modeled as an adversary instead of the device. Since
the server requires raw unencrypted access to gradient sig-
nals for aggregation, it opens up threats to mount inference
attacks that violate users’ privacy. Recently, [59] comprehen-
sively explored membership inference on gradient parameters,
including an analysis in an FL setting. While our work ex-
plores a similar idea — membership on a user-level — we aim
to determine it without access to the exact training exam-
ple(s) belonging to the user. A closely related work to our
paper is [56], who propose an attribute inference attack i.e.,
using the aggregated gradient signal to infer certain sensitive
attributes (e.g., gender, race) that is not significantly corre-
lated with the main task trained by participating users (e.g.,
sentiment analysis, gender classification). In this work, we
show that deanonymization complements and amplifies such
attribute inferences, by enabling an adversary to additionally
associate the sensitive attributes to an individual.

3 Background, Notation and Terminology

In this section, we provide the preliminaries to Federated
Learning, within which we explore our threat model in the

next section. At this point, we remark that research towards a
Federated Learning system encompasses among many other
things, architecture [15], optimization techniques [46, 54],
strategies to improve communication [47], aggregation [16],
implementation [1], and applications [21, 35, 83]. To keep the
background in this section concise, we present key concepts to
understand: (i) how devices generate model parameter updates
using the FederatedAveraging [55] algorithm; and (ii) how
users anonymously communicate the parameter updates to
the server in FL [15,56,59].

Notation and Learning Objective. In supervised learning,
the overall objective is to learn a mapping fi, : X — 9 of a
model f parameterized by w € R. The idea is to learn the
parameters which minimizes the empirical risk represented
by a loss function L on a dataset D = {(x;,y;) }/_;:

. . _ 1 .
W= argmin (w) = agmin Y L(fu(x). 7) (D)

In FL, data is partitioned across multiple devices k € K:
D = Uy Dr. Using Hi(w) to denote the objective solved lo-
cally on device k, the objective in Equation | can now be
re-written as:

K
W = argmin Z BH;((W) (2)
w1

Federated Averaging Algorithm. Given the data 2y parti-
tioned among devices k € K, the objective is to learn parame-
ters w of the model f,,, in the presence of a server S. We use
the popular FederatedAveraging algorithm [53, 54] (Algo-
rithm 1) proposed specifically to perform training on non-I1ID
and imbalanced decentralized data; this has also served as
the footing for multiple prior works [16,29,55,72]. The idea
here is that training occurs over multiple rounds, where in
eachround s, a fractiqn of devices k € K, train models f, us-
ing the local data Q)Envme and only communicate incremental
model update Aw/, towards the server’s global model w'. The
server aggregates (such as by averaging) parameter updates
from multiple devices and shares back an updated improved
model after each round. Over multiple rounds of communi-
cations, the devices converge to model parameters w’ that
has been effectively learnt from all the data D, without their
raw data ever being communicated to the server or another de-
vice. It should be noted that although we consider the simple
FederatedAveraging algorithm, we expect our results to
generalize to a broad class of decentralized algorithms which
involve periodically exchanging model parameter updates.

De-identification in FL. A number of precautions are em-
ployed to ensure any identifiable information is stripped away
from per-device update reports (which includes parameter
updates Aw}, and additional metadata). We first iterate over
de-identification strategies employed on-device. The client is
initially registered into the FL process by being assigned pop-



Algorithm 1: FederatedAveraging [54] for training
data on multiple devices

Server’s algorithm:

Input: K devices; T number of rounds; C fraction of
devices sampled each round; B device’s batch
size; E number of local epochs

Randomly initialize w'=0

for roundt <+ 1to T do

M < max(1, C-K)

K, < sample M devices from K

for client k € K, do

‘ AW/*! « DeviceUpdate(k,w')
end

wr+1 —w +):ke]K, %Aw;(-‘rl

end

DeviceUpdate(k,w') :

Q),fnvate into batches of size B

B <+ split local data

ww

for local epoch i < I to E do
for batch b € B do

w+— w—nVL(fu;b)

end

end

Aw—w —w

return Aw

ulation identifier [83] and thereby bypassing the need to au-
thenticate with a device or user identity [15]. When possible,
PII information is stripped away from the training data [35]
prior to training on-device. After a number of local training
steps, the parameter updates Awj along with anonymized op-
erational metrics [83] is transmitted by the device. A (trusted)
shuffler [14] can be additionally employed to ensure the trans-
mitted per-device update reports are further sanitized before
reaching the server. The shuffler typically strips away a range
of user-specific metadata (e.g., [P addresses, routing details)
and batches the reports (reordering updates to disassociate
timing ordering information). On the whole, multiple mech-
anism are in-place to ensure that only the essence of the
update-reports (i.e., the parameter updates Aw?) are received
by the server to aggregate updates. Consequently, for the rest
of the paper, we assume access to only the parameter updates
to perform deanonymization.

4 Deanonymization Attacks in Federated

Learning

In this section, we begin by presenting our threat model to
deanonymize devices. We then discuss an insight to why this
threat arises and work towards our attack models.

4.1 Threat Model

To highlight deanonymization risks in Federated Learning
[54], we analyze a scenario with K honest users (K > 2) who
collaboratively train an ML model f,, : X — 9 over multiple
rounds. A server S co-ordinates the training, by periodically
collecting model updates from a random subset of users. The
model update communicated by each user is a result of per-
forming multiple gradient steps over multiple batches on their
local private data (see DeviceUpdate(.) in Algo. 1). Fur-
thermore, the model updates are stripped of identifiable meta-
data [16, 35, 83] (e.g., device identifiers) and are optionally
shuffled [14] to obscure the source of each individual update.
Prior to summarizing information from multiple updates, we
assume the server observes only the essence of per-user model
update (i.e., parameter updates Aw’,, ) to improve f,.

We investigate deanonymization through the lens of an
honest-but-curious server (the ‘adversary’) during the training
process who uses the model update as an attack surface. The
inference-time objective of the adversary is to deanonymize
the model update i.e., re-identify the user u who generated
AW .- Such a deanonymization objective undermines sani-
tization mechanisms which de-identify model updates, such
as decoupling the update from user identity [15], stripping
away identifiable metadata [35, 83], and blind-shuffling mech-
anisms [14]. Furthermore, deanonymization also serves as
a stepping stone for amplifying information recovered from
other inference attacks. For instance, as we show later in
§6.1.3, deanonymization can be coupled with attribute in-
ference attacks to improve attack performances and further
associate recovered attributes with identities.

To deanonymize, the adversary leverages limited prior
knowledge of users. Formally, our threat model performs:

AW X DR sy 2 anon 3)

anon

Here, AW, is the deanonymization target, which is a result

of an anonymous user taking multiple gradient steps on her
local data Dinon . The adversary’s auxiliary knowledge of
users is denoted by { D" : u € U}. We assume D} repre-
sents a limited set of data generated by user u and is distinct
from their private data i.e., DP' N DE™® = @ vy € U. For
instance, historical data collected by the service, or content
publicly shared by the users. In Section 5.2, we further elabo-
rate on how we model the adversary’s prior knowledge, as it
plays a significant role in deanonymization attacks.

4.2 Selection Bias and Biased Estimators

The core idea of our threat model is to use users’ selection bias
as an identification cue, which we hypothesize (and shortly
verify) is consistent among both the users’ prior data (known
to adversary) and private device data (unknown to adversary).
This implicit user selection biases arise from behavioral fac-
tors [11,26,38] that results in subtle variations of how humans
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Figure 2: Variations in user data. Each point represents
distances computed over the image set of a single user.

capture data. For instance, Alice’s interest in automobiles
might result in more variations of cars captured in her tex-
t/photos, compared to Bob whose interest lies in sports. At this
point, we remark that this results in a non-IID data distribu-
tion among data on users and devices, which is well-known in
FL literature [15,54]. However, we do identify and exploit the
property that although the data is non-IID among users (large
inter-user distances), the data displays lesser variation within
data generated by the same user (small intra-user distances).

To validate the assumption, we now present an experi-
ment to quantify user variations on two public image datasets
(PIPA [86] and Openlmages [49]). In both cases, we (i) group
the images based on the real-world user who captured them
using the corresponding author fields; and (ii) vectorize
images by extracting the 1024-dim avgpool features from
MobileNet CNN [44] and Lp-normalize them. We obtain
statistics for each user by computing two L, distances: (a)
intra-user distance: median image feature distance between
images within each user; and (b) inter-user distance: median
image distance between user images and a set of random
images. We plot these distances per user on a scatter plot
in Figure 2, each point indicating a distinct user. If images
captured by the users were unbiased, we would have found
their corresponding points at the intersection of blue dashed
lines. However, points predominantly being above the diag-
onal indicates that examples within each users’ collection
are similar (low intra-user distances), but are greater (high
inter-user distances) when compared to other user collections.
In Section 6.2.4, we further analyze how similar user-specific
variations also arise in the parameter delta space.

The resulting non-IID distribution of user data D, among
devices leads to each device fitting a biased estimator dur-
ing the DeviceUpdate step (Algo. 1) with a bias error:
Bias[w,] = E[w,] — w*, where the expectation term is over
the user’s training data 9, and w* is the optimal estimator.
We conjecture (validated in §6.2.4) that the bias error signal
is consistently encoded in both: (i) the parameter updates
transmitted by user’s device Aw’; and (ii) when estimating
on prior data of the user wh, ' = SGD(@Erlor). Hence, we
reformulate the threat model (Eq. 3) in the parameter update
space:

i ?
Y AWPTOT s Aw! - — 1 = anon 4)

Next, we look at attack models to learn this mapping.

4.3 Attacks

In this section, we present attack models to deanonymize
users based on their model updates (Eq. 4).

Re-identification Attack. In the re-identification scenario,
the adversary leverages prior data to learn before-hand (via
attack model f™%) what updates from targeted users look
like. The adversary then uses the attack model to re-identify
users based on their anonymous update. Formally, the re-
identification attack involves training an attack model f™4 :
AwS™ — u to capture user-specific bias signals in the high-
dimensional parameter delta space. At test-time, users are
re-identified using their model updates:

£ Awanon — u (5)

For the re-identification attack model f’ re-id ye adopt a Mul-
tilayer Perceptron (MLP) classifier (architecture in Fig. 3a)
with a single hidden layer of 128 units and ReLU activation,
trained using SGD with learning rate (LR) 0.01, 0.9 momen-
tum and 107® LR decay.

Matching Attack. Instead of learning an update-to-user
mapping, the adversary in the matching scenario learns a
metric space among model updates. Learning a metric space
helps embed model updates close together if they are gener-
ated by the same user, independent of whether the user is a
part of the adversary’s prior knowledge base. Formally, the
adversary’s objective is to predict the match probability of a
pair of distinct parameter updates:

U (Awy, Awj) =i (6)

where one or both parameter updates are anonymous. The
matching attack is particular helpful in scenarios where the ad-
versary encounters novel users at test-time (§6.1.2), or extend-
ing to cross-modal situations (discussed in next paragraph).
We adopt a Siamese network [17] with metric learning [81] to
perform the matching attack. A Siamese model is character-
ized by twin networks which accepts distinct inputs (Aw; and
Aw; in our case) and is connected by another network to esti-
mate similarity between the individual embeddings produced
by the twin networks. In addition, the weights of the twin
networks are shared to ensure extremely similar inputs are
not mapped to distant embeddings. Our Siamese network (ar-
chitecture in Fig. 3b) is constructed as : (a) two FC-128 layers
with ReLU activations which individually encodes Aw;, Aw;
into a 128-dim embedding; (b) L; distance layer to represent
distance between these embeddings; and (c) FC-1 layer with
sigmoid activation to predict the match probability. We mini-
mize the binary-cross entropy loss and perform optimization
using RMSProp with learning rate 1073.

Cross-modal Matching Attack. We extend the matching
attack to accommodate the situation where the modality of



AWgynon

RelLU
Dropout (0.2)

(a) MLP model for re-
identification attack

(b) Siamese model for
matching attack

Awgnon Du

Dropout (0.1) 8 Dropout (0.1)

azirm mime
|

FC-64

Planon = u

(¢) Model for cross-modal
matching attack

AWanon

Dropout (0.2)

v v

Plu] Pla]

(d) MTL model to predict
user u and attribute a

m

Figure 3: Architectures of attack models. Dotted lines indicate shared layers.

attacker’s prior knowledge (e.g., text) differs from the pri-
vate data (e.g., visual data) used by the users during training.
In such a scenario, parameter updates can no longer be rep-
resented in the same space (as in Eq. 4,0). As a result, the
cross-modal matching attack performs:

fcm—mat . (Awanona ¢u) — anon ; u (7)

where ¢, € RP denotes an embedding of the user’s prior
data D™, In §6.1.1, we discuss exactly how we obtain such
an embedding. The attack model (architecture in Fig. 3c) to
estimate the match probability closely resembles the Siamese
network for the matching attack. The only modification is
replacing the twin networks with two different networks (each
with a single FC-128 layer) to map the inputs into a common
128-dim feature space.

S Experimental Setup: Datasets, Tasks, and
Models

In this section, we discuss the experimental setup and datasets
(summarized in Table 1) used to train and evaluate the collab-
oratively learnt ML model in an FL setup.

5.1 Datasets

We now present the datasets (Table 1, examples in Fig. 4)
used to train and evaluate the collaboratively trained models
fw- We highlight that the datasets used are well-suited since:
(a) they are publicly available; (b) samples are annotated with
non-private labels (e.g., tv, flower); (c) examples are complex
and realistic; and (d) each training example has a notion of
“owner” or “user”. Property (d) is particularly important in

FL scenarios, as it allows us to partition and distribute data
on devices based on user identities. Each of the following
paragraphs discusses the (i) dataset D; (ii) corresponding task
X — 9; and (iii) training model f,, : X — 9 to perform the
task.

(i) PIPA. PIPA [86] is a dataset consisting of ~37k per-
sonal photos uploaded by actual Flickr users (indicated in
the author field in Flickr photo metadata). To assure certain
minimal amount of per-user data, we only use users with at
least 100 images, resulting in 33K images over 53 users. We
obtain labels for each image by running a state-of-the-art ob-
ject detector [45] that detects 80 COCO [51] classes, such as
umbrella, backpack, and bicycle. To perform reasonable train-
ing and evaluation of the multilabel classification task, we use
19 classes (e.g., chair, cup, tv) that occur in approximately
>1% of images with high precision. We train a multi-label
image classifier CNN-PIPA-FL f,, : R?24¥2263 _ RI9 for
this dataset in an FL setup. We use the MobileNet [44] ar-
chitecture designed specifically to be run on mobile devices,
as it is a lightweight architecture that strikes a good balance
between latency, accuracy and size.

(i) OpenImages. Openlmages [49] is a large-scale public
dataset from Google, consisting of 9M Flickr image URLSs and
weakly labeled image-level annotations across 19.8k classes.
To make training feasible, we prune out users with less than
500 images, resulting in 317k images from 327 users an-
notated with 18 classes (e.g., food, building). Furthermore,
images of the same user can cover a wide time span (typi-
cally >5 years). Similar to PIPA, we formulate the training
of a multi-label image classifier CNN-0I-FL based on the
MobileNet architecture.

(iii) Blog Authorship. The Blog Authorship Corpus [69]
contains ~681K posts collected from 19K bloggers from



Dataset (D) Type Task #Users #Examples Input (X) Output (9) Model (fy)
PIPA [86] Visual Multi-label classification 53 33,051 Image Labels CNN-PIPA-FL
Openlmages [49]  Visual Multi-label classification 327 317,008 Image Labels CNN-OI-FL
Blog [69] Language Language Modeling 55 454,090 Text Text NNLM-FL
Yelp [20] Language Sentiment Analysis 118 85,615 Text Score NNSA-FL

Table 1: Datasets D and Models f,,. List of datasets used along with corresponding statistics, tasks, and models
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Figure 4: Examples of users and corresponding data.
Openlmages (top) and Yelp (bottom). Images here are
grouped by the anonymized userid and captured/review date.
Qualitatively, we observe that the difference between users’
data is typically subtle.

blogger.com. We work with a subset of 55 users with at
least 1000 corresponding posts. Since these blog posts are
lengthy (13.5 sentences, 209 words per post), we further split
each post into corresponding sentences. As a result, we obtain
454K text sequences over 55 users. We train a language model
(NNLM-FL): P(x;|x;—;,- -~ ,X;—1; W) i.e., predicting probability
distribution of the next word x; in a sequence given contextual
information. Language models trained in an FL architecture
are currently deployed to enable smart compose keyboards
[83]. We train a Neural Network Language Model [9] using
an embedding layer (with £=100 dims), LSTM layer [42]
(with L=64 hidden units), and a fully-connected layer (with
vocabulary size V=5000).

(iv) Yelp. The Yelp Dataset [20] contains ~6M user-reviews
of 188K businesses. To allow for each user contributing mean-

ingful parameter deltas, we filter users with at least 500 total
reviews. This results in 85K user reviews over 118 users. Each
user review contains text (mean length = 180 words) and a 1-5
star rating. We train a sentiment analyzer, modeled as a neural
network regressor: y = fy, ([*1,%2,---]), where y € [1,5] is the
rating and x; is a representation of i-th word in the review. We
use a standard recurrent neural network architecture with an
embedding size of E=50, L=128 hidden LSTM units, and a
vocabulary size of V=1000.

5.2 Data Setup for Adversarial Knowledge

The datasets collected (Table 1) contain sets of user-specific
data D, = {(x;,y;)}*, over users u € U. A limited subset
of this data is strategically held-out to model the adversary’s
prior knowledge
private training data . We consider multiple prior-data
limitation strategies to systematically study their influence on
deanonymization attacks: (i) limiting the subset of users the
adversary has prior knowledge on (§5.2.1); and (ii) limiting
the amount and quality of prior knowledge (§5.2.2).

Tior ..
@5 , and the remaining used as the users’
private
Q)lt

5.2.1 User Scenarios

To tackle the case where a subset of participating users in
FL may or may not be a part of adversary’s prior knowledge
database, we set-up two scenarios:

Closed-world. The adversary has some prior information
on all users participating anonymously in FL. Consequently,
deanonymization of a particular device always maps to a
closed-set of ‘seen’ users. This scenario captures instances
of silo-based federated learning scenarios, which typically
involve a small number of organizations (the users).

Open-world. We extend the above world to additionally in-
clude ‘unseen’ users during FL, for which the adversary does
not have prior information. Hence, a parameter delta Aw;on
could map either to a seen or an unseen user. This presents
a challenging scenario, as it leads to ‘finding a needle in a
haystack’ i.e, the adversary wants to re-identify a particular
target user in spite of background noise generated by many
unseen users.


blogger.com

PIPA Openlmages

split random  chrono split random  chrono
CNN-PIPA-FL 45.1 37.7 CNN-OI-FL 62.9 62.2
CNN-PIPA-SGD 49.7 40.7 CNN-0I-SGD 68.0 67.8
K-NN 14.9 15.8 K-NN 9.7 13.6

Chance 9.5 9.7 Chance 6.3 6.3
Blog Yelp

split random  chrono split random  chrono
NNLM-FL 28.02 27.83 NNSA-FL 0.716 0.708
NNLM-SGD 28.62 28.22 NNSA-SGD 0.576 0.602
Chance 0.09 0.09 Chance 1.472 1.514

Table 2: Evaluation of f,,. Datasets from Table 1. Metrics
used are: (a) PIPA: Average Precision (AP) (b) Openlmages:
Average Precision (AP) (c) Blog: Top5 accuracy (d) Yelp:
Mean Absolute Error (MAE). For (a-c), higher is better and
for (d), lower is better.

5.2.2 Type of Prior Knowledge

To understand the role of prior information in a systematic
manner, we consider both the amount and distribution of
adversary’s prior information w.r.t private data on the FL
device. Specifically for the distribution, we model both Df"™*"
and DE™*° to be sampled (without replacement) from user
u’s universal data distribution 2, in one of the four following

manners.

(i) random prior: Both the prior and private data are IID sam-
. i ivate iid . .

ples from D, i.e., D", DE™¥¢ 25 D), This scenario captures

the adversary scraping information on target user # randomly

from various social media sources.

(ii) chrono prior: We also consider both prior and private
data to be sampled non-IID from D, by factoring in times-
tamps of data (e.g., from image EXIF metadata). Here, data in
DE"" chronologically precedes data in DF™™ For instance,
this could occur when an adversary has historical data on the
targeted user, such as from a previously de-identified account.
In the specific case of the PIPA dataset, where the exact times-
tamp per example is unavailable, we sample prior and private
data non-IID using album information (photoset field).

(iii) profile prior: We briefly address a scenario where the
adversary uses a set of curated ‘profile’ data as a proxy to
users’ data. For instance, by curating targeted prior data Df"™*"
to specifically contain weapons to identify participating users
who fit that profile.

(iv) cross-model prior: We cpnsider the case where adver-
sary’s prior data of the user D" is gathered from a different
modality compared to the private data. For instance, where
the prior data is text-based, but the users train on visual data.

5.3 Collaborative Models: Training and Per-
formance

In Section 5.1, we discussed details on the datasets and cor-
responding model architectures f,,. Section 5.2 presented
how we strategically hold-out a subset of the data to serve
as adversary’s prior knowledge. Now we discuss setup and
performances of collaborative models in our FL setting.

Training Models f,,. For each dataset, we train models
fw using FederatedAveraging (Algorithm 1) [54]. For all
models, crucial hyper-parameters (e.g., size of vocabulary or
embedding) were selected carefully after rigorous evaluation
over a set of standard choices. In FederatedAveraging al-
gorithm, we use C=0.1 and E=1, which we empirically find
results in a good trade-off between convergence and commu-
nications required. We train the models for 200 epochs with
learning rate N=0.01, resulting in 1-4 GPU days to train a sin-
gle model for a particular architecture, dataset and scenario.
All models are written in Python using the Keras [22] library
with a TensorFlow [1] back-end.

Each user u in our datasets is associated with a variable

number of examples D, sampled according to some distri-
bution (e.g., chrono; see §5.2.1). By default, we place half
of the users’ data D, on their anonymous device and reserve
the remaining to be used as adversary’s prior knowledge. In
Section 6.2.1, we vary the size of the adversary’s prior knowl-
edge and find attacks possible even in severely data-limited
settings (e.g., 1-50 prior samples).
Evaluation of f,,. We evaluate performance of the
collaboratively-trained models on a 20% held-out test set.
For reference, we similarly evaluate models trained in a cen-
tralized manner i.e., standard training from a single pool of
training data. The performances of FL-trained models (rep-
resented as ‘X-FL’) and SGD-trained models (‘X-SGD’) are
presented in Table 2. When possible, we also present the K-
Nearest Neighbours (KNN, with K=10) baseline. We observe
strong performances of the FL-trained models f,, across all
datasets, where they consistency recover 80 — 98% perfor-
mance of models trained using centralized SGD.

6 Evaluation

In the previous section, we discussed training ML models in
an FL setup for four different datasets covering various tasks
such as image classification and language modeling. Within
this FL scenario, we now detail the training of deanonymiza-
tion attack models (§4.3), evaluate their effectiveness, and
work towards understanding how the parameter updates leak
user-identifiable information.

Evaluation Metrics. We use the following metrics (com-
puted using scikit-learn [64]) to evaluate the adversary’s at-
tack performance: (i) Mean Average Precision (AP): Adver-
sary’s precision-recall curves for held-out user data is com-



PIPA (#Users U = 53)

Openlmages (U = 327)

random chrono random chrono
AP Top-1  Top-5 AP Top-1  Top-5 AP Top-1  Top-5 AP Top-1  Top-5
MLP 91.0 (48x%) 84.7 96.3 42.2 (22x) 40.0 68.8 53.7 (175x%) 519 71.9 32.5 (106 %) 31.9 57.1
SVM 81.3 (43 %) 89.3 91.9 27.7 (15%) 43.7 49.6 49.0 (159%) 66.5 67.0 24.6 (80x) 41.7 42.5
kNN 85.4 (45x) 82.6 92.6 31.5(17x) 38.4 54.8 46.0 (150x) 49.2 63.9 25.1 (82x) 30.3 43.1
Chance 1.9 (1x) 2.0 9.9 1.9 (I1x) 2.0 9.9 0.3 (I1x) 0.3 1.5 0.3 (1x) 0.3 1.5
Blog (U =55) Yelp (U =118)
random chrono random chrono
AP Top-1  Top-5 AP Top-1  Top-5 AP Top-1  Top-5 AP Top-1  Top-5
MLP 52.9 (29%) 50.1 89.9 44.8 (25%) 47.6 23.5(28x%) 25.2 50.1 16.0 (19x) 18.9 389
SVM 35.7 (20%) 46.3 49.2 27.0 (15%) 42.1 25.9 (31x) 43.2 449 17.1 (20%) 333 36.7
kNN 35.6 (20x) 39.8 64.9 29.5 (16x) 35.6 21.6 (25x%) 253 41.1 15.4 (18x) 21.0 329
Chance 1.8 (I1x) 1.7 8.8 1.8 (1x) 1.6 0.9 (1x) 0.8 4.1 0.9 (1x) 0.9 4.3

Table 3: Re-identification Attack Evaluation (Awapen — u). Performed in a closed-world. Chance-level AP ~ 1/U.

puted. We then compute the per-user Average Precision (area
under the precision-recall curves). We report the mean of Av-
erage Precisions across users in percentages (i.e., APx100);
(ii) Increase over Chance: In order to analyze adversary’s
information gain, we compute this as (predicted AP)/(chance
AP). We display this alongside AP scores in the form: [Jx;
and (iii) Top-1 accuracy: We compute the classification suc-
cess rates over all parameter updates in the test set. These met-
rics are common among classification tasks e.g., [25,51, 80]
for AP and [24, 36, 50] for Top-1 accuracy. We use the AP as
the primary metric, since it also takes into account ranking
among predicted classes.

Training and Evaluation Data for Attacker f21'. We
train the ML models (f,, in Table 1) in an FL system si-
multaneously using two disjoint sets of devices per user:
(a) Kanon: anonymous user devices (that adversary wants to
deanonymize); and (b) Kpior: adversary’s shadow devices
containing target users’ prior information (that we use to gen-
erate training data for attack models in §4.3). For simplicity,
we restrict each of these sets to contain a single user. Dur-
ing training of f,, over multiple rounds, we accumulate the
parameter updates Aw}, communicated by all devices in FL.
To train the attack models f29", we use the set of parameter
updates { (AW}, u) : k € Kyrior }, Where we know a priori the
device k to user u mapping. We discuss in detail training data-
limited adversaries in Section 6.2.1. We evaluate attacks on
the disjoint set of parameter updates {A(w},u) : k € Kanon }-

Representing Aw, for Attacks. The parameter updates
contain hundred thousands to millions of parameters. To
enable faster training and evaluation of attack models, we
choose a subset of parameters by representing Aw/ us-
ing weights of layers which achieves best attack perfor-
mance: (i) CNN-PIPA-FL, CNN-OI-FL: Fully Connected
Layer (19K parameters); (ii) NNLM-FL: LSTM layer (10K
parameters); and (iii) NNSA-FL: Embedding layer (50K pa-

rameters). This has little impact to our attack; influence of
each layer is discussed in Section 6.2.2. Furthermore, we
flatten Awﬁc into a vector and L, normalize it.

6.1 Effectiveness of Deanonymization Attacks

In this section, we validate effectiveness of the deanonymiza-
tion attacks. We begin by understanding the effectiveness in
relation to adversary’s prior knowledge (§6.1.1 and §6.1.2)
and discuss how it can be coupled with attribute inference
attacks (§6.1.3).

6.1.1 Impact of Adversary’s Prior Distributions

In this section, we focus on how fypes of adversary’s prior
knowledge (§5.2.2) influences effectiveness of deanonymiza-
tion. Consequently, we address a range of scenarios, such as
when the adversary has similar (random) or historical prior
data (chrono) of the targeted users to perform deanonymiza-
tion. We also evaluate the novel challenge where the prior
data is from a different modality (cross-modal).

Leveraging random and chrono prior to deanonymize.
We present key results of the re-identification attack model
‘MLP’ (§4.3): f*id: Aw! _ — u (in a closed-world setting)
in Table 3. In addition, as baseline attack methods, we also
demonstrate performances of ‘SVM’ (a linear support vector
machine) and ‘kNN’ (a k-nearest neighour classifier using
k=10).

From the results presented in Table 3, we observe: (i) All
deanonymization attacks greatly outperform chance-level per-
formances, with as much as 175 x boost for MLP on the Open-
Images dataset under the random prior, highlighting the ef-
fectiveness of the proposed deanonymization attack; (ii) Even
the most simple K-NN attack is reasonably effective and al-
ready presents a significant threat (150 over random chance



on Openlmages, random prior); (iii) MLP is highly effective
across all datasets and splits (175 x over random chance on
Openlmages, random prior); (iv) Although the absolute AP
scores are lower for the more challenging and larger Open-
Images dataset (53.7% AP on random prior), the increase
over chance level performance is significantly higher (48 x
on PIPA vs. 175 on Openlmages under the same random
prior); (v) The attack is effective (19-106x) even on chrono
priors, where the adversary uses historical prior information
to deanonymize users.

The above experiments were performed in a non-IID data-
distribution among devices, which is natural in FL since users
participate with personal data exhibiting unique biases (§4.2).
We also perform attack evaluation in a contrasting IID setup,
where we manually unbias data on devices by replacing each
user example with an example drawn IID from D = (J; Dx.
We observed near-chance-level adversary performance (e.g.,
1.5x chance-level for PIPA) since user data is no longer char-
acteristic. There is strong evidence that anonymous model
parameter updates contain ample user information in an FL
setup that allows for effective deanonymization.

Cross-modal attacks. We now evaluate the effectiveness of
deanonymization attacks with a cross-modal prior (Section
5.2.2). Here, the adversary is limited to prior knowledge from
a different modality from the data used during training by
the users. In particular, we consider the case where the prior
data consists of text samples and the private data consists
of images. As we are not aware of any dataset which pro-
vides cross-modal user-generated data to evaluate the attack,
we substitute PIPA prior image samples with corresponding
text-representations obtained using a Neural Image Caption
generator [78]. Using this setup, we train the cross-modal

matching network /™™ : (Awynon, ¢,) — anon 2y (Eq.
7). To obtain a compact text representation ¢, over the prior
knowledge (set of text sentences for a particular user), we:
(i) obtain the 4096-dim sentence-level embedding using In-
ferSent [23]; and (ii) compute the mean over the sentence
embeddings for the user. We evaluate f°™™3 on a balanced
set of 10K pairs {((AWanon, 9,,), Lanon=u)}. We observe an
attack performance of 76.3 AP (chance = 50.0 AP), indicating
that model updates can be interestingly deanonymized even
using data from another modality.

Attacking using profile prior. In the previous attacks
we looked at the task of deanonymizing devices by associat-
ing the parameter updates to prior data of users. We now look
at a slightly different task of linking devices that fit a certain
profile prior. We achieve this by manually constructing
prrofile o comprise of examples of interest e.g., weapons.
In Figure 5 we display the top users (in the Openlmages
dataset) found using the re-identification attack who fit the
corresponding profiles. We observe: (i) devices can be re-
markably singled out using various proxy distributions (of
e.g., handgun, guitar) circumventing the need for real user
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Figure 5: profile prior. Devices can be isolated using
proxy distributions of certain profiles e.g., guitars. Rows de-
note private data D™ of users on devices.

data; (ii) however, valid correlations in data can sometimes
lead to false positives. For instance, ‘dumbbells’ which often
co-occur in images along with other physical equipment de-
vices leads to bicycle images of user 128 (which also displays
similar correlations) being falsely identified.

6.1.2 Impact of Number of Seen and Unseen Users

In the previous section, we evaluated attacks in a closed-world
scenario (§5.2.1), where the adversary was aware of every
users’ existence (i.e., included in prior knowledge). We now
consider the open-world scenario, where at test-time the ad-
versary additionally encounters model updates generated by
unseen users (i.e., not in the prior knowledge). This introduces
the challenge of differentiating between seen and unseen iden-
tities when deanonymizing.

User Split. In our experimental setup, we split the users U
into three variably-sized disjoint sets: (a) Uypseen: prior data
is unavailable and should be classified as unseen at test-time;
(b) Ugeen: prior data is available and should be deanonymized
at test-time; and (c) Upolgout: these users are reserved purely
for training purposes.

Re-identification Setup. Previously in the closed-world
scenario, we trained the MLP (§4.3) classifier /9 : Awy — u
with |U]| classes representing all users at test time. Now we
train a similar classifier over |Ugeen|+ 1 output classes with the
additional class unseen collectively denoting unseen users.
During training, we use users Upgrgout and their parameter
updates to train the unseen class.

Matching Setup. We train a Siamese network (§4.3) using
parameter updates from held-out and seen set of users. Given a
pair (Aw;, Aw ), the network predicts the probability P[i = j]
of being generated by the same user.

Evaluation. The performances are evaluated at different
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Figure 6: Open-world evaluation. Across re-identification
(MLP) and matching (Siamese) attack models.

ratios of seen and unseen users at test time. We keep the size
of the hold-out set constant to one-third of the total number of
users. Evaluation for both re-identification and matching tasks
on the challenging chrono prior distributions per dataset are
presented in Figure 6. We observe: (i) even in the open-world
scenario, we perform much higher than chance-level for both
the tasks consistently across a wide range of seen vs. un-
seen scenarios; (ii) for the re-identification attack, as % seen
users increase, the complexity of the task increases as well
(due to larger output-space). Hence, we notice a drop in AP
performance (67%—43% in PIPA). However, performance
compared to chance-level significantly increases (3x —14x);
(iii) in the matching task, the Siamese model performs much
higher than chance-level even in a purely open-world setting,
with no seen users (1.5x for PIPA and 1.8 x for Openlm-
ages). We find both the re-identification and matching attacks
generalize well in the presence of unseen users at test time.

6.1.3 Amplification with Attribute Inference Attacks

We now discuss how deanonymization attacks can be coupled
with related inference attacks on model updates. Specifically,
we consider the recent attribute inference attack [56], which
recovers sensitive properties (e.g., race) that holds for subsets
of training data. In this particular case, our attack objective
involves jointly inferring both identity (via our deanonymiza-
tion attacks) and sensitive attributes (via attribute inference
attacks) via transmitted model updates.

To evaluate the attacks, we closely follow the data setup on
Melis et al. [56] on the PIPA dataset. Attribute inference in
this setting involves inferring sensitive attributes (e.g., age)
from the model updates. To this end, we first train individual
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STL MTL
Attributes # Attrs  AttrInf  Deanon Attrinf ~ Deanon
Age 5 89.1 - 90.8 90.9
Gender 2 93.1 - 94.4 91.6
Glasses 3 98.5 - 98.9 91.3
Hair Color 3 85.2 - 88.7 90.1
Hair Length 5 91.3 - 91.3 90.1
- - - 87.6 - -

Table 4: Attribute Inference and Deanonymization At-
tack Performances. Results are reported in top-1 accuracies.
Columns indicate when the inference tasks are trained indi-
vidually (STL) and jointly (MTL).

attribute classification models for each of the five attributes,
and an additional re-identification model. All the classifica-
tion models are MLPs following the architecture of the re-
identification model. Table 4 (column STL) presents results
over the five attribute inference (column AttrInf) tasks and
deanonymization (column Deanon). Here, we observe that
an attacker can consistently achieve 85.2-98.5% accuracy in
inferring various attributes from model updates and 87.6%
accuracy in inferring identities of participants. These results
suggest that model updates indeed leak details unrelated to
the trained task (recognizing chair, couch, etc.) and allows
an attacker to recover sensitive attributes of the users’ train-
ing data (via attribute inference) and further link them to an
identity (via deanonymization).

‘We now recast the problem of inference on attributes and
identities as a multi-task learning (MTL) [19] problem. The
core idea is to exploit commonalities between the two related
tasks to learn a better representation jointly benefiting the
tasks. To achieve this, we extend our re-identification model
(§4.3, which performs user classification) with a secondary
classification head (which performs attribute inference; see
Fig. 3d). Consequently, the model is simultaneously trained
for both attribute inference and deanonymization using their
corresponding losses. The results for the model is presented
under the MTL column in Table 4. We observe by learn-
ing the two tasks jointly can improve attribute inference per-
formances consistently by 0-3.5% and deanonymization by
2.5-4%. Our results suggest that apart from jointly inferring
sensitive attributes and recovering identities, the two related
attacks surprisingly amplify each other’s performances.

6.2 Analysis

In this section, we take a closer look at various factors that in-
fluence (e.g., amount of training data) the effectiveness of
attacks. For simplicity, we study the factors using the re-
identification attack in a closed-world setup. We conclude
the section by reasoning why model updates lend themselves
to deanonymization risks.
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6.2.1 Amount of Training Data

We study the influence of data-limitation in deanonymiza-
tion attacks in a closed-world re-identification scenario. We
previously used the entire reserve set of prior information to
perform the deanonymization attacks. We first address the
influence in the amount of this prior information available per
target user. From Figure 7, we observe: (i) even a single prior
example of the user leads to non-chance-level re-identifica-
tion, with as much as 13.4% AP (7 x) performance on PIPA;
(i1) performance of the attack increases significantly with the
size of prior knowledge across all datasets e.g., 67% increase
in performance on Openlmages by using 16—32 prior ex-
amples; (iii) some tasks require more prior information than
others. For instance, although Blog and PIPA contain similar
number of users, an adversary requires approximately 5x as
many prior Blog examples to achieve 20% AP. We attribute
this to a weaker signal generated from sparse text content in
Blog, as compared to dense pixel content in PIPA.

We also address the impact of size of training set
({AW}, : k € Kanon }) for attack models. We train multiple re-
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Figure 9: Re-identification performance by depth. Bub-
ble sizes indicate the number of parameters in each layer. Last
two layers contains 1M and 19K parameters respectively.

NNLM-D (92K) NNSM-D (141K)

Depth Layer type AP # params AP # params
1 Embedding 15.7 (9%) 50K 23.5 (28x%) 50K
2 LSTM 46.0 (25x) 10K 19.2 (23%) 91K
3 FC 38.8 (21x) 32K 17.6 21x) 128

Table 5: Re-identification performance by depth. For mod-
els trained on Blog and Yelp.

identification MLP adversary models, each trained on a ran-
dom subset of training data with increasing sizes. In Figure 8,
we observe an adversary can train reasonably effective attack
models, even with extremely limited labeled data. In partic-
ular, attack performances of 3-22x can be obtained with a
single labeled example per user. While the amount of data
(either training or prior) does strongly influence the attack per-
formance, we nonetheless find deanonymization is possible
in strongly data-limited situations.

6.2.2 Impact of Parameter Layers

The deanonymization targets (i.e., model updates Aw) com-
prise of parameters from multiple layers of a deep neural
network. We now analyze how the layer type and depth af-
fect attacker performance, since they influence the type of
task-specific information learnt by the model. For instance,
in CNNgs, layers at various depths of the network are known
to learn various concepts [85] — lower level features (e.g., cor-
ners, edges) in the initial layers and higher level features (e.g.,
wheel, bird’s feet) in the final layers. For parameters updates
contributed by each individual layer, we train a total of 27
attack models for CNN-based models and 3 attack models for
LSTM-based models. We were limited by storage capacity to
evaluate on OpenImages as it would require > 3TB.

From layer-wise performances in Figure 9 and Table 5, we
observe: (i) all layers provide above-chance level information
to perform re-identification attacks; (ii) in the CNN model,
higher level layers contain more identifiable information with
the final fully connected (FC) layer being the most informa-
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Figure 10: Effect of the epoch 7. On the re-identification
attack Aw',, — u. As an example, the top-right cell denotes

when the MLP was trained on Aw!,,¢ € [0,20] and evaluated
on Aw,o,, 7' € [180,200]

tive; (iii) in the RNN-based models, the LSTM parameters
are more informative for language modeling, whereas it is the
embedding layer for sentiment analysis.

6.2.3 Impact of Optimization State

We now analyze the influence of training progress of the ML
model on deanonymization attacks. We group the parameter
updates (separately for train and test attack sets), based on
the epoch ranges during which they were generated. We split
parameter updates collected during training of f,, over 200
epochs into 10 ranges, each with 20 epochs. We train and eval-
uate the MLP re-identification attack model over all 10 x 10
train-eval pairs. From Figure 10, we observe that the training
progress at which the update was generated has little influence
on the performance indicating an adversary can re-identify
users at any stage of training.

6.2.4 Reasoning About Effectiveness of Attacks

In Section 4.2 (Fig. 2), we observed that users display a
bias resulting in lower variations in data they capture. Con-
sequently, we conjectured that the resulting bias is consis-
tently encoded in the parameter updates, even when they are
computed on different (prior and private) sets of users’ data.
To validate, we take a closer look at the parameter updates
AWR™ AWE™Y € RP*K in the FC layer of eight users in
the PIPA FL setup, where K (=19) is the number of classes
and D(=1024) represents weights per class. In Figure 11, we
illustrate bias per user (columns) in the parameter delta space
by computing the Lp-norm of each of the K class weight vec-
tors (column-dimension in Aw,,). We observe: (i) for users
who can be re-identified highly accurately (e.g., u=10), we
find that the user is more biased towards images containing
‘tie’, ‘tv’, and ‘laptop’. Furthermore, this bias is consistent in
both the user’s prior and private update signals; and (ii) sur-
prisingly, even when biases are not entirely consistent (e.g.,
u=17), we find attacks to be reasonable effective (AP=95);
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Figure 11: User bias visualized on parameter updates.

and (iii) for users who cannot be re-identified easily (e.g.,
u=13), the biases are inconsistent between the prior (biased
towards cars and cups) and private (biased towards chairs, ties,
and umbrellas) update signals. We find our conjecture that the
user bias signal translates to the parameter delta space, holds
reasonably well, leading to highly effective deanonymization
attacks we saw in the previous sections.

7 Countermeasures

In the previous section, we evaluated our threat models across
a variety of challenging scenarios and consistently observed
deanonymization risks. In this section, we present mitigation
strategies to counter these attacks.

We attributed (§6.2.4) the effectiveness of the attacks to
user bias, which is a powerful statistical signal in both the
limited set of adversary’s prior data and the users’ private data.
The focus of our mitigation strategies is to perturb the data
bias on the anonymous device, to provide a false signal to the
adversary. We spell out our requirements for the defense as:
(a) maximally retain utility (performance of f,,); (b) involve
low computation overhead; (c) not rely on a trusted-third
party; and (d) allow users to selectively employ the strategy
to various extents depending on personal preferences.

7.1 Methods

Based on the requirements, we propose data-centric mitiga-
tion strategies: devices adversarially bias their data distribu-
tion on devices, rather than directly perturb model parameters.
More specifically, users mix their original data D, with certain
“background” data D¢ to “blend into the crowd”, thereby
rendering the parameters less user-specific. Here, the mixing
takes place prior to participation in FL.

Collecting D" &, The background dataset DP*¢ can be any
large (labeled) set of training examples for the same federated
learning task (e.g. user-annotated dataset, scraped data from



D Source (D)  Dbke Source (DP*e) | Dbke|
PIPA [86] Flickr Openlmages Flickr 59K
Openlmages [49]  Flickr Openlmages Flickr 490K
Blog [69] Blogger WikiReading [40] Wikipedia 3M
Yelp [20] Yelp Amazon Reviews [37] Amazon 1.7M

Table 6: Background datasets and sources. Used to miti-
gate deanonymization attacks.

the Internet, a trusted open-source dataset). The background
datasets used in our experiments, their sources and sizes are
listed in Table 6. We only select a random subset of the origi-
nal background datasets (s.t. |D°*€| > |D,|) in each case, for
experiments to complete within a feasible amount of time.
The preprocessing of D€ and D are identical.

Now, we present three countermeasures which alter the
characteristic data-distribution of the users.

Data Replacement (bkg-repl). Each user replaces a frac-
tion o € [0, 1] of his/her data D, with ones from DPke. At
o = 0, no mitigation strategy takes place; at o = 1, every user
has identical data composition. However, the strategy skews
FL to learn from a noisy background data distribution display-
ing different statistics, instead of learning from interesting
user data on which evaluation metrics need to be maximized.

Data Augmentation (rand-aug). Instead of replacing, the
user augments random data (since more data helps [34,73])
from DOke:

A | Dy
Dy + Dy U{(xi,y,) ~ DT

®)
where o > 0 determines the size of augmentation. As o0 —
oo, devices” empirical data distributions converge to D°,
making them indistinguishable from each other.

Mode-specific Data Augmentation (mm-aug). So far,
the users’ strategies were to mix their data with back-
ground data from a single source D%, We now con-
sider the strategy where each device mixes data from dif-
ferent topics i.e., modes of the data distribution. For in-
stance, Alice adversarially adds sports content to her data
to mask her interest in automobiles before participating in
FL. We perform this by first clustering D°*¢ into M clusters
UM, Dhr®. We use the k-means clustering over the ImageNet
pretrained Mobilenet features. Each user u picks a cluster m
at random, and augments its data with ones from the cluster:
Dy, + D, U {(xi,3;) ~ @rt:zkg}(‘wiu‘

i=1

®

where o0 > 0 controls the degree of mix. We use M=100 for
PIPA, M=500 for Openlmages, M=300 for Blog and Yelp.
We additionally consider two perturbation-based baselines
to our data-augmentation strategies.
DP-FederatedAveraging (dp-fedavg). We implement a
differentially private variant [55] of the Federated Averaging
algorithm. They key idea is to provide (g,d) participant-level
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Figure 12: Mitigation strategies evaluation. Re-
identification AP obtained by varying o and o> in

closed-world scenario. Top-left is the ideal region. Higher o
and o7 values pushes operating points towards the left (i.e.,
lower deanonymization performance).

differential privacy guarantees by bounding the contribution
(the parameter update) provided by each participant. In prac-
tise, the contributions are bounded by clipping the parameter
updates and further adding random noise. In our experiments,
we fix the clipping value to 50 and vary magnitude of gaussian
noise added during training.

Random Perturbations (noise).  Although dp-fedavg
has shown success in large-scale scenarios (with thousands
of users), we found difficulty achieving reasonable results in
our setup. Hence, we consider a relaxed version of introduc-
ing perturbations, where the user introduces zero-centered
Gaussian noise to model updates before leaving the device.

7.2 Evaluation

We evaluate the proposed mitigation strategies by measuring
the adversary’s performance against our countermeasures. We
analyze the effectiveness of the defense against the strongest
adversary: closed-world re-identification attack on random
prior (§6.1.1, Table 3).

We evaluate the strategies in terms of trade-off between
privacy (reduction in adversary’s performance) and utility (de-
centralized learning performance). As in §6.1.1, we measure
the adversary’s performance as increase over chance-level AP.
We measure utility by performance scores normalized to have
utility=1.0 when no mitigation takes place.

The mitigation strategies are evaluated on a curve by vary-
ing hyperparameters. For bkg-repl, we use o € {0.0, 0.25,
0.50,0.75, 1.0}. For rand-aug and mm-aug, we use o € {0.0,
0.5, 1.0, 2.0}. For dp-fedavg, we fix the clip value to 50 and



vary the noise multiplier in the range [107>,10~!]. For noise,
we consider Gaussian noise with u =0 and 6 € {1072, 10!,
109, 10!, 10%}.

We present evaluation for our strategies in Figure 12. Better
mitigation strategies have curves towards the top-left corners
in each plot (high privacy, high utility). We observe: (i) the per-
turbation-based baselines (noise and dp-fedavg) in most
cases severely decreases utility at a small gain in privacy;
(ii) replacing data with background samples (bkg-repl) is a
good alternative strategy: we have both higher privacy and util-
ity than perturbation methods. However, due to a domain-shift
between DP*¢ and D, utility is often impacted. This can be
observed in PIPA, Blog and Yelp datasets, where it achieves
< 0.75x utility since the user data is no longer used; (iii) the
augmentation-based strategies rand-aug and mm-aug outper-
forms noise and bkg-repl in terms of utility and privacy;
(iv) for the mm-aug strategy, already at & = 0.5, we observe a
good combination of privacy and utility (75% decrease in ad-
versary’s AP in OpenImages, compared to 45% for rand-aug
and 67% for bkg-replace).

We find the strategy mm-aug offer the most effective and
practical operating points, requiring the user to perform mini-
mal augmentation to achieve reasonable privacy. We remark
that the utility for mm-aug can be more than 1.0 even at
higher privacy level, as can be seen in PIPA and Openlm-
ages. This is due to the effect of additional data [34,73]. This
increased privacy and utility comes at the cost of preparing
a labeled dataset and increased training time (training set be-
comes (14 a)x bulky). However, this overhead will be less
costly with increasingly powerful devices and energy-efficient
ML models for mobile devices [44, 68].

8 Conclusion

In this paper, we were motivated to understand privacy threats
in Federated Learning, which is designed towards large-scale
learning on user data on personal devices. We questioned
whether devices can truly participate anonymously without
compromising the identity of individuals. Our results indicate
that the devices can be effectively deanonymized using the
transmitted model parameter updates and a reasonable amount
of prior data. We found this to be possible due to the inherent
user bias in captured data acting as a fingerprint that is con-
sistent across different sets of data captured by the user. To
mitigate such attacks, we proposed calibrated domain-specific
data augmentation, which shows strong results in preventing
deanonymization with minimal impact to utility.
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