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This paper presents new analytic solutions to the Dirac equation employing a recently introduced
method that is based on the formulation of spinorial fields and their driving electromagnetic fields
in terms of geometric algebras. A first family of solutions describe the shape-preserving translation
of a wavepacket along any desired trajectory in the x− y plane. In particular, we show that the dis-
persionless motion of a Gaussian wavepacket along both elliptical and circular paths can be achieved
with rather simple electromagnetic field configurations. A second family of solutions involves a plane
electromagnetic wave and a combination of generally inhomogeneous electric and magnetic fields.
The novel analytical solutions of the Dirac equation given here provide important insights into the
connection between the quantum relativistic dynamics of electrons and the underlying geometry of
the Lorentz group.

I. INTRODUCTION

In this work we further expand upon the recently de-
veloped framework of Relativistic Dynamical Inversion
(RDI) [1] whose purpose is to solve the following prob-
lem: Given an arbitrary (desired) spinorial spacetime
wavepacket ψ, find an electromagnetic vector potential
Aµ such that the Dirac equation is satisfied. This is ac-
complished by RDI in two steps: First, we verify the
attainability of the given evolution ψ by assessing the
existence of the underlying Aµ leading to valid Maxwell
equations (for a proof of this statement see section A
of the appendix). Second, if it exists, an explicit form
of Aµ is obtained which satisfies the Dirac equation for
the given ψ. Moreover, the method can also be used to
assess for attainable dynamics.

The task of constructing control fields yielding a de-
sired dynamics at all times and positions is one of the
most important and challenging problems in quantum
control. In particular, transporting coherent wavepack-
ets without disturbance is a required building block in
quantum technologies. By breaking down the spinor as
a series of local Lorentz transformations (i.e., Lorentz
transformations whose parameters are functions of space
and time), RDI allows for finding analytic solutions
which are not feasible by other current methods.

Exact solutions of the Dirac equation, a system of four
partial differential equations, are rare. The vast major-
ity of them are for highly symmetric stationary systems
[2–4]. Only a handful of solutions for time dependent
dynamics exists [5–16]. For instance, it was long after
the first exact time dependent solution was reported by
Volkov [5], that its generalization was proposed in [6], fol-
lowed by a slightly more general exact solution [7]. Most
of the investigations call for either semi-classical methods
[17–19] or numerical calculations [20–26]. In addition to
being computationally demanding, commonly used nu-
merical schemes are plagued by unphysical artefacts at
the fundamental level [27, 28]; thus, there is a need for
systematic construction of analytic solutions. RDI fulfils
all these needs by providing stationary as well as time-
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dependent exact solutions in two and three dimensions
(see [1] for other solutions).

Here, RDI is used to construct electromagnetic fields
that move a given Dirac spinor along any desired trajec-
tory in the x − y plane without spreading. In addition,
general solutions for a combination of plane electromag-
netic waves and electric and magnetic fields along the
wave’s propagation direction with arbitrary perpendicu-
lar profiles are also constructed. Illustrations are given
for the particular examples of a Gaussian wavepacket
moving along both an ellipse and a circle in the x − y
plane. Moreover, we give solutions for a Dirac electron
in a combination of a plane electromagnetic wave with
a constant and homogeneous magnetic field along the z
axis (known as the Redmond solution [6]) as well as in
a combination of a plane electromagnetic wave with a
constant and homogeneous magnetic field and an elec-
tric field of general profile, both along the z axis (first
reported by Bagrov et. al. in [7]). Our solution general-
izes the solutions given by Redmond and Bagrov et. al.
in that it also allows for inhomogeneous magnetic fields
along the z axis with an arbitrary perpendicular profile.
The analytical solutions of the Dirac equation given here
provide important insights into the relativistic dynamics
of electrons.

II. METHODOLOGY OF RELATIVISTIC
DYNAMICAL INVERSION.

The Dirac equation is commonly expressed as

γµ[ic~∂µ − ceAµ]ψ = mc2ψ, (1)

where the summation over repeated indices is adopted, ψ
is a four-component complex spinor, m is the mass, c is
the speed of light, γµ are the 4× 4 so-called gamma ma-
trices, Aµ is the four-vector potential and µ = 0, 1, 2, 3.

The Dirac equation (1) can be viewed as a “first quan-
tization” approximation to QED. The solutions of Eq.
(1) exclude effects such as radiation reaction and parti-
cle creation/annihilation prominent at ultra-relativistic
energies. Nevertheless, Eq. (1) provides a mean-field
description of relativistic effects at low and moderate
energies. A moving Dirac electron generates the current
JµD = ψ†γ0γµψ that emits secondary radiation, which is
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not accounted for by Eq. (1). Therefore, a solution of
the Dirac equation is physical if the energy loss due to
the secondary radiation is much smaller than the elec-
tron kinetic energy. This criterion should be satisfied in
the applications of the Dirac equation considered in this
work.

The Eq. (1) can be written in different forms empha-
sizing the geometry of the Lorentz group [29–32]. Here,
we employ the Hestenes formulation [29] where the state
ψ in Eq. (1) is represented by the matrix Ψ,

ψ =

ψ1

ψ2

ψ3

ψ4

⇐⇒ Ψ =

ψ1 −ψ∗2 ψ3 ψ∗4
ψ2 ψ∗1 ψ4 −ψ∗3
ψ3 ψ∗4 ψ1 −ψ∗2
ψ4 −ψ∗3 ψ2 ψ∗1

 .

obeying the Dirac equation in the matrix form

(~c∂/Ψγ2γ1 − ceA/Ψ) = mc2Ψγ0, (2)

where the Feynman slash notation was employed A/ =
Aµγµ, ∂/ = γµ∂µ (µ, ν = 0, 1, 2, 3). Note that the matrix
A/ must have real coefficients Aµ. The vector potential
may be expressed as a function of the state

eA/ = ~∂/Ψγ2γ1Ψ−1 −mcΨγ0Ψ−1, (3)

where

Ψ−1 =
Ψ̃

ΨΨ̃
, Ψ̃ = γ0Ψ†γ0.

A crucial insight is the spinor factorization for elec-
trons/positrons: Ψ =

√
ρL, where ρ is a non-negative

scalar function modulating the probability density and
L is an invertible matrix representing a Lorentz group
element [29–31]. It is very important to note that for all
cases other than a free electron, the scalar density

√
ρ

acts as an envelop function ensuring that the electron’s
probability distribution ψ†ψ is normalizable. Thus, it
is always written in the form exp(−f(x, y, z, t)), where
f(x, y, z, t) is semi-positive definite. For the particular
case of a free particle, we have

√
ρ = 1.

Considering that L is a member of the special Lorentz
group [29–31], a spinor Ψ can always be written as the
product of spatial rotations R, boosts B and a transfor-
mation of internal degrees of freedom parametrized by
the Yvon-Takabayashi angle β [33, 34]. Thus, the most
general parameterization of the matrix spinor is [29–32]

Ψ =
√
ρBReiβ/2, i = γ0γ1γ2γ3. (4)

The boost B is written in terms of the velocity com-
ponents cv = c(v1, v2, v3) (bold symbols denote three
dimensional vectors throughout)

B = B(v) =
vµαµ + 1√
2(1 + v0)

, (5)

with v0 =
√

1 + v2, α0 is the 4 × 4 identity matrix and
αk = γkγ0 are the well known gamma Dirac matrices;
whereas, the spatial rotations are parametrized by the
angles θ = (θ1, θ2, θ3)

R = R(θ) = exp
(
−iθkαk/2

)
. (6)

Note that the density ρ, velocity v, rotation angle θ
and Yvon-Takabayashi angle β are in general functions
of space and time. In this case, we say that the Lorentz
transformations encoded in the spinor Ψ are local. More-
over, It must be stressed that all solutions to the Dirac
equation can be put in the form given by Eq. (4).

RDI is performed in the following way: Spacetime
functions ρ, v, θ and β are initially selected to describe a
desired dynamics of the Dirac state Ψ. The constructed
factorization (4) is substituted in Eq. (3) to obtain the
vector potential in the matrix form A/.

If the Aµ are not real, the proposed dynamics is not
reachable with physical fields, and the parametrization
ρ, v, θ, and β needs to be modified.

If the Aµ are real, then we perform the final step
of the procedure, consisting in the substitution of both
the vector potential Aµ and the Dirac spinor describing
it, which is simply the leftmost column of Ψ, into the
Dirac equation (1). If the Dirac equation is satisfied ex-
actly, then the procedure is completed: The obtained
vector potential Aµ = Tr (A/γµ)/4 enables to recover the
electromagnetic fields Fµν = c (∂µAν − ∂νAµ) and the
source Jν = ∂µF

µν/(ε0c) generating them. Provided
the current Jν , the obtained fields Fµν necessarily sat-
isfy Maxwell’s equations. Note that Jν differs from the
current JµD = Tr (ΨγµΨ̃)/4 = ψ†γ0γµψ emanating from
the Dirac electron.

Before proceeding to the discussion of the newly found
solutions, let us better illustrate the philosophy of RDI
by analyzing the case of a free electron in the Hestenes
formalism (see [29] for more details). In this case, the
Dirac-Hestenes equation (2) becomes

~c∂/Ψγ2γ1 = mc2Ψγ0. (7)

The two positive energy solutions are

Ψ+
i = Uie

γ2γ1pµx
µ/~, (8)

where the Ui are constant spinorial Lorentz transforma-
tions. It is noteworthy that since γ2γ1 = iα3, the expo-
nential term is a rotation around the γ2γ1 axis by an an-
gle pµx

µ/~. In our examples it is shown that gauge trans-
formations can also be described as rotations around the
same axis. Inserting (8) into (7) gives

p/Ui = mcUiγ0 → p/ = mcUiγ0Ũi = mcv/,

since UiŨi = 1. The Lorentz transformations U1 and
U2 correspond to states with spin up and spin down,
respectively. They are explicitly given by

U1 = B(v), U2 = B(v)e−iα2π/2.

The two negative energy solutions are

Ψ−i = Vie
γ2γ1pµx

µ/~, (9)

where Vi = B(−v)eiπ/2, because in this case the Yvon-

Takabayashi angle is β = π. Note that ViṼi = eiπ al-
though we still have Viγ0Ṽi = v/. Thus the four momen-
tum becomes

p/ = mcv/e−iπ = −mcv/.
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Since v0 is positive, the energy cp0 is negative.
From the above discussion it becomes clear that when-

ever we parameterize the spinor by local Lorentz trans-
formations, the addition of the vector potential becomes
necessary if the Dirac equation is to be satisfied, in much
the same way as when local gauge transformations are
performed. Thus, we can claim that all the information
about the dynamics of electrons interacting with exter-
nal fields are contained in the parameterization of the
spinor. This aspect of RDI will become more apparent
during the discussion of our novel solutions.

III. A GENERAL SOLUTION FOR MOTION
CONFINED TO THE X-Y PLANE

We start with the following Dirac spinor describing an
electron wavepacket with spin down, which is in a ground
state of some potential, having zero average velocity at
time t = 0 in the laboratory frame

ψ = e−
eBG(x,y)

4c~

 0
N (mc2 + ε)

0
0

 , (10)

corresponding to the matrix spinor

Ψ = e−
eBG(x,y)

4c~ N (mc2 + ε)

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (11)

whereG is a positive real function to be determined later,
N is a normalization constant and eB > 0 is also a con-
stant. Such initial state will always lead to a magnetic
field along the z axis in the laboratory frame that is par-
allel to the z-component of the electron’s spin. Moreover,
a peculiar feature of electrons with g-factor g = 2 is that
the ground state energy in this case is exactly ε = mc2

for the case of a constant and homogeneous field [2, 35].
We should point out that Eq. (11) is of the form (4).

For instance, since the electron has zero average veloc-
ity the boost B(0) = 1 is simply given by the identity
matrix. Moreover, given that the spin of the electron is
down (i.e., along the −ẑ axis), we know from the previ-
ous section that0 −1 0 0

1 0 0 0
0 0 0 −1
0 0 1 0

 = exp

(
−iα2π

2

)
= R.

However, the scalar density instead of being equal to
one as in the free particle case, it is now given by
√
ρ = e−

eBG(x,y)
4c~ N (ε + mc2). Such modification of the

matrix spinor necessarily leads to the addition in the
Dirac equation of the following vector potential as can
be derived from Eq. (3)

eA0 = 0,

eAk = −~
2

v0s3

ρ
εkl3

∂

∂xl
ρ, (12)

with v0 = −s3 = 1 since

ρv/ = Ψγ0Ψ̃ = e−
eBG(x,y)

2c~ N 2(ε+mc2)2γ0,

ρs/ = Ψγ3Ψ̃ = −e−
eBG(x,y)

2c~ N 2(ε+mc2)2γ3. (13)

Hence, this confirms our claim that the particular spinor
parametrization (11) will always lead to some type of
magnetic field along the ẑ axis. In the case that
G(x, y) = c(x2 + y2) we recover the ground state of an
electron in a constant and homogeneous magnetic field
eB = {0, 0,−eB}. Other choices for the free function G
will generally lead to inhomogeneous magnetic fields.

The goal is to translate the electron along an arbitrary
trajectory in the x − y plane. In order to do so, we
apply to the matrix spinor (11) a boost with velocity
f ′(t) along x and g′(t) along y

Ψb = B(v)Ψ, v =

{
γ
f ′(t)

c
, γ
g′(t)

c
, 0

}
,

(14)

where

γ =
c√

c2 − f ′(t)2 − g′(t)2
,

along with the following transformations also performed
on the initial state Ψ

x′ = x− f(t)

y′ = y − g(t)

ρ′ = ρ(x′, y′)/γ.

The boosted Dirac spinor ψb extract from Ψb is then

ψb =

√
ρ′

2


0√

1 + γ
γ(f ′(t)−ig′(t))

c
√

1+γ

0

 ,

√
ρ′ = c3/2m 4

√
c2 − (f ′(t)2 + g′(t)2) e−

eBG(x′,y′)
4c~

×N (ε+mc2). (15)

The electron’s velocity becomes

v/ = γ

(
γ0 + γ1

f ′(t)

c
+ γ2

g′(t)

c

)
,

(16)

Note that the spin vector continue to have the form (13).
From Eq. (3) we get the following components of the
vector potential

eA0 =
~
2

([
1− γ
c

]
d

dt
arctan

(
g′(t)

f ′(t)

)
+ (s× v) · ~∇ ln ρ

)
−mcγ,

eA1 = − ~
2ρ

(
γ
∂ρ

∂y
+

∂

c∂t
(ρv2)

)
−mcv1,

eA2 =
~
2ρ

(
γ
∂ρ

∂x
+

∂

c∂t
(ρv1)

)
−mcv2,

eA3 = 0. (17)
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The solution we found is a generalization of the 2D solu-
tions found in Ref. [1]. The electron’s trajectory is given
by the free real functions f(t) and g(t). In the appendix
we prove that the spinor (15) exactly satisfies the Dirac
equation with the vector potential (17).

Before proceeding, let us give a more intuitive expla-
nation of the spinor parametrization (14). In general,
the matrix spinor Ψ is an active Lorentz transformation
describing the motion of the electron as seen by an ob-
server in the laboratory frame. Thus, the local Lorentz
boost B in Eq. (14) simply means that the observer in
the laboratory frame sees the electron moving with a
varying velocity. The observer thus concludes that the
electron is being acted on by a force. Since what we can
measure are trajectories and not fields, we infer from the
spinor parameterization the electromagnetic fields caus-
ing the observed motion of the electron. This feature is
at the core of RDI, thus being a crucial property of all
the solutions discussed in this work.

A. Gaussian tracing out an ellipse without
dispersion.

As an illustration of the newly found solution, we now
consider an electromagnetic field that moves a Gaussian
wave packet along an ellipse in the x− y plane without
distortion. We choose the following functions

f(t) = a1 cos(ωt), g(t) = a2 sin(ωt),

G(x, y) = c(x2 + y2),

where a1, a2 are the semi-axes of the ellipse. The vec-
tor potential is calculated from Eqs. (17) for the given
functions.

According to RDI, the electromagnetic fields generat-
ing the dynamics consists of a time dependent homoge-
neous magnetic fieldB perpendicular to a planar electric
field which co-rotates in the x−y plane with the electron.

In Fig. 1, the crossed circles represent the time de-
pendent homogeneous magnetic field perpendicular to
the plane, and the electric field at times ωt = 0 (Fig.
1 A) and ωt = 3.3 (Fig. 1 B) are displayed as blue
arrows in the x − y plane. The dashed blue and dot-
dashed red curves are the trajectories of classical point
particles, initially localized at different points within
the electron’s wavefunction, calculated by numerically
solving the Lorentz force equation with the driving
fields given by Eqs. (C7), (C19) and (C20) of the ap-
pendix in order to show that the derived electromagnetic
fields indeed lead to no spreading. As shown in Sec.
C of the appendix, these electromagnetic fields satisfy
Maxwell’s equations with an electric current but with-
out free charges. The black diffused circle (initially at

x = 1µm and y = 0) depicts the Gaussian state ψ†bψb
whose shape is preserved during its motion along the full
grey curve.

It is important to investigate two different energy
regimes of our solutions: The non-relativistic regime
c� aiω and the highly relativistic regime aiω ≈ c where
ai are the semi-major axis of the elliptical trajectory.
Note that if aiω > c, γ becomes complex.

FIG. 1: Dispersionless Motion. Time snapshot of the state
evolution (15) (A) at the beginning of the translation t = 0ns
and (B) at t = 6.6ns. The black diffused circle represents
the electron probability density moving along the full grey
curve with frequency ω without changing its shape. The
dashed blue and dot-dashed red curves are the trajectories
of classical point particles calculated by numerically solving
the Lorentz force equation with the driving fields given by
Eqs. (C7), (C19) and (C20) of the appendix. This dynamics
is achieved by a combination of a rotating electric field (blue
arrows) given by Eqs. (C2) and (C3) and a time dependent
homogeneous magnetic field B perpendicular to the plane
of the figure (crossed red circles) given by Eq. (C7) of the
appendix. The values of the parameters are ε = mc2, B =
0.35T, a1 = 1µm, a2 = 2µm and ω = 0.5ns−1.

The non-relativistic limit c → ∞ of the driv-
ing fields given by Eqs. (C2), (C3) and (C7)
of the appendix consist of the constant and ho-
mogeneous magnetic field B along the z direc-
tion and the time dependent electric field: eE =
ω {(a2eB − a1mω) cosωt, (a1eB − a2mω) sinωt, 0},
eB = {0, 0,−eB}. This setup can be shown to preserve
the Gaussian shape within the Schrödinger equation.
Note that this dynamics can be observed at experimen-
tally available values of B = 0.35T and |E| ∼ 0.3V/m
employed in Fig. 1. In such a regime, the radiation
energy loss per cycle is infinitesimally (i.e., 11 orders of
magnitude) smaller than the electron’s kinetic energy.
Therefore, the obtained solutions fall within the range
of applicability of the Dirac equation.

The highly relativistic limit γ � 1 of the driving fields
is given by Eqs. (C18) and (C17) of the appendix. Con-
trary to the non-relativistic case, the magnetic field be-
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comes time dependent while the electric field is depen-
dent on both space and time. In the intermediary regime
shown in Fig. 1 the electric field has a weak dependent
on both x and y proportional to ω3(a2

1 + a2
2)eB/(2c2).

IV. A GENERAL SOLUTION FOR AN
ELECTRON INTERACTING WITH THE

COMBINATION OF A PLANE
ELECTROMAGNETIC WAVE WITH ELECTRIC

AND MAGNETIC FIELDS

The starting point for the construction of the desired
solution is the matrix spinor (11). The matrix spinor is
construct by applying to (11) the following combination
of local Lorentz transformations

ΨT = e
c k/∧A/

2ω(p0−pz)BzΨeγ2γ1Φ, (18)

where the terms applied to the left of Ψ consist of the
following boost along the z direction

Bz = B(vz), (19)

with vz = {0, 0, v3(ξ)}, p0 = mcv0, pz(ξ) = mcv3(ξ) and
ξ = ωt − ωz/c followed by a combination of boosts and
rotations given by

k/ ∧ A/ = f ′1(ξ) (α1 + iα2) + f ′2(ξ) (α2 − iα1) (20)

while the term applied to the right is a rotation about
the γ2γ1 axis leading to a gauge transformation given by
the free function Φ. The ω and kµ = ω

c (1, 0, 0, 1) are the
laser’s frequency and wave vector, respectively. More-
over, the application of the successive Lorentz transfor-

mations e
c k/∧A/

2ω(p0−pz)Bz induce the following change of co-
ordinates

x′ = x+

∫ ξ

0

dφ
(pz(φ) + p0)f ′1(φ)

m2ω2

y′ = y +

∫ ξ

0

dφ
(pz(φ) + p0)f ′2(φ)

m2ω2
.

The Dirac spinor is then

ψT = N (ε+mc2)

√
pz(ξ)

mc
+
p0

mc
e−iΦ−

eB
4~cG(x′,y′)×

− c(f
′
1(ξ)−if ′2(ξ))(cm−pz(ξ)+p0)

2
√

2ω
√
cm(cm+p0)(p0−pz(ξ))√
cm(cm+p0)√

2cm

− c(f
′
1(ξ)−if ′2(ξ))(cm−pz(ξ)+p0)

2
√

2ω
√
cm(cm+p0)(p0−pz(ξ))

− pz(ξ)√
2
√
cm(cm+p0)


. (21)

The components of the vector potential given by Eq.

(3) are

eA0 =
ω~Φ(1,0,0)(ξ, x, y)

c
−

(pz(ξ) + p0)
(
f ′1(ξ)2 + f ′2(ξ)2

)
2m2ω2

− p0 −
(pz(ξ) + p0)

4m2c2ω
f ′1(ξ)eBG(0,1) (x′, y′)

+
(pz(ξ) + p0)

4m2c2ω
f ′2(ξ)eBG(1,0) (x′, y′) ,

eA1 =
1

2
~
(
eB

2~c
G(0,1) (x′, y′)− 2Φ(0,1,0)(ξ, x, y)

)
+
cf ′1(ξ)

ω
,

eA2 = −1

2
~
(
eB

2~c
G(1,0) (x′, y′) + 2Φ(0,0,1)(ξ, x, y)

)
+
cf ′2(ξ)

ω
,

eA3 = eA0 − pz(ξ) + p0. (22)

Note that the free function Φ can be chosen such that
eA0 = 0. Thus, it amounts to a gauge transformation.

The corresponding electromagnetic fields are

eB = −eB(pz(ξ) + p0)∇′2G (x′, y′)

4c2m2ω
{f ′1(ξ), f ′2(ξ), 0}

+ {f ′′2 (ξ),−f ′′1 (ξ),−eB
4c
∇′2G (x′, y′)}, (23)

eE =

{
ceBy,−ceBx, ωp′z(ξ)

(
1− pz(ξ)

p0

)}
,

(24)

where ∇′2 = ∂2/∂x′2 +∂2/∂y′2. The found solutions are
written in terms of the free functions G, f1, f2, pz and Φ,
being therefore very general.

It is now important to better explain the significance

of the local Lorentz transformation e
c k/∧A/

2ω(p0−pz) and why
does it leads to plane wave fields. First of all, it should
be noted that k/∧A/ corresponds to a null bivector, which
means that (k/ ∧ A/)2 = 0. This property implies that

e
c k/∧A/

2ω(p0−pz) = 1 +
c k/ ∧ A/

2ω(p0 − pz)
.

Thus, if we make the substitutions BzΨ→ Ui and

Φ = −pµxµ/~−
∫ ξ

0

dφ

(
eAµpµ
kµpµ

− e2A2

2kµpµ

)
,

in Eq. (18) we recover the well known Volkov states
[5]. Therefore, replacing Ui in the Volkov states by the
more general local Lorentz transformation BzΨ leads to
the addition of extra electromagnetic fields to the plane
wave field from the original Volkov spinor. In the ap-
pendix we prove that the spinor (21) exactly satisfies
the Dirac equation with the vector potential (22). It
is noteworthy that the bivector k/ ∧ A/ consists of the
boost vector {f ′1(ξ), f ′2(ξ), 0} and the rotation vector
{−f ′2(ξ), f ′1(ξ), 0} which are mutually orthogonal. From
the expression for the electromagnetic fields (23) we see
that in the terms corresponding to the plane wave field
inherited from the Volkov spinor (i.e., terms that don’t
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depend on neither∇′2G nor pz(ξ)), the electric and mag-
netic field components are given by − d

dξ{f
′
1(ξ), f ′2(ξ), 0}

and − d
dξ{−f

′
2(ξ), f ′1(ξ), 0}, respectively. Moreover, the

z component of the electric field is a consequence of the
local Lorentz boost Bz.

It is instructive to consider what kind of sources will
generate the electromagnetic fields (23). From Maxwell’s
equations, we get

ρe =
1

4cω

(
4c2m2ω3p′z(ξ)

2

p3
0

− 4ω3p′′z (ξ)

(
1− pz(ξ)

p0

)
+
eB(p0 + pz(ξ))

m2

[
f ′1(ξ)

∂

∂y′
− f ′2(ξ)

∂

∂x′

]
∇′2G(x′, y′)

)
,

µ0J =

{
− eB

4c

∂

∂y′
∇′2G(x′, y′),

eB

4c

∂

∂x′
∇′2G(x′, y′),

ρe
c

}
.

(25)

Hence, unless ∇′2G(x′, y′) is constant, which happens
only if G(x′, y′) = c(x′2+y′2) or if G(x′, y′) is a harmonic
function, the magnetic fields from our solutions will be
inhomogeneous.

In what follows, we will consider some particular cases
of our general solution (21).

A. Solution to the Dirac equation for a particle
with a plane electromagnetic wave and a

homogeneous magnetic field

As a rule the free functions of our solutions are chosen
such that the source of the given electromagnetic fields
(25) have a simple form, the simplest being source free
fields in vacuum. For instance, by choosing G(x, y) =
c(x2 + y2) and pz = 0, the vector potential becomes

eA0 = −c(f
′
1(ξ)2 + f ′2(ξ)2)

2mω2
+
ω~Φ(1,0,0)(ξ, x, y)

c
− cm

− eB (y′f ′1(ξ)− x′f ′2(ξ))

2mω
,

eA1 =
1

2

(
−2~Φ(0,1,0)(ξ, x, y) +

2cf ′1(ξ)

ω
+ eBy′

)
,

eA2 = −~Φ(0,0,1)(ξ, x, y) +
cf ′2(ξ)

ω
− eBx′

2
,

eA3 = eA0 +mc.

while the electromagnetic fields are

eB =

{
−eBf ′1(ξ)

mω
+ f ′′2 (ξ),

−eBf ′2(ξ)

mω
− f ′′1 (ξ),−eB

}
,

eE = {ceBy,−ceBx, 0} .
(26)

It is straightforward to show that the electromag-
netic fields (26) obey the source-free Maxwell’s equa-
tions, as desired. This solution is a particular case
of the well known Redmond solution [6] provided that
limξ→−∞ f ′i(ξ) = limξ→−∞ f ′′i (ξ) = 0, i = 1, 2 and that
the asymptotic spinor corresponds to the ground state
of the homogeneous magnetic field.

FIG. 2: Dispersionless Motion in a directed plane wave
field. The diffuse tube represents the state (21). This dy-
namics is achieved by a combination of circularly polarized
800 nm laser field propagating along x− = t − z/c of in-
tensity 1021W/cm2 with electric and magnetic field compo-
nents represented by the blue full curve and the red dashed
curve, respectively and a constant and homogeneous mag-
netic field B perpendicular to the x − y plane. The values
of the parameters are ε = mc2, a0 = 3.24T, B = 0.13T and
ω = eB/m = 2.35fs−1.

1. Gaussian tracing out a circle without dispersion in the
presence of a plane wave field and a homogeneous and

constant magnetic field.

For this example we choose the following functions

f1(ξ) = a0(cos(ξ)− 1), f2(ξ) = −a0 sin(ξ).

In Fig. 2, the blue full curve represents the electric field
while the red dashed curve represents the magnetic field
components of a circularly polarized directed plane wave
propagating along the x− = ct− z direction with polar-
ization on the x − y plane. It is easy to see that these
electromagnetic fields satisfy the source free Maxwell’s
equations. The diffuse tube depicts the Gaussian state

ψ†TψT whose shape is preserved during its circular mo-
tion on the x−y plane. As seen from the explicit expres-
sion of the Dirac spinor ( see section D of the appendix)
the wavepacket is unbounded along the z axis.

B. Solution to the Dirac equation for a particle in
a plane electromagnetic wave and a combination of
a homogeneous magnetic field and an electric field

For this example, we also choose G(x, y) = c(x2 + y2)
but keep pz(ξ) arbitrary. The electromagnetic fields then



7

become

eB = −
{
eB(pz(ξ) + p0)f ′1(ξ)

m2cω
,
eBf ′2(ξ)(pz(ξ) + p0)

cm2ω
, eB

}
+ {f ′′2 (ξ),−f ′′1 (ξ), 0}, (27)

eE =

{
ceBy,−ceBx, ωp′z(ξ)

(
1− pz(ξ)

p0

)}
.

(28)

Thus, we recover the generalization of the Redmond so-
lution [6] first given by Bagrov et. al. in Ref. [7].

V. OUTLOOK.

We have applied RDI, a new framework for analyti-
cally constructing electromagnetic fields controlling the
dynamics of the Dirac equation, to the case of disper-
sioneless translation along an arbitrary trajectory in the
x − y plane. Illustrations are given for a Gaussian
wavepacket moving along an ellipse and a circle in the
x− y plane.

Additionally, we found solutions for a Dirac electron
driven by the combination of a plane electromagnetic
wave with both axial electric and magnetic fields with

non homogeneous perpendicular profiles. In the process
of finding these mew solutions, RDI provided a glimpse
of what might come by further exploration of the full
freedom contained in the spinor factorization (4). More-
over, our illustrations of RDI also hints on a deep con-
nection between the electron motion in external fields
described by the Dirac equation and the underlying ge-
ometry of the Lorentz group, the symmetry group of
quantum relativistic dynamics

Having illustrated the potential of RDI, the challenges
presented upon us are twofold. First, is the task of find-
ing square-integrable solutions to the Dirac equation for
an electron interacting with realistic laser fields (e.q.,
gaussian beams). Second is whether or not RDI can be
used as means to construct the complete set of eigenval-
ues and eigenfunctions for bound state problems. The
key to such understanding lies in elucidating the physi-
cal and geometrical meanings of each term in the Dirac
and Dirac-Hestenes spinors for the solutions to the Dirac
equation.

Acknowledgments A.G.C. acknowledges financial sup-
port from the Humboldt Foundation and insightful
discussions with K.Z. Hatsagortryan whose comments
greatly improved the presentation of this work.

Appendix A: Proof that eA/ satisfy Maxwell’s equations

The importance of finding a real A/ through the inversion procedure is the following. First, let us recall the form
of Maxwell’s equations

ρe = ~∇ ·E,
~∇ ·B = 0,

µ0J = ~∇×B − ∂

c2∂t
E,

~∇×E = − ∂

c∂t
B. (A1)

Giving any real function A0(t, x, y, z) and any real vector field A = (A1(t, x, y, z), A2(t, x, y, z), A3(t, x, y, z))T , set

B = ~∇×A, (A2)

E = −~∇(A0)− ∂

c∂t
A. (A3)

By also setting

ρe = ~∇ ·E, µ0J = ~∇×B − ∂

c2∂t
E, (A4)

we get solutions to (A1). That this is the case can be easily seem from Eqs. (A2) and (A3) as follows. Since B is

the curl of a vector field, then ~∇ ·B = 0. Moreover, by taking the curl of E we get from (A3)

~∇×E = − ∂

c∂t
~∇×A→ ~∇×E = − ∂

c∂t
B. (A5)

Therefore, the vector potential derived from the RDI method is guaranteed to obey Maxwell’s equations.

Appendix B: Proof that the calculated vector potentials really satisfies the Dirac equation for the given
spinors

We begin by expanding the Dirac equation given in Eq. (1) of the main text

ic~(∂tγ
0 + ∂xγ

1 + ∂yγ
2 + ∂zγ

3)ψ − (ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 +mc2)ψ = 0, (B1)
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For the spinor (15) of the main text, the first term on the right hand side of Eq. (B1) becomes

ic~(∂tγ
0 + ∂xγ

1 + ∂yγ
2 + ∂zγ

3)ψb = ψ̄, ψ̄ =

 0
ψ̄2

ψ̄3

0


where

ψ̄2 =
i
√

γ
γ+1N

(
c2m+ ε

)
e−

eBG(x′,y′)
4c~

4
√

2c2

{
c
(
−eBf ′(t)G(1,0) (x′, y′)− eBg′(t)G(0,1) (x′, y′)

)
γ

+

2γ~ (f ′(t)f ′′(t) + g′(t)g′′(t)) + iceB
(
f ′(t)G(0,1) (x′, y′)− g′(t)G(1,0) (x′, y′)

)}
,

ψ̄3 =−

√
γ
γ+1N

(
c2m+ ε

)
e−

eBG(x′,y′)
4c~

4
√

2c2

{2cγeBG(0,1) (x′, y′)

(
c+

γg′(t)(−g′(t)−if ′(t))
c(γ+1)

)
γ + 1

− 8cγ~ (g′′(t) + if ′′(t)) +

2icγeBG(1,0) (x′, y′)

(
c− γf ′(t)(f ′(t)−ig′(t))

c(γ+1)

)
γ + 1

+
4γ2~ (g′(t) + if ′(t)) ((1 + 2i)f ′′(t)g′(t) + f ′(t) (f ′′(t)− 2ig′′(t)))

c(γ + 1)

}
,

γ =
c√

c2 − f ′(t)2 − g′(t)2

It is then straightforward to show that upon substituting the vector potential given in Eq. (17) of the main text on
the second term on the right hand side of (B1) we get

(ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 +mc2)ψb = ψ̄.

Thus, the Dirac equation (B1) is exactly satisfied.
For the spinor (21) of the main text, the first term on the right hand side of Eq. (B1) becomes

ic~(∂tγ
0 + ∂xγ

1 + ∂yγ
2 + ∂zγ

3)ψT = φ, φ =

φ1

φ2

φ3

φ4


where

φ1 = −√ρe−iΦ c~pz(ξ)
2
√

2
√
cm(cm+ p0)

{(
eBG(0,1) (x′, y′)

2c~
+
ieBG(1,0) (x′, y′)

2c~

)
+ i
(

2Φ(0,0,1)(ξ, x, y) + 2iΦ(0,1,0)(ξ, x, y)
)}

,

φ2 =
(cm+ p0 − pz(ξ))

√
ρe−iΦ

4
√

2ω
√
cm(cm+ p0)(p0 − pz(ξ))

{(
1

2
iceB (f ′1(ξ) + if ′2(ξ))G(1,0) (x′, y′) +

1

2
c (f ′1(ξ) + if ′2(ξ)) eBG(0,1) (x′, y′)

)
+ 2

(
c2~ (f ′2(ξ) + if ′1(ξ)) Φ(0,0,1)(ξ, x, y) + c2~ (f ′1(ξ)− if ′2(ξ)) Φ(0,1,0)(ξ, x, y)− 2ω2~(p0 − pz(ξ))Φ(1,0,0)(ξ, x, y)

)}
,

φ3 = −√ρe−iΦ
~
√
mc(mc+ p0)

2
√

2m

{(
eBG(0,1) (x′, y′)

2c~
+
ieBG(1,0) (x′, y′)

2c~

)
+ i
(

2Φ(0,0,1)(ξ, x, y) + 2iΦ(0,1,0)(ξ, x, y)
)}

,

φ4 =
(cm+ p0 − pz(ξ))

√
ρe−iΦ

4
√

2ω
√
cm(cm+ p0)(p0 − pz(ξ))

{
1

2
ceB (f ′2(ξ)− if ′1(ξ))G(1,0) (x′, y′)− 1

2
ceB (f ′1(ξ) + if ′2(ξ))G(0,1) (x′, y′)

+ 2
[
− ic2~ (f ′1(ξ)− if ′2(ξ)) Φ(0,0,1)(ξ, x, y)− c2~ (f ′1(ξ)− if ′2(ξ)) Φ(0,1,0)(ξ, x, y)

+ 2ω2~
(√

c2m2 + pz(ξ)2 − pz(ξ)
)

Φ(1,0,0)(ξ, x, y)
]}
,

√
ρ = N (ε+mc2)

√
pz(ξ)

mc
+
p0

mc
e−

eB
4~cG(x′,y′).

It is then straightforward to show that upon substituting the vector potential given in Eq. (22) of the main text on
the second term on the right hand side of (B1) we get

(ceA0γ0 + ceA1γ1 + ceA2γ2 + ceA3γ3 +mc2)ψT = φ.

Thus, the Dirac equation (B1) is exactly satisfied.
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Appendix C: Dispersionless motion along an elliptical path: Gaussian state in 2D

For this particular case the Dirac spinor ψb is

ψb =



0

Ncm 4
√
c2−ω2(a21 sin2(tω)+a22 cos2(tω))

√
c2√

c2−ω2(a21 sin2(tω)+a22 cos2(tω))
+c exp

(
−
B((x−a1 cos(tω))2+(y−a2 sin(tω))2)

4~

)
√

2

Nc2mω(−a1 sin(tω)+ia2 cos(tω)) exp

(
−
B((x−a1 cos(tω))2+(y−a2 sin(tω))2)

4~

)
√

2 4
√
c2−ω2(a21 sin2(tω)+a22 cos2(tω))

√
c2√

c2−ω2(a21 sin2(tω)+a22 cos2(tω))
+c

0


.

(C1)

The corresponding electric field is

eE1 =
cos(tω)

2c2γ

(
ω2
(
c2 − a2

2ω
2
) (
a2ω

(
a2

1eB − ~
)
− 2a1c

2m
)

c2γ2
+ a2eBγ

2ω

(
a2

2ω
2

γ2
+ 2c2

))

−
a1a2eBxω

(
c2γ2 − (c2−a21ω

2)(c2−a22ω
2)

c2γ2

)
2c2γ(a2

1 − a2
2)

− 1

4c2γ
eByω3 sin(2tω)

(
a2

1

(
c2 − a2

2ω
2
)

c2γ2
+ a2

2

)
, (C2)

eE2 =
sin(tω)

2c2γ

(
a1eBω

(
a2

1ω
2 + 2c2γ2

)
−
ω2
(
c2 − a2

1ω
2
) (

2a2c
2m− a1ω

(
a2

2eB − ~
))

c2γ2

)

+

a1a2eByω

(
c2γ2 − (c2−a21ω

2)(c2−a22ω
2)

γ2c2

)
2c2γ(a2

1 − a2
2)

− 1

4c2γ
eBxω3 sin(2tω)

(
a2

2

(
c2 − a2

1ω
2
)

c2γ2
+ a2

1

)
, (C3)

eE3 = 0. (C4)

The magnetic field is

eB1 =0, (C5)

eB2 =0, (C6)

eB3 =−
eB
(
2c2 − ω2

(
a2

1 sin2(tω) + a2
2 cos2(tω)

))
2c
√
c2 − ω2

(
a2

1 sin2(tω) + a2
2 cos2(tω)

) = −eB
2

(
γ +

1

γ

)
. (C7)

The obtained electromagnetic field obeys Maxwell’s equations

∇ ·E = 0, (C8)

∇ ·B = 0, (C9)

∇×E +
∂

∂t
B = 0, (C10)

∇×B− 1

c2
∂

∂t
E = µ0J, (C11)

with the current J

µ0eJ
1 =− ∂

c2∂t
eE1, (C12)

µ0eJ
2 =− ∂

c2∂t
eE2, (C13)

µ0eJ
3 =0. (C14)

The non-relativistic limit of the electromagnetic field (C2)-(C7) is

eEnr = {ω cos(tω) (eBa2 − a1mω) , ω sin(tω) (eBa1 − a2mω) , 0} , (C15)

eBnr = {0, 0,−eB}. (C16)
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It is noteworthy that the time dependence of the magnetic field as well as the space dependence of the electric field
are more pronounced in the high energy regime, in which ωai ≈ c, where ai is the semi-major axis of the ellipse. In
this regime γ � 1 and the electric and magnetic fields becomes

eBr ≈ −
{

0, 0,
γeB

2

}
, (C17)

eEr ≈ γeBω
{
a2 cosωt− a2a1x

2(a2
1 − a2

2)
, a1 sinωt+

a1a2y

2(a2
1 − a2

2)
, 0

}
. (C18)

In the classical limit ~→ 0, the magnetic field (C7) remains unchanged while the electric field becomes

eẼ1 =
cos(tω)

2c2γ

(
ω2
(
c2 − a2

2ω
2
) (
a2ωa

2
1eB − 2a1c

2m
)

c2γ2
+ a2eBγ

2ω

(
a2

2ω
2

γ2
+ 2c2

))

−
a1a2eBxω

(
c2γ2 − (c2−a21ω

2)(c2−a22ω
2)

c2γ2

)
2c2γ(a2

1 − a2
2)

− 1

4c2γ
eByω3 sin(2tω)

(
a2

1

(
c2 − a2

2ω
2
)

c2γ2
+ a2

2

)
, (C19)

eẼ2 =
sin(tω)

2c2γ

(
a1eBω

(
a2

1ω
2 + 2c2γ2

)
−
ω2
(
c2 − a2

1ω
2
) (

2a2c
2m− a1ωa

2
2eB

)
c2γ2

)

+

a1a2eByω

(
c2γ2 − (c2−a21ω

2)(c2−a22ω
2)

γ2c2

)
2c2γ(a2

1 − a2
2)

− 1

4c2γ
eBxω3 sin(2tω)

(
a2

2

(
c2 − a2

1ω
2
)

c2γ2
+ a2

1

)
, (C20)

(C21)

The current constructed from the Dirac spinors is JD = Ψγ0Ψ̃, whose components JµD = Tr(Ψγ0Ψ̃γµ)/4 are

J0
D =N 2c4m2 exp

(
−
B
(
(x− a1 cos(tω))2 + (y − a2 sin(tω))2

)
2~

)
, (C22)

J1
D =−N 2a1c

3m2ω sin(tω) exp

(
−
B
(
(x− a1 cos(tω))2 + (y − a2 sin(tω))2

)
2~

)
, (C23)

J2
D =N 2a2c

3m2ω cos(tω) exp

(
−
B
(
(x− a1 cos(tω))2 + (y − a2 sin(tω))2

)
2~

)
, (C24)

J3
D =0. (C25)

The velocity associated with the current JD is obtained as vk = cJkD/ρ

v1 =− a1ω sin(ωt), (C26)

v2 =a2ω cos(ωt), (C27)

with the magnitude given by |v| = ω
√
a2

1 cos(ωt)2 + a2
2 sin(ωt)2. Thus, superluminal propagation is avoided if

aiω < c, i = 1, 2.
The current Je (C12)-(C14) entering Maxwell’s equations (C8)-(C11) is related to the current JD (C22)-(C25)

constructed from the Dirac spinor in the following way: The Maxwell current Je creates the electromagnetic field
(C2)-(C7) steering the Dirac wave packet (C1). Moving along an elliptical trajectory, a Dirac electron yields the
current JD emitting radiation. If the radiation losses are large, the proposed solutions may not work. Therefore,
the calculated electromagnetic fields are physically meaningful if the electron kinetic energy is much larger than the
energy emitted via radiation. The dispersionless rotation shown in Fig. 1 of the main text obeys well this criterion
because the radiative energy loss per period is ∝ 10−32J, whereas the electron kinetic energy is ∝ 10−21J.

Appendix D: Gaussian tracing out a circle without dispersion in the polarization plane of a circularly
polarized directed plane wave field

For this particular case the Dirac spinor ψT is

ψT = e−iΦ−
eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

4m2ω4~


a0(sin(ξ)−i cos(ξ))

2mω
1

a0(sin(ξ)−i cos(ξ))
2mω

0

 (D1)
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with

Φ =
c
(
cξ
(
a2

0(eB +mω) + 2m3ω3
)

+ a0eB
(
mω2(x sin(ξ) + y cos(ξ))− a0c sin(ξ)

))
2m2ω4~

.

The current constructed from the Dirac spinors is JD = ΨT γ0Ψ̃T , whose components JµD = Tr(ΨT γ0Ψ̃T γµ)/4 are

J0
D =e−

eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
1 +

a2
0

2m2ω2

)
, (D2)

J1
D =e−

eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a0 sin (ξ)

mω

)
, (D3)

J2
D =e−

eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a0 cos (ξ)

mω

)
, (D4)

J3
D =e−

eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a2

0

2m2ω2

)
. (D5)

The spin density constructed from the Dirac spinors is ρs = ΨT γ3Ψ̃T , whose components ρsµ = Tr(ΨT γ3Ψ̃T γµ)/4
are

ρs0 =e−
eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a2

0

2m2ω2

)
, (D6)

ρs1 =e−
eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a0 sin (ξ)

mω

)
, (D7)

ρs2 =e−
eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
a0 cos (ξ)

mω

)
, (D8)

ρs3 =e−
eB

(
(a0c(cos(ξ)−1)+mxω2)

2
+(−a0c sin(ξ)+myω2)

2
)

2m2ω4~

(
−1 +

a2
0

2m2ω2

)
. (D9)
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[9] S. Varró, Laser Physics Letters 10, 095301 (2013).

[10] I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
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