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Abstract
We propose an extension of the Loewner framework to descriptor linear systems that
preserves the DAE (differential algebraic equation) structure of the underlying sys-
tem. More precisely, by means of post-processing the data, the behavior at infinity
is matched. As it turns out, the conventional procedure constructs a reduced model
by directly compressing the data and hence losing information at infinity. By trans-
forming the matrix pencil composed of the E and A matrices into a generalized block
diagonal form, we can separate the descriptor system into two subsystems; one corre-
sponding to the polynomial part and the other to the strictly proper part of the transfer
function. Different algorithms are implemented to transform the matrix pencil into
block diagonal form. Furthermore, a data-driven splitting of the descriptor system
can be achieved in the Loewner framework. Hence, the coefficients of the polynomial
part can be estimated directly from data. Several numerical examples are presented
to illustrate the theoretical discussion.

Keywords Dynamical systems · Algorithms · Matrices · Differential equations ·
Complexity reduction

Mathematics subject classification (2010) 78M34 · 93A15 · 93C05 · 93A30 ·
37N35 · 65L80

1 Introduction

Model order reduction (MOR) is a tool, commonly used to approximate complex,
large-scale dynamical systems by means of much simpler systems that can still
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faithfully reproduce the behavior or response of the original system. Such high-
dimensional models usually appear from spatial discretization of partial differential
equations (PDEs). The denser the grid used, the higher the number of equations
that characterize the behavior. Reduced-order systems are described by significantly
lower number of equations. Such systems could then be efficiently used as surrogates,
replacing the large-scale systems in such tasks as simulation, analysis, or control. For
details on different MOR techniques, we refer the reader to the books [1, 4, 12] and
to the surveys [3, 7, 10].

In the current work, we will turn our attention to interpolatory model reduction
methods. In this setup, ROMs (reduced-order models) are constructed by means of
interpolating the transfer function of the original system at selected points.

The Loewner framework, as introduced in [34], will be the main focus of this
study. It is a data-driven method that directly constructs a ROM using only measured
data (samples of the transfer function). Additionally, by compressing the (usually
large) data set, it extracts the dominant features. For a recent survey on the Loewner
framework for linear systems, see [6]. For the nonlinear case, this method requires
appropriate definition of transfer functions, as described in some of its extensions,
i.e., to bilinear [5], quadratic-bilinear [23], and switched systems [24].

We propose an extension of the Loewner framework to a specific class of linear
systems, i.e., descriptor linear systems. The new method can preserve the underlying
DAE structure by means of post-processing of the data (estimating the polynomial
part of the transfer function).

Whenever the dynamics of the driving system is described by not only differential
but also algebraic equations, descriptor systems come into play. Such systems are
described by DAEs and are used to model many different real-world applications,
such as the ones appearing in electrical networks/circuits, biomedical and chemical
processes, or computational fluid dynamics. We refer the reader to the books [22, 33]
for more details. Additionally, the following surveys address particular topics related
to systems described by linear DAEs: partial stabilization, in [9], description of the
solution in [39], controllability in [16], and numerical linear algebra methods in [11].
The concept of partial realization is covered in [13], while topics on simulation and
control in [36].

Modeling of complex physical and technical processes such as control of lam-
inar/turbulent fluid flow, very large integrated circuit simulation for chip design
or components coupling in mechanical systems, typically leads to descriptor sys-
tems of considerably large dimension. This generates bottlenecks such as storage
requirements and expensive computations when dealing with this class of systems.
This is where reduced models play an important role. Consequently, in recent years,
many such methods for reducing conventional linear systems (with no algebraic
constraints) have been extended for reduction of systems described by DAEs. In par-
ticular, balanced truncation has been extended to descriptor systems in [26, 35, 38]
while interpolation-based methods were considered in [25, 37]. For more details on
MOR methods applied to DAEs, we refer the readers to the extensive survey in [14].

The paper is organized in the following way: in Section 2, we give a short overview
on descriptor systems, introduce the Weierstrass and Kronecker canonical forms
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together with some relaxed versions thereof. Additionally, we discuss how to explic-
itly compute the polynomial coefficients of the transfer function. In Section 3, we
present several methods for splitting the strictly proper and polynomial part of the
transfer function, for both systems involving regular and singular pencils. Section 4
introduces the classical Loewner framework and afterwards, the main proposed pro-
cedure that is based on it. The difference is that, by means of post-processing of
the data, we are able to match the behavior at infinity of the underlying system. In
Section 5, several numerical experiments are presented (three of them chosen from
benchmark examples commonly used for MOR applications), while a summary of
the findings and the conclusion are stated in Section 6.

2 Descriptor systems

2.1 Setup

We study linear time-invariant continuous-time descriptor systems described by the
following equations:

Σ :
{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1)

where A,E ∈ R
n×n, C ∈ R

p×n, B ∈ R
n×m, and x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

p

are the internal variable, input and output vectors, respectively. The order of system
Σ in (1) is given by the number of internal variables n. If the E matrix is the identity
matrix, then the system in (1) is a standard state space system. Otherwise, it is a
descriptor system or generalized state space system.

The goal is to approximate the original descriptor system Σ in (1) by a reduced-
order linear time-invariant continuous-time descriptor system Σ̂

Σ̂ :
{
Ê ˆ̇x(t) = Â(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(2)

where Â, Ê ∈ R
r×r , Ĉ ∈ R

p×r , B̂ ∈ R
r×m, and x̂(t) ∈ R

r is the reduced internal
variable, with r � n. The control input u(t) is the same for both systems in (1) and
(2). In general, it is required that the approximation error be small.

The input-output behavior of the descriptor system Σ is usually described by its
transfer function H. Assuming that the pencil λE−A is regular, i.e., det(λE−A) �= 0
for λ ∈ C, then one can write the transfer function H as follows:

H(s) = C(sE − A)−1B. (3)

If the pencil λE − A is singular (not regular), i.e., det(λE − A) = 0 for all λ ∈ C,
one needs to replace the conventional inverse of the matrix sE − A in (3) with a
pseudo-inverse. In this case, the transfer function H can be written

H(s) = C(sE − A)#B, (4)

where X# ∈ C
u×v is the Moore–Penrose inverse of the matrix X ∈ C

v×u with u, v ∈
N (for more details, see [2]).
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For simplicity of exposition, in what follows, we will treat solely the single-input,
single-output (SISO) case with m = p = 1. The multi-input, multi-output case is
technically more involved but it is based on the same ideas.

The transfer function shown in (3) can be expressed as a rational function in the
variable s ∈ C

H(s) =
∑z

i=0 bis
i∑q

j=0 aj sj
, (5)

where aj , bi ∈ R, z is the number of zeros and q is the number of poles. When z > q,
the transfer function H(s) is improper. When z ≤ q, H(s) is proper and when z < q,
H(s) is strictly proper. If z ≥ q, the transfer function H(s) in (3) can be decomposed
into a strictly proper part and a polynomial part, as

H(s) = Hsp(s) + Hpoly(s), (6)

where

Hsp(s) =
∑q−1

i=0 cis
i∑q

j=0 aj sj
, Hpoly(s) =

z−q∑
k=0

pks
k, (7)

are the strictly proper part and polynomial part, respectively. In (7), the polynomial
coefficients of Hpoly(s) are denoted with pk , for k ∈ {0, 1, . . . , z − q}. In what
follows, we discuss how to determine the polynomial part Hpoly(s) of the descriptor
system Σ and how to explicitly compute the coefficients pk .

2.2 Canonical forms for regular pencils

2.2.1 TheWeierstrass canonical forms

Let Σ be a descriptor system as in (1) and assume that the pencil λE − A is regular.
In this case, the pencil λE − A can be reduced to the Weierstrass canonical form,
defined next.

Definition 1 The regular matrix pencil λE − A can be written in the Weierstrass
canonical form [35] given by

S−1(λE − A)T =
[
λInf

− Jf 0
0 λN − In∞

]
, (8)

where the matrices S,T ∈ C
n×n are invertible, Jf ∈ C

nf ×nf and N ∈ C
n∞×n∞ are

matrices in Jordan canonical form and N is a nilpotent matrix. The positive integers
nf and n∞ are the dimensions of the deflating subspaces of the pencil corresponding
to the finite and infinite eigenvalues, respectively. Furthermore, Inf

∈ R
nf ×nf and

In∞ ∈ R
n∞×n∞ are identity matrices.

Let ν be the nilpotency index of N, i.e., the smallest positive integer ν such that
Nν = 0. The positive integer ν is sometimes referred to as the index of the pencil
λE − A and also the Hessenberg index of the descriptor system Σ .

In [15], a so-called quasi-Weierstrass canonical form is introduced. It is weaker
than the classical form although it also contains relevant information.



Adv Comput Math            (2020) 46:3 Page 5 of 32    3 

Next, introduce a generalized Weierstrass canonical form of the matrix pencil λE−
A. Here, the transformed E and A are indeed block diagonal, but the composing
blocks need not have any special structure.

Definition 2 The regular matrix pencil λE − A can be written in the generalized
quasi-Weierstrass canonical form (or generalized block diagonal form) given by

U∗(λE − A)V =
[
λEf − Af 0

0 λE∞ − A∞

]
, (9)

where U,V ∈ R
n×n are invertible, Ef ∈ R

nf ×nf is invertible, Af ∈ R
nf ×nf and

E∞ ∈ R
n∞×n∞ , A∞ ∈ R

n∞×n∞ are invertible.

The transformation matrices U and V can be split as U = [
Uf U∞

]
and V =[

Vf V∞
]
. According to the block diagonal form in (9), identify the diagonal blocks

for both U∗EV and U∗AV matrices as

Ef = U∗
fEVf , E∞ = U∗∞EV∞, Af = U∗

fAVf , A∞ = U∗∞AV∞, (10)

and, respectively, the off-diagonal blocks as

U∗
fEV∞ = 0, U∗∞EVf = 0, U∗

fAV∞ = 0, U∗∞AVf = 0. (11)

The matrix pencil λE − A is transformed into a block diagonal form, and hence, the
descriptor system Σ can be decomposed into two subsystems, one with realization
Σf : (Cf ,Ef ,Af ,Bf ) = (CVf ,Ef ,Af ,U∗

fB) and another with realization Σ∞ :
(C∞,E∞,A∞,B∞) = (CV∞,E∞,A∞,U∗∞B). The transfer functions of the two
subsystems Σf and Σ∞ are computed as

Hf (s) = CVf (sEf − Af )−1U∗
fB,

H∞(s) = CV∞(sE∞ − A∞)−1U∗∞B.
(12)

Note that the transfer functions introduced in (12) coincide with those in (7):

Hsp(s) = Hf (s), Hpoly(s) = H∞(s). (13)

2.2.2 Computing the polynomial coefficients of the transfer function

After splitting the polynomial part H∞ from the transfer function H(s) of system
Σ , the polynomial coefficients pk in (7) are explicitly computed. As presented in
the following result, this is done by calculating the derivatives of H∞ at s = 0 or,
equivalently, expressing them in terms of the system matrices of the subsystem Σ∞.

Lemma 1 The coefficients pk corresponding to the polynomial part of transfer
function H can be expressed as

pk = 1
k!

[
dk

dsk H∞(s)
]
s=0

= −CV∞(A−1∞ E∞)kA−1∞ U∗∞B, (14)

so that the constant term is written p0 = −CV∞A−1∞ U∗∞B = H∞(0) and then the
linear term p1 = −CV∞(A−1∞ E∞)A−1∞ U∗∞B and so on.
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Proof In (7), since H∞(s) = Hpoly(s) = ∑z−q

k=0 pks
k , it directly follows that the kth

derivative of H∞(s) can be written as

dk

dsk
H∞(s) = k!pk + (k + 1)!

1! pk+1s + · · · + (z − q)!
(z − q − k)!pz−qsz−q−k . (15)

By substituting s = 0 in (15), it automatically follows pk = 1
k!

[
dk

dsk H∞(s)
]
s=0

.

Using the definition of H∞ in equation (12), the kth derivative of H∞ is

dk

dsk H∞(s) = dk

dsk CV∞(sE∞ − A∞)−1U∗∞B
= (−1)kk!CV∞((sE∞ − A∞)−1E∞)k(sE∞ − A∞)−1U∗∞B.

So if k > 0, then

pk = 1

k!
[

dk

dsk
H∞(s)

]
s=0

= −CV∞(A−1∞ E∞)kA−1∞ U∗∞B (16)

and otherwise p0 = −CV∞A−1∞ U∗∞B.

2.2.3 The right matrix pencil disk function

In this section, we assume that the original system is a discrete-time descriptor system
computed, for example, by means of applying finite difference approximation of the
derivative of the continuous internal variable in (1). Let λE − A be a regular matrix
pencil with no eigenvalues on the unit circle. The Weierstrass canonical form of λE−
A is given by

S
−1

(λE − A)T =
[
λInk

− J0 0
0 λN − J∞

]
, (17)

where J0 ∈ C
nk×nk and J∞ ∈ C

(n−nk)×(n−nk).

Definition 3 The right matrix pencil disk function is defined

disk(A,E) = T
(

λ

[
0 0
0 In−nk

]
−

[
Ink

0
0 0

])
T

−1 = λP∞ − P0. (18)

The matrices P0 and P∞ define skew projections onto the right deflating subspace
corresponding to the eigenvalues of λE − A inside the unit circle and respectively
outside the unit circle. The disk function provides a tool for spectral decomposi-
tion along the unit circle. Splittings for other curves can be computed by applying a
suitable conformal mapping to the pencil λE − A.

The method for the computation of the right matrix disk function can be found
in [9, 41]. The steps of this method are summarized in Algorithm 3 from [9] and in
Algorithm 8 from [41].
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2.3 Canonical forms for singular pencils

2.3.1 The Kronecker canonical forms

Let Σ be a continuous-time descriptor system, as in (1), and assume that the pencil
λE−A is singular, i.e., det(λE−A) = 0 for all λ ∈ C. In this case, the pencil λE−A
can be reduced to the Kronecker canonical form (KCF).

Definition 4 The matrix pencil λE − A can be written in the Kronecker canonical
form [40]

P(λE − A)Q = diag(Lε1 , . . . ,Lεp ,LP
η1

, . . . ,LP
ηq

, λN − I, λI − J), (19)

where P,Q ∈ C
n×n are invertible matrices. The building blocks present in (19) (by

following the description in [40]) are as follows:

– Lμ ∈ C
μ×(μ+1) is the bidiagonal pencil.

– LP
μ ∈ C

(μ+1)×μ is the pertransposed bidiagonal pencil.
– N is a nilpotent Jordan matrix.
– J is a matrix in Jordan canonical form.

Note that the pencil λI− J contains the finite elementary divisors (finite eigenvalues
of λE−A), while λN−I contains the infinite elementary divisors (infinite eigenvalues
of λE−A). Moreover, the blocks Lεi

and LP
ηj

contain the singularities of the pencil.
The values εi and ηj are known as the right and left Kronecker indices. The pencil
λN−I is determined by the degrees δi of the infinite elementary divisors, while λI−J
is determined by the finite elementary divisors (λ − λi)

j (here, the finite eigenvalues
of the pencil λE − A are denoted with λi).

As mentioned in [8, 40], to compute the Kronecker canonical form, it is recom-
mended to first compute a quasi-triangular form (also called the generalized Schur
form) in order to avoid numerical issues:

P(λE − A)Q =

⎡
⎢⎢⎣

λEε − Aε X12 X13 X14
0 λEη − Aη X23 X24
0 0 λE∞ − A∞ X34
0 0 0 λEf − Af

⎤
⎥⎥⎦ . (20)

This form can be obtained using the unitary transformation matrices P,Q ∈ C
n×n.

Moreover, the block diagonal structure is as follows:

1. The square regular pencil λEf − Af contains the finite eigenvalues of λE − A.
2. The square regular pencil λE∞−A∞ contains the infinite eigenvalues of λE−A.
3. The singular pencils λEη − Aη and λEε − Aε contain the Kronecker row and

column structure, respectively.
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3 Separating the strictly proper and polynomial part of the transfer
function

In Section 2, we presented the theoretical aspects of decomposing the matrix pencil
λE−A into two subsystems, corresponding to the strictly proper part and polynomial
part of the transfer function H(s). Next, we present different numerical algorithms
for computing the matrices U and V. These are used in order to construct a quasi-
Weierstrass form. Four such algorithms are studied in this section. First, the Jordan
chain (JC) method finds the transformation matrices by calculating the generalized
eigenvectors corresponding to the infinite eigenvalues. Then, the ADTF1 (additive
decomposition of a transfer function no. 1) and ADTF2 (additive decomposition of
a transfer function no. 2) methods from [30] use the QZ decomposition to separate
the descriptor system. Finally, a recent procedure based on the matrix disk function
in [41] is mentioned.

3.1 Regular pencils

3.1.1 Jordan chain method

This method requires computing matrices U∞ ∈ C
n×n∞ and V∞ ∈ C

n×n∞ so that
their columns span the same subspace as the left and, respectively, right generalized
eigenvectors corresponding to the eigenvalue at infinity of the pencil λE − A (or,
equivalently, of eigenvalues at 0 of the pencil λA − E)

EV∞ = AV∞J, U∗∞E = J∗U∗∞A, (21)

where J ∈ C
n∞×n∞ is a Jordan block with zero eigenvalues. Then, the matrices

Uf ,Vf ∈ C
n×nf can be found by computing the null space of matrices V∗∞A∗ and,

respectively, of U∗∞A:

U∗
fAV∞ = 0, U∗∞AVf = 0. (22)

Then, construct the transformation matrices U = [
Uf U∞

]
and V = [

Vf V∞
]

by
putting together the matrices in (21) and (22).

3.1.2 Additive decomposition of a transfer function no. 1

This approach was introduced in [30] Section 4.1. The first step is to apply the QZ
(known also as generalized Schur) decomposition to the matrix pencil λE−A. This is
done by imposing that the finite eigenvalues of this pencil are located in the upper-left
corner while the remaining infinite eigenvalues are in the lower-right corner:

Q(λE − A)Z =
[
Q1
Q2

]
(λE − A)

[
Z1 Z2

] =
[

λE11 − A11 λE12 − A12
0 λE22 − A22

]
. (23)

Next, construct matrices T and S in the following way

T =
[
Inf

L
0 In∞

]
S =

[
Inf

R
0 In∞

]
, where

{
E11R + LE22 = −E12,

A11R + LA22 = −A12.
(24)
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The transformed matrices E1 = TQEZS, A1 = TQAZS are thus block diagonal.
Numerical methods for solving coupled Sylvester equations as in (24) were pro-
posed in [27, 29, 31]. The left and right transformation matrices can be explicitly
constructed as follows U = (TQ)∗ ,V = ZS.

3.1.3 Additive decomposition of a transfer function no. 2

Again, as in Section 3.1.2, the QZ factorization is applied to the matrix pencil λE−A
with two different orderings of the eigenvalues (as in Section 4.2 in [30]). This is
done by imposing that the finite and infinite eigenvalues of the pencil are located in
the upper-left corner and in the lower-right corner, respectively:

Qu(λE − A)Zu =
[
Qu

1
Qu

2

]
(λE − A)

[
Zu

1 Zu
2

] =
[

λEu
11 − Au

11 λEu
12 − Au

12
0 λEu

22 − Au
22

]
,(25)

Ql (λE − A)Zl =
[
Ql

1
Ql

2

]
(λE − A)

[
Zl

1 Zl
2

] =
[

λEl
11 − Al

11 λEl
12 − Al

12
0 λEl

22 − Al
22

]
.(26)

The transformation matrices are

U =
[
Ql

2
Qu

2

]∗
, V = [

Zu
1 Zl

1

]
. (27)

3.1.4 Additive decomposition of a transfer function no. 3

The decompositions covered in Sections 3.1.2 and 3.1.3 rely on computing one or
two QZ factorizations (as described in [30]).

Recently, a new method was proposed in [41] that overcomes the usage of such
factorizations and, instead, uses the disk function method (briefly mentioned in
Section 2.2.3) to construct projection matrices for subspace extraction.

The complete procedure is stated in Algorithm 10 from [41]. The first step is to
apply the disk function method to the pencil λ(αA)−E, where the real positive scalar
α is chosen so that α < max

{|λ| : λ ∈ �(A,E) \ {∞}}−1, and �(A,E) denotes
the spectrum of λE − A. Here, α is used as eigenvalue scaling such that the infi-
nite eigenvalues become zeros and everything else is pushed outside the unit circle.
Hence, the disk function method produces skew projections onto the corresponding
deflating subspaces.

3.2 Singular pencils

The computation of the Kronecker canonical form (KCF) received considerable
attention in the second half of the previous century. This follows from the impor-
tance of the KCF in the area of systems and control theory, i.e., realization theory and
controllability. In what follows, we mention only a few of the contributions.

1. A generalization of the staircase algorithm to singular pencils using unitary
equivalence transformations is proposed in [40].
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2. The so-called AB algorithm for computing the right singular structure and the
Jordan structure of the zero eigenvalue for a singular pencil is introduced in [32].

3. An algorithm based on repeated generalized singular value decompositions (or
more precisely, cosine-sine decompositions of partitioned orthonormal matri-
ces), in short referred to as RGSVD, is presented in [28].

4. A faster algorithm which requires O(m2n) operations when the original pencil
is m × n is proposed in [8].

5. Robust algorithms for implementing the generalized Schur decomposition of an
arbitrary pencil A − λB are presented in [19].

6. A procedure based on the so-called Wong sequences is proposed in order to
derive a quasi-Kronecker form in [17].

The procedures mentioned above are quite involved and not straightforward to
implement in a practical setup.

The toolbox GUPTRI (Generalized Upper TRIangular form) presented in [20]
can be used to compute the generalized Schur decomposition of an arbitrary pencil
A − λB (regular or singular), hence revealing the Kronecker structure of the pencil.
The algorithms are implemented in Fortran (also in Matlab) and are available as an
open source toolbox (see [21]).

Most of the numerical experiments presented in Section 5 are based on the follow-
ing block diagonalization procedure (in Section 3.2.1). This is also used as a direct
numerical tool for estimating the polynomial coefficients.

3.2.1 The proposed procedure

We are using a numerical procedure inspired from the decomposition that was briefly
mentioned in Section 3.1.3. Originally proposed in [30], this procedure uses uni-
tary transformations to block diagonalize a regular matrix pencil based on two
re-orderings of the pencil’s eigenvalues.

For the first re-ordering, the blocks that have eigenvalues belonging to a set Γ are
placed in the lower-right corner of the transformed upper triangular matrices. For the
second re-ordering, the order is reversed (the blocks that have eigenvalues belonging
to the set Γ are placed in the upper-left corner).

The procedure is based on performing two QZ (or generalized Schur) decomposi-
tions in complex arithmetic for a regular matrix pencil (A,E).

We are dealing with singular pairs (A,E) that have eigenvalues at ∞. So instead
of analyzing the spectrum of the pencil (A,E), we inspect the spectrum of the pencil
(E,A). Hence, one quantity of interest is represented by the eigenvalues at 0 (instead
of the eigenvalues at infinity). From a numerical point of view, this leads to a more
stable procedure. The set of interest, denoted with Γ , contains the eigenvalues at 0.
Let |Γ | = k.

Nevertheless, it is not straightforward to accurately identify the set Γ (as it will
be made clear by the numerical examples). Since the pencil has singularities, the
true zeros might get mixed with such singularities in the classification process.
Hence, a reliable choice of k (that denotes the number of zeros) is sometimes not
straightforward to find.
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In what follows, we present the steps of the proposed procedure.

1). Initialization step: start with system matrices (C,E,A,B) that form a realiza-
tion of a linear descriptor system as in (1). Then, let C1 = C, E1 = E, A1 = A
and B1 = B.

2). Perform a QZ (generalized Schur) decomposition of (E1,A1):

Qd(λA1 − E1)Zd = λAd
1 − Ed

1 , (28)

so that the elements of the vector
[
γ d

1 γ d
2 . . . γ d

n

] ∈ R+∪{0} are sorted in a descend-

ing order, i.e., γ d
1 � γ d

2 � · · · � γ d
n , where γ d

i = |αd
i |

|βd
i |+τ

. Here, αd
i ∈ C and βd

i ∈ C

represent the (i, i) entries of matrices Ed
1 and, respectively, of Ad

1 . Also, τ ∈ (0, 1) is
a small positive real number; in practical applications, it is chosen as the eps value in
Matlab—the machine precision ≈ 2.2204 ·10−16. The purpose of using τ is to avoid
division by 0. Note that, in (28), matrices Ed

1 ,Ad
1 ∈ C

n×n are upper triangular, and
Qd ,Zd ∈ C

n×n are unitary.
Next, for k ∈ N, we split the decomposition into two parts corresponding to blocks

of dimension n − k, and respectively, k (with eigenvalues in the set Γ ), as follows:

Qd(λA1 − E1)Zd =
[
Qd

1
Qd

2

]
(λA1 − E1)

[
Zd

1 Zd
2

] =
[

λAd
11 − Ed

11 λAd
12 − Ed

12
0 λAd

22 − Ed
22

]
,

(29)
where Ed

11,A
d
11 ∈ C

(n−k)×(n−k), Ed
22,A

d
22 ∈ C

k×k and Ed
12,A

d
12 ∈ C

(n−k)×k .
Additionally, (Qd

1)∗,Zd
1 ∈ C

n×(n−k), (Qd
2)∗,Zd

2 ∈ C
n×k are unitary matrices.

Perform another QZ (generalized Schur) decomposition of the pencil (E1,A1):

Qa(λA1 − E1)Za = λAa
1 − Ea

1, (30)

so that, this time, the elements of the vector
[
γ a

1 γ a
2 . . . γ a

n

] ∈ R+ ∪ {0} are sorted

in an ascending order, i.e., γ a
1 � γ a

2 � · · · � γ a
n , where γ a

i = |αa
i |

|βa
i |+τ

. As before,

αa
i ∈ C and βa

i ∈ C are the (i, i) entries of matrices Ea
1, and of Aa

1. The positive
constant τ is chosen as before. Note that, in (30), matrices Ea

1,A
a
1 are upper triangular

while Qa,Za are unitary.
Next, use the same value k ∈ N to split the decomposition into two parts corre-

sponding to blocks of dimension k (with eigenvalues in the set Γ ), and respectively
n − k, as follows:

Qa(λA1 − E1)Za =
[
Qa

1
Qa

2

]
(λA1 − E1)

[
Za

1 Za
2

] =
[

λAa
11 − Ea

11 λAa
12 − Ea

12
0 λAa

22 − Ea
22

]
,

(31)
where Ea

11,A
a
11 ∈ C

k×k , Ea
22,A

a
22 ∈ C

(n−k)×(n−k) and Ea
12,A

a
12 ∈ C

k×(n−k).
Additionally, (Qa

1)∗,Za
1 ∈ C

n×k , (Qa
2)∗,Za

2 ∈ C
n×(n−k) are unitary matrices.

3). Proceed by putting together the transformation matrices

U =
[
Qa

2
Qd

2

]∗
, T = [

Zd
1 Za

1

]
. (32)
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It follows that the matrix pencil λA1 − E1 can be block diagonalized as

U∗(λA1 − E1)T =
[
Qa

2
Qd

2

]
(λA1 − E1)

[
Zd

1 Za
1

]

=
[
λQa

2A1Zd
1 − Qa

2E1Zd
1 λQa

2A1Za
1 − Qa

2E1Za
1

λQd
2A1Zd

1 − Qd
2E1Zd

1 λQd
2A1Za

1 − Qd
2E1Za

1

]

=
[
λQa

2A1Zd
1 − Qa

2E1Zd
1 0

0 λQd
2A1Za

1 − Qd
2E1Za

1

]
.

Put together the transformed model as follows:

E2 = U∗E1T, A2 = U∗A1T, B2 = U∗B1 and C2 = C1T.

4). Split the transformed linear model into two blocks:

E2 =
[
Ê2 0
0 Ẽ2

]
, A2 =

[
Â2 0
0 Ã2

]
, B2 =

[
B̂2

B̃2

]
, C2 =

[
Ĉ2 C̃2

]
. (33)

Use the second blocks to compute the polynomial coefficients:

p� = −C̃2(Ã#
2Ẽ2)

�Ã#
2B̃2, for � � 0, (34)

where Ã#
2 represents the Moore–Penrose inverse of Ã2.

Remark 1 Note that the procedure described above represents a direct extension of
the ADTF2 algorithm from [30] to the case of singular pencils.

Remark 2 The values αd
i and βd

i that appear in the second step of the proposed
procedure are indeed of relevance. The reason is that they indicate the blocks cor-
responding to singularities. The proposed procedure could be altered so that the
criterion for constructing the set Γ changes. For example, instead of computing the
values γ d

i , one can solely analyze the values αd
i and βd

i .

Example 1 We choose matrices (C,E,A,B) that form a non-minimal linear descrip-
tor realization of the transfer function H(s) = 2s + 3 + 4

s−5 , i.e.,

E =

⎡
⎢⎢⎢⎢⎣

− 35
18 − 52

27 − 50
27 − 14

9

− 27
14 − 40

21 − 38
21 − 10

7

− 15
8 − 11

6 − 5
3 −1

− 7
4 − 5

3 − 4
3 0

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

203
18

199
27

47
27 − 7

9
103
14

73
21 − 43

21 − 29
7

13
8 − 13

6 − 22
3 −8

− 7
4 − 16

3 − 29
3 −7

⎤
⎥⎥⎥⎥⎦ ,

B = [ − 49
9 − 11

7 4 7
]T

, C = [ − 7
2

1
3

17
3 7

]
.

(35)

Note that the pencil λE−A is singular. Hence, the transfer function H of the system
(C,E,A,B) is computed as in (4), i.e., H(s) = C(sE − A)#B.

Additionally, note that rank(E) = 2, while rank(A) = 3. Hence, the pencil (E,A)

has only one nonzero finite eigenvalue at 1
5 , two eigenvalues at 0 and one singularity.

We proceed with the proposed splitting method by first computing the QZ factoriza-
tion corresponding to the descending ordering. For example, the values αd

i , βd
i , and

γ d
i are presented in Table 1.
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Table 1 The diagonal entries
αd

i , βd
i and coefficients γ d

i for
the descending order

αd
i βd

i γ d
i

3.9497 · 10−1 1.9749 0.2

1.9403 · 10−15 1.0792 · 10−14 1.7616 · 10−1

3.2466 · 10−8 4.5442 7.1445 · 10−9

5.0423 · 10−8 7.0576 7.1445 · 10−9

Also, compute the QZ factorization corresponding to the ascending ordering.
Next, for k = 2, we identify the matrices corresponding to the block diagonalized

matrices E2 =
[
Ê2 0
0 Ẽ2

]
and A2 =

[
Â2 0
0 Ã2

]
in the fourth step:

Ê2 = 10−2
[−1.8221 −3.2120

7.5665 13.3376

]
, Ẽ2 =

[−1.535910−8 6.6561 · 10−1

9.8847 · 10−16 −1.9886 · 10−8

]
,

Â2 = 10−1
[−0.9110 −1.6060

3.7832 6.688

]
, Ã2 =

[
2.1498 −1.6813

−1.2846 · 10−7 2.7835

]
.

By applying the formulas in (34), we correctly identify p0 = 3, p1 = 2, and p� = 0
for � � 2. Next, we vary the value of k between 1 and 4 and collect the estimated
polynomial coefficients for these four values. The results are presented in Table 2.
Note that, for both k ∈ {2, 3}, the original coefficients are recovered.

4 Data-driven splitting of the strictly proper and polynomial part

4.1 The classical Loewner approach

In many situations, a model for the descriptor system Σ is not explicitly available;
the system matrix realization in (1) can not be directly obtained. Instead of the system
matrices A,B,C, and E, a black box is provided that produces input-output measure-
ments. These situations include VLSI modeling from chips or real-time simulation of
multi-body dynamics with constraints. The Loewner framework is used to construct
a reduced-order system by means of the measured data. In this context, data consist
of samples of the underlying transfer function H(s) at selected interpolation points
(in some cases on the imaginary axis, when approximating the frequency response of
the original system). A Loewner matrix pencil λL − Ls is composed of the Loewner
matrix L and of the shifted Loewner matrix Ls .

Table 2 The estimated
polynomial coefficients p0 p1 p2

k = 4 2.2 1.84 0.032

k = 3 3 2 0

k = 2 3 2 0

k = 1 − 1.3997 · 108 1.0770 − 8.2874 · 10−9
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The Loewner framework originates from rational approximation theory (see [6,
34]) and can be used to recover or reduce the original dynamical system by means of
interpolating the transfer function. For simplicity, assume that the data set contains
an even number of measurements denoted with 2N . The next step is to partition the
data measurements set into two disjoint data subsets, i.e., the left subset and the right
subset as described in the following

Left set: (μi, vi ), i = 1, . . . , N, Right set: (λj ,wj ), j = 1, . . . , N . (36)

In (36), consider as given N distinct left interpolation points {μi}Ni=1 ⊂ C and N

left sample values: {vi}Ni=1 ⊂ C. Additionally, consider N distinct right interpolation
points {λi}Ni=1 ⊂ C and N right sample values {wi}Ni=1 ⊂ C. Note that the sets of left
and right interpolation points are assumed distinct, i.e., μi �= λj , ∀i, j = 1, . . . , N .

We seek a linear descriptor system Σ̂ such that the associated transfer func-
tion Ĥ(s) is an interpolant to the original one, H(s). More precisely, the following
interpolation conditions should then hold:

Ĥ(μi) = H(μi) = vi , and Ĥ(λj ) = H(λj ) = wj , for i, j = 1, . . . , N . (37)

Next, arrange the measured data into matrix format as follows:

M = diag([μ1, μ2, . . . , μN ]) ∈ C
N×N, � = diag([λ1, λ2, . . . , λN ]) ∈ C

N×N,

V
T = [

v1 v2 · · · vN

] ∈ C
1×N, W = [

w1 w2 · · · wN

] ∈ C
1×N . (38)

The Loewner matrix L ∈ C
N×N and the shifted Loewner matrix Ls ∈ C

N×N are
defined as follows:

L =
⎡
⎢⎣

v1−w1
μ1−λ1

· · · v1−wN

μ1−λN

...
. . .

...
vN−w1
μN−λ1

· · · vN−wN

μN−λN

⎤
⎥⎦ , Ls =

⎡
⎢⎢⎣

μ1v1−λ1w1
μ1−λ1

· · · μ1v1−λNwN

μ1−λN

...
. . .

...
μNvN−λ1w1

μN−λ1
· · · μNvN−λNwN

μN−λN

⎤
⎥⎥⎦ , (39)

and are the solutions of the following Sylvester equation

ML − L� = VR − LW,

MLs − Ls� = MVR − LW�,
(40)

where LT = R = [
1 1 · · · 1

] ∈ C
1×N .

After rearranging the data into matrix format, we construct with basically no
computational cost a Loewner linear descriptor model described by the following
realization ΣL = (W, −L, −Ls ,V).

We distinguish two cases:

1. The right amount of data is available—in this case, one can exactly recover the
original system;

2. A redundant amount of data is provided—in this case, one can approximate the
original system.

In the first case, the matrix pencil λL−Ls is regular. Then, the transfer function of the
Loewner model is Ĥ(s) = −W(sL−Ls)

−1
V. This situation is encountered when the

number of measurements is just enough to recover the original system (as explained
in [34], one would require 2n measurements to recover a system of order n).
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In the second case, the pencil λL − Ls is singular. Then, the definition of the
transfer function is adapted as in [2], i.e., Ĥ(s) = −W(sL − Ls)

#
V .

In real-world applications, the reason behind the singularity of the matrix pencil
λL − Ls is that data contain, in most cases, redundant or inaccurate measurements.

We focus on the second case, which is more relevant in practice. In this case, since
the Loewner pencil is singular, we can use the singular value decomposition (SVD)
to compress the data. The truncation order r can be chosen by inspecting the singular
value decay of the data. Deciding on a specific value of r is usually done by making
a trade-off between reduced-order model dimension and accuracy of fit. Consider the
(short) SVDs of augmented Loewner matrices

[L Ls] = Y1S1X∗
1,

[
L

Ls

]
= Y2S2X∗

2, (41)

where S1 ∈ R
N×N , S2 ∈ R

N×N , Y1, X2 ∈ C
N×N . The singular values are nonnega-

tive real scalars that give information on the numerical rank of matrices and are stored
on the main diagonal of matrices S1 and S2 as S1 = diag([σ (1)

1 , σ
(1)
2 , . . . , σ

(1)
N ]) and

S2 = diag([σ (2)
1 , σ

(2)
2 , . . . , σ

(2)
N ]).

The matrices Y,X ∈ C
N×r are obtained by selecting the first r columns of the

matrices Y1 and X2. The reduced Loewner system is constructed by projecting the
matrices L,Ls ,V,W with Y∗ and X to the left and respectively to the right as

L̂ = Y∗
LX, L̂s = Y∗

LsX, V̂ = Y∗
V, Ŵ = WX. (42)

The projected Loewner model is given by Σ̂L = (Ŵ, − L̂, − L̂s , V̂). By means
of compression, the pencil λ L̂ − L̂s does not have any infinite eigenvalues. Hence,
Σ̂L is a strictly proper system (its transfer function does not have a polynomial
part). Hence, we can say that, in the modeling stage, the behavior at infinity of the
underlying system is generically lost. We will address this issue in the next sections.

One can construct transformation matrices U∞ and V∞ as described in Section
3 that are used to block diagonalize the pencil λL − Ls . The recovered polynomial
coefficients can be computed similarly as introduced in Section 2.2.2, by replacing
the inversion operator with the Moore–Penrose inversion operator, as follows

pi = WV∞
(
(U∗∞LsV∞)#(U∗∞LV∞)

)i

(U∗∞LsV∞)#U∗∞V, i � 0. (43)

4.2 Themain procedure

In the case of redundant data, significantly large amount of measurements are used
in the modeling step. In this case, the matrix pencil λL − Ls is singular. Instead
of compressing the raw Loewner model as described in (42), we can alternatively
first perform a post-processing procedure to the data in order to extract the required
information.

The main procedure which adapts the Loewner framework to descriptor systems
by preserving the DAE structure is given in Algorithm 1.
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Algorithm 1 The new modified Loewner procedure for preserving the DAE structure
in data - Loewner∞.

Input: A data set composed of sample points and values of the transfer function
evaluated at these points which is partitioned into two subsets:

left : (μi, vi ), i = 1, . . . , N,

right : (λj ,wj ), j = 1, . . . , N .
(44)

1: Rearrange the data into matrix format and construct a raw (possibly) singular
Loewner model ΣL given by (W, −L, −Ls ,V) as in (38–39).

2: Perform a generalized block diagonalization as in Section 3. If the Loewner pen-
cil is regular, use methods from Section 3.1. If the pencil is singular, use the
procedure from Section 3.2.1 for the quadruple (W, −L, −Ls ,V) .

3: Set up a trust interval I = [a, b] ⊆ [1, N]. For each index k0 ∈ I, the estimated
polynomial coefficients are computed.

4: Fix one value k ∈ I for the next steps. For example, one can choose the center
of the interval I. Here, k represents the estimated dimension of the subsystem
corresponding to the polynomial part.

5: Denote with {p1, p2, . . . , ph} the polynomial coefficients corresponding to the
chosen index k. The value h ∈ N is the maximum integer so that |pi | > ρ for all
0 � i � h (here ρ > 0 is a small tolerance value).

6: For all values of ω ∈ {μi |1 � i � N} ∪ {λj |1 � j � N} (or for another
frequency range), subtract the polynomial part Hpoly(ω) = ∑g

i=0 piω
i from the

original measurements. The post-processed data set can be written as

left : (μi, vi − Hpoly(μi)), i = 1, . . . , N,

right : (λj ,wj − Hpoly(λj )), j = 1, . . . , N .
(45)

7: Use the new modified measurements points and values in (45) to construct
another Loewner model ΣL of dimension N, given by (W, − L, − Ls ,V).

8: Project the system ΣL as in (42) and construct a new lower dimensional Loewner
model Σ̂L (let r be its dimension).

9: Reattach a minimal realization Σpoly of the polynomial part Hpoly(s) to the
system Σ̂L and obtain the final version of the post-processed Loewner model
(denoted with Σ̂

new
L ).

Output: The reduced-order Loewner model Σ̂
new
L via the new proposed procedure

Loewner∞.

Lemma 2 The transfer function of the Loewner model ΣL in Step 7, computed as
W(Ls −sL)#

V, can be written in terms of the transfer function of the Loewner model
ΣL in Step 1, i.e., W(Ls − sL)#

V, as follows:

W(Ls − sL)#
V = W(Ls − sL)#

V − Hpoly(s), (46)

for all s ∈ {μi |1 � i � N} ∪ {λj |1 � j � N}.
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Proof For i, j ∈ {1, . . . , N}, let vi = vi − Hpoly(μi), and wj = wj − Hpoly(λj ).
Then, consider the following modified measurement vectors:

V
T = [

v1 v2 · · · vN

] ∈ C
1×N, W = [

w1 w2 · · · wN

] ∈ C
1×N,

the Loewner matrices corresponding to the data in (45) constructed as in (39):

Li,j = vi − wj

μi − λj

, Ls i,j = μivi − λjwj

μi − λj

,

and the matrices M, �,L,R defined as before. The Loewner matrices L and Ls

satisfy Sylvester equations as in (40), i.e.,

ML − L� = VR − LW,

MLs − Ls� = MVR − LW�.
(47)

By multiplying the first Sylvester equation in (47) by s and subtracting it from the
second equation in (47), we get

M(Ls − sL) − (Ls − sL)� = (M − sI)V − LW(� − sI). (48)

Next, setting s = λj and multiplying equation (48) with the j th unit vector ej on the
right, we write:

(M − λj I)(Ls − λjL)ej = (M − λj I)V ⇒ (Ls − λjL)ej = V

⇒ W(Ls − λjL)#
V = Wej = wj = wj − Hpoly(λj )

⇒ W(Ls − λjL)#
V = W(Ls − λjL)#

V − Hpoly(λj ).

(49)

A similar reasoning is used to show that the equality in (46) also holds for the left
interpolation points μi .

Remark 3 A trust interval I (as used in Step 3 of Algorithm 1) is an interval such
that for any k1, k2 ∈ [a, b], the polynomial coefficient estimates corresponding to
k1, i.e., p

(k1)
� , and the ones corresponding to k2, i.e., p

(k2)
� have similar values, i.e.,

|p(k1)
� −p

(k2)
� | < ζ , where ζ > 0 is a small tolerance value. As an example, in Fig. 7,

one can choose the confidence interval to be I = [25, 55], based on the values of the
estimated coefficients.

Remark 4 In Step 4, k is the estimated value denoting the dimension of the subsystem
corresponding to the polynomial part. It is to be noted that this subsystem is not
necessarily in a minimal realization format. In practice, e.g., the MNA example in
Section 5.3.1, this value is chosen to be k = 17, although a minimal realization would
only be two dimensional.

Remark 5 Descriptor systems appear in practical applications mostly with index ν ∈
{1, 2, 3} (the polynomial part is up to a quadratic term). Hence, in such cases, the
value h ∈ N would be less or equal than 2. In all numerical examples in Section 5,
we displayed only the first three estimated coefficients, i.e., p0, p1, and p2. For the
MNA example, by choosing a tolerance value of ρ = 10−10, we included in the
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calculations only the first 2 polynomial coefficients; hence, h = 1 was considered
(since p2 < ρ).

Remark 6 The Loewner system ΣL corresponding to the post-processed data in (45)
is strictly proper provided that the polynomial coefficients are perfectly estimated
(exactly the same as the true coefficients corresponding to the original system Σ).

Remark 7 Provided that the value h is accurately chosen, it is hence assumed that
the polynomial coefficients are given by p0, p1, . . . ph and pi = 0, ∀i > h. A
minimal linear descriptor realization Σpoly = (Cpoly,Epoly,Apoly,Bpoly) of order
h + 1 corresponding to the polynomial part Hpoly(s) is constructed as

Epoly = Jh+1, Apoly = Ih+1, Bpoly = [0 0 · · · 0 1]T , Cpoly = −[ph ph−1 · · · p0],
where Jh+1 is a Jordan block of dimension (h+ 1)× (h+ 1) with 0 eigenvalues, and
Ih+1 is the identity matrix of the same dimension.

5 Experimental results

In this section, we provide numerical results for various descriptor systems by
implementing the algorithms from previous sections. We consider two simple
low-dimensional examples as well as three larger scale benchmarks examples.

5.1 A simple example

Consider the simple transfer function H(s) = 2s + 2 + 4
s−5 , the same as the one

mentioned in example 1. First, choose the following interpolation points μT =[− 4, − 2, 1, 3
]

and λ = [− 3, − 1, 2, 4
]
. It hence follows that the matrices in (35),

example 1 is actually Loewner matrices associated with the left and right sampling
points and transfer function above, i.e., E1 = −L, A1 = −Ls .

Next, choose the same interpolation points but ordered differently, as μT =[− 1, − 2, − 3, − 4
]
, and λ = [

1, 2, 3, 4
]
. Then, put together the Loewner matrices

and restart the procedure for the new matrices E1 and A1, where

E1 = −L =

⎡
⎢⎢⎢⎢⎣

− 11
6 − 16

9 − 5
3 − 4

3

− 13
7 − 38

21 − 12
7 − 10

7

− 15
8 − 11

6 − 7
4 − 3

2

− 17
9 − 50

27 − 16
9 − 14

9

⎤
⎥⎥⎥⎥⎦ , A1 = −Ls =

⎡
⎢⎢⎢⎢⎣

− 13
6 − 35

9 − 16
3 − 17

3

− 2
7 − 43

21 − 25
7 − 29

7
13
8 − 1

6 − 7
4 − 5

2
32
9

47
27

1
9 − 7

9

⎤
⎥⎥⎥⎥⎦ .

Additionally, consider the vectors B1 = V = [ 1
3 − 11

7 − 7
2 − 49

9

]T
and also C1 =

W = [
4 17

3 7 7
]
. Applying again the procedure in Section 3.2.1, we start by analyz-

ing the entries of the main diagonal of matrices Ed
1 and Ad

1 . Note that, by inspecting
Tables 1 and 3, the position of the entries corresponding to the true finite eigenvalue
(λ = 0.2) has shifted from the first to the second place (for the descending ordering).
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Table 3 The diagonal entries
αd

i , βd
i and coefficients γ d

i for
the descending order

αd
i βd

i γ d
i

3.5637 · 10−14 1.4881 · 10−13 2.3912 · 10−1

5.3495 · 10−3 2.6747 · 10−2 0.2

2.6742 · 10−9 2.3409 · 10−1 1.1424 · 10−8

4.8250 · 10−9 4.2237 · 10−1 1.1424 · 10−8

The fact that the singularity corresponding to γ1 = 2.3912 · 10−1 is located on the
first position for descending ordering (and, respectively on the last for the ascending
ordering) influences the accurate recovery of the coefficients. Note that the results
in Table 4 are correct only for k = 2, while in the previous experiment, they were
correct for both k ∈ {2, 3} (see Table 2).

This shows, in particular, the sensitivity of the Loewner framework for different
data sets in addition to the numerical sensitivity of the splitting scheme. That is why,
for the large-scale examples, we will use so-called trust intervals for the k value. This
is done in order to estimate the polynomial coefficients (for different values of k).

Finally, we assume that the sample values of the transfer function H(s) =
2s + 3 + 4

s−5 , evaluated at μT ∪ λ, are affected by additive noise. We assume

the noise level to be 10−2 and the noisy values to follow a standard normal dis-
tribution. We repeat the experiment described above and compute the estimated
polynomial coefficients for k = 2 (the value that should provide correct estimates):
p0 = 2.0623, p1 = 1.8028, p2 = − 0.0428, p3 = − 0.0042, and p4 = 0.0002.
Hence, we conclude that the polynomial part extraction is indeed sensitive to noise.

5.2 An order n = 7 example

Consider a descriptor system of dimension n = 7 described by Eẋ = Ax + Bu,
y = Cx, where

E=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, A=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0

−2 1 0 −2 1 0 −1
1 −2 1 1 −3 1 0
0 1 −2 0 1 −2 1
1 0 −1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
0
1

−1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(50)

Table 4 The estimated
polynomial coefficients p0 p1 p2

k = 4 2.2 1.84 − 0.032

k = 3 2.2 1.84 − 0.032

k = 2 3 2 0

k = 1 − 8.7536 · 107 2.4374 − 6.7854 · 10−8
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The transfer function can be explicitly computed as follows:

H(s) = C(sE − A)−1B = 3s

4
+ 3

2
− 5s3 + 9s2 + 5s − 2

8s4 + 20s3 + 24s2 + 12s + 4
. (51)

Hence, identify the coefficients of the polynomial part as p0 = 3
2 , p1 = 3

4 , and
pk = 0 for k > 1. Note that the pencil λE − A has three eigenvalues at ∞ and four
finite eigenvalues given by the two complex conjugate pairs: − 0.9712 ± 0.8138i

and − 0.2787 ± 0.4834i.
Using the Jordan chain method in Section 3.1.1 for k = 3, the transformation

matrices U∞ and V∞ can be explicitly obtained as

U∞ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0
0 0 0
0 1 0
0 0 3
0 0 0
0 0 −1
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V∞ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −9
0 0 0
0 0 3
0 3 18
0 0 −3
0 −1 −2
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

We can obtain the coefficients of polynomial part as follows:

p0 = −CV∞(U∗∞AV∞)−1U∗∞B = 3
2 ,

p1 = −CV∞(U∗∞AV∞)−1U∗∞EV∞(U∗∞AV∞)−1U∗∞B = 3
4 ,

pk = −CV∞((U∗∞AV∞)−1U∗∞EV∞)k(U∗∞AV∞)−1U∗∞B = 0, k > 1.

Additionally, the ADTF1 method from Section 3.1.2 is applied to the original
matrices in (50). The results can be found in Table 5. For k ∈ {0, 1, 2, 3}, we perfectly
recover the true polynomial coefficients. For k ∈ {4, 5, 6}, the recovered values are
not accurate.

Finally, in what follows, we apply this framework for data-driven splitting of the
polynomial part. We show that the polynomial coefficients can be recovered from
measurements of the transfer function. For example, choose 11 left and 11 right
sample points on the real axis, collected in the vectors μ, λT ∈ R

11,

μT = − 1
2

[
11, 10, . . . , 1

]
, λ = 1

2

[
0, 1, . . . , 10

]
. (53)

By means of the classical Loewner framework in [6], construct an 11th order sys-
tem from measurements, characterized by a singular pencil (A,E). Then apply the
proposed splitting technique to separate this system into two subsystems. We denote
with k the dimension of the subsystem corresponding to the infinite eigenvalues.

Table 5 The estimated polynomial coefficients using the ADTF1 method in Section 3.1.2

ADTF1 p0 p1 p2

k = 6 1.8716 + 0.0500i −0.8709 − 0.0420i 1.3078 + 1.9765i

k = 5 1.4131 − 0.0053i 0.7261 − 0.0077i 0.0548 + 0.028i

k = 4 1.4250 − 0.0841i 0.7242 + 0.0212i 0.0515 + 0.0150i

0 ≤ k ≤ 3 1.5 0.75 0
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Table 6 The estimated polynomial coefficients using the procedure in Section 3.2.1

ADTF2 p0 p1 p2

k = 10 1.6747 − 0.7382i −0.5628 + 0.1558i 1.4716 + 2.0918i

k = 9 1.3495 0.8744 − 0.0568

k = 8 1.4247 + 0.0329i 0.8122 + 0.0182i − 0.0284 − 0.0426i

2 ≤ k ≤ 7 1.5 0.75 0

We vary this value from 2 to 10. The results are collected in Table 6. Note that for
k ∈ {2, 3, . . . , 7}, we perfectly recover the coefficients.

5.3 Descriptor system benchmarks

In this section, we apply the proposed method in Algorithm 1 to the following bench-
marks problems: modified nodal analysis model 1 (MNA-1) [18], semi-discretized
Oseen equations (Oseen) [26], constrained damped mass-spring system (CDMS
system) [35]. The dimension and the index of these systems are collected in Table 7.

In what follows, we apply the proposed procedure in Section 3.2.1 for singular
pencils.

5.3.1 MNA1model

Modified nodal analysis (MNA) is a procedure used in the field of electrical engineer-
ing that determines the circuit’s node voltages and branch currents. It was developed
as a means to overcome the difficulty of representing voltage-defined components in
classical nodal analysis (e.g., voltage-controlled sources).

As described in [18], voltage sources are connected to the network ports to obtain
the admittance matrix of a multiport. The MNA equations are written as Eẋn =
Axn +Bup, ip = Cxn. The ip and up vectors denote the port currents and voltages,
respectively, while v and i are the MNA variables corresponding to the node voltages,
inductor and voltage source currents, respectively. The conductance matrix A and the
susceptance matrix E are given

A =
[−N −G
GT 0

]
, E =

[
L 0
0 H

]
, xn =

[
v
i

]
. (54)

where N,L, and H are the matrices containing the resistors, capacitors, and inductors
values, respectively. Also, G consists of 1, − 1, and 0 entries only. In this framework,

Table 7 Properties of the
benchmark examples MNA-1 CDMS Oseen

Dimension n 578 1001 1557

Index ν 2 3 2
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if the circuit contains passive linear elements only, it follows that the E matrix is
symmetric and positive semidefinite, while B = CT .

In this section, we analyze the MNA-1 system of dimension n = 578 from
[18]. All system matrices of the original system are sparse and the number of
inputs and outputs is m = p = 9. Next, consider instead a SISO-modified system
(Ă, B̆, C̆, 0, Ĕ) for which the system matrices are written in terms of the original
ones, as Ă = 10−4A, Ĕ = 109E, B̆ = Be2, C̆ = eT

2 C. Basically, we do a scaling
of the original pencil λE−A and consider only the second input and output. We can
directly compute the coefficients of the polynomial part of the transfer function as
ptrue

0 = 5.5047 · 106, ptrue
1 = 2.3010 · 103 and ptrue

j = 0, j > 1. Hence, the index
of the system is ν = 2.

First, depict the frequency response of the system in Fig. 1, i.e., the magnitude of
the transfer function H(s) = C(sE − A)−1B evaluated on the imaginary axis, in the
interval [10−2, 101]i.

By inspecting the frequency response, we observe that the dominant oscillations
mainly occur in the frequency range [10−2, 100]i. The next step is to take measure-
ments in a high frequency range and extract the polynomial coefficients from this
data.

Consequently, take N = 40 measurements in the frequency range [102, 106]i
and construct a real-valued 40th order Loewner model (by including the complex
conjugate values in the data set, as performed in [6], page 360). By varying the value
of the index k from 1 to 40, compute the values of pj , j ∈ {0, 1, 2} for each k.
Afterwards, choose the trust interval [10, 25] in which the values of the estimated
polynomial coefficients have similar values for all k’s, as can be observed in Fig. 2.

The relative deviation between the true and estimated coefficients is depicted in
Fig. 3 for p0 and p1 only. The reason for this is because ptrue

2 = 0.
We select the estimated polynomial coefficient values corresponding to the center

of the interval, i.e., to k = 17.
Next, proceed with the remaining steps of Algorithm 1. In the next modeling

step, we are using a different set of measurements. In order to match the oscilla-
tory behavior of the system in the lower frequency range, select 600 logarithmically
spaced points in the interval [10−2, 102]i. Again, construct a real Loewner model of

Fig. 1 The frequency response of the descriptor system
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Fig. 2 The estimated polynomial coefficients of the transfer function for k ∈ [10, 25]

dimension 600. The decay of the normalized singular values corresponding to the
augmented Loewner matrices is presented in Fig. 4.

Finally, we subtract the estimated polynomial part from this Loewner model, com-
press the model to order r = 28 (corresponding to σ28 ≈ 10−2 singular value), and
then reattach the polynomial part given by the estimated polynomial coefficients—a
minimal realization is considered. The dimension of the resulting system after reat-
taching the polynomial part is hence r̃ = 31 (p2 is also taken into consideration).
This is true for the other experiments in this section (in Sections 5.3.2 and 5.3.3).

The frequency responses of the original large-scale model and of the two reduced-
order Loewner models (with and without performing the post-processing step) are
presented in Fig. 5. Notice that there is a clear mismatch between the original
response and the one produced with the classical Loewner approach (which is visible
starting at the frequency value 103).

Additionally, the relative approximation error is depicted in Fig. 5. This was com-
puted using the formula ‖H(iω) − Ĥ(iω)‖/‖H(iω)‖, for ω ∈ [10−2, 106]. For
the two other numerical examples treated in this section, the relative approximation
error in the frequency domain is computed using the same formula (but for different
frequency ranges).

Fig. 3 Deviation between the true and estimated polynomial coefficients p0 and p1
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Fig. 4 Singular value decay of the augmented matrices [L Ls ] and [L ;Ls ]

Note that the advantage of using the new method consists in drastically lowering
the deviation in the high frequency range.

5.3.2 Constrained dampedmass-spring system

For the second benchmark example, we consider the holonomically constrained
damped mass-spring system from [35]. Here, the ith mass of weight mi is connected
to the (i + 1)st mass by a spring and a damper with constants ki and di , respectively,
and also to the ground by a spring and a damper with constants ξi and δi , respec-
tively. Additionally, the first mass is connected to the last one by a rigid bar and it is
influenced by the control input signal u(t). The vibration of this system is described
by a descriptor system as in equation (34) from [35].

We consider the same values for the ξi , δi , ki , and di parameters as in [35] and
choose g = 500 for the dimension of the variables. Hence, by grouping together the

Fig. 5 Frequency response of the original/reduced models + relative approximation error
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Fig. 6 The frequency response (up) and the decay of singular values (down)

position and the velocity vectors into the new x variable, we end up with a descriptor
system of order n = 1001, described by Eẋ = Ax + Bu, y = Cx, where E,A ∈
R

1001×1001 and B,CT ∈ R
1001. As opposed to the original system in [35], where it

was considered that B = eg+1 ∈ R
g and C = [e1 e2 eg−1]T ∈ R

3×g for g � 1 (hence
a system with one input and three outputs), we choose B = CT = [1 1 . . . 1]T ∈
R

1001 and analyze a SISO descriptor system instead.
For the original 1001th order system constructed as described above, we can

directly identify the following coefficients of the polynomial part

ptrue
0 = 23

8
= 2.875, ptrue

1 = 15

2
= 7.5, ptrue

2 = 50, and ptrue
k = 0, for k > 2.

Hence, it follows that the original system is of index ν = 3. Take measurements
corresponding to N = 100 logarithmically spaced sampling points in the frequency
range [10−2, 102]i. Then, construct a real-valued 100th order Loewner model. The
frequency response (restricted to the above sampling interval) of the system is pre-
sented in Fig. 6 together with the singular value decay of the augmented Loewner
matrices .

Again, we vary the value of the index k from 1 to 100 and compute the values
of polynomial coefficients pj , j ∈ {0, 1, 2} for each k. The results are gathered in
Fig. 7. By inspecting this figure, we observe that one can choose, for example, the
trust interval [25, 55].

Fig. 7 The estimated polynomial coefficients of the transfer function for k ∈ [1, 100]
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Next, Fig. 8 shows the deviation between the true polynomial coefficients and the
estimated ones for values of k restricted to the chosen trust interval. Next, we will
apply Algorithm 1 for two such values, corresponding to k1 = 27 and k2 = 40.
Denote with p

(�)
j the estimated polynomial coefficients corresponding to index k�

for � ∈ {1, 2} and j ∈ {0, 1, 2}. The absolute value of the deviation is computed as

ε(�) =
[
|p(�)

1 − ptrue
1 | |p(�)

2 − ptrue
2 | |p(�)

3 − ptrue
3 |

]

{
ε(1) = [1.1600 1.6904 1.933] · 10−2, for k1 = 27,

ε(2) = [8.4913 3.2977 3.1873] · 10−8, for k2 = 40.

In what follows, we construct reduced-order models of order r = 8 (which
corresponds to the singular value σ8 ≈ 10−5) For each of the values k1 and k2, we
compute the modified Loewner reduced model of order r = 8 via the procedure
in Algorithm 1 as well as the reduced model using the classical Loewner model
(of the same order). We also calculate the relative approximation error between the
frequency response of the original large-scale system and that of the reduced models.
The results are depicted in Fig. 9.

As expected, the approximation error is highly dependent on how well the poly-
nomial coefficients are approximated. As it can be observed in the left side of Fig. 9,
the approximation error is significantly larger than that in the right side of the figure
(when applying Loewner∞).

5.3.3 Semi-discretized Oseen equations model

In this section, we apply the new proposed method to a descriptor system obtained
from semi-discretization of the Oseen equations, as performed and thoroughly
explained in [26]. The Oseen equations are related to the linearized Navier–Stokes
equations. The study of these equations is of importance in many flow systems where
one is interested in the behavior of the linearized flow around a steady state.

Fig. 8 The error between the true and estimated polynomial coefficients for k ∈ [25, 55]
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Fig. 9 The relative approximation error of the original frequency response when using the coefficients
corresponding to k1 = 27 (left sub-figure) and to k2 = 40 (right sub-figure)

As presented in [26], after performing a spatial discretization, the dynamics is
described in generalized state space by the equations

E11
d

dt
v(t) = A11v(t) + A12p(t) + B1g(t),

0 = AT
12v(t) + B2g(t),

y(t) = C1v(t) + C2p(t) + Dg(t), (55)

where v ∈ R
nv , p ∈ R

np are the states, g ∈ R
ng are the inputs, and y ∈ R

ny are the
outputs, and E11 is a symmetric positive definite matrix. The next step is to rewrite
the system in (55) as a descriptor system in (1) of dimension nv + np, by employing
the following notation

E =
(
E11 0
0 0

)
, A =

(
A11 A12

AT
12 0

)
, B =

(
B1
B2

)
, C = (

C1 C2
)
, (56)

and x(t) =
(
v(t)
p(t)

)
. Hence, rewrite (55) as

E
d

dt
x(t) = Ax(t) + Bg(t), Ex(0) = 0, y(t) = Cx(t) + Dg(t). (57)

In the following, perform a discretization scheme corresponding to the finite ele-
ment grid in the upper part of Fig. 12 (as in [26]). This corresponds to the following
dimension values of the variables in (55): nv = 1352, np = 205, ng = 6 and ny = 2.

Hence, the original descriptor model constructed as in [26] has dimension n =
1557, 6 inputs, 2 outputs, and is of Hessenberg index ν = 2. The coefficients of the
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Fig. 10 The frequency response (up) and the decay of singular values (down)

polynomial part of the transfer function can be explicitly computed in terms of the
matrices in (56) as

ptrue
0 = D − C1E

−1
11 A12(AT

12E
−1
11 A12)

−1B2 − C2(AT
12E

−1
11 A12)

−1AT
12E

−1
11 B,

ptrue
1 = −C2(AT

12E
−1
11 A12)

−1B2, ptrue
k = 0, k � 2. (58)

In the numerical simulations, consider only the first input and the second output.
Hence, we analyze an index 2 descriptor system with original polynomial coefficients
ptrue

0 = 16.6241 and ptrue
1 = 7.9211.

Proceed to choosing data as transfer function measurements corresponding to
N = 40 logarithmically spaced sampling points in the frequency range [101, 106]i.
Afterwards, construct a real-valued 40th order Loewner model. The frequency
response (restricted to the above sampling interval) of the system is presented in
Fig. 10 together with the singular value decay of the augmented Loewner matrices.

Next, vary the value of the index k from 1 to 40 and compute the values of poly-
nomial coefficients pj , j ∈ {0, 1, 2} for each k. The results are restricted to the trust
interval [6, 26] and are depicted in Fig. 11.

Choose the polynomial coefficients corresponding to k = 16 (middle of the inter-
val). Then, the deviation between the true coefficients and the estimated ones is
computed as ε(1) = [7.1182 · 10−4 2.4363 · 10−10 1.0523 · 10−14]. We compute

Fig. 11 The estimated polynomial coefficients for k ∈ [6, 26]
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Fig. 12 Frequency response comparison and approximation error

reduced-order models of order r = 12 (which corresponds to the singular value
σ12 ≈ 10−12). We compare the frequency response of the original system with that
of the two reduced models of order 12 (computed via the classical Loewner approach
and the new modified approach) in Fig. 12. Again, notice that there is a clear mis-
match between the original response and the one of the classical Loewner (which is
visible starting at around 103i). The response computed with the new method fol-
lows the original curve. Moreover, in the right side of Fig. 12, we present the relative
approximation error between the original and reduced-order models. Clearly, the new
method performs better in the high frequency range.

Finally, we perform a time domain simulation and compute the observed output
y(t) by means of an explicit forward Euler-type scheme. The control input is given
by u(t) = 0.2 sin(10πt) + 0.3 sin(4πt)e−t , while the time horizon is chosen to be
[0, 4]s for this experiment. We consider zero initial conditions.

Fig. 13 Simulation in the time domain: the observed output (up) and the approximation error (down)
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In the upper part of Fig. 13, we depict the observed output corresponding to the
original large-scale system as well the output of the reduced-order system compute
via the new proposed method. Notice that the two curves are practically indistin-
guishable. Additionally, we compute the absolute error between the two observed
plots. The result is presented in the lower part of Fig. 13. We observe that the devia-
tion between the two curves is indeed small. The purpose of this experiment was to
test the accuracy of the proposed method outside the frequency domain for applica-
tions that are primarily considered in time domain (e.g., differential equations such
as the Oseen equations).

6 Conclusion

The philosophy behind the classical Loewner framework is that by means of
directly compressing the surrogate data model (put together solely from the available
measurements), we obtain a reduced-order model that matches the interpolation con-
ditions. In this work, we have addressed an open issue commonly encountered in this
framework: the fact that the behavior at infinity of the original system is typically not
matched by the reduced system.

We propose an algorithm that is based on existing methods of splitting the raw
data Loewner model into two subsystems: one corresponding to the strictly proper
part and one corresponding to the polynomial part. The splitting can be done for both
regular and singular pairs of Loewner matrices.

Afterwards, we estimated the polynomial coefficients of the transfer function by
setting up a trust interval (in which the coefficients have more or less constant values).
We have shown that the choice of the coefficients plays a crucial role in the quality
of approximation.

Three numerical test cases were chosen amongst well-established benchmark
example from the literature. They show the practical applicability of the new
proposed method to medium- and large-scale problems.

Finally, there are some open issues and possibly interesting research directions.
These include investigating other splitting techniques (for singular pencils) as well
as incorporating the case of noisy data in the process (and studying/quantifying
the sensitivity to noise of the estimated polynomial coefficients). Finally, the pro-
posed procedure could be extended to DAE systems with nonlinearities (e.g., bilinear
control systems) .
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