
ar
X

iv
:2

00
1.

00
10

4v
1 

 [
m

at
h-

ph
] 

 3
1 

D
ec

 2
01

9

Gauge Symmetries and Renormalization

David Prinz∗

December 31, 2019

Abstract

The preservation of gauge symmetries to the quantum level induces symmetries be-
tween renormalized Green’s functions. These symmetries are known by the names of Ward-
Takahashi and Slavnov-Taylor identities. On a perturbative level, these symmetries can be
implemented as Hopf ideals in the Connes-Kreimer renormalization Hopf algebra. In this
article, we generalize the existing literature to the most general case by first motivating
these symmetries on a generic level and then proving that they indeed generate Hopf ideals,
where we also include the more involved cases of super- and non-renormalizable local QFTs.
Finally, we provide a criterion for their validity on the level of renormalized Feynman rules.

1 Introduction

In classical physics, Noether’s Theorem relates symmetries to conserved quantities. In the con-
text of classical gauge theories this theorem states, that gauge invariance corresponds to charge
conservation. Thus, when quantizing a gauge theory, it is desirable to remain some sort of
quantum gauge invariance in order to lift charge conservation to the quantum level. This leads
to the so-called Ward-Takahashi identities [1, 2] in Quantum Electrodynamics and the so-called
Slavnov-Taylor identities in Yang-Mills theories [3, 4, 5],1 to which we will refer as quantum
gauge symmetries in order to avoid name conflicts, c.f. [6, Footnote on page 93]. In partic-
ular, the classical gauge symmetries induce symmetries on the Z-factors, when multiplicative
renormalization is considered. On a perturbative level, these symmetries can be implemented
as symmetries inside the renormalization Hopf algebra [7], which turn out to be Hopf ideals
[8, 9, 10, 11]. The aim of this article is to generalize these results for the most general case of
gauge symmetries and furthermore to include also super- and non-renormalizable QFTs, as the
existing literature focuses on renormalizable QFTs only, culminating in Theorem 5.4. Finally, we
prove conditions for the unrenormalized Feynman rules and the renormalization scheme which
guarantee, that these Hopf ideals are in the kernel of the counterterm-map or even the renormal-
ized Feynman rules in Theorem 6.4. A consequence of this result is, that the Corolla polynomial
for Yang-Mills theory is well-defined without reference to a particular renormalization scheme,
c.f. [12, 13, 14, 15, 16, 17]. The analysis of this article is motivated by perturbative Quantum
General Relativity, which demands this generality, c.f. [18]. For the sake of completeness, we
quote important definitions, lemma and remarks from [18] in parts or even complete, as noted
in their corresponding headings.

This article is organised as follows: We start in Section 2 with a brief introduction to Hopf
algebraic renormalization, stating the necessary definitions and conventions. Then, in Section 3

∗Department of Mathematics and Department of Physics at Humboldt University of Berlin and Max-Planck-
Institute for Gravitational Physics (Albert-Einstein-Institute) in Potsdam-Golm; prinz@{math.hu-berlin.de,
physik.hu-berlin.de, aei.mpg.de}

1Actually, Slavnov-Taylor identities were first discovered by Gerard ’t Hooft in [3].
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we study combinatorial properties of the superficial degree of divergence allowing to state our
results not only for the cases of renormalizable local QFTs, but also for the cases of super- and
non-renormalizable local QFTs. Next, in Section 4 we reprove and generalize known coproduct
and antipode identities. Then, in Section 5 we show, that quantum gauge symmetries induce
Hopf ideals inside the renormalization Hopf algebra. Finally, in Section 7 we conclude our
investigations and provide an outlook into further projects.

2 Preliminaries of Hopf algebraic renormalization

The aim of this section is to briefly recall the necessary definitions and set the corresponding
notations. We refer the reader to [18] for a more detailed treatment using the same notations
and conventions. Furthermore, we also point out the original references for Hopf algebraic
renormalization [19, 20, 21, 22] and in particular the original references for Hopf algebraic
renormalization of Quantum Gauge Theories [7, 8, 9, 10]. We consider Q to be a local QFT and
denote the Hopf algebra associated to Q via HQ, c.f. [18, Section 3.3], which is a Hopf algebra
over Q generated via the set of all one-particle irreducible (1PI) Feynman graphs GQ.

2 Then,
the (associated) renormalization Hopf algebra organizes the structure of subdivergences and
allows the definition of renormalized Feynman rules via an algebraic Birkhoff decomposition.
This mathematical formulation of the renormalization operation allows for a precise analysis
thereof. In particular, symmetries compatible with the treatment of subdivergences generate
Hopf ideals in the corresponding renormalization Hopf algebra. Next, in Section 6 we check the
validity of these symmetries on the level of renormalized Feynman rules, providing criteria for
the unrenormalized Feynman rules and the renormalization scheme.

Definition 2.1 ((Feynman) graphs and related notions). A graph G := (V,E, β) is given via a
set of vertices V , a set of edges E = E0 ∐ E1, where E0 is the subset of unoriented and E1 is
the subset of oriented edges,3 and a morphism

β : E →֒ (V × V × Z2) , e 7→
{

(v1, v2; 0) if e ∈ E0

(vi, vt; 1) if e ∈ E1

, (1)

mapping edges to tuples of vertices together with their binary orientation information; if the
edge is oriented, the order of the vertices is first initial then terminal. Furthermore, we introduce
the set of half-edges

H :=
{

hv ∼= (v, e)
∣

∣v ∈ β (e) for v ∈ V and e ∈ E
}

, (2)

where v ∈ β (e) means, that the vertex v is attached to the edge e. Moreover, we introduce the
set of corollas

C :=
{

cv ∼=
(

v, {hv}
)

∣

∣

∣
v ∈ V and hv ∈ H

}

, (3)

which is given as the set of tuples of a vertex and the set of its attached half-edges. Given
a graph G, the corresponding sets are denoted via V ≡ V (G) ≡ G[0], E ≡ E (G) ≡ G[1],
H ≡ H (G) ≡ G[1/2] and C ≡ C (G), where we omit the dependence of the graph G only if
there is no ambiguity possible. Finally, a Feynman graph Γ := (G,p) is a graph G together with

a coloring function p : E (G) → PQ, where PQ
∼= R[1]

Q denotes the set of particle-types of the
local QFT Q. We also address the above constructions directly for Feynman graphs Γ without
reference to its underlying graph G. We remark, that in the context of Feynman graphs the

2In the mathematical literature such graphs as called bridge-free.
3The nomenclature is chosen in accordance with supergeometry, where the even part is commutative and the

odd part is anticommutative.
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vertex set V is a multiset over the set R[0]
Q and the edge set E is a multiset over the set R[1]

Q , i.e.
vertices represent fundamental interactions and edges correspond to particle types of Q.

Definition 2.2 (Notations for sets of amplitudes, residues, Feynman graphs and the associated
renormalization Hopf algebra, c.f. [18]). Given a local QFTQ, we denote the set of its amplitudes
via AQ and the set of its residues via RQ. Furthermore, we denote the set of its Feynman graphs
via GQ and its associated renormalization Hopf algebra in the sense of [18, Subsection 3.3] via
HQ, which is a Hopf algebra over Q generated by the set GQ.

Definition 2.3 (Sets of summands and connected components for graphs). Let Q be a local
QFT, GQ the set of its Feynman graphs, HQ its associated renormalization Hopf algebra and
G ∈ HQ an element therein. We are interested in the decomposition of G into the generators
of HQ, i.e. the elements in the set GQ. Therefore, we denote by S (G) the set of its summands,
grouped into tuples of prefactors αs ∈ Q and graphs Gs ∈ HQ of unit norm, such that

G ∼=
∑

{αs,Gs}∈S(G)

αsGs . (4)

Furthermore, we denote for each normed summand Gs ∈ S (G) by C (Gs) the set of its connected
components (where we include the identity I, if convenient), such that

Gs
∼=

∐

Gc∈C(Gs)

Gc (5)

with Gc ∈ GQ and b0 (Gc) = 1 for all Gc ∈ C (Gs) (and Gc 6= I in the latter case, as b0 (I) = 0)4,
c.f. Definition 2.5. In particular, we have

G ∼=
∑

{αs,Gs}∈S(G)

αs





∐

Gc∈C(Gs)

Gc



 . (6)

Definition 2.4 (Projection to divergent graphs). Let Q be a local QFT, HQ its associated
renormalization Hopf algebra and G ∈ HQ an element therein. Then, we define the projection
to divergent graphs via

D : HQ → HQ , G 7→
∑

{αs,Gs}∈S(G)
ω(Gc)≥0 ∀ Gc∈C(Gs)

αsGs , (7)

i.e. we keep the summands of G, if all of its connected components are divergent. We remark,
that this projection map is additive and multiplicative by definition. Furthermore, we also use
the following notation:

HQ := Im (D) (8a)

and

G := D (G) (8b)

This definition will be useful for combinatorial Green’s functions Xr and combinatorial charges
Qv and products thereof in the context of Hopf subalgebras for multiplicative renormalization.

4This follows from b0 (I) = b0 (II) = b0 (I) + b0 (I), which implies b0 (I) = 0.
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Definition 2.5 (Zeroth and first Betti number, internal and external coupling- and residue
multi-index). Let Q be a local QFT, RQ its residue set, qQ its physical coupling constants set,5

HQ its associated renormalization Hopf algebra and G ∈ HQ an element therein. We equip
the elements in the set of physical coupling constants qQ and the elements in the set of vertex

residues R[0]
Q with an arbitrary numbering, such that we are able to refer to coupling constant j

or vertex residue k. Then we assign to each element Gs ∈ S (G) with G ∈ HQ two numbers and
four multi-indices in the following way: The first number with values in N0 is the zeroth Betti
number, counting the connected components, and is given via

b0 (Gs) := DimQ

(

H0 (Gs,Q)
)

. (9)

The second number with values in N0 is the first Betti number, counting the loops,6 and is given
via

b1 (Gs) := DimQ

(

H1 (Gs,Q)
)

. (10)

The first multi-index with values in Z#qQ , to which we refer to as internal coupling multi-index,
counts the number of coupling constants associated to each vertex of Gs

(

IntCpl (Gs)
)

j
:=
(

Number of v ∈ V (Gs) with Cpl (v) = qj ∈ qQ

)

. (11)

The second multi-index with values in Z#qQ , to which we refer to as external coupling multi-
index, counts the number of coupling constants associated to the vertex graph residues of the
connected components of Gs

(

ExtCpl (Gs)
)

j
:=
(

Number of Gc ∈ C (Gs) with Cpl
(

Res (Gc)
)

= qj ∈ qQ

)

. (12)

The third multi-index with values in Z#R
[0]
Q , to which we refer to as internal residue multi-index,

counts the number of vertex types of Gs

(

IntRes (Gs)
)

k
:=
(

Number of v ∈ V (Gs) of type vk ∈ R[0]
Q

)

. (13)

The fourth multi-index with values in Z#R
[0]
Q , to which we refer to as external residue multi-index,

counts the number of vertex types of the vertex graph residues of the connected components of
Gs

(

ExtRes (Gs)
)

k
:=
(

Number of Gc ∈ C (Gs) with Res (Gc) = vk ∈ R[0]
Q

)

. (14)

Definition 2.6 (Connectedness and gradings of the renormalization Hopf algebra, quoted from
[18]). Let Q be a local QFT, RQ the set of its residues and HQ its associated renormalization
Hopf algebra, c.f. [18, Subsection 3.3]. We denote restrictions to any of these three gradings G
via

(HQ)G := HQ

∣

∣

∣

∣

∣

G

, (15)

and we omit the brackets, if no lower index is present. Then, we consider the following three
gradings of HQ as a Hopf algebra, which are further refinements of each other: The first grading
comes from the first Betti number, which we refer to as loop number and denote it via L or l,
yielding the decomposition

HQ =
∞
⊕

L=0

(HQ)L . (16)

5The set of coupling constants which appear in the definition of the local QFT Q, e.g. in its Lagrange density,
c.f. Definition 2.13 for the proper definition.

6In the mathematical literature, this is usually referred to as cycles.
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The second grading comes from the difference of the internal and external coupling multi-indices,
i.e. via assigning to each element Gs ∈ S (G) with G ∈ HQ the multi-index

CplGrd (Gs) := IntCpl (Gs)− ExtCpl (Gs) , (17)

which we refer to as coupling-grading multi-index and denote it via C or c, yielding the decom-
position

HQ =
∞
⊕

C=−∞

(HQ)C . (18)

Finally, the third grading comes from the difference of the internal and external residue multi-
indices, i.e. via assigning to each element Gs ∈ S (G) with G ∈ HQ the multi-index

ResGrd (Gs) := IntRes (Gs)− ExtRes (Gs) , (19)

which we refer to as residue-grading multi-index and denote it via R or r, yielding the decom-
position

HQ =

∞
⊕

R=−∞

(HQ)R . (20)

Clearly, (HQ)L=0
∼= (HQ)C=0

∼= (HQ)R=0
∼= Q, and thus HQ is connected in all three gradings.

Statements which are valid for any of these three gradings, such as Equation (15), are formulated
with the symbols G and g.

Remark 2.7. The numbers and multi-indices from Definition 2.5 and the gradings from Defini-
tion 2.6 are compatible with the multiplication of HQ via addition, but not with the addition
of HQ, as summands can live in different gradings.

Lemma 2.8 (Vertex, edge, half-edge and corolla sets depent only on residue and residue–
grading). Given a Feynman graph Γ ∈ GQ, then its vertex set V (Γ), its half-edge set H (Γ), its
edge set E (Γ) and its corolla set C (Γ) depend only on its residue Res (Γ) and its residue-grading
multi-index ResGrd (Γ), i.e. we can define well-defined sets V (r, r), H (r, r), E (r, r) and C (r, r)
such that we have V (r, r) ∼= V (Γ), H (r, r) ∼= H (Γ), E (r, r) ∼= E (Γ) and C (r, r) ∼= C (Γ) for
all Γ ∈ GQ with Res (Γ) = r and ResGrd (Γ) = r.

Proof. Given Γ ∈ GQ, then by definition its vertex set V (Γ) is a multiset over R[0]
Q and thus bi-

jective to its internal residue multi-index IntRes (Γ). Furthermore, we can reconstruct IntRes (Γ)
from Res (Γ) and ResGrd (Γ) using the definition, Equation (19), i.e.

V (r, r) ∼= ResGrd (Γ) + ExtRes (Γ) , (21)

while noting, that ExtRes (Γ) is given for connected Feynman graphs Γ ∈ GQ with Res (Γ) ∈ R[0]
Q

as the multi-index having a one for the corresponding vertex residue and zeros else, i.e.

(

ExtRes (Γ)
)

k
=







1 if Res (Γ) = vk ∈ R[0]
Q

0 else
(22)

and for Feynman graphs Γ ∈ GQ with Res (Γ) ∈
(

AQ \ R[0]
Q

)

as the zero-multi-index, i.e.

ExtRes (Γ) = 0 . (23)
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Thus we have have shown, that the set V (r, r) is well-defined. Moreover, we can obtain the
half-edge set H (r, r) from Res (Γ) and V (r, r) via

H (r, r) :=







hv ∈
∐

v∈V (r,r)

H (v)







\H
(

Res (Γ)
)

, (24)

i.e. we consider to each vertex v ∈ V (r, r) the set of half-edges attached to it, take its disjoint
union and then remove the set of external half-edges of Γ. Finally, we obtain the edge set E (r, r)
from the half-edge set H (r, r) using the equivalence relation ∼ which identifies two half-edges
to a single edge, if they are of the same particle type, i.e.

E (r, r) := H (r, r) / ∼ . (25)

Finally, we obtain the corolla set C (r, r) from the vertex set V (r, r), as we can associate to each
vertex the set of half-edges attached to it, i.e.

C (r, r) ∼= V (r, r) . (26)

�

Definition 2.9 ((Restricted) combinatorial Green’s functions, quoted from [18]). Let Q be a
local QFT, AQ the set of its amplitudes and GQ the set of its Feynman graphs. Given an
amplitude r ∈ AQ, we set

xr :=
∑

Γ∈GQ

Res(Γ)=r

1

Sym (Γ)
Γ (27)

and then define the total combinatorial Green’s function with amplitude r as the following sum:

Xr :=















I+ xr if r ∈ R[0]
Q

I− xr if r ∈ R[1]
Q

xr else, i.e. r ∈
(

AQ \ RQ

)

(28)

Furthermore, we denote the restriction of Xr to one of the gradings g from Definition 2.6 via

Xrg := Xr

∣

∣

∣

∣

∣

g

. (29)

Remark 2.10 (Quoted from [18]). We remark, that restricted combinatorial Green’s functions
are in the literature often denoted via crg and differ by a minus sign from our definition. Our
convention is such, that they are given as the restriction of the total combinatorial Green’s
function to the corresponding grading, which yield minus signs for non-empty propagator graphs.

Definition 2.11 ((Restricted) combinatorial Charges). Let v ∈ R[0]
Q be a vertex residue, then

we define its combinatorial charge Qv via

Qv :=
Xv

∏

e∈E(v)

√
Xe

, (30)

where E (v) denotes the set of all edges attached to the vertex v. Furthermore, we denote the
restriction of Qv to one of the gradings g from Definition 2.6 via

Qv
g := Qv

∣

∣

∣

∣

∣

g

. (31)
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Definition 2.12 ((Restricted) products of combinatorial charges). Let v ∈ R[0]
Q be a vertex

residue, Qv its combinatorial charge and r ∈ Z#R
[0]
Q a multi-index of vertex residues. Then we

define the exponent of combinatorial charges via the multi-index r via

Qr :=

#R
[0]
Q

∏

k=1

(Qvk)rk . (32)

Furthermore, we define the restriction to the grading g via

Qr
g :=









#R
[0]
Q

∏

k=1

(Qvk)rk









∣

∣

∣

∣

∣

g

. (33)

Definition 2.13 (Sets of combinatorial and physical charges, projection map). Let Q be a
local QFT. Then, we denote via QQ and qQ the sets of combinatorial and physical charges,
respectively. We associate to each vertex residue of Q a combinatorial charge and obtain the
physical charges from the definition of Q, e.g. via its Lagrange density. Furthermore, we define
the set-theoretic projection map Cpl : QQ →→ qQ, mapping the combinatorial charge to its
associated physical charge.7

Definition 2.14 (Set of superficially divergent subgraphs of a Feynman graph). Let Q be a
local QFT and Γ ∈ GQ a Feynman graph of Q. Then we denote by D (Γ) the set of superficially
divergent subgraphs of Γ, i.e.

D (Γ) :=
{

I ⊆ γ ⊆ Γ
∣

∣ ω (γc) ≥ 0 and Res (γc) ∈ RQ for all γc ∈ C (γ)
}

. (34)

We remark, that the condition Res (γc) ∈ RQ for all γc ∈ C (γ) ensures the well-definedness of
the renormalization Hopf algebra, c.f. [18, Subsection 3.3].

Definition 2.15 (Set of superficially divergent insertable graphs to a Feynman graph). Let
Q be a local QFT and Γ ∈ GQ a Feynman graph of Q. Then we denote by I (Γ) the set of
superficially divergent graphs insertable into Γ, i.e.

I (Γ) :=
{

γ ∈ HQ

∣

∣

∣
ExtRes (γ) ≤ IntRes (Γ) and ω (γc) ≥ 0 for all γc ∈ C (γ)

and Res
(

γp
)

∈ E (Γ) for all γp ∈ P (γ)
}

,
(35)

where P (γ) ⊆ C (γ) denotes the connected components of γ which are propagator graphs.

Definition 2.16 (Insertion factors). Let Q be a local QFT, γ ∈ HQ be a divergent element
in the associated renormalization Hopf algebra of Q and Γ,Γ′ ∈ GQ be Feynman graphs of
Q. Then, we denote by InsAut

(

γ ⊲ Γ; Γ′
)

the number of ways to insert γ into Γ, such that
the insertion is automorphic to Γ′, which is zero, if either γ /∈ I (Γ) or if there is no insertion
possible, which is automorphic to Γ′. Furthermore, we set Ins (γ ⊲ Γ) to be the number of ways
to insert γ into Γ, which is zero, if γ /∈ I (Γ). Moreover, as the last definition depends only
on the sets V (r, r) and E (r, r), which, due to Lemma 2.8, can be reconstructed from Res (Γ)
and ResGrd (Γ), we set Insr,r (γ) to be the number of ways to insert γ into Feynman graphs
Γ with Res (Γ) = r and ResGrd (Γ) = r. Finally, we set for all Γ ∈ GQ the three factors
InsAut (I⊲ Γ; Γ) = Ins (I⊲ Γ) = Insr,r (I) := 1.

7This map is the set-theoretic restriction of the renormalized Feynman rules, which map combinatorial charges
to the Feynman integrals corresponding to their renormalized physical charges.
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Proposition 2.17. Given the situation of Definition 2.15, we have for all Feynman graphs
Γ ∈ GQ

∑

γ∈I(Γ)

Ins (γ ⊲ Γ)

Sym(γ)
γ =

∏

v∈V (Γ)X
v

∏

e∈E(Γ)X
e , (36)

i.e. the following objects are isomorphic:

I (Γ) ∼=
∏

v∈V (Γ)X
v

∏

e∈E(Γ)X
e (37)

Proof. We can insert in each vertex v ∈ V (Γ) at most one superficially divergent vertex cor-
rection γv with Res (γv) = v, i.e. a summand of X

v
. Furthermore, we can insert in each edge

e ∈ E (Γ) arbitrary many superficially divergent edge corrections γe =
∐

i γ
e
i with Res

(

γej

)

= e

for all j, i.e. a summand of 1/X
e
, where the fraction is understood formally via the geometric

series 1/ (1− x) =
∑∞

k=0 x
k.8 Finally, the prefactor Ins (γ ⊲ Γ) corresponds to the number of

equivalent vertices and edges of Γ. �

Definition 2.18 (Set of superficially divergent insertable graphs for residue and residue-grad-
ing). Let Q be a local QFT, and HQ its (associated) renormalization Hopf algebra, r ∈ AQ an

amplitude of Q and r ∈ Z#R
[0]
Q , r 6= 0, a residue-grading multi-index. Using Lemma 2.8 and

Proposition 2.17, we can define the set of superficially divergent graphs insertable into Feynman
graphs Γ ∈ GQ with residue Res (Γ) = r and residue-grading ResGrd (Γ) = r via

Ir,r :∼=
∏

v∈V (r,r)X
v

∏

e∈E(r,r)X
e , (38)

where we use again the isomorphism from Equation (37) of Proposition 2.17.

Proposition 2.19. Given the situation of Definition 2.18, we have for all amplitudes r ∈ AQ

and residue-grading multi-indices r ∈ Z#R
[0]
Q

∑

γ∈Ir,r

Insr,r (γ)

Sym (γ)
γ =







X
r
Q

r
if r ∈ RQ

∏

e∈E(r)

√

X
e
Q

r
else, i.e. r ∈

(

AQ \ RQ

) (39)

i.e. the following objects are isomorphic:

Ir,r ∼=







X
r
Q

r
if r ∈ RQ

∏

e∈E(r)

√

X
e
Q

r
else, i.e. r ∈

(

AQ \ RQ

) (40)

Proof. The numerator of the right hand side of Equation (38) of Definition 2.18 can be expressed
as follows:9

∏

v∈V (r,r)

X
v
=







X
r
X
r

if r ∈ R[0]
Q

X
r

else, i.e. r ∈
(

AQ \ R[0]
Q

) , (41a)

8Since there is no topology on HQ, there is no notion of convergence for the formal expression 1/X
e
. Further-

more, we remark that this viewpoint is the reason for the minus sign in the combinatorial Greens function for
propagators, c.f. Equation (28) of Definition 2.9.

9The two cases emerge due to the residue-grading, which treats Feynman graphs with vertex residues differently
in order to obtain a valid grading of the renormalization Hopf algebra, c.f. Equation (19) of Definition 2.6.
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where the notation X
r
:=
∏#R

[0]
Q

k=1

(

X
vk
)rk

is analogous to Equation (32) of Definition 2.12.

Furthermore, the denominator of the right hand side of Equation (38) of Definition 2.18 can be
expressed as follows:

I
∏

e∈E(r,r)X
e =























I
∏

v∈V (r,r)

(

∏

e∈E(v)

√
X
e
) if r ∈ R[0]

Q

∏

e1∈E(r)

√
X
e1

∏

v∈V (r,r)

(

∏

e2∈E(v)

√
X
e2

) else, i.e. r ∈
(

AQ \ R[0]
Q

)

=



















Q
r

X
r if r ∈ R[0]

Q
X
r
Q

r

X
r if r ∈ R[1]

Q
∏

e∈E(r)

√
X
e
Q

r

X
r else, i.e. r ∈

(

AQ \ RQ

)

(41b)

Multiplying Equation (41a) with Equation (41b), we obtain

∏

v∈V (r,r)X
v

∏

e∈E(r,r)X
e =







X
r
Q

r
if r ∈ RQ

∏

e∈E(r)

√

X
e
Q

r
else, i.e. r ∈

(

AQ \ RQ

) . (42)

Finally, the prefactor Insr,r (γ) corresponds to the number of equivalent vertices and edges of
graphs with residue r and residue-grading multi-index r. �

Lemma 2.20. Given the situation of Definition 2.16, we have for all Feynman graphs Γ ∈ GQ

and their corresponding divergent subgraphs γ ∈ D (Γ)

1

Sym(Γ)
=

InsAut

(

γ ⊲ Γ/γ; Γ
)

Sym(γ) Sym
(

Γ/γ
) . (43)

Proof. Let Γ ∈ GQ be a Feynman graph. Then, by definition, we have

Sym (Γ) = #AutInt (Γ) , (44)

where AutInt (Γ) denotes automorphisms of Γ fixing its external legs. Thus, for a given divergent
subgraph γ ∈ D (Γ), we have

Sym(γ) Sym
(

Γ/γ
)

= #AutInt (γ)#AutInt
(

Γ/γ
)

, (45)

which counts all automorphisms of Γ/γ times those of γ, fixing both their external legs. However,
this might be a multiple of Sym(Γ) due to the existence of automorphisms in AutInt

(

Γ/γ
)

, which
correspond to symmetries that are only present in the quotient graph Γ/γ and get spoiled when
the insertion of γ is considered. This is precisely given via the number InsAut

(

γ ⊲ Γ/γ; Γ
)

, as
it counts the number of equivalent insertions of γ into Γ/γ to obtain Γ. Thus, we obtain

1

Sym(Γ)
=

InsAut

(

γ ⊲ Γ/γ; Γ
)

Sym(γ) Sym
(

Γ/γ
) , (46)

as claimed. �

Definition 2.21 (Convolution product, quoted from [18]). Let A be an algebra and C a coal-
gebra. Then using the multiplication mA on A and the comultiplication ∆C on C, we can turn
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the k-module Homk−Mod (C,A) of k-linear maps from C to A into a k-algebra by defining the
convolution product ⋆ for given f, g ∈ Homk−Mod (C,A) via

f ⋆ g := mA ◦ (f ⊗ g) ◦∆C . (47)

Obviously, this definition extends trivially if A or C possesses additionally a bi- or Hopf algebra
structure, since it only requires a coalgebra structure in the source algebra and an algebra
structure in the target algebra. It is commutative, if C is cocommutative and A is commutative.

Definition 2.22 (Augmentation ideal, quoted from [18]). Given a bi- or a Hopf algebra B, then
the kernel of the coidentity

Aug (HQ) := Ker
(

Î

)

(48)

is an ideal, called the augmentation ideal. Furthermore, we denote the projector to it via P,
i.e.

P : HQ →→ Aug (HQ) , G 7→
∑

{αs,Gs}∈S(G)

Î(Gc)=0 ∀ Gc∈C(Gs)

αsGs . (49)

Definition 2.23 ((Renormalized) Feynman rules, regularization and renormalization schemes
and the counterterm map). Let Q be a local QFT, HQ its associated renormalization Hopf
algebra and ΩQ its algebra of Feynman differential forms, defined via

ΩQ :=

∞
⊕

i=1

Ω





i
⊗

R

M1,3



 , (50)

i.e. direct sums of differential forms on R-linear tensor products of Minkowski spaces of loop mo-
menta with signature (1, 3). Then, the Feynman rules are a character, i.e. an algebra morphism

Φ : HQ → ΩQ , Γ 7→ IΓ , (51)

where IΓ is the Feynman differential form of the Feynman integral of the Feynman graph Γ.
Furthermore, we introduce a regularization scheme E as the map10

E : ΩQ →֒ ΩQ
ε := ΩQ

[[

ε
]]

(52)

mapping a differential form I to the one-parameter family Iε, which is defined such that I0 ≡ I
and such that Iε is integrable over its complete domain for ε 6= 0. Moreover, we introduce a
renormalization scheme as a linear projection map inducing a splitting on ΩQ

ε via

R : ΩQ
ε →→ ΩQ

ε
− := Im (R) (53)

which, to ensure locality of the counterterm, needs to be a Rota-Baxter operator of weight
λ = −1, i.e. fulfill

mΩQ
ε ◦ (R ⊗ R) + R ◦mΩQ

ε = R ◦mΩQ
ε ◦ (R ⊗ Id+ Id⊗R) , (54)

such that (ΩQ
ε,R) is a Rota-Baxter algebra of weight λ = −1.11 In particular, it induces the

splitting
ΩQ

ε ∼= ΩQ
ε
+ ⊕ ΩQ

ε
− (55)

10There exist renormalization schemes, such as kinematic renormalization schemes, which allow for a renormal-
ization on the level of Feynman differential forms. In these cases a regularization is not necessary and thus the
regularization step can be omitted, replacing ΩQ

ε by ΩQ in the following.
11We remark, that the multiplication mΩQ

ε is commutative, as the dimensions of the Minkowski spaces of loop
momenta are 4 and thus in particular even.
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with ΩQ
ε
+ := CoKer (R) and ΩQ

ε
− := Im (R). Then, we can introduce renormalized Feynman

rules via
ΦR : HQ → ΩQ

ε
+ , Γ 7→ Lim

ε 7→0

(

S
Φε

E

R
⋆ Φ
)

(Γ) (56)

with the counterterm map, given recursively via the normalization S
Φε

E

R
(I) = 1ΩQ

ε and

S
Φε

E

R
: Aug (HQ) → ΩQ

ε
− , Γ 7→ −R

[

S
Φε

E

R
⋆
(

ΦεE ◦ P
)

]

(Γ) (57)

else, where P : HQ →→ Aug (HQ) is the projector onto the augmentation ideal from Defini-

tion 2.22. We remark, that the renormalized Feynman rules ΦR and the counterterm map S
Φε

E

R

correspond to the algebraic Birkhoff decomposition of the Feynman rules Φ with respect to the
splitting of ΩQ

ε, induced via the renormalization scheme R, c.f. [23, 24] for further reading
in this direction. Finally, we remark, that the above discussion can be also lifted to the alge-
bra of meromorphic functions Mε := C

[

ε−1, ε
]]

, when using a suitable regularization scheme
E and then integrating the regularized Feynman differential forms again its complete domain
to obtain the corresponding meromorphic function f εΓ :=

∫

ε 6=0 I
ε
Γ for fixed external momentum

configurations which do not correspond to a Landau singularity.

Definition 2.24 (Hopf subalgebras for multiplicative renormalization, quoted from [18]). Let
Q be a local QFT, RQ its weighted residue set, HQ its associated renormalization Hopf algebra
and XrG ∈ HQ its restricted Green’s functions, where G and g denotes one of the gradings
from Definition 2.6. We are interested in Hopf subalgebras which correspond to multiplicative
renormalization, i.e. Hopf subalgebras of HQ such that the coproduct factors on the restricted
combinatorial Green’s functions for all multi-indices G in the following way:

∆ (XrG) =
∑

g

Pg (X
r
G)⊗ XrG−g , (58)

where Pg

(

XrG
)

∈ HQ is a polynomial in graphs such that each summand has multi-index g.12

Remark 2.25 (Hopf subalgebras and multiplicative renormalization, quoted from [18]). Given
the situation of Definition 2.23 and suppose, that the renormalization Hopf algebra HQ possesses
Hopf subalgebras in the sense of Definition 2.24. Then we can calculate the Z-factor for a given
residue r ∈ RQ via

ZrE ,R (ε) := S
Φε

E

R
(Xr) . (59)

More details in this direction can be found in [24, 26] (using a different notation).

Remark 2.26 (Hopf subalgebras and different gradings, quoted from [18]). Furthermore, we
remark that the existence of the Hopf subalgebras from Definition 2.24 depends crucially on
the grading g. In particular, for the grading induced by the first Betti number these Hopf
subalgebras exist if and only if the local QFT has only one vertex, for the coupling-constant
grading if and only if the local QFT has for each vertex a different coupling constant and always
for the residue-grading, as we will see in Sections 4 and 5.

Lemma 2.27 (Finite renormalization schemes). The image of the renormalized Feynman rules
Im (ΦR) maps to convergent integral expressions, if the cokernel CoKer (R) of the corresponding
renormalization scheme consists only of convergent integral expressions.

12There exist closed expressions for the polynomials Pg (Xr
G) as we will see in Section 4, which were first

introduced in [25].
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Proof. The Theorem about algebraic Birkhoff decompositions, first observed in this context in
[20], states in this context, that

ΦR : HQ → CoKer (R) ⊆ ΩQ (60)

and

S
Φε

E

R
: HQ → Im (R) ⊆ ΩQ , (61)

and thus Im (ΦR) consists of finite integral expressions, if CoKer (R) does. �

Definition 2.28 (Physical renormalization schemes). A renormalization scheme R ∈ End (ΩQ)
is called physical, if both its kernel Ker (R) and its cokernel CoKer (R) consist only of convergent
integral expressions. In particular, we demand that

Im (Φ ◦ D) ⊆ CoIm (R) , (62)

i.e. the image of superficially divergent graphs under the Feynman rules is a subset of the coimage
of a physical renormalization scheme.

Remark 2.29. Definition 2.28 is motivated by the fact, that we want renormalization schemes
in physics to be finite and furthermore such, that it removes the divergent contribution of a
Feynman graph via itself.

3 A superficial argument

In this section we study combinatorial properties of the superficial degree of divergence. This
combinatorial number, associated to each Feynman graph, gives a measure of the divergence of
the associated Feynman integral. In fact, a result of Weinberg [27] states, that the ultraviolet
divergence of a Feynman integral is bounded via a polynomial of degree n ∈ Z, if the associated
superficial degree of divergence of the corresponding Feynman graph and all of its subgraphs
are less than n; in particular it is finite, if n < 0. The aim of this section is now to give an
alternative characterization of (super-/non-)renormalizability of a local QFT in terms of weights
of corollas, as defined below. With this criterion on hand, we consider local QFTs with more than
one interaction term; here, it is in principle possible, that the different interaction terms mix up
the classifications of (super-/non-)renormalizability, if the weights of their corollas differ. The
results are then Lemma 3.4, stating, that for a given residue, the superficial degree of divergence
depends affine linearly on the residue-grading of the Feynman graph. Furthermore, we show
in Corollary 3.8 that coproduct and antipode identities are compatible with the restriction
to divergent graphs, if the corresponding local QFT is one-loop divergent. This result is in
particular useful for the following sections, where we want to state our results not only for the
renormalizable cases, but also include the more involved super- and non-renormalizable cases,
or even mixes thereof.

Definition 3.1 (Weight of residues). Let Q be a local QFT with residue set RQ. We introduce
a weight function

ω : RQ → Z , , r 7→ Degp
(

Φ (r)
)

, (63)

which maps a residue r ∈ RQ to the degree of the corresponding Feynman rule, viewed as a
polynomial in momenta (or, in position space, derivatives).
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Definition 3.2 (Superficial degree of divergence). Let Q be a local QFT with weighted residue
set RQ and Feynman graph set GQ. We turn GQ into a weighted set as well by declaring the
function

ω : GQ → Z , Γ 7→ db1 (Γ) +
∑

v∈V (Γ)

ω (v) +
∑

e∈E(Γ)

ω (e) , (64)

where d is the dimension of spacetime of Q and b1 (Γ) the first Betti number of the Feynman
graph Γ ∈ GQ. Then, the weight ω (Γ) of a Feynman graph Γ ∈ GQ is called the superficial
degree of divergence of Γ. A Feynman graph Γ ∈ GQ is called superficially divergent if ω (Γ) ≥ 0
and superficially convergent if ω (Γ) < 0. Finally, we additionally set ω (I) = 0 for convenience.

Definition 3.3 (Alternative definition for the superficial degree of divergence). Given the sit-

uation of Definition 3.2 and a vertex residue v ∈ R[0]
Q , we define the weight of corollas

̟ (v) ≡ ω (cv) := ω (v) +
1

2

∑

e∈E(v)

ω (e) , (65)

such that the superficial degree of divergence can be equivalently calculated via

ω : GQ → Z , Γ 7→ db1 (Γ) +
∑

v∈V (Γ)

̟ (v)− 1

2

∑

e∈E(Res(Γ))

ω (e) . (66)

Lemma 3.4 (Alternative definition for the superficial degree of divergence). Given the situation
of Definition 3.3, the superficial degree of divergence can be expressed via

ω : GQ → Z , Γ 7→d

(

1− δ
Res(Γ)∈R

[0]
Q

)

− 1

2

∑

e∈E(Res(Γ))

ω (e)

+

#R
[0]
Q

∑

i=1

(

d

(

1

2
Val (vi)− 1

)

+̟ (vi)

)

(

ResGrd (Γ)
)

i
,

(67)

where

δ
Res(Γ)∈R

[0]
Q

=







1 if Res (Γ) ∈ R[0]
Q

0 else, i.e. Res (Γ) ∈
(

AQ \ R[0]
Q

) . (68)

In particular, the superficial degree of divergence of a Feynman graph Γ ∈ GQ depends only on
its residue and its residue-grading, i.e. ω (Γ) ≡ ω

(

Res (Γ) ,ResGrd (Γ)
)

, and the dependence on
its residue-grading is affine linear.13

Proof. We start with Equation (66) from Definition 3.3: First we rewrite the first Betti number
using the Euler characteristic14

b1 (Γ) = b0 (Γ)−#V (Γ) + #E (Γ) , (69)

13 If Q is sQGSc, c.f. Definition 3.11, then the dependence on the residue-grading can be furthermore replaced
by its coupling-grading, and if Q is even uniweighted, again c.f. Definition 3.11, then the dependence on the
residue-grading can be furthermore replaced by its first Betti number.

14For the Euler characteristic, Equation (69), we need to either ignore the external half-edges or assume that
they are attached to external vertices.
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where b0 (Γ) = 1, as Γ ∈ GQ is connected. Then we express #V (Γ) in terms of ResGrd (Γ) and
Res (Γ) via

#V (Γ) =

#R
[0]
Q

∑

i=1

(

IntRes (Γ)
)

i

=

#R
[0]
Q

∑

i=1

(

(

ResGrd (Γ)
)

i
+
(

ExtRes (Γ)
)

i

)

=

#R
[0]
Q

∑

i=1

(

(

ResGrd (Γ)
)

i

)

+ δ
Res(Γ)∈R

[0]
Q

,

(70)

where in the last equality we have used that Γ ∈ GQ is connected, and we express #E (Γ) in
terms of ResGrd (Γ) via

#E (Γ) =
1

2

#R
[0]
Q

∑

i=1

Val (vi)
(

IntRes (Γ)
)

i
− 1

2

#R
[0]
Q

∑

i=1

Val (vi)
(

ExtRes (Γ)
)

i

=
1

2

#R
[0]
Q

∑

i=1

Val (vi)
(

ResGrd (Γ)
)

i

(71)

Thus, we obtain

b1 (Γ) = 1− δ
Res(Γ)∈R

[0]
Q

+
1

2

#R
[0]
Q

∑

i=1

(

Val (vi)− 2
) (

ResGrd (Γ)
)

i
. (72)

Plugging the above results into Equation (66) from Definition 3.3 yields the claimed equation. �

Definition 3.5 (One-loop divergent QFTs). Let Q be a local QFT. We call Q one-loop diver-
gent, if for each Feynman graph Γ ∈ GQ with Res (Γ) = r and ω (Γ) ≥ 0 there exists a Feynman
graph γ ∈ GQ with Res (γ) = r, ω (γ) ≥ 0 and b1 (γ) = 1.

Remark 3.6. Definition 3.5 is trivially satisfied for super-renormalizable and renormalizable
QFTs. However, it is the obstacle for non-renormalizable QFTs to enjoy the simple coproduct
and antipode identities from Corollary 3.8. An example of a non-renormalizable local QFT that
is not one-loop divergent is given in Example 3.7.

Example 3.7. Let ψ4
4 be a local QFT, described via the Lagrange density

Lψ4
4
:= ψ/∂

2
ψ +

(

ψ/∂ψ
)(

ψψ
)

+ LRen-Int
ψ4
4

, (73)

where ψ ∈ Γ
(

ΣM1,3
)

is a spinor field on the four-dimensional Minkowski spacetime M1,3 with
signature (1, 3), /∂ the Dirac operator on ΣM1,3 and LRen-Int

ψ4
4

is the Lagrange density containing

all interaction terms needed for renormalization, c.f. [18, Solution 3.38.]. Then, ψ4
4 is non-

renormalizable and the one-loop ten-point graph is superficially convergent, whereas all higher
ten-point graphs are superficially divergent. Thus, ψ4

4 is not one-loop divergent.
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Corollary 3.8. Let Q be a one-loop divergent local QFT. Then, the coproduct and the antipode
are compatible with the restriction to divergent graphs from Definition 2.4. More precisely,
given a multi-index g corresponding to some grading of HQ (c.f. Definition 2.6) compatible
with the superficial degree of divergence (c.f. Footnote 13) and elements in the Hopf algebra
G, h (g) ,Hg ∈ HQ,

15 such that the following coproduct and antipode identities hold16

∆(G) =
∑

g

h (g)⊗ Hg (74)

which implies

∆
(

G
)

=
∑

g

h (g)⊗ Hg (75)

and similarly

S (G) = −
∑

g

S
(

h (g)
)

P
(

Hg

)

(76)

which implies

S
(

G
)

= −
∑

g

S
(

h (g)
)

P

(

Hg

)

. (77)

Proof. We check the argument first on the level of generators of the renormalization Hopf algebra,
i.e. single Feynman graphs. The result extends then general elements in HQ, i.e. sums and
products thereof, by the linearity and multiplicativity of the coproduct and the antipode. Thus,
let Γ ∈ GQ be a Feynman graph. Then, we have

∆ (Γ) =
∑

γ∈D(Γ)

γ ⊗ Γ/γ (78)

which implies

∆
(

Γ
)

=
∑

γ∈D(Γ)

γ ⊗ Γ/γ (79)

and similarly

S (Γ) = −
∑

γ∈D(Γ)

S (γ)P
(

Γ/γ
)

(80)

which implies

S
(

Γ
)

= −
∑

γ∈D(Γ)

S (γ)P

(

Γ/γ
)

, (81)

ifQ is one-loop divergent. This is a consequence of Lemma 3.4: As the superficial degree of diver-
gence depends only on the residue and affine linearly on a compatible grading it either increases
or decreases with the grading g. As Grd

(

Γ/γ
)

≤ Grd (Γ), the only problem occurs when the
superficial degree of convergence increases with increasing grading, i.e. for non-renormalizable
local QFTs: Then it may happen, that there exists a bound gr such that for a given residue r
all graphs with Grd

(

Γ/γ
)

< gr are convergent and thus the quotient Γ/γ will be in the kernel

of D , i.e. Γ/γ = 0. However, this is excluded by the assumption of Q being one-loop divergent
and thus finishes the proof. �

15The notation is chosen to emphasize, that h (g) is a function of g, whereas Hg is the restriction of an H to
(HQ)

g
.

16We remark, that by definition of the coproduct and the antipode we have here h (g) ≡ h (g).
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Remark 3.9. All local QFTs of physical interest are one-loop divergent, in particular all QFTs
from the Standard Model (as they are renormalizable) and Quantum General Relativity, viewed
as an effective QFT, (a simple combinatorial argument shows, that the superficial degree of
divergence of a Feynman graph is independent of its residue and depends only on its loop
number, and is in particular already divergent for one-loop Feynman graphs, c.f. [28, 29]). In
the case of local QFTs which are not one-loop divergent Equations (75) and (77) need to be
corrected to (for simplicity, we assume that Gr ∈ HQ is a sum of products of Feynman graphs
with residue r ∈ RQ — otherwise the correcting sums depend also on the different residues and
also products between them need to be considered)

∆
(

G
r
)

=
∑

g

h (g)⊗ H
r
g +

∑

g≤gr

h (g)⊗ Hrg (82)

and

S
(

G
r
)

= −
∑

g

S
(

h (g)
)

P

(

H
r
g

)

−
∑

g≤gr

S
(

h (g)
)

P

(

Hrg

)

, (83)

where gr is the critical multi-index mentioned in the proof of Corollary 3.8.

Corollary 3.10 (Weight of corollas and renormalizability). A local QFT Q is renormalizable

if and only if for all v ∈ R[0]
Q the weights of the corresponding corollas are

̟ (v) = d

(

1− 1

2
Val (v)

)

, (84)

super-renormalizable if and only if the weight is smaller and non-renormalizable if and only if
the weight is bigger.

Proof. Before presenting the actual argument, we recall, that a local QFT Q is called super-
renormalizable, if, for a fixed residue r, the superficial degree of divergence decreases with
increasing grading, is called renormalizable, if the superficial degree of divergence is independent
of the grading and is called non-renormalizable, if the superficial degree of divergence increases
with increasing grading. Using Equation (67) from Lemma 3.4, we obtain the claimed bound

̟ (v) = d

(

1− 1

2
Val (v)

)

, (85)

as for this value the superficial degree of divergence of a Feynman graph is independent of its
grading. �

Definition 3.11 (sQGSc and uniweighted local QFTs). LetQ be a local QFT and let v,w ∈ R[0]
Q

be vertex residues. Consider the QGS equivalence relation from Definition 5.1. Then we call Q
superficially QGS compatible (sQGSc), if and only if the weight of corollas is compatible with
this equivalence relation, i.e. if and only if for all {v,m;w,n} ∈ QGSQ the following equation
holds:

m̟ (v) = n̟ (w) (86)

If furthermore the weight of corollas for all vertices v,w ∈ R[0]
Q depends only on the valence of

the vertices, i.e.
1

(

Val (v)− 2
)̟ (v) =

1
(

Val (w)− 2
)̟ (w) (87)

holds, we call Q uniweighted.
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Remark 3.12. Being sQGSc is a necessary criterion for the validity of QGS on the level of
Feynman rules, though not a sufficient one.

Proposition 3.13 (QGR-SM is sQGSc). Quantum General Relativity coupled to the Standard
Model or any physical sub-QFT thereof is sQGSc.

Proof. We start with considering only the pure gravitational part, i.e. gravitons and graviton-
ghosts: The Feynman rules of Quantum General Relativity (QGR) are such, that each vertex

v ∈ R[0]
QGR has weight ω (v) = 2 and each edge e ∈ R[1]

QGR has weight ω (e) = −2, as the
corresponding Feynman rules are quadratic and inverse quadratic in momenta, respectively.

Thus, the corolla-weight of a vertex v ∈ R[0]
QGR is

̟ (v) = 2−Val (v) . (88)

Given another vertex w ∈ R[0]
QGR, we calculate

1
(

Val (v)− 2
)̟ (v) =

2−Val (v)

Val (v)− 2

= −1

=
2−Val (w)

Val (w)− 2

=
1

(

Val (w)− 2
)̟ (w) ,

(89)

showing, that the pure Quantum General Relativity part is uniweighted and thus in particular
sQGSc. Furthermore, the pure Standard Model part is renormalizable and thus in particular

sQGSc, due to Proposition 3.10, as we have for all v,w ∈ R[0]
SM

1
(

Val (v)− 2
)̟ (v) =

d
(

1− 1/2Val (v)
)

(

Val (v)− 2
)

= −d
2

=
d
(

1− 1/2Val (w)
)

(

Val (w)− 2
)

=
1

(

Val (w)− 2
)̟ (w) ,

(90)

showing, that the pure Standard Model part is uniweighted and thus in particular sQGSc.
Finally, we consider the mixed parts, i.e. Standard Model residues with a positive number of
gravitons attached to it. It follows from the corresponding Feynman rules, that the weights of
these corollas depends only on the Standard Model residue and is independent of the number
of gravitons attached to it. Equivalently, increasing the number of gravitons by gluing a three-
valent graviton vertex using a graviton propagator to such a residue also leaves the weight of
the corolla unchanged (as the net difference is 2− 2 = 0), which finishes the proof. �

4 Coproduct and antipode identities

In this section, we state coproduct and antipode identities. These coproduct identities are known
in the literature in the case of renormalizable local QFTs [9, 25, 30]. In this section, we reprove
these identities and generalize them to super-renormalizable and non-renormalizable local QFTs.
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Lemma 4.1 (Coproduct and antipode identities). Coproduct identities, in particular Proposi-
tion 4.2, 4.3 and 4.4, are equivalent to recursive antipode identities. More precisely, given a
multi-index g corresponding to some grading of HQ (c.f. Definition 2.6) and elements in the
Hopf algebra G, h (g) ,Hg ∈ HQ,

17 such that the following coproduct identity holds

∆(G) =
∑

g

h (g) ⊗ Hg , (91)

then this is equivalent to the following recursive antipode identity

S (G) = −
∑

g

S
(

h (g)
)

P
(

Hg

)

. (92)

Proof. This follows immediately from the definition of the coproduct and the recursive definition
of the antipode, which are defined on generators Γ ∈ HQ via

∆ (Γ) :=
∑

γ∈D(Γ)

γ ⊗ Γ/γ (93)

and

S (Γ) := − (S ⋆P) (Γ) , (94)

and are then linearly and multiplicatively extended, such that

S ⋆ Id ≡ I ◦ Î ≡ Id ⋆S (95)

holds.18 �

Proposition 4.2 (Coproduct identities for (divergent or restricted) combinatorial Green’s func-
tions). Let Q be a one-loop divergent local QFT, HQ its associated renormalization Hopf algebra,

r ∈ RQ a residue and R ∈ Z#R
[0]
Q a residue-grading multi-index. Then, we have the following

coproduct identities for Green’s functions:

∆(Xr) =
∑

r∈Z
#R

[0]
Q

X
r
Q

r ⊗ Xrr , (96a)

∆ (XrR) =
∑

r∈Z
#R

[0]
Q

(

X
r
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗ Xrr , (96b)

∆
(

X
r
)

=
∑

r∈Z
#R

[0]
Q

X
r
Q

r ⊗ X
r
r (96c)

and

∆
(

X
r
R

)

=
∑

r∈Z
#R

[0]
Q

(

X
r
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗ X
r
r . (96d)

17The notation is chosen to emphasize, that h (g) is a function of g, whereas Hg is the restriction of an H to
(HQ)

g
.

18We remark, that S is the ⋆-inverse to Id and I ◦ Î the ⋆-identity.
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Proof. Equations (116a) and (116b) follow by the following computations, using the linearity of
the coproduct, Proposition 2.19 and Lemma 2.20:

∆ (Xr) =
∑

Γ∈GQ

Res(Γ)=r

1

Sym (Γ)
∆ (Γ)

=
∑

Γ∈GQ

Res(Γ)=r

∑

γ∈D(Γ)

1

Sym (Γ)
γ ⊗ Γ/γ

=
∑

Γ∈GQ

Res(Γ)=r

∑

γ∈D(Γ)

(

InsAut

(

γ ⊲ Γ/γ; Γ
)

Sym(γ)
γ

)

⊗
(

1

Sym
(

Γ/γ
)Γ/γ

)

=
∑

G∈GQ

Res(G)=r





∑

g∈I(G)

Ins (g⊲G)

Sym(g)
g



⊗
(

1

Sym(G)
G

)

+X
r ⊗ I

=
∑

r∈Z
#R

[0]
Q





∑

g∈Ir,r

Insr,r (g)

Sym (g)
g



⊗

















∑

G∈GQ

Res(G)=r
ResGrd(G)=r

1

Sym (G)
G

















+ X
r ⊗ I

=
∑

r∈Z
#R

[0]
Q

X
r
Q

r ⊗ Xrr

(97a)

and

∆ (XrR) =
(

∆(Xr)
)

∣

∣

∣

∣

∣

R

=









∑

r∈Z
#R

[0]
Q

X
r
Q

r ⊗ Xrr









∣

∣

∣

∣

∣

R

=
∑

r∈Z
#R

[0]
Q

(

X
r
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗ Xrr

(97b)

Finally, Equations (116c) and (116d) follow by Equations (116a) and (116b) together with the
assumption of Q being one-loop divergent and the application of Corollary 3.8. �

Proposition 4.3 (Coproduct identities for (divergent or restricted) combinatorial charges). Let

Q be a one-loop divergent local QFT, HQ its associated renormalization Hopf algebra, v ∈ R[0]
Q

a vertex residue and R ∈ Z#R
[0]
Q a residue-grading multi-index. Then, we have the following

coproduct identities for combinatorial charges:

∆(Qv) =
∑

r∈Z
#R

[0]
Q

Q
v
Q

r ⊗Qv
r , (98a)

∆ (Qv
R) =

∑

r∈Z
#R

[0]
Q

(

Q
v
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗Qv
r , (98b)
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∆
(

Q
v
)

=
∑

r∈Z
#R

[0]
Q

Q
v
Q

r ⊗Q
v
r (98c)

and

∆
(

Q
v
R

)

=
∑

r∈Z
#R

[0]
Q

(

Q
v
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗Q
v
r (98d)

Proof. Equations (98a) and (98b) follow by the following computations, using the linearity and
multiplicativity of the coproduct and Proposition 4.2:

∆ (Qv) =
∆ (Xv)

∏

e∈E(v)

√

∆(Xe)

=

∑

rv∈Z
#R

[0]
Q

X
v
Q

rv ⊗ Xvrv

∏

e∈E(v)

√

∑

re∈Z
#R

[0]
Q

X
e
Q

re ⊗Xere

=

(

X
v ⊗ I

)

(

∑

rv∈Z
#R

[0]
Q

Q
rv ⊗ Xvrv

)

∏

e∈E(v)

√

(

X
e ⊗ I

)

(

∑

re∈Z
#R

[0]
Q

Q
re ⊗ Xere

)

=
(

Q
v ⊗ I

)















(

∑

rv∈Z
#R

[0]
Q

Q
rv ⊗ Xvrv

)

∏

e∈E(v)

√

(

∑

re∈Z
#R

[0]
Q

Q
re ⊗ Xere

)















=
(

Q
v ⊗ I

)









∑

r∈Z
#R

[0]
Q

Q
r ⊗Qv

r









=
∑

r∈Z
#R

[0]
Q

Q
v
Q

r ⊗Qv
r

(99a)

and

∆ (Qv
R) =

(

∆(Qv)
)

∣

∣

∣

∣

∣

R

=









∑

r∈Z
#R

[0]
Q

Q
v
Q

r ⊗Qv
r









∣

∣

∣

∣

∣

R

=
∑

r∈Z
#R

[0]
Q

(

Q
v
Q

r
)

∣

∣

∣

∣

∣

R−r

⊗Qv
r ,

(99b)

Finally, Equations (98c) and (98d) follow by Equations (98a) and (98b) together with the as-
sumption of Q being one-loop divergent and the application of Corollary 3.8. �
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Proposition 4.4 (Coproduct identities for powers of (divergent or restricted) combinatorial
charges). Let Q be a one-loop divergent local QFT, HQ its associated renormalization Hopf

algebra, v ∈ R[0]
Q a vertex residue, R ∈ Z#R

[0]
Q a residue-grading multi-index. Then, we have

the following coproduct identities for powers of combinatorial charges and m ∈ Q a rational
number:19

∆(Qmv) =
∑

r∈Z
#R

[0]
Q

Q
mv

Q
r ⊗Qmv

r , (101a)

∆ (Qmv
R ) =

∑

r∈Z
#R

[0]
Q

(

Q
mv

Q
r
)

∣

∣

∣

∣

∣

R−r

⊗Qmv
r , (101b)

∆
(

Q
mv
)

=
∑

r∈Z
#R

[0]
Q

Q
mv

Q
r ⊗Q

mv
r (101c)

and

∆
(

Q
mv
R

)

=
∑

r∈Z
#R

[0]
Q

(

Q
mv

Q
r
)

∣

∣

∣

∣

∣

R−r

⊗Q
mv
r (101d)

Proof. Equations (101a) and (101b) follow by the following computations, using the linearity
and multiplicativity of the coproduct and Proposition 4.3:

∆ (Qmv) =
(

∆(Qv)
)m

=









∑

r∈Z
#R

[0]
Q

Q
v
Q

r ⊗Qv
r









m

=











(

Q
v ⊗ I

)









∑

r∈Z
#R

[0]
Q

Q
r ⊗Qv

r



















m

=
(

Q
mv ⊗ I

)









∑

r∈Z
#R

[0]
Q

Q
r ⊗Qv

r









m

=
∑

r∈Z
#R

[0]
Q

Q
mv

Q
r ⊗Qmv

r

(102a)

19The power of an element in the renormalization Hopf algebra G ∈ HQ via a non-integer number m ∈
(

Q \ Z
)

is understood via the formal binomial series, i.e.

G
m =

∞
∑

n=0

(

m

n

)

(G− I)n . (100)

More generally, if the renormalization Hopf algebra is considered over the field k, then the following statements
are true for m ∈ k.
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and

∆ (Qmv
R ) =









∑

r∈Z
#R

[0]
Q

Q
mv

Q
r ⊗Qmv

r









∣

∣

∣

∣

∣

R

∑

r∈Z
#R

[0]
Q

(

Q
mv

Q
r
)

∣

∣

∣

∣

∣

R−r

⊗Qmv
r

(103)

Finally, Equations (101c) and (101d) follow by Equations (101a) and (101b) together with the
assumption of Q being one-loop divergent and the application of Corollary 3.8. �

5 Quantum gauge symmetries and subdivergences

In this section, we give a precise definition of quantum gauge symmetries (QGS) and proove, that
they correspond to Hopf ideals in the associated renormalization Hopf algebra in Theorem 5.4.
This means, that it is in principle compatible with multiplicative renormalization to choose for
a priori different coupling constants the same Z-factor (exponentiated via a natural number, if
necessary).

Definition 5.1 (Quantum gauge symmetries). LetQ be a local QFT,QQ its set of combinatorial
charges and qQ its set of physical charges. Suppose, that #QQ > #qQ, then we define the
equivalence relation, which we will refer to as quantum gauge symmetry (QGS), via

(

Q
v
)m

∼
(

Q
w
)n

⇐⇒ Cpl (Qv)m ≡ Cpl (Qw)n (104)

for all v,w ∈ R[0]
Q and m,n ∈ N>0. The set of all quantum gauge symmetries of Q is denoted

via QGSQ and elements thereof are quadruples of the form {v,m;w,n}.

Example 5.2. Consider Quantum-Yang-Mills theory with Lagrange density

LQYM = − 1

4g2
F ∧ ∗F +

1

2ξ
Tr
(

(δA)2
)

+ c (δdc) + gcTr
(

[dc ∧A]
)

. (105)

Then, we have

Cpl































Q















2
















=g2 = Cpl















Q















(106)

and

Cpl















Q















=g = Cpl















Q















. (107)
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Lemma 5.3 (Sums of Hopf ideals are Hopf ideals, quoted from [18]). Let H be a Hopf algebra
over a field k with characteristic zero and let {in}Nn=1 be a set of N non-empty Hopf ideals, where
N ∈ N≥1 ∪∞. Then the sum

iΣ :=

N
∑

n=1

in , (108)

i.e. the ideal iΣ generated by k-linear combinations of the generators of the Hopf ideals {in}Nn=1,
is also a Hopf ideal in H, i.e. iΣ satisfies:

1. ∆(iΣ) ⊆ H ⊗ iΣ + iΣ ⊗H

2. Î (iΣ) = 0

3. S (iΣ) ⊆ iΣ

Proof. This follows directly by the linearity of the involved maps. �

Theorem 5.4 (Quantum gauge symmetries induce Hopf ideals). Given the situation of Defi-
nition 5.1 and a one-loop divergent local QFT Q, then the ideals generated by quantum gauge
symmetries20

i
{v,m;w,n}
QGSQ

:=
∑

R∈Z
#R

[0]
Q

〈

Q
mv
R−mv −Q

nw
R−nw

〉

HQ

(110)

are Hopf ideals in the (associated) renormalization Hopf algebra HQ, as is their sum

iQGSQ
:=

∑

{v,m;w,n}∈QGSQ

i
{v,m;w,n}
QGSQ

, (111)

i.e. the ideals i
{v,m;w,n}
QGSQ

and iQGSQ
satisfy (where i is used as a placeholder for both):

1. ∆(i) ⊆ HQ ⊗ i+ i⊗HQ

2. Î (i) = 0

3. S (i) ⊆ i

Proof. We check conditions 1. to 3. for the ideals i
{v,m;w,n}
QGSQ

on the level of generators and then

conclude the second statement using Lemma 5.3:

20Actually, it is not necessary that {v,m;w, n} ∈ QGSQ is a quantum gauge symmetry — the statement is true

for any v, w ∈ R
[0]
Q

and m,n ∈ Z. Furthermore, we remark that the restrictions to the gradings are such, that

IntRes
(

Q
mv

R−mv

)

= IntRes
(

Q
nw

R−nw

)

. (109)
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1. This follows from Proposition 4.4:

∆
(

Q
mv
R−mv −Q

nw
R−nw

)

=
∑

r∈Z
#R

[0]
Q





(

Q
mv

Q
r
)

∣

∣

∣

∣

∣

R−r−mv

⊗Q
mv
r

−
(

Q
nw

Q
r
)

∣

∣

∣

∣

∣

R−r−nw

⊗Q
nw
r





=
∑

r∈Z
#R

[0]
Q

(

Q
r+mv
R−r−mv ⊗Q

mv
r −Q

r+nw
R−r−nw ⊗Q

nw
r

)

=
∑

r∈Z
#R

[0]
Q

(

Q
r

R−r ⊗Q
mv
r−mv −Q

r

R−r ⊗Q
nw
r−nw

)

=
∑

r∈Z
#R

[0]
Q

Q
r

R−r ⊗
(

Q
mv
r−mv −Q

nw
r−nw

)

(112)

2. This follows immediately, as i
{v,m;w,n}
QGSQ

6= ∅

3. This follows from Lemma 4.1 applied to 1.:

S
(

Q
mv
R−mv −Q

nw
R−nw

)

= −
∑

r∈Z
#R

[0]
Q

S
(

Q
r

R−r

)

P

(

Q
mv
r−mv −Q

nw
r−nw

)

(113)

Finally, the ideal iQGSQ
is a Hopf ideal due to Lemma 5.3 applied to the previous argument. �

Remark 5.5. Theorem 5.4 describes the most general situation. Slightly less general results in
this direction can be found in [7, 8, 9, 10, 11, 28, 29, 31], some of them using the language of
Hochschild cohomology.

Remark 5.6. The Hopf ideal iQGS from Theorem 5.4 is defined such, that in the quotientHQ/iQGS

the coproduct and antipode identities from Section 4, which are valid in the residue-grading,
also hold for the coupling-grading. Thus it is possible to combine the Z-factors for the set QQ to
Z-factors for the set qQ. However, we remark that in the quotient the residue-grading induces
the coupling-grading, but they do not become equivalent, which would be the physical desirable
situation. This will be studied in future work, as will be the relation between these symmetries
and tree-identities.

6 Quantum gauge symmetries and renormalized Feynman rules

Having established, that quantum gauge symmetries (QGS) are compatible with the treatment
of subdivergences and thus with multiplicative renormalization in Theorem 5.4, we now turn
our attention to their relation with renormalized Feynman rules. We start this section with the
definition of the gauge theory renormalization Hopf module, which implements the quantum
gauge symmetries only on the left-hand side of the tensor product of the coproduct, i.e. only
on the Feynman integrals contributing to the counterterm. More precisely, this corresponds
to relations between the counterterms (i.e. Z-factors) of Greens functions related via quantum
gauge symmetries. However, then we prove in Corollary 6.6, that under mild assumptions this
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already implies, that the renormalized Feynman rules coincide, i.e. instead of considering the
gauge theory renormalization Hopf module, we can simply consider the renormalization Hopf
algebra and take the quotient by the quantum gauge symmetry Hopf ideal, which coincides with
recent calculations [32].

Definition 6.1 (Gauge theory renormalization Hopf module, [33]). Let Q be a local one-loop
divergent QFT with quantum gauge symmetry, HQ its renormalization Hopf algebra and iQGS

the corresponding Hopf ideal. Let

π : HQ →→ HQ/iQGS (114)

denote the projection map. We consider HQ/iQGS as a Hopf module over HQ, with the usual
multiplication restricted to the equivalence classes, the usual unit and counit as they are unal-
tered and the usual antipode restricted to the equivalence classes. The interesting map is the
comodule map, defined as follows:

δ := (π ⊗ Id) ◦∆ (115)

Then, we define the renormalized Feynman rules ΦR using the comodule map δ instead of the

coproduct ∆, i.e. defining the counterterm map S
Φε

E

R
on the quotient HQ/iQGS.

Corollary 6.2. Given the situation of Definition 6.1, we have

δ (Xr) =
∑

c∈Z#QQ

X
r
Q

c ⊗ Xrc , (116a)

δ (XrC) =
∑

c∈Z#QQ

(

X
r
Q

c
)

∣

∣

∣

∣

∣

C−c

⊗Xrc , (116b)

δ
(

X
r
)

=
∑

c∈Z#QQ

X
r
Q

c ⊗ X
r
c (116c)

and

δ
(

X
r
C

)

=
∑

c∈Z#QQ

(

X
r
Q

c
)

∣

∣

∣

∣

∣

C−c

⊗X
r
c , (116d)

where the left hand side of the tensor products are understood as representatives of the corre-
sponding equivalence classes. Analogous results also hold in the cases of Propositions 4.3 and 4.4.

Proof. This follows from Proposition 4.2 and the fact, that on the quotient HQ/iQGS the residue-
grading induces the coupling-grading, c.f. Remark 5.6. This is the weakest requirement to define
combinatorial charges for the equivalence classes coming from restricting the residue-grading to
the coupling-grading. �

Remark 6.3. Corollary 6.2 states, that the gauge theory renormalization Hopf module from
Definition 6.1 possesses Hopf subalgebras in the sense of Definition 2.24 for coupling-grading,
i.e. it allows multiplicative renormalization of local QFTs with quantum gauge symmetries if a
compatible renormalization scheme R exists. Conversely, it is obvious by construction that this
is the weakest requirement for multiplicative renormalization of quantum gauge symmetries.

Theorem 6.4 (Quantum gauge symmetries and renormalized Feynman rules). The gauge theory
renormalization Hopf module from Definition 6.1 is compatible with renormalized Feynman rules,
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if the ideal iQGS is in the kernel of the counterterm map, i.e. if for all {v,m;w,n} ∈ QGSQ we
have

S
Φε

E

R

(

Q
mv
R−mv

)

= S
Φε

E

R

(

Q
nw
R−nw

)

. (117)

If the renormalization scheme R is physical, c.f. Definition 2.28, then this is equivalent to

R

[

(Φ ◦ P)
(

Q
mv
r−mv

)

]

= R

[

(Φ ◦ P)
(

Q
nw
r−nw

)

]

. (118)

Proof. The first statement is equivalent to the well-definedness of the counterterm-map on the
equivalence classes of the QGS-equivalence relation: Indeed, we have

Q
mv
R−mv ≃QGSQ Q

nw
R−nw , (119)

and thus Equation (117) ensures, that the counterterm-map can be uniquely defined on the
corresponding equivalence classes. The second statement follows from the following argument:
Using Theorem 5.4, we obtain

S
Φε

E

R

(

Q
mv
R−mv −Q

nw
R−nw

)

= −
∑

r∈Z
#R

[0]
Q

R

[

S
Φε

E

R

(

Q
r

R−r

)

(Φ ◦ P)
(

Q
mv
r−mv −Q

nw
r−nw

)

]

, (120)

which vanishes, if for all r ∈ Z#R
[0]
Q

R

[

S
Φε

E

R

(

Q
r

R−r

)

(Φ ◦ P)
(

Q
mv
r−mv −Q

nw
r−nw

)

]

= 0 . (121)

Since R is physical, its kernel consists only of convergent expressions. Therefore, Equation (121)
vanishes, if

R

[

(Φ ◦ P)
(

Q
mv
r−mv −Q

nw
r−nw

)

]

= 0 , (122)

since S
Φε

E

R

(

Q
r

R−r

)

is either 1, if Q
r

R−r = I, or it evaluates to a divergent expression, which is

not in the kernel of R. �

Remark 6.5. Equations (117) and (118) from Theorem 6.4 are criteria for both, the unrenormal-
ized Feynman rules Φ and the renormalization scheme R, as they state, that the R-divergent
contributions of the Feynman rules Φ have to coincide.

Corollary 6.6 (Quantum gauge symmetries and renormalized Feynman rules). Given the sit-
uation of Theorem 6.4, the following two equations are equivalent:

ΦR

(

Q
mv
r−mv

)

= ΦR

(

Q
nw
r−nw

)

(123)

and

Φ
(

Q
mv
r−mv

)

= Φ
(

Q
nw
r−nw

)

. (124)

Proof. Again, using Theorem 5.4 and the same reasoning as in the proof of Theorem 6.4, we
obtain

ΦR

(

Q
mv
R−mv −Q

nw
R−nw

)

=
∑

r∈Z
#R

[0]
Q

S
Φε

E

R

(

Q
r

R−r

)

Φ
(

Q
mv
r−mv −Q

nw
r−nw

)

, (125)
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which vanishes, if for all r ∈ Z#R
[0]
Q

S
Φε

E

R

(

Q
r

R−r

)

Φ
(

Q
mv
r−mv −Q

nw
r−nw

)

= 0 , (126)

which, as S
Φε

E

R

(

Q
r

R−r

)

6= 0, is equivalent to

Φ
(

Q
mv
r−mv

)

= Φ
(

Q
nw
r−nw

)

. (127)

�

Remark 6.7. Corollary 6.6 states, that if the Feynman rules Φ are compatible with the quantum
gauge symmetries themselves, then this holds even for the renormalized Feynman rules ΦR inde-
pendently of the chosen renormalization scheme R. This statement shows the well-definedness
of renormalized amplitudes for Yang-Mills theories obtained from scalar QFT with cubic in-
teraction via the Corolla polynomial and differential, c.f. [12, 13, 14, 15, 16, 17]. However, a
well-behaved renormalization scheme R (in the sense of Remark 6.5) is needed in order to obtain
well-defined Feynman rules on the equivalence classes of the quotient HQ/iQGS.

7 Conclusion

We studied the effect of gauge symmetries of a classical gauge theory to the renormalization of
its corresponding quantum gauge theory. The main results are Theorem 5.4 and Theorem 6.4,
where the first states, that quantum gauge symmetries correspond to a Hopf ideal inside the
associated renormalization Hopf algebra and the second provides a criterion for their validity on
the level of Feynman rules. In future work, we will consider the relation between residue-grading
and coupling-grading on the quotient HQ/iQGS and investigate their relation with tree-identities.
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