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Linking graphene-based material physicochemical
properties with molecular adsorption, structure
and cell fate
Sachin Kumar1 & Sapun H. Parekh 1,2*

Graphene, an allotrope of carbon, consists of a single layer of carbon atoms with uniquely

tuneable properties. As such, graphene-based materials (GBMs) have gained interest for

tissue engineering applications. GBMs are often discussed in the context of how different

physicochemical properties affect cell physiology, without explicitly considering the impact of

adsorbed proteins. Establishing a relationship between graphene properties, adsorbed pro-

teins, and cell response is necessary as these proteins provide the surface upon which cells

attach and grow. This review highlights the molecular adsorption of proteins on different

GBMs, protein structural changes, and the connection to cellular function.

Over the past decade, graphene and graphene-based materials (GBMs), such as graphene
oxide (GO), reduced graphene oxide (RGO), and their chemical derivatives, have gained
substantial interest for the development of biomaterials for tissue engineering applica-

tions. The unique physicochemical properties of graphene and GBMs have been shown to
significantly influence cell response, as previously reviewed1,2. In our previous review article, we
highlighted the influence of GBM physical (roughness, topography, conductivity, and lateral
dimension), chemical (wettability, surface functional moieties, and chemical interaction), and
mechanical properties on cell response, without explicitly discussing how GBMs influence
protein or biomolecular interaction3. The effect of graphene physicochemistry on biomolecular
interactions of proteins has been reviewed separately4–6. Since proteins on biomaterial surfaces
are a key mediator of subsequent cell behavior for nanomaterials7–9, the unique physicochemical
properties of graphene offer exciting opportunities to control protein adsorption, orientation,
conformation, and ultimately cell fate.

The adsorbed protein distribution and conformation on biomaterial surfaces provide the cell-
interfacing topographical, physical, and biochemical cues for cells to interact with and respond to
a material10. Studies have demonstrated that a material’s ability to adsorb proteins (e.g., albumin,
vitronectin (Vn), fibronectin (Fn), collagen, and laminin) from the serum of cell culture media
plays a vital role in cellular attachment and function8,11. Moreover, adsorption of the same
protein but with different conformations, which exposes different domains to cells, has been
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shown to mediate integrin-based cell adhesion and trigger
downstream signaling, directing cellular function and differ-
entiation12–16. Thus, one can surmise that adsorbed proteins and
other bioactive molecules from culture media influence cellular
response in such a way that is tightly controlled by the underlying
physicochemical properties of the biomaterial surface.

The initial protein-substrate interactions are critically impor-
tant when designing biomaterial substrates, since they set the
stage for how proteins will attach to the substrate surface. Sur-
prisingly for GBMs—given their strong interest from the research
community—a complete picture detailing (i) molecular con-
formation of proteins on different GBMs, (ii) how this influences
cell–substrate interaction, and (iii) the connection to cellular
response remains elusive. As GBMs are expected to become
promising next-generation biomaterials for tissue engineering
applications17, there is a clear need to link the physicochemical
interaction of the graphene surface with protein adsorption,
protein structure, and cellular response. Developing such a
multiscale understanding will involve integrating experimental,
theoretical, and simulation studies.

In this review, we attempt to thread a line through the above-
mentioned areas (i–iii) and present how graphene physicochemical
properties can be tuned to control cell fate via the proteins coating
the graphene surface. We hope this review will encourage more
researchers to work in this burgeoning subfield, and provide
quantitative experimental results with direct connection between
the different areas (GBM–protein and protein–cell) that link cell
function and GBM physicochemical properties.

GBM production and cytocompatibilty
Since the discovery of graphene, numerous techniques and
methods have been reported for production of graphene and
GBMs18,19. Common methods for graphene synthesis include
chemical vapor deposition (CVD) and mechanical exfoliation18.
Other techniques for preparation of GBMs, such as GO (having
enriched oxygenated functional groups like hydroxyls, carboxyls,
and epoxies), RGO (having fewer oxygen-containing functional
groups than GO, but still more than graphene), and their deri-
vatives, include chemical exfoliation, chemical and thermal
reduction, and chemical functionalization20.

Application of graphene and graphene-derived materials in
biomedical research has been limited due to latent cytotoxicity
concerns21. Measuring the interaction of graphene and GBMs with
numerous different cell lines and animal models to understand the
mechanism of cytotoxicity is only now becoming routine3,22.
Hydrophobic suspended graphene nanoparticles in aqueous media
showed more toxicity than hydrophilic GO particles, due to rapid
agglomeration of hydrophobic graphene covering the cell surface,
purportedly limiting nutrient supply and inducing oxidative stress,
causing cell death. Upon interaction, graphene sheets result in
physical damage to the cell membrane23. Also, the uptake of
nanoscale, non-functionalized graphene shows more cytotoxicity
compared with large and functionalized graphene23. The biological
response of graphene and GBMs—as reviewed below—must be
taken in the context of potential complications with cytocompat-
ibility, which depends on particle size, concentration, chemistry,
processing methods, and purity of graphene substrates.

While cytotoxicity studies with GBMs and particles are grow-
ing, relatively few studies have shown how the interaction of
graphene-based particles with proteins in the culture media can
influence cell survival. In one example, graphene particles in
suspension were shown to exhibit cytotoxicity due to direct
interactions with the cell membrane, and the cytotoxicity effects
of graphene and GO in suspension can be mitigated when pre-
incubated with FBS. Pre-incubation in FBS was shown to form a

thin protein coating on GBMs in suspension, limiting their direct
interaction with cells, thereby minimizing cytotoxicity24,25. Bussy
et al. demonstrated the effect of a GO suspension on different cell
lines in serum-free HEPES-buffered salt solution (BSS), Dulbec-
co’s phosphate-buffered saline (PBS), and Dulbecco’s modified
Eagle’s medium with serum (DMEM-S). Cell membrane ruffling
and shedding damage upon interaction with GO occurred in both
BSS and PBS, but not in DMEM—presumably due to adsorption
of proteins26. These results show that different parameters affect
graphene-substrate cytotoxicity in both the absence and in the
presence of proteins.

GBM–biomolecular interactions
Overview. We begin by focusing on the protein–graphene
interaction, and review example studies highlighting what is now
known about this interaction. An obvious starting point is the
interaction of serum proteins with different graphene-based
surfaces, as serum is present in nearly all cellular experiments.

GBM–serum protein interactions. Carbon-based nanomaterials,
especially graphene and its derivatives, have been shown to interact
strongly with different serum proteins4,27,28. GO, a graphene deri-
vative with rich, oxygen-containing functional groups on graphene,
has been found to interact and adsorb many proteins found in
serum-based culture media. GO, having negatively charged oxyge-
nated functional groups at physiological pH, as well as the hex-
agonal aromatic graphene structure, promoted hydrogen bonding,
electrostatic, hydrophobic van der Waals, and π–π interactions
allowing it to interact with various proteins in serum. As a result,
GO showed very high amounts of serum protein capture on its
surface27. Chong et al.29 demonstrated interaction of different
serum proteins: bovine fibrinogen (BFG), immunoglobulin (Ig),
transferrin (Tf), and bovine serum albumin (BSA) with GO and
RGO29. Both GO and RGO showed serum protein adsorption in
the following order: BFG> Ig > Tf > BSA (most to least) with GO
showing higher adsorption compared with RGO. The difference in
protein adsorption was attributed to differences in surface chem-
istry of GO and RGO, with GO offering a greater variety of different
interactions compared with RGO; RGO would offer less hydrogen
bonding and electrostatic interactions.

Consistent with the two graphene substrates having different
available protein interaction mechanisms, adsorbed proteins were
found to interact differently on GO and RGO surfaces. The presence
of polar groups such as hydroxyls, carboxyls, and epoxides on GO
promoted adsorption mainly through electrostatic interactions,
whereas RGO protein adsorption was mediated primarily by van
der Waals interactions30. BFG and Ig showed structural hetero-
geneity on the GO surface in comparison with RGO, which was
attributed to the presence of multiple oxygenated moieties on GO
and differences among native protein structures29. Interestingly,
BSA and Tf showed structural rearrangement from α-helical to
enhanced β-sheet conformation after adsorption on GO surface, as
depicted by circular dichroism (CD) spectra in Fig. 1a. BSA was also
shown to undergo unfolding on graphite surfaces as illustrated in
Fig. 1b, suggesting that unfolding is common on aromatic carbon
surfaces. During unfolding, BSA underwent conformational changes
such that the lipid-binding domain of BSA moved toward the
graphite surface due to hydrophobic interaction with graphite31.
Chong et al.29 found that proteins with exposed aromatic residues
content like Trp, Tyr, and Phe residues first align with the graphene
surface via π–π stacking as illustrated in Fig. 1c, similar to the
interaction between pure aromatic amino acids and graphene29.
The authors highlighted that solvent-exposed aromatic residues are
involved in the initial protein adsorption, followed by later
interaction of buried residues once the protein partially unfolds
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on the graphene surface29. Their results are suggestive of a positive
correlation between protein adsorption and the amount of aromatic
hydrophobic residues in a protein29. In another experimental study,
Shi et al. showed how the reduction state of GO affected serum
protein adsorption differently for different proteins32. In that study,

neat GO, partially reduced GO (pRGO) (having a low amount of
oxygenated functional groups), and completely reduced GO (RGO)
(lacking oxygenated functional groups) were prepared by thermal
reduction, and adsorption of different proteins such as fibronectin
and BSA was compared. Their results showed that pRGO and GO

Fig. 1 Multiple interactions between different serum proteins and graphene-based substrates mediate protein binding and conformation. a Interactions
between serum proteins BSA, Tf, IgG, and BFG, with GO along with the corresponding CD spectra, highlighting structural change with incubation time. CD
spectra showed that BSA and Tf after adsorption on GO surface exhibited structural rearrangement from α-helical to enhanced β-sheet characteristics,
whereas BFG and Ig showed structural heterogeneity on the GO surface (adapted with permission from ref. 29. © 2015 American Chemical Society).
b Simulation snapshot of BSA molecule after the 20-ns adsorption showing conformational changes with a decrease in α-helical content on a graphite
surface (adapted with permission from ref. 31. © 2011 American Chemical Society). c MD-simulated structural rearrangements of BFG on graphene for
170 ns. Protein aromatic residues Trp, Tyr, and Phe (highlighted in color) oriented and aligned with the graphene surface facilitate π–π stacking (adapted
with permission from ref. 29. © 2015 American Chemical Society). d Different interactions of serum proteins on partial oxidized graphene (adapted with
permission from ref. 32. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). e RGD is attracted to vacancy-defect graphene surfaces with mono-
vacancy showing attraction to COO–. The vacancy is highlighted in ball-and-stick style (adapted with permission from ref. 34. © 2015 American Chemical
Society).
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exhibited better serum protein adsorption in comparison with RGO
surfaces, consistent with Chong et al.29. Interestingly, pRGO showed
the most adsorption of serum proteins, purportedly due to the
presence of partial oxygen groups and partial hexagonal carbon
structures. Oxygenated functional groups on pRGO surface
introduced charged and electronegative regions for protein interac-
tion through electrostatic and hydrogen bonding, while aromatic
hexagonal carbon background of pRGO accommodated hydro-
phobic interactions with proteins as schematically shown in Fig. 1d.
The independent studies from Shi et al. and Chong et al.29 strongly
suggest that strongest adsorption of serum proteins on pRGO was
attributed to the mixture of electrostatic forces, hydrogen bonding,
and hydrophobic interactions in pRGO with proteins32.

Chemical defects, which are often created during functionali-
zation and modification of graphene, are known to be “hot spots”
for protein interaction. Structural defects on graphene typically
alter the sp2 carbon hybridization and distort the hexagonal
benzene ring structure of graphene. This in turn affects protein
binding due to steric hindrance and potential wrinkling of the
graphene layer. Ebrahimi et al. used molecular dynamics (MD)
simulations to study the role of graphene wrinkles and roughness
on collagen interaction and adsorption. Their simulation results
revealed that rough graphene surfaces show more adhesion of
collagen fibers in comparison with smooth surfaces. As might be
expected, the rough and wrinkled graphene surface provided
more contact points between the graphene and collagen
molecules for strong interaction33. Consistent with this finding,
another theoretical study showed that the RGD cell adhesion
peptide exhibited stronger interaction on vacancy defects in
graphene (missing carbon atom in the lattice) in comparison with
neat graphene34. The defects in graphene served as highly reactive
sites for interaction between COO– of RGD peptide and vacancy
defects on graphene as depicted in Fig. 1e. In another study, the
presence of defects on a graphene surface was shown to increase
interaction with fibrinogen through charge transfer, which further
resulted in secondary structural changes in protein35.

GBM–hormone interactions. In addition to serum proteins,
graphene substrates have also shown strong propensity to interact
with hormones present in serum36,37. A molecular simulation
study demonstrated how insulin hormones present in serum can
interact with graphene ribbon-like surfaces of different sizes36.
The width of graphene ribbons showed direct correlation with
insulin adsorption, and strong π–π interaction between phenyl
rings in insulin and graphene surfaces was shown to promote
stepwise conformational (secondary and tertiary structural)
changes of insulin. On the other hand, Atabay et al. found that
during adsorption of insulin on GO, insulin underwent config-
urational (conformation and rotational) rearrangement mediated
by hydrophilic Ser, His, and Thr residues in chain B37. Interest-
ingly, the anchored residues ultimately showed weak electrostatic
interaction with the hydrophilic GO surface, which allowed the
protein to rearrange after adsorption and restore its native
structure. These studies again demonstrate the multiplicity
(complexity) of ways in which even a single protein can interact
with graphene, depending on the graphene surface chemistry.

GBM–growth factor interactions. Another important aspect of
cell culture is use of specific growth factors or differentiation sup-
plements in culture media. Interestingly, graphene-based substrates
have also shown adsorption and interaction with growth factors and
supplements present in culture media. Lee et al. reported that
graphene showed more adsorption of osteogenic growth factor
dexamethasone in comparison with GO38. The exceptionally high
adsorption ability of graphene for dexamethasone can be again

attributed to π–π stacking between the aromatic rings in the dex-
amethasone and the graphene basal plane. Also we previously
showed that polyethyleneimine (PEI)-functionalized GO (GO/PEI)
showed high affinity to adsorb the osteogenic growth factor β-
glycerolphosphate39. This was due to the presence of cationic PEI
molecules on GO that provided electrostatic attraction to attract
anionic phosphates like β-glycerolphosphate. In another study,
GO’s ability to adsorb a high amount of transforming growth fac-
tor‐β3 (TGF‐β3) was highlighted. GO having both graphene aro-
matic ring domains and oxygenated functional groups supported
interaction with TGF‐β340.

In summary, different serum proteins (hormones and growth
factors) have complex interactions with graphene-based substrates.
Depending on the physicochemical properties of graphene
substrates, biomolecules interact and orient differently as high-
lighted collectively in Fig. 1. The presence of oxygenated functional
groups on a graphene surface provides electrostatic and hydrogen
bonding possibilities with proteins, while the aromatic benzene ring
structure of neat graphene provides hydrophobic and π–π
interaction to orient hydrophobic residues toward the graphene
surface. Defects and surface nano wrinkles on graphene further
influence protein interaction and morphology. Thus, it is very
important to know and understand the specific surface properties of
graphene substrate in order to appreciate the influence it has on
protein interaction and conformation.

GBM–cell interactions
Overview. Having reviewed how graphene physicochemical
properties affect protein, hormone and growth factor adsorption,
and structure, we move to the next level for evaluating graphene
as a biomaterial, which is the graphene–cell interaction. Over the
years, graphene-based particles have received substantial atten-
tion as future materials for tissue engineering applications, and
authors have highlighted numerous physicochemical properties
(surface topography, chemistry/wettability, and conductivity)
of graphene substrates that influence, e.g., stem cell
differentiation3,41,42. However, there is no consensus at this time
about how different physicochemical properties of graphene
substrates influence stem cell fate. The general paradigm
for biomaterial–cell interaction is that, in the presence of media
and serum, protein (and small molecules) adsorb and orient
at the surface prior to cellular interaction8. It is virtually impos-
sible to neglect the molecule (protein, small molecule, and
hormone)–graphene interaction from the cell–graphene interac-
tion. Ultimately, protein adsorption, conformation, and activity,
in addition to other graphene physicochemical properties (surface
topography, chemistry/wettability, and conductivity), control
subsequent cell interaction43,44. Our goal in this section is to offer
a perspective on cell response to graphene with a rationale
starting from graphene–protein interaction on different graphene
substrates and how the graphene-coating proteins affect cell
behavior.

GBM topography affects protein interaction and cell response.
Surface nanoroughness has been shown to play a critical role in
protein adsorption and conformation45. Proteins show con-
formational (globular vs. elongated) change upon adsorption to
nanoroughened surfaces where surface roughness is smaller, or
larger, than dimension of protein molecule10,46. In addition, it
was observed that the adsorbed protein monolayer surface
topography/morphology was directly related to the surface
topographical profile of the underlying material47. Thus,
the adsorbed protein has been suggested to provide the ultimate
topographical cues for cells.
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Wrinkled graphene, which is essentially roughened graphene,
was shown by Nayak et al. to have significant influence on stem
cell response48. Surface roughness at the nanoscale translates into
increased surface area for protein adsorption and orientation,
providing increased number of cell-binding contact points49,50.
On a similar note, Subbiah et al. showed that coating pure
titanium (Ti) with GO provided nanoscale roughness for strong,
homogeneous FN protein adsorption on the GO-coated Ti51.
Subsequent biological studies showed more pre-osteoblasts
attached, and more osteogenic differentiation features, on FN
adsorbed to GO-coated Ti in comparison with pristine Ti or non-
FN, GO-coated titanium (Tigra). The authors suggested that the

availability of RGD motif of FN on GO surface caused better cell
attachment and organization of the cytoskeleton. However, no
direct measurements of FN molecular structure and conforma-
tion on the GO surface, nor information about cell-binding
domain exposure, were presented in that work.

In another study by Hank et al., platelet aggregation in the
presence of albumin and fibrinogen on hydrophilic GO and glass
surfaces, with different roughness, was found to be distinct
(Fig. 2a,b)52. GO showed high affinity for albumin and fibrinogen
proteins on its surface in comparison with glass, as depicted in
Fig. 2c. Remarkably, upon protein adsorption, the glass surface did
not induce any conformational/structural change in proteins.

Fig. 2 Graphene-substrate topography affects protein conformation and cell response. a AFM 3D topographical images of GO and glass surface.
b Difference in surface mean roughness and surface wettability with water contact angles of GO and glass. (The * indicates statistically significant differences
for p-values < 0.05. The two-tailed Student's t test was used to make the pairwise comparisons). c Schematic illustrating more adsorption of albumin and
fibrinogen on GO than on glass. d Circular dichroism (CD) spectra of albumin and fibrinogen incubated with GO and glass at different concentrations showing
changes in protein structure for proteins incubated with GO. e Schematic illustrating the reduced formation of blood clots on albumin–GO surface compared
with albumin–glass surface (adapted with permission from ref. 52. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0254-9 REVIEW ARTICLE

COMMUNICATIONS CHEMISTRY |             (2020) 3:8 | https://doi.org/10.1038/s42004-019-0254-9 |www.nature.com/commschem 5

www.nature.com/commschem
www.nature.com/commschem


However, GO induced secondary structural changes in both
proteins as indicated by CD spectra in Fig. 2d. Albumin showed
minimal conformational changes in α-helical secondary structures
in comparison with large structural change in α-helix for fibrinogen.
As a result, albumin retained its function as a surface passivator for
platelet adhesion, as demonstrated in Fig. 2e. On the other hand,
fibrinogen showed significant structural changes due to the α-helix
domains unraveling, which was purported to prevent interaction
between platelet surfaces through disruption of the αIIbβ3 integrin
and fibrinogen52. This shows how graphene roughness can modify
protein structure and downstream cell function.

GBM chemistry influences protein interaction and cell
response. As described earlier, chemical modification or func-
tionalization of graphene modifies surface chemistry and wett-
ability of graphene-based substrates, which changes small
molecule, protein, and ultimately cell interaction53–55. Lee et al.
showed that graphene and GO substrates, with different surface
chemistry and wettability, had different effects on differentiation
of stem cells due to different interactions with adsorbed proteins
and other biomolecules38. Their study demonstrated that GO
promoted adipogenic differentiation of stem cells compared with
graphene as shown in Fig. 3a,b. The ability of GO to influence
adipogenic differentiation was attributed to high adsorption
capacity of insulin, which mediates fatty acid synthesis and

adipogenesis56. High affinity and adsorption of insulin on GO
surfaces was attributed to electrostatic interaction and hydrogen
bonding with polar oxygenated functional groups on GO. After
adsorption on a GO surface, insulin was shown to retain its three-
dimensional conformation (Fig. 3c) and activity, thereby enhan-
cing adipogenic differentiation. CD measurements supported
these simulations, showing that the graphene surface altered the
conformation of adsorbed insulin by reducing α-helix content,
whereas the protein appeared to have the same structure on GO
independent of adsorption time (Fig. 3d). Concurrent with this
structural change, stem cells on graphene showed much weaker
adipogenesis compared with GO. This work highlights the con-
nection between graphene-substrate chemistry, interaction with
insulin hormone, and a cellular response. It is tempting to con-
nect the data and conclude that the substrate-induced structure of
insulin caused more differentiation, but more work is needed to
clarify this picture.

In another example by Depan et al., the authors nicely showed
the interplay between protein adsorption (BSA in their case),
protein morphology, and biological response on (hydrophilic)
GO-modified chitosan57. In this study, they showed that
biological function (cell attachment, proliferation (Fig. 4a), and
mineralization (Fig. 4b)) of osteoblasts was enhanced on chitosan
due to the presence of GO. Indeed, the presence of GO promoted
more BSA adsorption in comparison with pristine chitosan—
presumably due to hydrophilic groups on GO, as the topography

Fig. 3 Graphene and GO substrate chemistry affects protein interaction and cell response. a Cytoplasmic lipid accumulation assessed by Oil Red O
staining after 14 days of induction on graphene and GO (scale bar 50 µm). (The asterisk indicates statistically significant differences for p-values < 0.05,
using Student’s t test, n= 4 for each group). b Strong adipogenic differentiation of MSCs was observed on GO surfaces, with a significantly higher
accumulation of lipid droplets. (The asterisk indicates statistically significant differences for p-values < 0.05, using Student’s t test, n= 4 for each group).
c Schematic illustration of insulin adsorption on graphene and GO showing the respective conformations. Note that the schematics of the molecular
substrate of protein (insulin), graphene, and GO are not scaling in proportion. d Far UV absorption CD spectra of insulin demonstrate the structural change
upon adsorption on graphene and GO (adapted with permission from ref. 38. © 2011 American Chemical Society).
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of the two scaffolds was similar. Moreover, adsorbed BSA showed
different morphology with regularly distributed smaller globules
on GO-modified chitosan in comparison with randomly
distributed large globules on neat chitosan as represented in
Fig. 4c. Again, the authors suggested that subtle morphology
differences in assembled BSA protein layer on GO-modified
chitosan might be the reason for observed differences in
cellular response57; however, the exact mechanism is unclear.

In a final example from this section, we highlight work by Ku
et al. where they showed that graphene-based substrates were
capable of influencing myogenic differentiation58. They cultured
myoblasts on GO and RGO, and both showed elongated
morphology in comparison with polygonal shape on glass. The
authors suggested that elongated and cytoplasmic extension was
caused by surface nanotopography provided by wrinkled
structure of GO and RGO. However, when comparing RGO
and GO surfaces, one sees that myoblasts on GO showed more
myogenic differentiation by forming more multinucleated
myotubes even though both had near-identical surface wrinkle
roughness (Fig. 5a, b). Hence, one can surmise that the ability of
cells to form more myotubes on GO than on RGO is heavily
dependent on the differential chemistry of the surfaces in
addition to the common nanotopography. When the GO and
RGO substrates were incubated in differentiation media (DM),

GO showed significant increase in nitrogen content that can be
attributed to enhanced protein adsorption (Fig. 5c). The authors
correlated the enhanced myogenic differentiation of myoblasts on
GO surface with high protein adsorption ability, particularly
fibronectin (FN)58. Supporting this hypothesis, myoblasts cul-
tured on polar surfaces (COOH and OH) showed strong binding
of FN to cellular integrins and exhibited substantial differentia-
tion into myotubes59. However, the FN conformation was not
probed in these studies, so the connection to differentiation is still
somewhat unclear60–62. The common undercurrent in all
examples presented in this section is that the exact mechanism
underlying all the examples shown here is ambiguous due to the
complexity of the system.

GBM conductivity influences protein interaction and cell
response. In addition to surface chemistry and topography of
graphene, tissue engineering researchers have utilized graphene’s
surface conductivity/charge-carrying ability. Graphene’s unique
electrical and charge transfer properties have been reported to
influence musculoskeletal and neuronal cell response1,63—both
cells where membrane (electrical) polarization is fundamental for
function. Several reports have described the interplay of electrical
and chemical cues imposed by graphene to influence cell differ-
entiation64–66. In one example, Li et al. showed that graphene

CS-BSA

CS-GO-BSA 10 µm

CS

CS-BSA

1 µm

CS-GO-BSA

CS-GOa

b

c

Fig. 4 Graphene oxide chemistry affects protein morphology and cell response. a Fluorescence micrographs illustrating pre-osteoblast proliferation on
BSA-adsorbed scaffolds chitosan (CS–BSA) and chitosan–GO (CS–GO–BSA) after 7 and 28 days. Cells were stained with Hoechst to highlight nuclei, but
due to autofluorescence of the scaffold nuclei appear as diffuse dots. b Osteogenic differentiation evaluated with energy-dispersive X-ray spectroscopy by
mapping Ca and P mineral deposition on scaffolds at day 7. GO scaffolds with BSA adsorbed showed a higher amount of Ca and P mineral corresponding to
higher osteogenic differentiation. c Scanning electron micrographs illustrating the structural morphology of pure CS; CS modified with GO (CS–GO)
scaffold and morphology of adsorbed BSA protein on the respective scaffold (adapted with permission from ref. 57. © 2012 Acta Materialia Inc. Published
by Elsevier Ltd.).
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supported neuron growth by promoting better attachment and
neurite sprouting of mouse hippocampal neurons when com-
pared with standard polystyrene. The authors attributed this
result to the complex interaction of graphene and chemicals in
the culture medium in combination with electrical phenomena of
graphene67. Feng et al., who investigated the effect of GO and
RGO on neurogenic differentiation of the adipose-derived stem
cells (ADSCs)68, showed more effective differentiation of ADSCs
into neuron-like cells on GO. This was despite GO having lower
conductivity in comparison with RGO, encouraging the authors
to suggest that chemistry “won” the competition between con-
ductivity and chemical properties. The authors posited that the
presence of oxygenated functional groups on GO surface influ-
ence protein adsorption, which mediated better interaction with
cells to influence neuronal differentiation69. Thus, GO, with a rich
amount of oxygenated functional groups and promoting protein
adsorption in addition to the presence of more edge defects on
GO, might have provided synergistic, localized electric fields for
neuronal differentiation of ADSCs as illustrated in Fig. 6a. The
mechanisms involved in these stimulatory behaviors, particularly
regarding the electrical properties of graphene for neurogenesis,
are still emerging.

In addition to the intrinsic conductivity of graphene, its charge,
doping, and metal coating of graphene substrates can also be
exploited to bias cell fate. Geng et al. revealed that coating
germanium surfaces with graphene induced platelet adhesion and
activation70. Coating graphene on the germanium surface was
suggested to promote increased blood plasma protein (Fibrinogen)
adsorption. Fibrinogen adsorption was further suggested to
facilitate electron transfer from fibrinogen to graphene to
germanium. Electron loss from fibrinogen has been shown
to unfold and lead to formation of the fibrinopeptide and
fibrin monomer, competent for polymerization70,71, and fibrin is
known to have a strong interaction with platelets through the
αIIIβIIb integrin72. Thus, graphene acting as an electron acceptor
and transporter, resulting in electron extraction from fibrinogen,
could lead to enhanced platelet activation as illustrated in Fig. 6b.
Because tissue regeneration requires a broad spectrum of bioactive
macromolecules73 and stimuli to support different types of cell
growth, harnessing the combined effects of electrical and chemical
properties of graphene substrates is very attractive74–76.

GBM interaction with growth factor influences cell response.
To conclude this section, we would also like to highlight how
different graphene-substrate–growth factor interactions can act to
pre-concentrate various growth factors and differentiation che-
micals in order to influence stem cell response. One key aspect of
differentiating stem cells to specific lineages is using specific
growth factors, or differentiation supplements, in culture media.

Adsorbed growth factors/differentiation supplements on
graphene-based surfaces are reported to further influence the
biological outcome of stem cells38,39. Lee et al. reported that
graphene showed more osteogenic differentiation in comparison

Fig. 5 Graphene and RGO substrate chemistry affects protein adsorption and cell response. a AFM micrograph of GO and rGO substrates and their
respective average surface roughness (R). b Immunofluorescence staining for myosin heavy chain (MHC) showing more myotube formation on GO
surface. c Change in nitrogen composition on the GO and rGO substrates before and after incubation in serum-containing media due to protein adsorption
(adapted with permission from ref. 58. © 2012 Elsevier Ltd.).

Fig. 6 Graphene-based substrate electrical properties affect protein
adsorption and cell response. a Schematic illustration of protein
adsorption from culture media on GO and possible localized electric field
mediating calcium-dependent pathway for neurogenic differentiation of
ADSCs (adapted with permission from ref. 68. © 2018 Elsevier B.V.).
b Activation of platelet by fibrinogen-adsorbed graphene mediated through
electron transfer (adapted with permission from ref. 70. © 2016 Springer
Nature) (Note: schematics of protein, GO, and graphene are not scaling in
proportion).

REVIEW ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0254-9

8 COMMUNICATIONS CHEMISTRY |             (2020) 3:8 | https://doi.org/10.1038/s42004-019-0254-9 | www.nature.com/commschem

www.nature.com/commschem


with GO due to high adsorption of osteogenic growth factors such
as dexamethasone and β-glycerolphosphate38. Similarly Jung et al.
exploited the ability of RGO-coated Ti alloy to interact with
osteogenic dexamethasone (Dex) via π−π stacking on the gra-
phitic domains of RGO to enhance osteogenic differentiation
(Fig. 7a)77. In another study, GO’s ability to adsorb a high
amount of transforming growth factor‐β3 (TGF‐β3) was exploi-
ted to promote chondrogenic differentiation of adult stem cells.
TGF‐β3 retained its native structure on a GO surface for inter-
action with TGF‐β receptors on a stem cell surface, and sig-
nificantly influenced stem cell adhesion and chondrogenic
differentiation as illustrated in Fig. 7b40.

Growth factor adsorption has also been shown to promote
undesired biological outcomes. For instance, Lai et al. showed
that GO can efficiently bind a vascular endothelial growth factor
(VEGF), depending on the oxidation state78. The high degree of
oxidation of GO promoted more VEFG binding, and the highly
basic surface charge of the heparin-binding domain of VEFG
played a significant role in binding to GO surfaces through
electrostatic and hydrogen interactions. Upon binding, VEFG
showed structural changes with a decrease in secondary β-
structure and increase in random coil structure. The authors went
on to show that strong binding of VEFG by GO from plasma
hindered the interaction with VEGF cellular receptors, inhibiting
the proliferation, migration, and tube formation of human
umbilical vein endothelial cells as illustrated in Fig. 7c.

Outlook
Biomaterials influence cell function primarily through cell-
material surface interactions where the identity and structure of
adsorbed molecules, namely proteins, hormones, and growth
factors, strongly determine the bioactivity of the material in
context. The underlying physicochemical properties of the bio-
material ultimately regulate the entire cascade of interactions

from molecular adsorption and structure to what cells ultimately
“feel”. Graphene, as an emerging material with unique physico-
chemical properties, has been shown to stimulate different cell
response and protein interaction due to the multiplicity of its
interaction pathways. The potential of graphene for biomaterials
is enormous because the biomaterial community can exploit the
unique topographical, chemical, and electrical properties of the
material for specific purposes. In this review, we try to highlight
the diversity of graphene’s properties and biomolecular interac-
tions to emphasize the opportunities, and complexity, of using
graphene substrates as biomaterials. Specifically, because of gra-
phene’s unique nature, harnessing its power requires under-
standing what is adsorbed, how adsorbed molecules look
(structurally), and the (specific) cell response.

Going forward, the synergetic effort of experimental, theore-
tical, and simulation studies will be needed to develop meth-
odologies and rational models, which allow connecting the
substrate–protein interaction to cell function on different gra-
phene substrates. Use of advanced analytical instruments like
nano IR-AFM may provide protein topography and conforma-
tion in combination with IR spectroscopic information of gra-
phene substrates at nanoscale. This information, along with the
ultimate cell response, may provide the functional coupling of
topography and molecular structure of the adsorbed proteins with
cell function on graphene substrates having different physico-
chemical properties. Finally, additional research is needed to
evaluate cellular response on different graphene surfaces with
well-defined biochemical environments and serum-free media
formulations to reduce interference from these proteins, so that a
clear conceptual picture can be drawn. In writing this review, we
often found that unequivocal statements were hard to find due to
the multiple ways graphene can affect protein structure, and
how protein structure affects cell fate. Overall there is much to be
done in the graphene–biomolecular interaction–cell response

Fig. 7 Growth factor–graphene-based substrate interaction. a Schematic illustration for multi-pass caliber-rolled (MPCR) Ti alloy surface coated loaded
with RGO adsorbing dexamethasone and promoting osteogenic differentiation of the stem cell for dental application (adapted with permission from ref. 77.
© 2015 American Chemical Society). b Schematic showing the underlying mechanisms of cell interaction with adsorbed fibronectin and response of TGF‐
β3 growth factor influencing cell signaling to enhance chondrogenic differentiation (adapted with permission from ref. 40. © 2014 WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim). c Diagram showing how adsorbed VEGF on GO inhibited angiogenesis due to the structural change in VEFG upon
interaction with GO (adapted with permission from ref. 78. © 2016 Elsevier Ltd.).
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context that can help provide design criteria for graphene bio-
materials for specific needs.
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