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ABSTRACT: In situ generation of anticancer agents at the
place of the disease is a new paradigm for cancer therapy. The
production of highly potent drugs by nanoreactors through a
facile synthesis pathway is demanded. We report an oncolytic
nanoreactor platform loaded with the enzyme glucose oxidase
(GOX) to produce hydrogen peroxide. For the first time, we
realized a core—shell structure with encapsulated GOX under
mild synthetic conditions, which ensured high remaining
activity of GOX inside of the nanoreactor. Moreover, the
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nanoreactor protected the loaded GOX from proteolysis and contributed to increased thermal stability of the enzyme. The
nanoreactors were effectively taken up into different cancer cells, in which they produced hydrogen peroxide by consuming
intracellular glucose and oxygen, thereby leading to effective death of the cancer cells. In summary, our robust nanoreactors are
a promising platform for effective anticancer therapy and sustained enzyme utilization.
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n contrast to direct treatment of drugs, the concept of a

“drug factory” had been proposed as a next generation of
medication. It is a chemical conversion of prodrugs to active
drugs or synthesis of the drugs via nanoreactors in the body,
which is inspired from plasma cells.'~* However, the prodrug
conversion strategy is plagued by often expensive and
unfamiliar prodrugs.” The synthesis of entire anticancer
drugs through a nanoreactor as a drug factory is another
attractive strategy but includes complicated synthetic path-
ways, the requirement of continuously supplying the
precursors, and unexpected side-effects by side-products,
which renders this idea highly challenging.*” Thus, production
of easier drugs by the nanoreactors, which relies on simple
synthetic procedures and facile to supply precursors, is of great
interest. Moreover, the production of the drugs at the place of
the disease (e.g. inside the tumor) is believed to be a “smart
disease care” for effective medication. Here, we present
enzyme-loaded nanoreactors that not only protect the enzymes
but also produce hydrogen peroxide by consuming glucose and
oxygen inside of cancer cells. We achieved a one-step and
glucose-derived production of hydrogen peroxide inside of
cells and an effective killing of cancer cells in this study.

Hydrogen peroxide has been paid attention to cancer
therapeutics due to its reactivity and since it has critical
influences on cellular metabolism.® Hydrogen peroxide results
in serious damage such as generating oxidized nucleic acids
(e.g, 8-0x0-2'-deoxyguanosine and S-methylcytosine), protein
deactivation, and lipid peroxidation. Persistent generation of
hydrogen peroxide can deplete antioxidant scavengers (e.g,
glutathione) in cells, thereby causing necrosis due to oxidative
stress.”'? Moreover, an aberrant amount of hydrogen peroxide
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gives rise to unexpected activation of proapoptotic proteins
such as B cell lymphoma 2 associated X (BAX) and caspase-
3.1tz Consequently, this fatal damage and intracellular
disturbances end up with necrotic/apoptotic cell death.” As
“oncolytic hydrogen peroxide” is easily producible through a
one-step reaction of glucose oxidase (GOX) by consuming
glucose and oxygen, it is one of the ideal candidates for an
anticancer agent that can be produced by a “drug factory” in
the body.

As most enzymes including GOX are immunogenic,
expensive, instable in an in vivo environment, and cannot
enter into cells, nanoencapsulation is highly desired."*
Moreover, enzyme reactions in confinement are more efficient
compared to solution conditions.'”~"® Several nanoreactors
with enzymatic production of hydrogen peroxide and their
cancer treatment have been proposed in recent years.'””>’
GOX was loaded to polymeric or lipid nanoreactors, expecting
oxidative stress, §lucose starvation, or hypoxic effects to kill
cancer cells.'”™>’ Further pioneering works presented the
synergetic cytotoxicity of glucose starvation and nitric oxide or
the photodynamic effects by immobilized GOX on the surface
of silica nanoparticles.z‘*’25 Nevertheless, those two studies did
not describe the encapsulation of GOX inside the nano-
reactors. Moreover, most nanoreactors loaded with GOX
suffered from low loading efficiency or decreased activity'*~>*
and were chemically and physically fragile. Protection of
loaded enzymes against external harsh conditions (e.g., high
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Figure 1. Concept of the glucose oxidase-loaded nanoreactors (GOX@NR) for cell death. Cellular uptake of the GOX@NR is enabled through
phagocytosis, which intracellularly produces hydrogen peroxide by consuming glucose. Oxidative damage of cellular components, activation of
apoptotic pathways, and depletion of scavengers, thereby leading to effective cell death.
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Figure 2. Synthesis and characterization of the hollow nanoreactor loaded with GOX. (a) Synthesis scheme: sol—gel chemistry takes place at the
interface of an inverse (water-in-oil) miniemulsion by interfacial polycondensation of APTMS and TEOS precursors. (b, ¢) Transmission electron
microscopic images of the silica nanoreactor with loaded GOX, x10 000 (left) and x40 000 (right) magnification, respectively. Red scale bars

represent 200 nm. (d) 2Si solid state NMR spectroscopy of GOX nanoreactors composed of APTMS and TEOS. (e) Organic contents
investigation of GOX@NR and plain nanoreactors by TGA.

temperature, proteolysis) was not explored for earlier reported Herein, we have designed oncolytic nanoreactors (NRs) that
nanoreactors.””>* Therefore, it is necessary to develop a robust enzymatically produce hydrogen peroxide by consuming
nanoreactor system with loaded enzymes for high performance, intracellular glucose and oxygen for oxidative cancer therapy
sustained availability, and stable immunoisolation. (Figure 1). The GOX-loaded nanoreactors (GOX@NRs) were
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Figure 3. Enzymatic activity of GOX inside the nanoreactor. (a) Chemistry of the GOX assay. GOX produces hydrogen peroxide by consuming
glucose. HRP converts Amplex red to resorufin in the presence of hydrogen peroxide, generating fluorescence at excitation 555 nm and emission
595 nm. (b) Michaelis—Menten kinetics of GOX inside of the nanoreactor vs native GOX. (c) Leakage test of GOX from the nanoreactor was
detected after washing. Negligible leakage (yellowish green and yellow bars) was observed.

prepared by a fluoride-catalyzed sol—gel process of silica. The
hollow nanoreactors comprise an aqueous core and a
permeable silica shell for small molecules like glucose or
hydrogen peroxide. This is the first report to synthesize hollow
and enzyme-loaded silica nanoreactors through fluoride-
catalyzed and pH neutral conditions, ensuring high enzymatic
activity after encapsulation. The silica shell of the GOX@NR
effectively protects GOX against denaturation and increases
the enzyme’s stability. Glucose not only is an abundant
nutrient but also exhibits higher uptake in most tumor cells
due to their vigorous metabolism. We achieved an efficient
anticancer therapy by the nanoreactors generating oncogenic
hydrogen peroxide under physiological conditions without any
additional prodrugs or xenobiotic precursors. We demonstrate
that solely oxidative damage was enough for effectively killing
cancer cells by intracellular production of hydrogen peroxide.

Results and Discussion. Design of Silica-Based Nano-
reactors (NRs) with Loaded Glucose Oxidase (GOX). The
aqueous-core/silica-shell nanoreactors with loaded GOX
(GOX@NRs) were prepared via an interfacial fluoride-
catalyzed sol—gel polycondensation in an inverse (water-in-
oil) miniemulsion (Figure 2a). For the miniemulsion, we used
toluene as a continuous phase and a buffered aqueous phase
(pH 7.4) containing GOX, aminopropyl trimethoxysilane
(APTMS), and potassium fluoride. The biocompatible
polyglycerol polyricinoleate (PGPR) was used as an emulsifier.
After the formation of the miniemulsion, tetraethyl orthosili-
cate (TEOS) was added to the continuous phase to start the
shell formation. Polycondensation of both silica precursors at
the interface of the emulsion led to the formation of the
nanoreactors with a hollow aqueous core and a permeable
silica shell. We found that the APTMS plays a key role as a
complementary catalyst in facilitating the interfacial poly-
condensation to form the cross-linked shell.
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For hydrolysis and condensation of the silica precursors, we
used an aqueous potassium fluoride (F~) solution acting as a
catalyst for the sol—gel reaction. The fluoride anion can initiate
a nucleophilic attack on Si of the silica monomer by an Sy2
mechanism that catalyzes hydrolysis and polycondensation of
the silica precursors to form silicon oxide (Figure 2a). Unlike
conventional sol—gel chemistry that uses acidic or basic
catalysts, the use of fluoride effectively catalyzes the sol—gel
reaction at neutral pH (7.4), which preserves the enzymatic
activity during the synthesis. We further proved that the
fluoride catalysis is harmless for the GOX stability (shown
below).

We observed the core/shell structure of the GOX@NRs by
transmission electron microscopy (TEM) (Figure 2b). The
thickness of the shell was estimated to be 19 + 3 nm by image
analysis [calculated from a selection of 75 nanoreactors
(Image] software, NIH)]. The size distribution of the
GOX@NR was measured by dynamic light scattering (Z-
average: 378 nm in diameter) (Figure S1). The { potential of
the GOX@NRs was determined to be close to zero (0.43 +
0.26 mV). In comparison to empty nanoreactors (without
enzymes), no significant differences were observed (Z-average
340 nm, and 0.51 + 0.41 mV, respectively). Solid-state 2°Si
NMR spectroscopy revealed a composition of silica precursors
in the GOX@NRs, proving a successful incorporation of both
precursors: Q4 (19%), Q; (37%), Q, (7%), and Q, (0%) from
TEOS and Ty (12%), T, (25%), and T, (0%) from APTMS,
respectively, were quantified from the spectra (Figure 2d). The
organic content of the GOX@NRs was determined by
thermogravimetric analysis. Compared to empty nanoreactors,
the GOX@NRs showed a further 8% weight loss, which
indicated the GOX content in the nanoreactors (Figure 2e).

Advantages of Fluoride Catalysis for the Preparation of
GOX-Loaded Nanoreactors. We prepared two different
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nanoreactors, via the fluoride-catalyzed GOX@NR (pH 7.4)
and the ammonia-catalyzed GOX@NR (pH 10.5), respec-
tively. We found that the fluoride-catalyzed GOX@NR
preserved a much higher enzymatic activity (66%) than the
ammonia-catalyzed GOX@NR (8%). To explore the effects of
each catalyst on GOX, we further performed an activity assay,
circular dichroism (CD) studies, and thermal denaturation
studies. The exposure to 0.1 mM (as used condition in this
study) and 10 mM fluoride did not lead to any decreased
activity for native GOX, whereas the GOX exposed to 3 M
(5%) ammonia led to a significant loss of the catalytic activity
(Figure S4). Regarding these different activities, the CD
spectra (Figure SS) revealed that fluoride (both 0.1 and 10
mM) did not change the secondary structure in the native
GOX. In contrast, denaturation occurs with the GOX by
exposure to ammonia, mostly decreasing the f-sheet structure
from 29% (native) to 8.5% (denatured). Thermal denaturation
showed that the exposure to fluoride (with 0.1 and 10 mM)
has no negative effect on the thermal stability of the GOX,
which was proven by the same melting temperature (55.5—
55.9 °C) (Table S1). Probably because of denaturation, a
lower thermal stability was obtained from ammonia-exposed
GOX (47.1 °C).

Enzymatic Reactions inside of GOX@NRs. The enzymatic
activity of GOX@NR was measured by an Amplex red
fluorescence assay and compared to free GOX in solution
(Figure 3a). Based on detailed Michaelis—Menten kinetics (K,
= Michaelis Menten constant), we found that 66% of the
native enzymatic activity (k../K,,) were retained after loading
GOX into the nanoreactors (Figure 3b). This reduced
enzymatic activity might be explained by a decreased
accessibility of GOX inside of the nanoreactor or by partial
denaturation during the miniemulsion process. Substrate
affinity of the GOX (K,) was not significantly different
between native GOX and GOX in nanoreactors. In particular,
the turnover number (k) on the reaction of the GOX in the
nanoreactors was significantly reduced in comparison to the
reaction of native GOX. We assume that the temporary
product accumulation in the microconfined space (nano-
reactors) occurred by delayed diffusion of the products,
resulting in a stronger feedback inhibition that might lead to a
reduced turnover number.

When the GOX@NRs were washed with additional water,
no leakage from the nanoreactors was detected as no
enzymatic activity was measured in the supernatant (Figure
3c). This indicates that GOX (150000 Da; 6.0 X 5.2 X 7.7
nm?®) cannot pass through the silica shell, while the substrate
glucose (180 Da; 8.5 A in diameter) can easily penetrate the
shell. These results are consistent with the average pore size of
ca. 6.3 nm average pore size determined from Brunauer—
Emmett—Teller (BET) gas adsorption.

In addition, we found a diffusion effect of substrate and
products to pass through a silica shell of the GOX
nanoreactors. Different reaction kinetics were determined at
low and high concentration of substrates. Unlike high (100
mM) glucose concentration, the delayed diffusion effect was
observed on the GOX reaction of the nanoreactors at low (1
mM) glucose concentration (Figure S2). We could not observe
this phenomenon from the reaction of both native GOX and
surface-immobilized GOX.*® This result implies that changed
kinetics of the GOX reaction in nanoreactors occurred due to

diffusion effects.
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Protection and Thermal Stability of Enzymes. Proteolytic
resistance of loaded GOX in the nanoreactors was investigated
by Proteinase K (EC 3.4.21.64; 28.9 kDa), which could not
penetrate into the nanoreactors. Unlike bare GOX in solution,
the GOX@NR did not lose the enzymatic activity in the
presence of Proteinase K (Figure 4a). As different proteolytic
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Figure 4. Protection of GOX inside of the nanoreactors. (a) Protease
resistance of GOX in the nanoreactor and native GOX. (b) Thermal
resistance of GOX inside of the nanoreactor and native GOX after
exposure to temperatures from 20—60 °C for 10 min. Thermal
denaturation profiles of native GOX (c) and GOX inside of the
nanoreactors (d), measured by NanoDSF.

enzymes are present in the in vivo environment, protection of
GOX is an important prerequisite if considered as an
anticancer drug. To explore applicability to the cellular
environment, GOX stability from cell lysates was tested.
GOX@NR kept their full initial activity, whereas the native
GOX was remarkably reduced (76% of the initial activity) after
exposure to the cell lysate (Figure S3).

Thermal stability of GOX was investigated by nano-
differential scanning fluorimetry (NanoDSF). This technique
is based on changes in intrinsic fluorescence of aromatic amino
acids in protein structures by thermal denaturation. The folded
and unfolded proteins show a different emission at 330 and
350 nm, enabling estimation of the melting temperature (T,,).
Thermal denaturation profiles discovered that the GOX in the
nanoreactors (T,,: 57.6 °C) seems to be more stable than the
native GOX (T,: 55.6 °C) (Figure 4c,d). To confirm this
increased stability, we also evaluated the change of the
enzymatic activity after exposure from ambient temperature
(20 °C) to 60 °C (Figure 4b). The native GOX quickly lost its
activity after exposure to increased temperature. In contrast,
GOX inside the nanoreactors proved to have a much higher
thermal stability with residual activity of ca. 35% after exposure
to 60 °C for 15 min. In particular, GOX loaded in nanoreactors
is more stable in the range 40—50 °C as well as native GOX,
implying great advantages when combining with hyperthermia
therapy.
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Figure 5. Nanoreactors with loaded GOX and native GOX-mediated cell death. Cytotoxicity assay of GOX-loaded nanoreactors (a) and native
GOX (b) mediated cell death in time relapse (n = 3, error bars = SD). Microscopic image of dead cells by the GOX-loaded nanoreactors (c) and
native GOX (d) for a 3 h reaction. Scale bars represent 30 ym. (e) Monitoring changes in pH value of medium of outside cells during GOX
reaction. Glucose concentration of 44 mM was used for the time relapse assay (n = 3, error bars = SD). The HeLa cell was used for all assays.

Cytotoxicity Induced by Enzymatic Hydrogen Peroxide
Production. We demonstrated the cytotoxic effect of hydrogen
peroxide produced by GOX with a series of in vitro studies
with HeLa cells (human cervical carcinomas) as model cancer
cells. As a proof-of-concept, we treated native GOX or GOX@
NR with glucose (44 mM) and incubated them with the cells.
The cell viability was then monitored by a formazan/
dehydrogenase-based assay (CCK-8). In both cases, the
enzymatic reaction produced H,O, in the extracellular
medium, and both native GOX and GOX@NR proved to
have an effective cytotoxicity (Figure Sa,b). When catalase as a
H,0, scavenger was added additionally, a decreased
cytotoxicity was observed (Figure Sb, red curve), indicating
that the produced hydrogen peroxide is the major factor for
cell death. In addition, we let the cells “starve” for a period of 5
h to deplete the intracellular glucose content, but no effects on
cell viability were observed during this period of time (Figure
S6).

Importantly, different effects of native GOX and GOX@NR
on the cell death scenario were identified from microscopy
images. In the case of native GOX-triggered cell death, we
observed the generation of necrotic blebs on the cells, but
overall they kept their original morphology (Figure 5d) as also
reported carlier.”’ During the native GOX reaction, the pH
value of the medium (outside of cells) decreased due to the
extracellular production of gluconic acid (Figure Se), which
supports the assumption of an extracellular enzyme reaction. In
contrast, when GOX@NR was incubated together with the
cells, almost no necrotic blebs but a certain shrinking of the
cells was detected in the optical images (Figure Sc). Moreover,
the extracellular pH value remained unchanged to the control
(Figure Se). This led us to the assumption that uptake of
GOX@NR by phagocytosis leads to GOX reactions in the
cytoplasm. When we treated GOX@NR or native GOX
without addition of glucose, no change of the pH value was
observed (Figure S7).
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Even though a low level (107°—1077 M) of hydrogen
peroxide is naturally produced and essential for living cells,
aberrant production can cause serious cytotoxicity to occur.”
Cells are afforded up to 107 M of intracellular hydrogen
peroxide by their own antioxidant defense system such as
catalase and glutathione peroxidase. Below 10 M concen-
tration, cell cycle arrest can arise. A higher concentration (107*
M) can lead to necrotic or apoptotic cell death.’’** The
mechanisms of the hydrogen-peroxide-mediated cytotoxicity
were attempted to be understood by a few studies. The
exposure of high concentrations of hydrogen peroxide (0.5—
2.0 mM) can deplete the scavengers (i.e., glutathione) in cells,
thereby causing necrosis due to oxidative stress.”'" The
Fenton-like reactions (Fe** + H,0, — Fe** + ¢OH + OH")
spawn another much more reactive oxygen species (ROS), the
hydroxyl radical (¢OH). It is highly reactive with major
cellular components such as nucleic acid, proteins, and lipids,
generating serious mutations or oxidative damage on cells.
Furthermore, hydrogen peroxide triggers decreases in the
production of superoxide (O,°”) by inhibiting NADH/
NADPH-dependent oxidases. It occurs that augmentation of
the reduction state of the intracellular milieu is followed by
eliciting mitochondrial translocation of BAX (B cell lymphoma
2 (BCL2) associated X), and eventually leading to apoptosis.''
Hydrogen peroxide also plays an important role in the
activation of the caspase-3 signaling pathway, which leads to
apoptosis.'> Although some cancer cells upregulate the
resistance against exogenous hydrogen peroxide (e.g., mem-
brane-bound catalase), an excessive and aberrant amount of
hydrogen peroxide inevitably leads to cell death.*

In our previous experiments, both native GOX and GOX@
NR led to a high degree of cell death by either extracellular or
intracellular production of hydrogen peroxide. To evaluate the
potential as an intracellular drug factory, we first tried to
deliver the native GOX (or GOX@NR) under glucose-free
conditions, later adding glucose to the cells, and then evaluated
the oncolytic efficiency (Figure 6a). In this experiment, any
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MD-231, MCF-7, and Caco-2 cells (n = 3, error bars = SD).

undelivered GOX@NR or native GOX was removed before
adding glucose into the cells. As shown in Figure 6d, only
GOX@NRs proved to have an effective cytotoxicity (HeLa)
due to cellular uptake and intracellular production of hydrogen
peroxide. In contrast, native GOX did not exhibit a high degree
of cytotoxicity, because it was not efficiently attached and
delivered to the cells. By intracellular hydrogen peroxide
determination assay, we found that the treatment of GOX@
NRs produced additional hydrogen peroxide in relation to the
glucose concentration (Figure 6e). The produced hydrogen
peroxide increased the intracellular hydrogen peroxide up to a
toxic level, leading to selective cell death for the GOX@NR-
treated cancer cells. The cellular uptake of GOX@NRs and
native GOX was confirmed by confocal laser microscopy,
proving a significant amount of GOX@NRs (prepared with
fluorescein-labeled GOX, green) on the cellular membrane and
inside of the cells (Figure 6b), thereby promoting the
intracellular GOX reaction. Due to the polydispersity, the
smaller nanoreactors could be transported into the cells by an
endocytic pathway, while larger nanoreactors attached to the
cellular membrane. Our data proved that the GOX reaction of
the nanoreactor is not strong outside the cells, which indicates
that they are taken up by the cells. In contrast, no green
fluorescence was detected inside the cells when we tried to
deliver the native GOX (Figure S8) with low cytotoxicity. We
further verified the successful uptake of the GOX@NRs into
the cells by flow cytometry, whereas only a negligible amount
of native GOX was allowed to be taken up (Figure 6¢ and
Figure S9). Three model cell lines (MDA-MB-231, human
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breast cancer; MCF-7, human breast cancer; and CaCo-2,
human colorectal cancer) were further investigated. In all
cases, similar cellular uptake and cytotoxicity induced by the
intracellular delivered nanoreactors were proven (Figure 6f and
Figure S10), indicating that the strategy is applicable to
numerous types of cancer cells.

In conclusion, we described oncolytic nanoreactors with
loaded glucose oxidase (GOX) to produce hydrogen peroxide
intracellularly. We used fluoride-catalyzed sol—gel chemistry to
synthesize hollow silica nanoreactors at neutral pH, which
preserved the GOX activity, protected GOX against
proteolysis, and increased its thermal stability. The GOX
nanoreactors were effectively delivered to living cancer cells, in
which hydrogen peroxide was produced by the enzyme by
consuming glucose in the cytoplasm and eventually led to cell
death. Thus, our GOX nanoreactors are a promising platform
for enzyme reactions and anticancer therapy inside of cells. To
improve the rate of cellular uptake and the tumor
accumulation, the development of smaller nanoreactors
(<100 nm) or an active targeting strategy are currently
planned in our lab. Glucose levels in deep tumors might be
lower than normal physiological conditions due to energetic
metabolisms, but our nanoreactors were able to kill the cancer
cells at lower glucose levels. By combining other anticancer
strategies, synergistic anticancer efficacies might be envisioned.
The sol—gel process proceeded under mild conditions and
increased the protein stability compared to native proteins.
Moreover, enzyme reactions in confinement are known to be
more efficient than native enzymes. Therefore, our enzyme-

DOI: 10.1021/acs.nanolett.9b04263
Nano Lett. 2020, 20, 526—533


http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04263/suppl_file/nl9b04263_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04263/suppl_file/nl9b04263_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.9b04263/suppl_file/nl9b04263_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.9b04263

Nano Letters

loading nanoreactor is thought to be a valuable toolkit for
other protein applications® or nanoencapsulation technolo-
gies.
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