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Abstract

The Multiple Sequentially Markovian Coalescent (MSMC) is a population genetic method and software for
inferring demographic history and population structure through time from genome sequences. Here we
describe the main program MSMC and its successor MSMC2. We go through all the necessary steps of
processing genomic data from BAM files all the way to generating plots of inferred population size and
separation histories. Some background on the methodology itself is provided, as well as bash scripts and
python source code to run the necessary programs. The reader is also referred to community resources such
as a mailing list and github repositories for further advice.

Key words Demographic inference, Complete genome sequencing, Phasing, Population structure,
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1 Introduction

1.1 MSMC MSMC [1] is an algorithm and program for analyzing genome
sequence data to answer two basic questions: How did the effective
population size of a population change through time? When and
how did two populations separate from each other in the past? As
input data, MSMC analyzes multiple phased genome sequences
simultaneously (separated into haplotypes, i.e. maternal and pater-
nal haploid chromosomes) to fit a demographic model to the data.

MSMC models an approximate version of the coalescent under
recombination across the input sequences. Specifically, the coales-
cent under recombination is approximated by a Markov model
along multiple sequences [2, 3], which describes how local genea-
logical trees change due to ancestral recombinations (Fig. 1).

These local genealogies as well as the recombination events are
of course invisible and therefore act as latent variables that are to be
integrated out of the joint probability distribution. Since it is
infeasible to do this integration across the entire space of possible

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
https://doi.org/10.1007/978-1-0716-0199-0_7, © The Author(s) 2020

147


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0199-0_7&domain=pdf

148 Stephan Schiffels and Ke Wang

First Coalescence ¢
(hidden state)

Recombination

time
(past)
_ K ;
[
[
N 'y N ey N .
’S‘?«o W T \ o T N v
2 P
O:,’)-—o § oY A &
% S - -~
Mutations

Fig. 1 Schematic description of MSMC as a hidden Markov model along multiple sequences. The sequences
are related by local genealogical trees that change due to ancestral recombination events. The trees and
recombination events are hidden states of the model and can be probabilistically inferred from the patterns of

mutations

trees, MSMC focuses only on one particular aspect of those trees:
the first coalescence event. This variable (dark blue in Fig. 1) acts as
a hidden state in the Hidden Markov Model (HMM). Using stan-
dard HMM algorithms, the hidden state (trees and recombination
events) can be integrated out efficiently using dynamic program-
ming. We can thus efficiently compute the likelihood of the data
given a demographic model, and iteratively find a demographic
model that maximizes this likelihood.

The demographic model itself is—in the simplest case of just
one population—parameterized by a sequence of piecewise con-
stant coalescence rates, i.e. inverse effective population sizes. The
time segments are chosen such that they cover the distribution of
times to first coalescence. Therefore, the more sequences are ana-
lyzed, the more recent the window of analysis will be (Fig. 2).

If the input individuals come from two populations, the demo-
graphic model is parameterized by three coalescent rates through
time: A coalescence rate between lineages sampled within the first
population, a coalescence rate between lineages sampled within the
second population, and a coalescence rate between lineages sam-
pled across the two populations (Fig. 3a). As introduced in Schiffels
and Durbin [1], to simplify interpretation of the three inferred
rates, we can plot a simple summary by taking the ratio of the
across-rate and the mean within-rate, which is termed the relative
cross coalescence rate (rCCR) (Fig. 3b). This summary variable
ranges between 0 and 1, and indicates when and how the two
populations diverged. Values close to 1 indicate that the two popu-
lations were really one population at that time. At the time when
the rCCR drops to zero, the two populations likely separated into
two isolated populations. Heuristically, the mid-point of that
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Fig. 2 Population size inference with MSMC from simulated data. Time segments
are chosen to cover the distribution of first coalescence times. They cover
younger time segments if more sequences are analyzed
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Fig. 3 Studying divergence processes through the cross-coalescence rate. When
sequences are sampled from two different populations, MSMC estimates not one
but three coalescence rates (two within and one across populations) over time
(@), here for a simple scenario of two populations with a clean split about 43,500
years ago (1500 generations with generation time of 29 years). The split time is
indicated by the dashed black line. The relative cross coalescence rate (b) is the
cross coalescence rate divided by the mean within-rate. As it drops from 1 to
zero (forward in time), it indicates when the two populations split. The drop
agrees well with the simulated split time
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1.2 MSMC2

decline (i.e., the time when the rCCR hits 0.5) is often taken to be
an estimate for the split time between the two populations.

MSMC has been widely applied to human data (for example
[4-8]) and non-human organisms (for example [9-13]).

MSMC?2 is a newer algorithm, and the tool is still actively being
developed. A first version was used in Malaspinas et al. [6] for
analyzing Australian genomes. At the time of this writing, a manu-
script that presents the new algorithm in more detail is in prepara-
tion. MSMC2 was developed to overcome some problems that we
saw with MSMC. In particular, MSMC is computationally inten-
sive, and for all practical purposes limited to analyzing eight haplo-
types at most. But even within this scope, we see that coalescence
rate estimates for more than four haplotypes are sometimes biased
(see, for example, Fig. 2, red curve), with some systematic over- and
underestimations of the true coalescence rates. These biases are in
part caused by approximations in the emission rate of the HMM,
which requires knowledge of the local lengths of leaf branches of
trees. This variable is estimated by a separate HMM that is heuristic
and cannot easily be improved, and which apparently performs
poorly for larger trees. This means that even if we improved the
computational aspects, we could not scale up this algorithm easily
to more haplotypes.

MSMC2 takes a step back from these complications and
approaches the problem of modelling multiple samples in a much
simpler way: Instead of analyzing all input haplotypes simulta-
neously, it uses a much simpler pairwise HMM (very similar to
PSMC) on all pairs of haplotypes. The likelihood of the data is
then simply multiplied across all pairs as a composite likelihood.
This has two interesting consequences: First, the pairwise model
is—in contrast to the MSMC—an exact model under the Sequen-
tially Markovian Coalescent, and does not suffer from biases with
increasing number of genomes. Second, the pairwise model
describes the entire distribution of pairwise coalescence times, not
just the time to first coalescence. MSMC2 can therefore estimate
coalescent rates across the entire distribution of pairwise coales-
cence times, with increasing resolution in more recent times, and
importantly without biased estimates (Fig. 4). In contrast, MSMC
loses power in ancient times with increasing numbers of input
genomes (see Fig. 2).

MSMC2 can also analyze population separations via the relative
cross coalescence rate, and gives similar results as MSMC, but with
computational improvements, as we will point out further below.

We caution that at the time of writing, MSMC2 is still in beta
and some aspects of the interface and algorithm may still change.
Nevertheless, we will cover its use throughout this chapter
alongside MSMC.
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Fig. 4 MSMC2 population size estimates. Time segments are covering more

recent times with increasing number of input haplotypes, without losing power in
ancient times (compare with Fig. 2)

2 Software Overview

2.1 MSMC

22 MSMC2

2.3 MSMC-Tools

MSMC has been implemented in three open source software
packages, summarized in the following. A mailing list for discus-
sions around all three packages exists under https: //groups.google.
com/forum/#!forum/msmc-popgen

The main program is written in the D programming language
(www.dlang.org).

A tutorial can be found at https: //github.com/stschiff/msmc-
tools /blob /master/msmc-tutorial /guide.md and general docu-
mentation can be found within each package.

The main program used in the original publication [1] is accessible
at http: //www.github.com /stschiff /msmc. Pre-compiled
packages for Mac and Linux can be found under the Releases tab.
For compilation from source code, a D language compiler is needed
(see www.dlang.org for details).

MSMC2 (see Subheading 1) can be accessed at http: //www.github.
com/stschiff/msmc2. MSMC2 is still under development, but has
been used in a key publication [6], which can be used to cite this
program. A publication describing the novel aspects and compari-
son to other state-of-the-art methods is in preparation at the time
of this writing.

Utilities for preparing input files for MSMC, as well as some other
tasks, can be found in a separate repository at http: //www.github.
com/stschiff/msmc-tools and mainly contains python scripts that
help with generating the input data and with processing the
output data.


https://groups.google.com/forum/#!forum/msmc-popgen
https://groups.google.com/forum/#!forum/msmc-popgen
http://www.dlang.org
https://github.com/stschiff/msmc-tools/blob/master/msmc-tutorial/guide.md
https://github.com/stschiff/msmc-tools/blob/master/msmc-tutorial/guide.md
http://www.github.com/stschiff/msmc
http://www.dlang.org
http://www.github.com/stschiff/msmc2
http://www.github.com/stschiff/msmc2
http://www.github.com/stschiff/msmc-tools
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2.4 Data
Requirements

2.4.1 Diploid Data

2.4.2 Phasing

MSMC normally operates on diploid, phased, complete, high cov-
erage genomes. Here we discuss these conditions one by one.

Technically, it is not a strict condition that input sequences be
diploid. However, most populations/organisms that are not dip-
loid do not follow a coalescent under recombination. For example,
bacteria and viruses are asexual without recombination, which
breaks several key assumptions that the MSMC model makes.

In some diploid model organisms, inbred lines are available and
sequenced (for example, in Drosophila). Such inbred lines are
eftectively haploid, but originate from a diploid outbred popula-
tion. In this case we think MSMC should work OK, by using each
homozygous haploid input genome as a single “haplotype,”
although we lack explicit experience and overview of potential
caveats in this case.

When sequencing diploid genomes, modern sequencing platforms
generate unphased data, which randomly permutes the association
of heterozygous alleles to the paternal and maternal haplotypes. For
MSMC, knowledge of the paternal vs. maternal allele is important
when more than two haplotypes are analyzed. Note that for a single
diploid genome as input (i.e., two haplotypes), no phasing is
necessary.

Phasing can be a laborious preprocessing step, which requires
external tools, such as shapeit (https://jmarchini.org/shapeit3 /)
or beagle (https://faculty.washington.edu,/browning/beagle /bea
gle.html). As a general rule, what helps phasing quality a lot are:

e availability of a reference panel of phased populations

e presence of related individuals (e.g., parent—child duos or
father—-mother—child trios)

¢ long sequencing reads

¢ long-insert libraries in combination with paired-end sequencing.

Note that MSMC and MSMC2 can in principle handle
unphased data within the input data format (see below), but for
some analyses we recommend to exclude those sites from the
analysis, which can be done within MSMC. Note also that
MSMC2 now can optionally run on unphased genomes for popu-
lation size analysis, but not for population separation analysis. As
described below, this is achieved by running the MSMC2-HMM
only within each diploid genome, but not across pairs of genomes.
This will give lower resolution than with phased data, but may be a
good compromise if phasing is not possible and only population
sizes need to be estimated.


https://jmarchini.org/shapeit3/
https://faculty.washington.edu/browning/beagle/beagle.html
https://faculty.washington.edu/browning/beagle/beagle.html

2.4.3 Complete Genomes

2.4.4 High Coverage
Data
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MSMC and MSMC2 cannot run on Array data, with selected
SNPs, but require contiguous sequence segments. For many organ-
isms, genomes are shorter than in humans, and from our experi-
ence, MSMC still works fine for much smaller genomes, but we
recommend in these cases to run simulations with shorter genome
length and specified heterozygosity to test performance of the
program on shorter genomes.

For many non-model organisms, reference genomes are only
available via assembly scaffolds, which are sometimes as short as a
few hundred thousand basepairs (compared to hundred million
basepairs for a human chromosome). In our experience, MSMC
works still fine in many such cases, as long as scaffolds are not too
short. Although the exact threshold depends on an organisms mean
heterozygosity, in my experience scaffolds on the order of 500 kb
and longer often work OK. We again recommend simulations of
short chromosomes to assess the power in those cases.

MSMC requires good resolution of heterozygous vs. homozygous
genotypes across the genome, which is only available with high
coverage sequencing data. In our experience, 20-fold coverage
and higher is sufficient. MSMC may work on lower coverage data
as well, but detailed analyses of the effects of false negative /posi-
tives in genotype calling need to be assessed in these cases, ideally
again through simulated data, into which sequencing errors are
randomly introduced to test their effect on the estimates.

3 Input Data Format

MSMC/MSMC2 take several files as input, one for each chromo-
some, each with a list of segregating sites, including a column to
denote how many sites have been called since the last segregating
site. Note that here we use the term “chromosomes” to refer to
coordinate blocks in a reference genome (which could also be an
assembly scaffolds). We use the term “haplotypes,” when we refer
to the phased input sequences from multiple individuals. Here is an
example part of an input file for chromosome 1 for four haplotypes
(two diploid individuals):

58432 63 TCCC
58448 16 GAAA
68306 15 CTTT
68316 10 TCCC
69552 8 GCcc
69569 17 TCCC

801848 9730 ccca
809876 1430 AAAG
825207 1971 CCCT, CCTC
833223 923 TCCC

[ T T = S S S S S S S
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3.1 Generating VCF
and Mask Files from
Individual BAM Files

The four (tab-separated) columns are:

1. The chromosome (can be an arbitrary string, but has to be the
same for all rows in a file).

2. The position on the chromosome.

3. The number of called homozygous sites since the last segregat-
ing site, which includes the given location. This number must
always be greater than zero and cannot be larger than the
difference between the current position and the previous
position.

4. The ordered and phased alleles of the multiple haplotypes. If
the phasing is unknown or only partially known, multiple
phasings can be given, separated by a comma to indicate the
different possibilities (see the second-last line in the example).
Unknown alleles can be indicated by “?”, but they can also
simply be left out and expressed by a reduced number of called
sites in the line of the next heterozygous site.

The third column is needed to indicate where missing data
is. For simulated data, without any missing data, this column
should simply contain the distance in bp from the previous segre-
gating site, indicating that all sites between segregating sites are
called homozygous reference, without missing data. To the extent
that this number is lower than the distance from the previous site
do the input data contain missing data. Information about
missing vs. homozygous reference calls is crucial for MSMC: If,
for example, missing data is not correctly annotated, long distances
between segregating sites may falsely be seen as long homozygous
blocks, indicating a very recent time to the common ancestor
between the lineages, thereby skewing model estimates.

The generation of such an input file follows three steps:

1. Generating VCF and mask files from individual BAM files.
2. Phasing the input.
3. Combining multiple phased individuals.

In the following, we describe these steps in order

Starting with a BAM file, bamCaller.py (included in the MSMC-
Tools package) can be used for generating a sample-specific VCF
file and a mask file. This script reads samtools mpileup data from
stdin, so it has to be used in a pipe in which a reference file in fasta
format is also required. Here is an example bash script using sam-
tools 1.0 or higher for generating chromosome-specific VCF files
(samplel.chr*.vcf.gz) and mask files (samplel.mask.
chr*.bed.gz) from a human BAM file:
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Listing 1.1. bash script to call genotypes and masks from a single
BAM file

#1/bin/bash
BAM=samplel.bam

# estimating the average sequencing depth using all
sites on chromosome 20

DEPTH=$ (samtools depth -r 20 <in.bam> | awk ’{sum +=
$3} END {print sum / NR}’)$

for CHR in {1..22}; do
samtools mpileup -B -q 20 -Q 20 -C 50 -g -r $CHR

-f <ref.fa> <in.bam> | bcftools call -c -V
indels | ./bamCaller.py $DEPTH <out.mask.
chr$CHR .bed .gz> | gzip -c > <out.chr$CHR.vct.
gz>

done

Further options of bamCaller .py are:

--minMapQ to set the minimum mapping quality, which
defaults to 20.0
--minConsQ to set the minimum consensus quality, which

defaults to 20.0

--legend_file Ifyou aim to phase your data against a reference
panel, e.g. from 1000 Genomes (see Subheading
3.2), you need your VCF to not only contain the
variant sites of the sample, but also the genotypes
at additional sites at which the panel is geno-
typed. This option takes a gzipped file of a format
that is used in the IMPUTE and SHAPEIT ret-
erence panels. It is a simple tab-separated tabular
file format with one header line which gets
ignored. The only important columns for this
purpose are: (1) the chromosome; (2) the posi-
tion; (3) the reference allele; (4) the alternative
allele; (5) the type of the variant, only sites of type
SNP are considered here.

If your samples are unrelated and you want to run MSMC on
more than two haplotypes at a time, you would need to statistically
phase the VCFs with a tool like shapeit. There are two different
phasing strategies using shapeit, either with a reference panel or
without a reference panel. If a good reference panel is available for
your samples, shapeit phasing with a reference panel is
recommended.

Here, as an example, we describe phasing a single human
diploid sample against the 1000 Genomes Phase 3 reference
panel. In the following, we assume that shapeit2 is installed, the
1000 Genomes (phase 3) reference panel is available locally (can be
downloaded  from  https://mathgen.stats.ox.ac.uk/impute/
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1000GP_Phase3.html), and that the unphased VCF file contains all
variable positions in the sample, plus all variable positions in
the 1000 Genomes reference panel. This can be achieved using
the -—legend_file option in bamCaller.py.

The script first removes multi-allelic sites in your VCF, gener-
ating .noMultiAllelicSites.vcf.gz with bcftools. Then it makes a list
of sites to be excluded in the main run for phasing by shapeit
-check, because shapeit can only phase SNPs that are in both the
sample and the reference panel with the same allele type. Apart from
the main log file per chromosome samplel.chr$CHR.align-
ments. log, the two following files will be generated from sha-
peit —-check:

1. samplel.chr$CHR alignments.strand: this file describes all
sites in detail that either have incompatible allele types in the
sample and the reference panel or found in the sample but not
in the reference panel.

2. samplel.chr$ CHR alignments.strand.exclude: this file gives a
simple list of physical positions of sites to be excluded from
phasing.

Then the script runs shapeit with --exclude-snp and -no-
mcme, generating two output files including phased sites only sam-
plel.chr$CHR.phased.haps.gz and samplel.chr$CHR.
phased.samples. These two files can be converted into VCF
format by shapeit -convert. Afterwards, we merge the phased
VCF samplel.chr$CHR.onlyPhased.vcf.gz and the
unphased (original) VCF samplel.chr$CHR.fixedformat.
vcf . gz, keeping all unphased sites from the original VCE, but
replacing the phased ones.

#!/bin/bash

for CHR in {1..22}; do
UNPHASED_VCF=samplel.chr$CHR.vcf.gz
UNPHASED_VCF_NOMAS=samplel.chr$CHR.

noMultiAllelicSites .vcf.gz

GEN_MAP=genetic_map_chr$ {CHR} _combined_b37 .txt
REF_HAPS=1000GP_Phase3_chr$CHR .hap.gz
REF_LEGEND=1000GP_Phase3_chr$CHR .legend.gz
REF_SAMPLE=1000GP_Phase3 .sample
LOG_ALIGN=samplel.chr$CHR.alignments
EXCLUDE_LIST=$LOG_ALIGN.strand.exclude
LDG_MAIN=samp1e1.chr$CHR.main

PHASED_HAPS=samplel.chr$CHR.phased.haps.gz
PHASED_SAMPLE=samplel.chr$CHR.phased.samples
PHASED _VCF=samplel.chr$CHR.onlyPhased.vcf

LDG_CDNVERT=sample1.chr$CHR.convert
FINAL_VCF=samplel.chr$CHR.phased.vcf.gz


https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html

3.3 Combining
Multiple Individuals
into One Input File
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#Preparation

bcftools view -M 2 -0 z $UNPHASED_VCF >
$UNPHASED_VCF_NOMAS

shapeit -check -V $UNPHASED_VCF_NOMAS -M
$GEN_MAP --input-ref $REF_HAPS
$REF_LEGEND $REF_SAMPLE --output-log
$LOG_ALIGN

#Main run

shapeit -V $UNPHASED_VCF_NOMAS -M $GEN_MAP
--input -ref $REF_HAPS $REF_LEGEND
$REF_SAMPLE -0 $PHASED_HAPS
$PHASED_SAMPLE --exclude -snp
$EXCLUDE_LIST --no-mcmc --output-log
$LOG_MAIN

shapeit -convert --input-haps $PHASED_HAPS
$PHASED_SAMPLE --output-vcf $PHASED_VCF --
output -log $LOG_CONVERT

#Zipping and indexing
bcftools view -0 z $PHASED_VCF > $PHASED_VCF

.gz
bcftools index -f $PHASED_VCF

#Merging phased and unphased wvcfs, keeping
all unphased sites from the original wcf
, but replacing the phased ones.

bcftools merge --force-samples $UNPHASED_VCF
$PHASED_VCF | awk ’BEGIN {ofs"=\"t}

$0 ~ /-~ #CHROM/ {print $1, $2, $3, $4, $5, $6
, 87, 88, 89, $10}

$0 '~ /s {
if (substr($11, 1, 3) 1= "./.")
$10 = $11
print $1, $2, $3, $4, $5, $6, $7, $8, $9
, $10

}? | bcftools view -0 z > $FINAL_VCF
done

Note that this script can also be found in the git repository
accompanying  this  book chapter  (https://github.com/
StatisticalPopulationGenomics/MSMCandMSMC2).

At this point, we assume that you have a phased VCF for each
individual per chromosome (potentially containing some unphased
sites not in the reference panel), and one mask file for each individ-
ual per chromosome. In addition, you will need one mappability
mask file per chromosome, which is universal per chromosome and
does not depend on the input individuals. Mappability masks
ensure that only regions in the genome are included, which have


https://github.com/StatisticalPopulationGenomics/MSMCandMSMC2
https://github.com/StatisticalPopulationGenomics/MSMCandMSMC2
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sufficiently high mappability, i.e. no repeat regions and other fea-
tures that are hard to map with next-generation sequencing data.
Mappability masks can be generated using the SNPable pipeline
described at http://lh3lh3.users.sourceforge.net/snpable.shtml.
For the human reference genome hs37d5, they can be downloaded
here https: //oc.gnz.mpg.de /owncloud /index.php/s/
RNQAKHcNiXZz21d.

For generating the input files for MSMC for one chromosome,
the script generate_multihetsep.py from MSMC-tools is
required, which merges VCF and mask files together, and also
performs simple trio-phasing in case the data contains trios. Here
is an example of generating multihetsep files for two (previously
phased) diploid individuals on chromosome 1.

#!/bin/bash

generate_multihetsep .py --chr 1 --mask samplel.mask.
chrl.bed.gz --mask sample2.mask.chrl.bed.gz --
mask mappability_mask.chrl.bed samplel.chril.
phased.vcf.gz sample2.chrl.phased.vcf.gz >
samplel_sample2 .chrl.multihetsep.txt

Another useful option in generate_multihetsep.py is —-trio
<child>,<father>,<mother>,allowing the three members of a
trio. All three fields must be integers specifying the index of the
child /father /mother within the VCFs you gave as input, in order.
So for example, if you had given three VCEF files in the order of
father, mother, child, you need to give —trio 2,0,1. This option will
automatically apply a constraint for phasing and also strip the child
genotypes from the result.

4 Running MSMC and MSMC2

4.1 Resource
Requirements

Resource usage for MSMC and MSMC2 depend on the size of the
dataset, the number of haplotypes analyzed, the number of time
segments and on the number of CPUs used. The following num-
bers are example use cases and need to be somewhat extrapolated to
other use cases. As a general rule of thumb, run time and number of
CPUs are inversely proportional, and memory and number of
CPUs are linearly proportional. Also, the number of haplotypes
and the number of time segments affect both memory and run time
quadratically.

Use cases for MSMC, assuming 22 human chromosomes and
11 CPUs, default time patterning:

¢ A single diploid genome: 30 min, 17Gb of RAM.

e Two diploid genomes, same population: 90 min, 32 Gb

of RAM.


http://lh3lh3.users.sourceforge.net/snpable.shtml
https://oc.gnz.mpg.de/owncloud/index.php/s/RNQAkHcNiXZz2fd
https://oc.gnz.mpg.de/owncloud/index.php/s/RNQAkHcNiXZz2fd

4.2 Test Data

4.3 Running MSMC
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¢ Two diploid genomes, two populations: 11 h, 35 Gb of RAM.
e Four diploid genomes, two populations: 21 h, 170 Gb of RAM.

Use cases for MSMC2, assuming 22 human chromosome and
11 CPUs, default time patterning:

¢ Asingle diploid genome: 18 min, 7 Gb of RAM.

e Two diploid genomes, same population: 2 h, 36 Gb of RAM.

¢ Two diploid genomes, two populations: 90 min, 21 Gb of RAM.
e Four diploid genomes, two populations: 8 h, 100 Gb of RAM.

We provide input files for MSMC and MSMC2 for four diploid
human individuals, two Yoruba and two French individuals. The
test input data consists of 22 text files for 22 autosomes in the
MSMC input format described above. The test data can be accessed
at https: //github.com /StatisticalPopulationGenomics /
MSMCandMSMC2.

A typical command line to run MSMC on the test data is

msmc -t 11 -R -o out_prefix Yoruba_French.double.chr
*. multihetsep.txt

which runs the program on 11 CPUs (option -t), keeps the
recombination rate fixed at the initial value (option -R), and uses as
output-prefix the file prefix out_prefix. The parallelization, here
specified by the number of CPUs (-t 11), goes across input files. So
when given 22 input chromosomes as in the test data, which is
typical for human data, running on 11 CPUs means that the first
11 chromosomes can be run in parallel, and then the second 11.
Using more CPUs will help a bit to make things even faster, but
only to the extent that the number of chromosomes exceeds or
equals the number of CPUs. The -R option is recommended for
MSMC except when running on two haplotypes only. Additional
options can be viewed by running msmc -h.

In order to run MSMC to obtain estimates of cross-population
divergences, you need to prepare your input files to contain indivi-
duals from multiple populations. For example, in order to run
MSMC on one Yoruba and one French individual from the test
data, you run (here for chrl only):

msmc -t 11 -R -s -I 0,1,4,5 -P 0,0,1,1 -o
crosspop_out_prefix Yoruba_French.double.chril.
multihetsep. txt

There are two changes here with respect to the first run. First, we
use the options -10,1,4,5-P0,0,1,1, which specifies that only
the first two haplotypes in each subpopulation should be used
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(indices 0,1 are the first Yoruba individual, indices 4,5 the first
French), and that those selected four haplotypes belong to two sub-
populations. Second, we set -s, which instructs MSMC to skip
ambiguously phased sites. This is important if you have phased your
samples against a reference panel and have private variants unphased.
Empirically, we have found that MSMC is quite robust to unphased
sites when analyzing population size changes in a single population,
but that results on cross-population divergence are affected by
unphased sites, and results are less biased if those sites are
removed [1].

Upon running either of the two commands above, MSMC
produces several output files. First, a file containing log output,
called prefix.log. Second, a file containing the parameter esti-
mates at each iteration step, called prefix.loop.txt. And third,
a file containing the final results, called prefix.final.txt. This
last file looks like this:

time_index left_time_boundary right_time_boundary lambda_00
0 -0 2.79218e-06 2605.47
1 2.79218e-06 5.68236e-06 6451.92
2 5.68236e-06 8.67766e-06 3152.31
3 8.67766e-06 1.1786e-05 2526.36

Each row of this output file lists one time segment, with scaled
start and end time indicated by second and third column. The
fourth column contains the scaled coalescent rate in each time
segment. In case of cross-population analysis (using the -P flag),
the output will contain two more columns, titled lambda_01 and
lambda_11, giving the coalescence rate estimates between popula-
tions and within the second population, respectively.

Times and rates are scaled. In order to convert to real values,
you need a mutation rate y per site per generation. All times can
then be converted to generations by dividing the scaled time by p.
In order to convert generations into years, a generation time is
needed (for humans we typically take 29 years). Population size
estimates are obtained by first taking the inverse of the scaled
coalescence rate, and then dividing that inverse rate by 2u.

To get the relative cross coalescence rate (rCCR, see Fig. 3), you
need to compute 2491,/ (490 + 411), without any additional scaling. It
can then be informative to compute the time point at which the
relative CCR hits 0.5, to reflect an estimate of the split time between
two populations (provided that a clean-split scenario is appropriate).

Running MSMC2 is very similar to running MSMC if samples
come from a single population. In that case, a typical command
line may look like this:
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msmc2 -t 11 -o out_prefix msmc_input_chr *.
multihetsep. txt

Note that here we have omitted the option -R, since MSMC2
can robustly infer recombination rates simultaneously with popula-
tion sizes, so there is no need to keep the recombination rate fixed.
The output of the program is the same as in MSMC.

To analyze individuals from multiple populations, as in the
provided test data the procedure is different from MSMC. In that
case, MSMC2 needs to be run three times independently: Once each
for estimating coalescence rates within population 1, within popula-
tion 2, and across populations. This has two advantages: First, since
runs can be parallelized, the combined running should be faster on
computer clusters. Second, if many pairs of populations are analyzed,
estimates of coalescence rates within populations need to be run only
once and not co-estimated with each cross-coalescence rate estimates.

So taking the test data as an example, we have four diploid
individuals from two populations in a single input file, and we can
run on only one individual from each population like this:

msmc2 -t 11 -s -I 0,1 -o popl_out_prefix Yoruba_French.double.
chr*x.multihetsep.txt

msmc2 -t 11 -s -I 4,5 -o pop2_out_prefix Yoruba_French.double.
chr*.multihetsep.txt

msmc2 -t 11 -s -I 0-4,0-5,1-4,1-5 -o crosspop4hap_out_prefix
Yoruba_French.double.chr*.multihetsep.txt

or if we want to run on all individuals:

msmc2 -t 11 -s -I 0,1,2,3 -o popl_4hap_out_prefix
Yoruba_French.double.chr*.multihetsep.txt

msmc2 -t 11 -s -I 4,5,6,7 -o pop2_4hap_out_prefix
Yoruba_French.double.chr*.multihetsep.txt

msmc2 -t 11 -s -I
0-4,0-5,0-6,0-7,1-4,1-5,1-6,1-7,2-4,2-5,2-6,2-7,3-4,3-5,3-6,3-7
-0 crosspop_8hap_out_prefix Yoruba_French.double.chrx.

multihetsep.txt

Here, we have again used the option -s to remove unphased
sites. A key difference to MSMC is how haplotype pairs in MSMC2
are specified using the -I option. In MSMC2, haplotype configura-
tions passed via —I can be given in two flavors. First, you can enter a
single comma-separated list, like this -I 0,1,4,5. In this case,
MSMC2 will run over all pairs of haplotypes within this set of indices.
This is useful for running on multiple phased diploid genomes
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sampled from one population. In the second flavor, you can give a list
of pairs, like above: -I 0-4,0-5,1-4,1-5. In this case, MSMC2
will run only those specified pairs, which are all pairs between the first
Yoruba and first French individual in this case. Note that if you do
not use this parameter altogether, MSMC2 will run on all pairs of
input haplotypes and assume that they all belong to one population.

As a special feature in MSMC2, the option -I can be used also
to run MSMC2 to get population size estimates from entirely
unphased genomes, using the composite likelihood approach to
run on all pairs of unphased diploids, but not across them. For
example, if your input file contains four diploid unphased samples,
you could use -1 0-1,2-3,4-5,6-7 to instruct MSMC2 to esti-
mate coalescence rates only within each diploid genome.

In order to simplify plotting and analysis of the relative cross
coalescence rate from MSMC2, we provide a tool in the MSMC-
tools repository called combineCrossCoal.py. This tool takes as
input three result files from MSMC2, obtained by running within
each population and across. It will then use interpolation to create a
single joint output file with all three rates that can then be plotted
exactly as in the MSMC case above. To use the script on the three
estimates obtained with the three MSMC2 runs above, simply run

python3 combineCrossCoal .py crosspop_out_prefix.
final.txt popl_out_prefix.final.txt
pop2_out_prefix.final.txt > combined_popl_pop2.
final.txt

and then use the combined file to proceed with plotting.

Here is an example of plotting population sizes and relative CCR in
python, as well as computing the midpoint of the rCCR curve,
using the numpy, pandas, and matplotlib libraries. To try this
out, we provide result files for MSMC2 within the book chapter
repository  (https: //github.com /Statistical PopulationGenomics/
MSMCandMSMC2), and those result files are used in this script,
which is also included in the same repository:

#1/usr/bin/env python3

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

mu = 1.25e-8

gen = 29

dir_ = "MSMC2_OUTPUT"

msmc_out=pd.read_csv("{}/Yoruba_French.8haps.combined.msmc2.
final.txt".format (dir_), sep='\t', header=0)

t_years=gen * ((msmc_out.left_time_boundary + msmc_out.
right_time_boundary)/2) / mu
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plt.figure(figsize=(8, 10))

plt.subplot (211)

plt.semilogx (t_years, (1/msmc_out.lambda_00)/(2*mu), drawstyle
='steps',color='red', label='Yoruba')

plt.semilogx (t_years, (1/msmc_out.lambda_11)/(2*mu), drawstyle
='steps',color='blue', label='French')

plt.xlabel("years ago")

plt.ylabel("population Sizes")

plt.legend ()

plt.subplot (212)

relativeCCR=2.0 * msmc_out.lambda_01 / (msmc_out.lambda_00 +
msmc_out.lambda_11)

plt.semilogx (t_years,relativeCCR, drawstyle='steps')

plt.xlabel("years ago")

plt.ylabel("Relative CCR")

plt.savefig("MSMC_plot.pdf")

def getCCRintersect(df, val):
xVec = gen * ((df.left_time_boundary + df.

right_time_boundary)/2) / mu
yVec = 2.0 * df.lambda_01 / (df.lambda_00 + df.lambda_11)

i=20
while yVec[i] < val:
i +=1
assert i > 0 and i <= len(yVec), "CCR intersection index

out of bounds: {}".format (i)

assert yVec[i - 1] < val and yVec[i] >= val, "this should
never happen"

intersectDistance = (val - yVec[i - 1]1) / (yVec[i]l - yVecl

i - 1)
return xVec[i - 1] + intersectDistance * (xVec[i] - xVec[i
- 11)

print (getCCRintersect (msmc_out, 0.5)) #Print out the time when
relativeCCR=0.5

This script produces the plot shown in Fig. 5 and prints
out the midpoint of the cross-coalescence rate, which is
69405.8165002096 for the test data, i.e. around 70,000 years
ago for a rough estimate of the split time between French and
Yoruba.

5 Tips and Tricks

5.1 Bootstrapping

It is often important to obtain confidence intervals around coales-
cence rate estimates (either for population size estimates or for rCCR
estimates). This can be done using block-bootstrapping. We provide
a script called multihetsep_bootstrap.py in the MSMC-tools
repository. You can run python3 multihetsep_bootstrap.py
-h to get some inline help. The program generates artificial “boot-
strapped” datasets from an input dataset consisting of MSMC input
files, by chopping up the input data into blocks (5 Mb long by
default) and randomly sampling with replacement to create artificial
3 Gb long genomes out of these blocks. By default, 20 datasets are
generated. You can run the tool via
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5.2 Controlling Time
Patterning
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Fig. 5 The figure produced by the plotting script using the test data results

python3 multihetsep_bootstrap.py bootstrap_dir
msmc_input_chr*.multihetsep.txt

which creates 20 subdirectories, here beginning with boot-
strap_dir, each containing 30 multihetsep input files created
with the block-sampling strategy described above. You should
then run MSMC or MSMC2 on each of these datasets separately
and plot all results together with the original estimates to visualize
confidence intervals.

Often, MSMC creates extremely large estimates in the most recent
or the most ancient time intervals. This is a sign of overfitting, and
can be mitigated by using fewer free parameters. By default, MSMC
uses 40 time segments, with 25 free parameters (some neighboring
time segments are forced to have the same coalescence rate).
MSMC2 by default uses 32 time segments with 28 free parameters.
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You can use the -p flag to control the time patterning in detail. For
example, to change the patterning of MSMC2 from 32 to 20 time
segments with 18 free parameters, you could try -p 1*2+16*1
+1*2, which would use 20 time segments, and merge together
the first two and last two to have just one free coalescence rate
parameter, respectively. We recommend to experiment with these
settings, in particular when non-human data is analyzed, where
sometimes the default settings in MSMC and MSMC2 are not
appropriate because the genomes are substantially shorter and
hence fewer parameters should be estimated.
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