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Abstract

This work describes Barnes-Hut Rigid Gravitational Ap-

proach (BH-RGA) — a new rigid point set registration

method relying on principles of particle dynamics. Inter-

preting the inputs as two interacting particle swarms, we

directly minimise the gravitational potential energy of the

system using non-linear least squares. Compared to solu-

tions obtained by solving systems of second-order ordinary

differential equations, our approach is more robust and less

dependent on the parameter choice. We accelerate other-

wise exhaustive particle interactions with a Barnes-Hut tree

and efficiently handle massive point sets in quasilinear time

while preserving the globally multiply-linked character of

interactions. Among the advantages of BH-RGA is the pos-

sibility to define boundary conditions or additional align-

ment cues through varying point masses. Systematic exper-

iments demonstrate that BH-RGA surpasses performances

of baseline methods in terms of the convergence basin and

accuracy when handling incomplete, noisy and perturbed

data. The proposed approach also positively compares to

the competing method for the alignment with prior matches.

1. Introduction

Alignment of point sets provided in different reference

frames is an essential algorithmic component in multiple

fields including but not limited to visual odometry [33], 3D

reconstruction and augmented reality [40], [39], robot nav-

igation and localisation [46], computer graphics [48], CAD

modelling [52], cultural heritage [8] and medical technol-

ogy [11, 25]. Even though rigid point set registration is

a well-studied area [6, 11, 43, 20, 12, 18, 25, 50, 41, 38,

14, 21, 15], multiple challenges are remaining — on the

top of the list are the broader basin of convergence, the ro-

bustness to disturbing effects in the samples (noise, missing

data, clustered outliers) and handling of massive point sets.

We are considering rigid alignment (RA) relative to a fixed

reference frame R (perhaps an observer’s reference frame),

and coordinates of one of the point sets X are known in R.

* supported by the ERC Consolidator Grant 4DReply (770784) and the

BMBF projects DYNAMICS (01IW15003) and VIDETE (01IW18002).

Figure 1: An overview of our BH-RGA approach. In every external itera-

tion, we compute a Barnes-Hut tree for the reference and template jointly

and specify an optimisation problem. Next, an NLLS solver runs for a few

internal iterations while requiring O(M logN) time to approximate grav-

itational potential energy of globally multiply-linked particle interactions.

We refer to X as a reference. The objective of RA is the

recovery of a non-injective, non-surjective correspondence

function f : Y → X together with the rigid transformation

parameters, i.e., rotation R and translation t (6 DoF) regis-

tering the template point set Y to X .

All RA techniques can be divided into local and

multiply-linked policies. An RA method is called globally

multiply-linked if and only if every point of X interacts with

every point of Y , with an example of the recently proposed

particle dynamics based gravitational approach (GA) [21].

In GA, every point of Y interacts with every point of X
through a force field. The method was shown to be more

robust to large amounts of noise. This robustness comes

at the cost of quadratic complexity and parameter sensitiv-

ity which impedes its applicability to real-world large and

dense point sets. Moreover, the solution based on physical

simulation is slow and unstable. We believe that consider-

able improvements are possible in the field of physics-based

RA. In practical applications, we are interested in fast con-

vergence and well-posedness with respect to the parameter

settings, and less in the physically accurate modelling. On

the other hand, feasible acceleration techniques for parti-

cle dynamics based RA remained unexplored so far and are

worth to investigate.

Contributions. In the proposed exposition, we present a

stable, robust and accelerated globally multiply-linked par-

ticle dynamics based RA approach and overcome the limi-

tations of previous works, see Fig. 1 for an overview. Re-

call that behind the scenes, GA finds transformations corre-
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sponding to the locally minimal gravitational potential en-

ergy (GPE). Along with that, the physically accurate GPE is

not the optimal form to minimise by general-purpose itera-

tive optimisation techniques (e.g., Gauss-Newton method).

Thus, we first apply a negative elementwise recipro-

cal transform (Sec. 4) and enable efficient solution in the

framework of non-linear least squares (NLLS). The pro-

posed transform changes the form of the energy functional

to a weighted sum of squared residuals and inverts physics

while preserving the advantages of multiply-linked parti-

cle dynamics (e.g., notion of the particle mass). Thanks

to the new form of GPE, optimisation requires fewer itera-

tions and can be performed with a general-purpose Gauss-

Newton solver, thus eliminating the need for the explicit up-

dates of forces, acceleration and displacements. Moreover,

the number of parameters is reduced by the factor of three

while showing a wider convergence basin and outperform-

ing the baseline GA [21] in the accuracy.

Second, we adopt an acceleration technique based on

the idea of Barnes and Hut [5] initially developed for N -

body simulations [1] (Sec. 4.2). Applied to RA, a Barnes-

Hut (BH) tree allows to efficiently handle large point sets

with hundreds of thousands of points while preserving the

globally multiply-linked nature of interactions. In other

words, this happens not at the expense of constraining inter-

actions to local vicinities but rather by accumulating contri-

butions of reference points into clusters. The BH tree en-

compasses multiple extractable representations of X with

spatially varying cluster configurations.

We call the new method Barnes-Hut Rigid Gravita-

tional Approach (BH-RGA). Finally, we design a set of

systematic tests for RA with heightened complexity and

variety. We compare BH-RGA to multiple RA methods

[6, 18, 38, 32, 21, 23] on our extensive evaluation bench-

mark and apply it to real data originating from cultural her-

itage and a lidar sensor (Sec. 5).

2. Related Work

Early point set registration algorithms were motivated

by emerging 3D scanners producing partial point clouds

that need to be aligned. The seminal iterative closest point

(ICP) algorithm for aligning two point clouds [6, 11] al-

ternates between transformation estimation [28, 29] and lo-

cal correspondence inference [17]. Even though ICP is

easy to implement, its fundamentally heuristic local corre-

spondence search makes it prone to erroneous local conver-

gence if badly initialised, and sensitive to outliers. Different

improvements were subsequently proposed for ICP, rang-

ing from accelerating policies for nearest neighbour search

[26, 41] and relaxation of one-to-one correspondences [20]

to more efficient optimisation schemes [45, 18].

Another class of methods models source and target point

clouds as probability density functions [12, 38, 32], such

as Gaussian Mixture Models (GMMs). Coherent Point

Drift (CPD) [38] explicitly incorporates a model of uniform

noise. A wider convergence basin for alignment was ob-

tained by Gaussian mixture decoupling [16] or combining

GMM representation and continuous domain mapping with

a support vector machine [10]. The multiply-linked Kernel

Correlation (KC) approach minimises the Renyi’s quadratic

entropy of the joint system of the reference and the trans-

formed template [50]. In contrast to BH-RGA, only local

neighbourhoods are involved in one-to-many interactions.

More recently, approaches relying on analogies to phys-

ical processes gained attention [14, 21, 3]. Deng et al. cast

point sets into the Schrödinger distance transform represen-

tation, and align them by minimising a geodesic distance

on a unit Hilbert sphere [14]. Golyanik et al. [21] interpret

point sets as rigid swarms of particles with masses moving

in a gravitational force field. An optimal alignment corre-

sponds to the state of minimal GPE of the system. Quadratic

complexity and parameter sensitivity impede applicability

of GA in practice. We develop the idea of global multiply-

linking further and accelerate all-to-all interactions with a

BH tree resulting in quasilinear computational complexity.

We are altering the law of particle dynamics and simulate

an inverse world. In the inverse world, a state with locally

optimal GPE can be found iteratively by NLLS more easily.

Thus, we remove viscosity (an energy dissipator in GA),

and the gravitational constant becomes redundant as a mul-

tiplicative factor in the energy.

Large point sets in RA are often treated by subsampling

[25], and rarely raw, let alone in the globally multiply-

linked fashion. Some methods naturally allow embedding

of prior matches [6, 23]. Similarly to GA, BH-RGA uses

varying masses to define different boundary conditions.

Particle masses can be set proportional to the reliabilities of

superimposed prior correspondences. Some methods addi-

tionally use colours as an alignment cue [13]. In BH-RGA,

point intensities can be likewise mapped to masses.

3. Newtonian Gravitational Approach [21]

Consider globally multiply-linked gravitational align-

ment of two point sets, with the reference [xj ] = X ∈
R

D×N , j ∈ {1, . . . , N} and the template [yi] = Y ∈
R

D×M , i ∈ {1, . . . ,M}. N and M denote the number

of points in the reference and template, respectively, and D
is point set dimensionality. The objective is to recover the

parameter set ϑ = {R, t}, i.e., rotation R (R−1 = RT,

det(R) = 1) and translation t aligning Y to X. In [21],

point sets are aligned by minimising the mutual gravita-

tional potential energy (GPE) U of the corresponding sys-

tem of particles in the force field induced by X:

U(R, t) = −G
∑

i,j

myi
mxj

‖Ryi + t− xj‖2 + ǫ
, (1)
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where myi
and mxj

denote masses, G is the gravitational

constant and ǫ is a softening parameter for preventing lo-

cal near-field singularities. For the reasons stressed in [24],

we do not include scaling in (1) and our energy functionals

(5) and (9). Golyanik et al. [21] minimise (1) implicitly by

updating the forces ~fi acting on particles yi, accelerations

(using Newton’s second law of motion ~fi = myi
~ai), veloc-

ities vt+1
i and individual point displacements dt+1

i [1]:

~fi = −Gmyi

∑

j

mxj

(

‖yi − xj‖
2
+ ǫ2

)−3/2
n̂i,j − ηvti ,

(2)

vt+1
i = vi +∆t

~fi
myi

and dt+1
i = ∆t vt+1

i . (3)

In (2), η denotes a dissipation constant which determines

the portion of the kinetic energy which is dragged from the

system per template particle. In (3), ∆t is the the forward

integration step (time interval of the simulation). In every it-

eration, once updated, the unconstrained displacements are

added to the current positions. A consensus rigid transfor-

mation is found using Procrustes analysis [29], which re-

lates the previous and current poses. The algorithm con-

verges when the difference in the GPE of two last successive

system states is below some small threshold ρE or termi-

nates when the maximum number of iterations is reached.

4. The Proposed Approach

4.1. Our Gravitational Potential Energy Functional

GPE (1) includes a reciprocal relation and is minimised

implicitly by ordinary differential equations (ODE) of sec-

ond order by updating forces acting on the template parti-

cles, point accelerations and displacements. The forces are

inversely proportional to distances, and at the optimal align-

ment, the GPE is limited by −∞. For the transformation

parameters R and t to converge, additional regularisation

constants are introduced in (2), i.e., softening distance ǫ to

avoid near-field singularities, and an energy dissipation con-

stant η to, de facto, prevent infinite oscillations. The com-

bination of all these properties (reciprocal relation, regular-

ising energy dissipation term, ǫ) makes GA ill-posed with

respect to the parameter values. Thus, every scenario de-

mands different parameters — otherwise, the method will

not converge. Another disadvantage of the implicit solution

with second-order ODEs is that a large number of iterations

is required until convergence (300− 1000 iterations are not

rare). Moreover, R is updated from unconstrained point

displacements regularised by Procrustes fitting. Ideally, we

would like to optimise directly in the SO(D) group.

We propose to directly optimise a GPE and avoid im-

plicit solution by the second-order ODEs. Moreover, we

eliminate all disadvantages of (1) and reduce the number of

parameters while preserving the advantages of gravitational

alignment. Since we are solving a computer vision prob-

lem and are not interested in accurate physical simulations,

we are free to alter laws of simulated physics, as long as it

brings us closer to the desired properties.

Consider a negative elementwise reciprocal transform

operator η−(·) which acts on every element c of an arbi-

trary sum or a vector as η−
(

− 1
c

)

= c. η−(·) preserves

function monotonicity and is reversiblei. We apply η−(·) to

(1) and obtain:

ξ−
(

U(R, t)
)

=
∑

i,j

1

Gmyi
mxj

‖Ryi + t− xj‖2 + ǫ.

(4)

Eq. (4) changes the model of the simulated world. In the in-

verse world, the potential between two particles is inversely

proportional to the product of their masses and directly pro-

portional to the distance between the points. The meaning

of a mass has changed — now, the mass is comprehended

as a property of the matter so that the less its value, the

more significant is the interaction. Nevertheless, we can

preserve the notion of mass and replace 1
mold

yi

= mnew
yi

and

1
mold

xj

= mnew
xj

. Note that the softening parameter ǫ can be

omitted, due to the vanished near-field singularities. More-

over, we get rid of G because it is a global multiplicative

constant in the energy. Thus, our final form of GPE E isii

E(R, t) =
∑

i

∑

j

myi
mxj

‖Ryi + t− xj‖2 . (5)

With the new GPE (5), the optimal alignment is still

achieved when GPE is locally minimal, while there is no

reciprocity. It is noteworthy that in both cases, i.e, U(R, t)
and ξ−

(

U(R, t)
)

, the further are two particles apart from

each other, the higher is the GPE between them:

lim
‖RY+T‖

F
→‖X‖

F

U(R, t) = −∞, and (6)

lim
‖RY+T‖

F
→‖X‖

F

ξ−
(

U(R, t)
)

= 0, (7)

where ‖·‖F denotes Frobenius norm, and we use a short-

hand TD×M =
[

t t . . . t
]

. Note that (5) still repre-

sents a globally multiply-linked GPE, with no explicit en-

coding of correspondences. These two factors reveal the

deceptive visual similarity of the transformed GPE with the

classic ICP formulation [6]. The further difference is that

ICP requires alternating between correspondence and trans-

formation updates, whereas (5) does not change throughout

the optimisation (when not accelerated).

iReciprocal transform is one of the widely-used transforms in signal

processing and applied mathematics [7]. It has several modifications such

as reciprocal-wedge transform in image processing [49].
iiNext, we simplify the notation for masses and omit the superscript new.
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Figure 2: Building a BH tree exemplified. Each point is of different shape

and colour for visualisation purposes. A new element either resides in

a non-occupied leaf or initiates cell partitioning (while updating cluster

masses and centres of mass) until it is placed in its own external leaf.

4.2. Acceleration with a BarnesHut 2DTree

To surpass the quadratic computational complexity while

computing potentials between points, we introduce a new

variant of a BH tree or a 2D-tree which is applied in the

acceleration of N -body problems in astrodynamics [5]. We

approximate exhaustive interactions of every template point

yi with N reference points by interaction with O(logN)
many clusters which are fetched from the BH tree which

we build. Whereas previous approaches de facto restrict

interactions to local neighbourhoods [50, 38], we preserve

global multiply-linking in our approximation.
Suppose yi interacts with K sufficiently distant particles

xk, k ∈ {1, . . . ,K} and xk are sufficiently close to each
other. Let us denote ŷi = Ryi + t for briefness. Consider
that variance of the distances from yi to every xk is below
some small ζ. If located sufficiently far away, the total im-
pact of all elements xk in a volume of space V to yi can
be well approximated by the impact of the combined single
particle x̃. The mass of x̃ equals to the mass integral of xk

over V , and the position of x̃ equals to the centre of mass
of the elements xk in V [5]:

K
∑

k=1

myi
mxk

‖ŷi − xk‖2 ≈ myi

[

K
∑

k=1

mxk

]

‖ŷi − x̃‖2 . (8)

Building BH Tree. We build a joint BH tree on the point

set union X ∪ Y . Since template points are not influenced

by each other, we set all myi
to zeroes. This allows us to

include all points of the template into the tree but exclude

their effect (mass) to other template points while calculating

potentials. If X and Y contain duplicated points, the subdi-

vision in a BH tree will continue infinitely long. In practice,

the depth of a BH tree is restricted to avoid infinite splits.

A BH tree is initialised as a root node with 2D empty ex-

ternal nodes. An insertion of every new yi always results in

a new leaf (an occupied external node) and can initiate clus-

ters (internal nodes). The size of daughter cells is always

the half size of the parent cell along all dimensions. Every

yi affects the mass and the centre of mass of every cluster

which includes yi. Fig. 2 schematically visualises BH tree

building. We strictly follow the insertion rules proposed in

[5]. Additionally, see our supplement for more details.

Using BH Tree. The potential at position yi is calculated

by traversing the BH tree starting from the root towards

the leaves and requires a single parameter — the distance

threshold γ. Suppose l is the size of the current examined

cell, and µ is the distance from yi to the centre of the cell.

If l / µ < γ
−1, then the cell’s influence on yi is accumula-

tive. Otherwise, subcells on the next level are visited, and

the examination is performed recursively until the condition

l / µ < γ
−1 is satisfied or the tree is entirely traversed [5].

To obtain a non-zero potential for the current yi, we re-

store its original mass. After the potential is computed, we

set myi
again to zero in order to avoid interaction between

template points. The earlier the node is used, the higher is

the amount of individual particle-particle interactions which

are bypassed. The time and memory requirements of BH

tree building for a given X ∪ Y depend on how homoge-

neous point distribution is and have an upper bound, and

the speed of GPE calculation depends on γ (see Sec. 4.4).

Fig. 3 visualises cluster configurations fetched during

registration for a single template point and one instance of

the clean-500 experiment (see Sec. 5.1) with γ = 5.0. The

input point clouds contain 817 points each, and the cardinal-

ity of the configurations fetched from the BH octree lies in

the range [49; 62] points. Some of the clusters are massless

and can be removed from the respective configuration as

they comprise only massless template points. Distinct is the

trajectory of the exemplary point over all iterations. Some

distant particles are joined into clusters which are persis-

tent over all iterations, whereas compositions of other clus-

ters change dynamically from iteration to iteration while the

template undergoes a rigid transformation.

GPE with a BH tree. The final GPE of BH-RGA with 2D-

tree acceleration for particle interactions reads

E(R, t) =
∑

∀yi

myi

∑

kj∈K(yi)

mkj
‖Ryi + t− kj‖2 , (9)

where kj ∈ K(yi) denotes fetchable representations of the

reference for every yi with clusters kj and masses mkj
.

4.3. Gravitational Potential Energy Optimisation

The proposed approach is summarised in Alg. 1. BH-

RGA minimises a sum of squared residuals fr(ϑ) =

myi
mkj

‖Ryi + t− kj‖
2
2 weighted by the product of

masses. The number and composition of residuals depend

on the BH tree configuration and γ. Since minimising GPE

(9) is an overconstrained non-linear optimisation problem,

we solve it in the least-squares sense with the Levenberg-

Marquardt (LM) algorithm [34, 36] by iteratively linearis-

ing the GPE in the vicinity of the current solution. For the
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Figure 3: Clusters fetched during alignment (clean-500 experiment, see Sec. 5.1) from a BH octree: a/ cluster configuration at the beginning; b/ overlayed

cluster configurations for all seven iterations. The colours in a/ and b/ encode the distance to the exemplary template particle (the darker, the further away),

and massless clusters are shown in black; c/ cluster configuration in the first iteration, for a single template point (shown as a triangle) and three different γ

values. The colour scheme is given on the right. Each colour encodes a mass range of the cluster. Initially, all points were assigned unit masses.

Algorithm 1 Barnes-Hut Rigid Gravitational Approach

Input: reference X ∈ R
D×N and template Y ∈ R

D×M

Output: rigid transformation ϑ = {R, t} aligning Y to X

1: Initialisation: R = I, t = 0; masses myi
and mxj

, the

distance threshold γ for cluster fetching from a 2D-tree

2: while not converged do

3: build a 2D-tree on the union of point sets {X,RY +T},

TD×M =
[

t t . . . t
]

4: for every template point yi do

5: fetch a set of clusters K(yi) from the 2D-tree

6: end for

7: minimise (9), i.e., the GPE E(R, t) =
∑

∀yi
myi

∑

kj∈K(yi)
mkj

‖Ryi + t− kj‖ǫ
with non-linear least squares

8: end while

higher resistance to outliers, we apply Huber loss in the

evaluation of every fr(ϑ) defined as:

‖a‖ε =

{

1
2a

2, if |a| ≤ ε

ε(|a| − 1
2ε), otherwise.

(10)

The BH tree is renewed after every successful ∆ϑ update,

and the objective is formulated for the new set of fr(ϑ) in

every external iteration. The number of internal LM itera-

tions is kept in the range [3; 10], see Fig. 1. BH-RGA con-

verges when the difference in two consecutive GPE values

is below some threshold ρE .

4.4. Computational Complexity

Building a BH tree jointly for the union {X ,Y} in every

iteration is performed in O((M + N) log(M + N)) time.

The complexity of fetching a set of clusters from the ref-

erence for one template point is O(logN). In total, this

operation is performed for all M template points, and we

arrive at O(M logN). Thus, the computational complexity

of BH-RGA is O((M + N) log(M + N) + M logN) ≈
O(M logN) (assuming M∼N ). This is a significant im-

provement compared to the quadratic complexity of GA

[21], especially for large point sets.

4.5. Defining Boundary Conditions With Masses

Setting varying masses of template and reference points

in BH-RGA allows for different effects such as embedding

of prior correspondences, additional cues and counterbal-

ancing inhomogeneous point densities.

Sparse Prior Matches. Different masses in BH-RGA can

encode prior correspondences as the optimal alignment is

more likely when points with larger masses are close to each

other. Suppose (i, j) ∈ Nc ⊂ N
2 is the set of points for

which correspondences are known in advance. The GPE of

BH-RGA which considers prior matches is then specified as

Ep(R, t) =

{

E(R, t) as in (9), ∀yi : i /∈ Nc,

mp
yi
mp

xj
‖Ryi + t− xj‖2 , else,

(11)

with mp = mp
yi

= mp
xj

being, as a rule, several orders of

magnitude larger than default masses (depending on the to-

tal mass distribution and the reliability of prior matches).

Note that for points in Nc, multiply-linking and cluster

fetching are avoided. We refer to anchor points as two sub-

sets of X and Y for which it is known that they correspond

among each other. Anchor points can be embedded into

BH-RGA by setting their masses to mp, with no changes in

(9). Thus, the effect of anchor points in BH-RGA is closer

to alignment in alignment or a hierarchical registration.

Point Colours. Additional alignment cues such as point

colour can be converted to masses in BH-RGA. For the

GPE to be locally minimal in this setting, points with simi-

lar masses have to coincide or be close to each other.

Handling Varying Point Densities. Handling of point sets

with inhomogeneous densities has been indicated as chal-

lenging for many approaches, with specialised techniques

and pre-processing steps (such as re-sampling) required to

handle the setting efficiently [30]. For BH-RGA, we pro-

pose to normalise total point mass per unit volume in linear

time. In volumetric mass normalisation (VMN), the bound-

ing box of a point set is split into multiple non-overlapping

voxels, and in every voxel, the pre-defined mass is uni-

formly distributed among all points belonging to it.
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5. Experiments

In this section, we describe the evaluation methodology

and results. BH-RGA is implemented in C++ with eigen3

[27] and Galois [42] libraries. For NLLS, we use ceres

solver [2]. The experiments are performed on a system

with 32 Gb RAM and quad-core Intel i7-6700K processor

running at 4GHz. We compare our BH-RGA to Iterative

Closest Point (ICP) [6], LM-ICP [18], Coherent Point Drift

(CPD) [38], GMM Registration (GMR) [32] and GA [21].

CPD and GMR are evaluated both as 6 DoF (R, t) and 7

DoF (R, t and scale s) variants. We also compare BH-

RGA against rigid Extended CPD (E-CPD) guided by prior

matches [23]. ICP is taken from the Matlab repository [51],

and implementations of several methods are publicly avail-

able [37, 31, 35]. In all experiments, we report the mean

root-mean-square error (RMSE) and the standard deviation

of the RMSE denoted by σ.

5.1. Quantitative Evaluation

Main Tests. In the tests with synthetic data, we use a sub-

sampled Stanford bunny [47]. In the first clean-500 test, we

sample the 3D rotation space by the angular displacement

of 2π
10 radians and synthesise 500 different initial configura-

tions (the duplicated states are avoided). In this experiment,

we test the methods for their ability to resolve rotation in

scenarios with noiseless data. In contrast, the second test

is designed to evaluate the ability of RA to converge under

severe amounts of noise. We add 100% of uniform noise

to the clean-500 and obtain N500-U100 dataset. The range

of the noise generating function is a bounding sphere of the

template. Several methods demonstrate poor performance

on N500-U100, and we also generate N500-U50 dataset

with 50% of uniform noise according to the same rule.

Next, we choose a single initial configuration which can

be successfully resolved by all methods and add three differ-

ent noise patterns to the template — 100% of uniform noise,

100% of Gaussian noise (the range volume is the same as in

N500-U100) and 100% of the Gaussian noise with the mean

values coinciding with the template point locations. The re-

sulting datasets are abbreviated as 100U, 100G and 100GS,

respectively. Table 1 summarises the outcomes of the ex-

periments with the new datasets. If RMSE is below 0.1,

the registration is assumed to succeed. This value is not set

arbitrarily — in the case of successful alignments, RMSE

was, in most cases, much lower than 0.1. Otherwise, it was

in most cases considerably larger than 0.1.

Upon our expectation, BH-RGA is not the most accurate

method on the clean-500 dataset (it is the second-best re-

garding the success rate). Perfectly matching data is, how-

ever, not common in practical applications. With an in-

creasing noise, the relative accuracy and performance of

BH-RGA compared to all other methods increases. While

CPD (7 DoF) achieves a lower RMSE than BH-RGA on

clean-500, the situation inverts on N500-U50 and N500-

U100, with the success rates of BH-RGA close to those

of CPD (and the lowest RMSE compared to CPD). At the

same time, ICP, LM-ICP, CPD (6 DoF) and GMR consid-

erably lower their success rates on N500-U50 and N500-

U100. BH-RGA was the only successful method on U100

— it resolves all cases with the lowest RMSE. The second-

best method is CPD (7 DoF, 48 cases out of 50), while

demonstrating a 50% to 66% higher RMSE on N500-U100

and U100, respectively. GMR is able to hold on par with

ICP/LM-ICP only in the 6 DoF mode. On G100 and GS100,

most methods successfully recover transformations for all

cases, except GMR (6 DoF) and GA which recover 52%,

25%, 2% and 20% of transformations, respectively.

The performance of baseline GA [21] in our tests is, in

most cases, inferior to the results of other methods. Our

experimental setting is different from the one proposed in

[21] where the angle of initial misalignment is randomly

selected in the range [0; π
2 ]. Golyanik el al. [21] report that

GA was starting to fail in the angular misalignment range

[π4 ,
π
2 ]. In our clean-500 and N500- experiments, the angles

are sampled with the 36◦ step implying that starting from

the second value (out of ten), the angle is always ≥ 72◦.

Regarding U100, G100 and GS100, the excessive amount

of noise hinders GA to converge, though the angle of initial

misalignment is in the convergence basin of GA.

Perturbed Data. Next, we propose a test for evaluating

how robust are the methods to the corrupted data — the

U256 and G256 experiments. We perturb template points

with uniform and Gaussian noise. In total, there are 256
magnitude indexes generating states with the increasing de-

gree of perturbation. The maximum displacement in every

state is equal to the scaled magnitude index times the length

of the bounding box of the object in the x-direction. In both

experiments, no point of the template physically coincides

with any reference point at the optimum. RMSE between

the reference and the template transformed by the recov-

ered R, t is reported in Table 2. CPD and GMR have higher

RMSE than ICP and BH-RGA, i.e., both probabilistic meth-

ods are sensitive to point perturbations, which agrees with

our expectations. ICP shows the lowest RMSE. Especially

for small perturbations, conditions for ICP are optimal. BH-

RGA slightly concedes to ICP as its RMSE is a little higher

for small perturbation magnitudes. On the other side, BH-

RGA has the smallest σ.

Prior Matches and Anchor Points. We repeat the N500-

U50 test with up to three prior matches and anchor points,

and compare BH-RGA to Extended CPD (E-CPD) [23],

see Table 3 for the summary. The latter approach is a

correspondence-conditioned CPD variant. Especially with

only one or two reliable prior matches, E-CPD has advan-

tages [23]. Thus, CPD with no prior matches resolves 17%
of the cases and its success rate increases to 18% and 75%
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Table 1: Summary of the quantitative evaluation of the compared methods on clean-500, N500-U50, N500-U100, U100, G100 and GS100 datasets.

methods and metrics clean-500 N500-U50 N500-U100 U100 G100 GS100

ICP [6]
success (in %) 62 (12.4%) 36 (7.2%) 19 (3.8%) 33 (66%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 0.005 (0.016) 0.022 (0.3) 0.042 (0.031) 0.091 (0.081) 0.0070.0070.007 (0.0020.0020.002) 0.0020.0020.002 (5E5E5E-444)

LM-ICP [18]
success (in %) 123 (24.6%) 82 (16.4%) 72 (14.4%) 49 (98%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 0.002 (6.3E-4) 0.015 (0.009) 0.023 (0.017) 0.025 (0.021) 0.0060.0060.006 (0.0030.0030.003) 0.0030.0030.003 (0.0010.0010.001)

CPD (7 DoF) [38]
success (in %) 130 (26%) 128128128 (25.6%25.6%25.6%) 109109109 (21.8%21.8%21.8%) 48 (96%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 0.04 (6E-5) 0.0640.0640.064 (0.0030.0030.003) 0.0880.0880.088 (0.0030.0030.003) 0.098 (0.066) 0.0270.0270.027 (1.7E1.7E1.7E-333) 0.0460.0460.046 (1.7E1.7E1.7E-333)

CPD (6 DoF) [38]
success (in %) 143143143 (28.6%28.6%28.6%) 98 (19.6%) 62 (12.4%) 48 (96%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 0.0060.0060.006 (0.0090.0090.009) 0.025 (0.014) 0.034 (0.017) 0.061 (0.148) 0.010.010.01 (0.0030.0030.003) 7.5E7.5E7.5E-333 (2.3E2.3E2.3E-333)

GMR (7 DoF) [32]
success (in %) 126 (25.2%) 113 (22.6%) 0 (0%) 0 (0%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 7E-5 (8E-5) 0.084 (0.005) n / a n / a 0.040.040.04 (7.5E7.5E7.5E-333) 1.5E1.5E1.5E-333 (4.7E4.7E4.7E-444)

GMR (6 DoF) [32]
success (in %) 131 (26.2%) 79 (15.8%) 87 (17.4%) 36 (72%) 26 (52%) 25 (25%)

RMSE (σ) 8E-5 (2E-4) 5E-4 (2E-4) 6E-4 (2E-4) 0.16 (0.077) 0.37 (0.4) 0.37 (0.38)

GA [21]
success (in %) 21 (4.2%) 6 (1.2%) 3 (0.6%) 19 (38%) 1 (2%) 10 (20%)

RMSE (σ) 0.029 (0.021) 0.049 (0.025) 0.03 (0.012) 0.164 (0.082) 0.289 (0.087) 0.163 (0.072)

BH-RGA (ours)
success (in %) 132 (26.4%) 132132132 (26.4%26.4%26.4%) 100100100 (20%20%20%) 505050 (100%100%100%) 505050 (100%100%100%) 505050 (100%100%100%)

RMSE (σ) 0.009 (0.004) 0.0320.0320.032 (0.0130.0130.013) 0.0590.0590.059 (0.0210.0210.021) 0.0560.0560.056 (0.0170.0170.017) 0.040.040.04 (0.010.010.01) 0.0220.0220.022 (0.0060.0060.006)

Table 2: RMSE and σ (in parentheses) in U256 and G256 experiments.

method U256 G256

ICP [6] 9E9E9E-333 (7E7E7E-333) 0.0150.0150.015 (0.0120.0120.012)

LM-ICP [18] 0.077 (0.041) 0.113 (0.063)

CPD (7 DoF) [38] 0.051 (9E-3) 0.064 (0.021)

CPD (6 DoF) [38] 0.016 (0.014) 0.045 (0.058)

GMR (7 DoF) [32] 0.019 (0.028) 0.065 (0.051)

GMR (6 DoF) [32] 0.853 (1.16) 1.027 (1.226)

GA [21] 0.149 (0.143) 0.207 (0.158)

BH-RGA (ours) 0.0150.0150.015 (4E4E4E-333) 0.0190.0190.019 (9.5E9.5E9.5E-333)

Table 3: Comparison of E-CPD [23] and BH-RGA.

evaluated configuration RMSE σ cases (success rate)

E-CPD [23],

prior matches only

[no priors 0.08 0.013 85 (17%)]

1 prior 0.084 0.012 89 (18%)

2 priors 0.076 0.014 376 (75%)

3 priors 0.056 0.018 488 (97%)

BH-RGA (ours),

anchor points

[no priors 0.05 0.018 124 (25%)]

1 prior 0.043 0.013 199 (40%)

2 priors 0.011 0.017 191 (38%)

3 priors 0.0086 0.005 165 (33%)

BH-RGA (ours),

prior matches

1 prior 0.0191 1.1E-4 435 (87%)

2 priors 0.0055 1.72E-5 500 (100%)

3 priors 0.0001 4.5E-9 500 (100%)

with one and two prior matches, respectively. BH-RGA re-

solves 25% with no priors and ∼39% with one or two avail-

able anchor points. Recall that anchor points have higher

masses and interact with all other points, which is the reason

that the success with three anchor points drops to 33%. In

contrast, BH-RGA resolves all cases with two or three prior

correspondences and outperforms E-CPD. Prior matches

are not involved in the interaction with other points, which

is the strongest boundary condition.

Runtime and Convergence. We evaluate the runtime of

BH-RGA for the inputs of different sizes with different

thresholds γ. For each approximation level of the BH tree,

we report the achieved accuracy and runtime, among others.

We take a frame from the SINTEL sleeping2 sequence

[9] as a reference and its translated and rotated clone as a

template. The translation roughly amounts to one-third of

the point cloud extent in the x-direction, and the rotation is

either 5◦ or 24◦ around all axes simultaneously. In total,

there are seven versions of the point cloud obtained by sub-

sampling, with the cardinalities of ca. 5k, 12k, 25k, 50k,

105k, 205k and 446k (the original resolution). For each

combination of the resolution and template transformation,

we test γ ∈ [0.0625; 64.0]. The runtime evaluation metrics

for 5◦ rotations are summarised in Fig. 4, i.e., runtimes (full

and per iteration), runtime ratio of the BH tree generation,

RMSE and the number of residuals.

Several patterns can be noticed in the runtime statistics.

When γ is fixed, RMSE is similar for a different number of

points. Conversely, with the increasing γ, the alignment ac-

curacy increases for all resolutions, and smaller and smaller

runtime fraction is spent on building BH tree while not be-

ing influenced much by the number of points. For γ > 2.0,

BH tree runtime ratio is ≤ 0.5%. In comparison, the solver

runtime ratio is always ∼80% suggesting that an up to five-

fold acceleration with a Gauss-Newton solver on a GPU is

possible. Next, as γ increases, the number of iterations de-

creases and stabilises. For γ ≥ 6, the number of iterations

is ≤ 4. The average number of residuals (number of point-

to-cluster interactions) reaches ≈1.8E7 for γ = 6.0 and

446k points. The graph metrics for the case of 24◦ rotations

coarsely follow the shapes of the graph metrics for the vi-

sualised case of 5◦ rotations. Larger misalignments require

larger γ for successful registration and the overall runtime

increases by the factor of two (note that in this experiment,

we do not perform a translational pre-alignment). The per-

iteration runtime increases by ∼40%, and the number of

iterations for γ ≥ 6 increases by one-two.
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Figure 4: Graphs of different runtime evaluation metrics as the functions

of the BH tree threshold γ (SINTEL sleeping2 sequence [9], different sub-

sampling rates and a different number of points in the point clouds). In the

bottom row, we show recovered reprojected displacements for frames 7
and 29 following [22] and the used Middlebury optical flow encoding [4].

The study shows that BH-RGA can register two point

sets of 446k points each in 11 seconds with RMSE of

0.068 (γ = 0.25). RMSE of 0.0065 requires 264 seconds

(γ = 3.0). A comparable RMSE of 0.0067 for the point

sets with 25k points takes 41 seconds (γ = 12.0). BH-RGA

registers large point sets in a globally multiply-linked man-

ner in tolerable time, whereas tested implementations of

competing methods cannot cope with the data. The CPD

paper [38] reports 10 minutes for two point sets with ≈35k
points each with acceleration techniques. BH-RGA would

require ∼1 second for this task with γ = 0.25.

5.2. Evaluation with RealWorld Data

BH-RGA is well suitable for registration of real-world

data, including large partially overlapping point sets and li-

dar measurements. Fig. 5 comprises several such scenar-

ios. The Vestalin and pedestal datasets represent partial 3D

reconstructions of statues acquired with a structured light

technique [44]. Due to the scanning process, they are repre-

sented in different reference frames. Vestalin and pedestal

are processed with three and two anchor points, respec-

tively. For Vestalin, we additionally vary masses based on

point intensities. In pedestal, the anchor points are selected

in the lower left and right corners of the plate. Universe

dataset represents two 3D reconstructions of sculpture (the

shapes differ mostly in the lower parts).

We also test BH-RGA on lidar data from the KITTI

dataset [19]. Fig. 5-(right) shows an excerpt from the

2011 09 26 drive 0001 sequence. We take the first and

third frames of the sequence so that displacements are mod-

erate and the outlier ratio amounts to ca. 20%. Due to highly

varying point densities in the scans, we apply VMN (see

Figure 5: BH-RGA is applicable to partially overlapping real-world data.

Vestalin is aligned with the colour cue and three anchor points, and for

pedestal, we use two anchor points. For the lidar data, we apply VMN

helping to counterbalance varying point densities. For the Vestalin and

the universe, the initialisation is shown on the left, and the alignments are

shown on the right. For the pedestal and driving scenario, the initialisa-

tions are on the top, and the alignments are on the bottom.

Sec. 4.5) which initialises masses uniformly per unit vol-

ume. It can be well noticed on buildings and cars that the

scans are accurately registered. In this experiment, no an-

chor points or further prior knowledge are used. Both scans

contain ca. 120k points, and the registration is performed in

≈90 seconds on a CPU without subsampling or parallelisa-

tion, with γ = 1.5 · 104 (at the original point set scale).

6. Concluding Remarks

The main conclusion of this paper is that particle dy-

namics based RA can be accelerated using a BH tree and

stabilised by altering laws of simulated physics. Our for-

mulation significantly reduces the number of parameters in

the gravitational alignment — by the factor of three — and

eliminates the need for parameter tuning. Even for large

point sets of dimensionality going beyond the extents fea-

sible for other general-purpose RA methods, the proposed

BH-RGA performs global multiply-linked updates. This

contrasts with other known techniques which de facto only

follow locally multiply-linked policies for the approxima-

tion of point interactions. As a result, BH-RGA is notably

robust to noise and achieves state-of-the-art performance

whenever existing techniques do. Furthermore, BH-RGA

accepts such additional cues as prior matches, anchor points

and even point intensities, and efficiently handles different

point densities with VMN.

There are multiple avenues for further investigation of

particle dynamics based RA. The most promising ones are

multibody registration, parallelisation and adaption of BH-

RGA for CAD and automotive applications.

Our supplementary material contains more details on the

2D-tree generation and projective scene flow visualisation

used in Fig. 4. Besides, we visualise statistics of resolved

misalignments for clean-500 and N500-U100 experiments.
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