
https://doi.org/10.1177/2515245919838783

Advances in Methods and
Practices in Psychological Science
2019, Vol. 2(2) 169–187
© The Author(s) 2019

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/2515245919838783
www.psychologicalscience.org/AMPPS

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCETutorial

Psychologists rarely ensure that their data are findable,
accessible, interoperable, and reusable (FAIR; Borghi
& Van Gulick, 2018; Hardwicke et al., 2018; Kidwell
et al., 2016; Wilkinson et al., 2016). Reuse of a data set
is therefore difficult for researchers who lack intimate
knowledge of it—a group that may come to include the
data collector and his or her collaborators after a few
years. Furthermore, data sets are rarely documented in
standard formats that can be read by search engines
and other algorithmic approaches to data, whereas pro-
prietary formats, such as .sav (SPSS), are widely used.
Often only a processed subset of the data, without
item-level information, is released.

There are at least three likely reasons for insufficient
documentation of data sets in psychology. One is the
curse of knowledge: It is difficult to imagine which
descriptions will be cryptic to readers who are not famil-
iar with the data. A second reason is a lack of standards

and training: Psychological scientists tend to receive
little to no training in data documentation, and the train-
ing that is offered is often ad hoc. Because many data
sets in psychology are small and specific to certain
research questions, few departments hire specialized
data librarians who can concentrate knowledge on the
topic and support researchers in archiving useful data.
However, even disciplines with a stronger history of
data sharing, such as ecology, struggle to share reusable
data (Roche, Kruuk, Lanfear, & Binning, 2015). The third
likely reason stems from career incentives: They do not
favor the significant time investment necessary for the
kind of data documentation that would best advance

838783 AMPXXX10.1177/2515245919838783ArslanDocument Data With codebook
research-article2019

Corresponding Author:
Ruben C. Arslan, Center for Adaptive Rationality, Max Planck Institute
for Human Development, 14195 Berlin, Germany
E-mail: ruben.arslan@gmail.com

How to Automatically Document Data
With the codebook Package to Facilitate
Data Reuse

Ruben C. Arslan 
Center for Adaptive Rationality, Max Planck Institute for Human Development

Abstract
Data documentation in psychology lags behind not only many other disciplines, but also basic standards of usefulness.
Psychological scientists often prefer to invest the time and effort that would be necessary to document existing data
well in other duties, such as writing and collecting more data. Codebooks therefore tend to be unstandardized and
stored in proprietary formats, and they are rarely properly indexed in search engines. This means that rich data sets
are sometimes used only once—by their creators—and left to disappear into oblivion. Even if they can find an existing
data set, researchers are unlikely to publish analyses based on it if they cannot be confident that they understand it well
enough. My codebook package makes it easier to generate rich metadata in human- and machine-readable codebooks.
It uses metadata from existing sources and automates some tedious tasks, such as documenting psychological scales
and reliabilities, summarizing descriptive statistics, and identifying patterns of missingness. The codebook R package
and Web app make it possible to generate a rich codebook in a few minutes and just three clicks. Over time, its use
could lead to psychological data becoming findable, accessible, interoperable, and reusable, thereby reducing research
waste and benefiting both its users and the scientific community as a whole.

Keywords
individual differences, coding, data visualization, reliability, codebook, metadata, data dictionary, data
documentation, open materials

Received 9/7/18; Revision accepted 2/25/19

mailto:ruben.arslan@gmail.com
https://sagepub.com/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2515245919838783&domain=pdf&date_stamp=2019-05-16

170	 Arslan

knowledge generation in the long term, but they do
favor writing grant applications to collect more data
before existing data sets have been fully used. There-
fore, psychological scientists often have a surfeit of data
and use rich data sets only once.

The codebook package gives psychological scientists
a tool they can use in the short term, and that potentially
even saves them time, in order to create a resource that
is useful for everyone in the long term. It automates
commonly performed data-summary steps, such as gen-
erating descriptive statistics and plots. It can compute
state-of-the-art reliability indices automatically (Crutzen,
2014; McNeish, 2018; Peters, 2014). It makes variable
and value labels easily accessible in R, while at the same
time generating standardized metadata about a data set
that can be read by other researchers and by search
engines (e.g., Google Dataset Search, https://toolbox
.google.com/datasetsearch) and other data processors.

The Roles of a Codebook

A good codebook1 fulfills several roles. By giving a high-
level summary of the data and providing meaningful
labels, it can make it easier to discover errors, miscoded
missing values, oddly shaped distributions, and other
cues signaling problems, thereby allowing data creators
to clean their data sets more efficiently and reproducibly.
A high-level summary, ideally combined with text
explaining the structure and nature of the data set, also
helps to explain an unfamiliar data set to researchers
who want to reproduce analyses or reuse the data. This
should lead to fewer errors resulting from analyzing a
data set without understanding measurement specifics,
which values encode missingness, whether certain sur-
vey weights have to be used, and so on.

Codebooks also offer standardization. There are few
exceptions (e.g., Gorgolewski et al., 2016) to the gen-
eral lack of standards in descriptions of psychological
data. Projects using integrated data analysis—that is,
projects in which the same analysis is performed across
multiple cohorts to boost power and generalizability
(Leszko, Elleman, Bastarache, Graham, & Mroczek,
2016)—currently devote ample amounts of time to get-
ting multiple data sets into the same format. Human
analysts benefit from standardization, but they can make
do with unstandardized data if need be. Search engines
and other algorithmic approaches to data, however, have
a more difficult task when data are not standardized—
and psychological scientists frequently rely on search
engines. Without a good codebook, how can a search
engine tell whether a data set including the word intel-
ligence consists of measures of intelligence or elderly
people’s responses to whether they would be willing
to use an intelligent household robot? The task becomes
even more challenging when it comes to structural

aspects of the data: How do search engines identify a
study using peer reports or dyadic data? How do they
differentiate experiments in which mood was manipu-
lated from those in which it was the outcome? And how
can researchers filter their searches by sample size, to
find only data sets in which each of at least 100 indi-
viduals was measured at least 10 times? For example,
the Open Science Framework (OSF) currently relies on
user-supplied tags—a very limited approach—and is not
indexed in Google Dataset Search. As a result, it is dif-
ficult to find a data set on OSF without either knowing
exactly where to look or investing a lot of time.

Disclosures

The R code for the codebook package is open source.
The most current version can be accessed on GitHub
(https://github.com/rubenarslan/codebook), and major
versions are archived permanently on Zenodo
(doi:10.5281/zenodo.2574896) and in the CRAN pack-
age repository (https://cran.r-project.org/web/pack
ages/codebook/index.html). A Web site for the code-
book package documents all usable functions and pres-
ents further vignettes illustrating how to use the package
(https://rubenarslan.github.io/codebook/); this infor-
mation is also accessible within R. The Web app docu-
mented in Box 1 can be accessed at https://codebook
.formr.org. A gallery of existing codebooks can be
found at https://rubenarslan.github.io/codebook_gal
lery/. Google indexes all public codebooks produced
with this package; to see how indexed codebooks look,
go to https://toolbox.google.com/datasetsearch/search?
query=site%3Arubenarslan.github.io.

The codebook Package

Immediate benefits

The codebook package (Arslan, 2018) makes it easy to
share codebooks in many commonly used formats: .pdf
files, .HTML Web sites, spreadsheets, R data frames, and
proprietary data-set formats (e.g., SPSS and Stata files).
These options facilitate sharing information about a
data set with coauthors, reviewers, and readers. The
codebooks generated by the package are more exten-
sive and more portable than those produced by most
other current approaches: They include not only meta-
data, such as variable names and variable and value
labels, but also high-level summaries of the data, such
as means and standard deviations, plots of distributions,
counts of missing values and complete entries, and
descriptions of patterns of missing data. Other available
metadata, such as information about which items were
shown to whom or the order in which questions were
asked, are also displayed.

https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://github.com/rubenarslan/codebook
https://cran.r-project.org/web/packages/codebook/index.html
https://cran.r-project.org/web/packages/codebook/index.html
https://rubenarslan.github.io/codebook/
https://codebook.formr.org
https://codebook.formr.org
https://rubenarslan.github.io/codebook_gallery/
https://rubenarslan.github.io/codebook_gallery/
https://toolbox.google.com/datasetsearch/search?query=site%3Arubenarslan.github.io
https://toolbox.google.com/datasetsearch/search?query=site%3Arubenarslan.github.io

Document Data With codebook	 171

The codebook Web app (https://codebook.formr.org) is an easy entry point to generating codebooks using SPSS
or Stata files that are on your computer and already have properly labeled variables and values. It is especially
convenient if you do not use R. This app allows you to turn SPSS and Stata files into codebooks that are in an
open (i.e., nonproprietary) format and can be shared easily. The codebook Web app is a simple Web sitea (see
Fig. 1) that shows an editable R Markdown document on the left and what initially appears as an empty space
on the right. You can ignore the document for the moment; you will learn how to edit it in the remainder of this
Tutorial. To generate a codebook, visit https://codebook.formr.org and choose a file from the bar at the top. This
file can be in any format that can be read by the R package rio, such as .rds (R data serialization), .sav (SPSS),
.dta (Stata), .xlsx (Excel), .or csv (comma-separated values).b Then simply click the green button labeled “Gen-
erate codebook.” Depending on the size of the data set you have chosen, you may have to wait a few minutes.
When it is ready, the codebook will appear on the right. You can browse the codebook in the app or download
it for later using the second green button.

The Web app sets reasonable defaults and allows the user to edit the text and the R code to improve the re-
sulting codebook. However, the Web app does not store edits, is less interactive than working in R, and requires
the user to temporarily upload the data set to a server. This is not permissible for certain restricted-use data sets.
Moreover, very large data sets may result in an error message because of resource limits imposed by the server.
If you want to document large, private, or a number of data sets, or if you first need to add the metadata in R, I
recommend installing the codebook package locally.

aThis Web site was constructed using OpenCPU (Ooms, 2014), a way of using R on the Web that is similar but not identical
to Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2018). bFor more information, read rio’s documentation (Chan & Leeper,
2018).

Box 1.  Generate a Codebook in Three Clicks

By making data-set contents and structure more
transparent, the codebook package makes it easier for
researchers to search for data sets that might be useful
for answering their research questions and to decide
whether to reuse a data set for a particular research

question without seeing the data. This is particularly
useful when the data cannot be openly shared and
access needs to be requested (e.g., because of privacy
constraints); it is also more convenient than download-
ing and examining a plethora of data sets when data

Fig. 1.  A screenshot of the codebook Web app after a codebook has been generated.

https://codebook.formr.org

172	 Arslan

are open. It is especially useful when the literature of
adjacent scientific fields is not typically shared between
those fields, such that researchers may not easily
become aware of data sets available in the other disci-
pline, even though the data can often be repurposed
for different questions in their own discipline.

Even after downloading a data set, analysts will go
back and forth between the metadata and data fre-
quently in order to find relevant variables, refresh their
memory, or simply label axes accurately. By making
metadata available in R, the codebook package puts this
information at analysts’ fingertips.

Long-term benefits

When analysts and would-be data sharers use the code-
book package to document their data sets, they also
create machine-readable metadata. Hidden in the HTML
files that can be generated are JSON-LD (JavaScript
Object Notation for Linked Data) blocks. This format is
an extensible shared vocabulary for data sets that is
supported by search engines, including Google. Large-
scale providers of public data, such as IPUMS (Inte-
grated Public Use Microdata Series, https://www.ipums
.org/), already generate JSON-LD for data sets. Some
providers of large data sets use other, older solutions,
such as the Data Documentation Initiative (Rasmussen
& Blank, 2007), but it is difficult to learn about and use
these solutions with open and free tools. My focus in
creating the codebook package was on making this
functionality available as a bottom-up tool that is suit-
able for nonspecialists, uses a modern metadata format,
is open source and freely available (both in the sense
of cost and in not being tied to one platform), and can
be improved by its users.

Going beyond search engines, projects such as
Wikidata (“Wikidata: Introduction,” 2018) link struc-
tured data from sources across the Web (Google, 2018;
Noy & Brickley, 2017). If data sets were sufficiently
complete and structured, Wikipedia could, for instance,
automatically display information about the sex differ-
ences in various traits in their respective entries, or
synthesize the heritability of traits studied using meta-
analytic and genetic methods. A Wikipedia for traits
that arranges items and traits into ontologies (or nomo-
logical networks) by collecting bivariate correlations
could simply emerge for free instead of being painstak-
ingly assembled, as in the metaBUS and SAPA projects
(Bosco, Steel, Oswald, Uggerslev, & Field, 2015;
Condon, 2018). Structuring data would also enrich
existing data for researchers, for example, by tying loca-
tions recorded in psychological data to geographic or
administrative metadata, or by tying the time of study
participation to current events and news. There are

many ways in which existing data could be reused for
purposes not imagined by the researchers who released
the data. Findability and accessibility of data sets are
crucial for this expanded utility. Meta-analysis would
also become much easier. In particular, relevant unpub-
lished effect sizes could be discovered more easily if
data sets could be found via search engines by querying
the constructs measured. This approach compares
favorably with sending requests out through mailing
lists and browsing conference abstracts for clues.
Including more unpublished and unpredicted effects in
meta-analyses could reduce selection bias in estimated
effect sizes (Bosco, Aguinis, Field, Pierce, & Dalton,
2016). Even published work can be hard to find using
keyword searches and requires a lot of human filtering.
Currently, ontologies and meta-analysis databases can
be built by determined teams, but have no economy of
scale and little potential for automation because every
step requires the efforts of qualified researchers and
research assistants.

Alternatives

Several other ways to create codebooks exist (see Table
1 for a summary of features). The closest relative to the
codebook package is the dataspice R package (Boettiger
et al., 2018), which also generates machine-readable
metadata but does not provide an overview of distribu-
tions, reliabilities, and missing data; nor does it allow
users to easily reuse existing metadata in SPSS and
Stata files (i.e., labels for variables, values, and missing
values). However, it excels at helping inexperienced
R users interactively enter metadata that do not yet
exist in a structured form. Conceivably, the codebook
and dataspice packages could be integrated in the
future by working with the same metadata substrate;
the dataspice R package is currently available only on
GitHub.

The dataMaid R package (Helby Petersen & Thorn
Ekstrøm, 2018) also offers a codebook function. It
generates a similar, but pdf-focused, overview docu-
ment, but neither computes reliabilities nor generates
machine-readable metadata. The summarytools R pack-
age (Comtois, 2019) generates overviews, in HTML for-
mat, that are similar to those of dataMaid and have
similar limitations. These packages focus on helping
users find errors in their own data and do not prioritize
sharing metadata.

As does codebook, the Dataset Nutrition Label
(Holland, Hosny, Newman, Joseph, & Chmielinski,
2018) project generates high-level data-set overviews
for machine learning, but it does not yet offer a public-
facing product; furthermore, it does not yet generate
machine-readable metadata. There are also several

https://www.ipums.org/
https://www.ipums.org/

Document Data With codebook	 173

online interfaces in which one can enter metadata. The
DataWiz platform (https://datawiz.leibniz-psychology
.org; Kerwer, Bölter, Dehnhard, Günther, & Weichsel-
gartner, 2017) helps users generate data-set documenta-
tion that complies with funders’ statutes, but lacks a
dedicated outlet for sharing machine-readable metadata
that can be indexed by search engines and instead
focuses on administrative information that is not par-
ticularly interesting for other researchers, such as infor-
mation on funders and data-management plans.

I have tried describing the same data set on various
well-known commercial, nonprofit, and governmental
platforms, including OSF, Figshare, DataDryad, ReShare,
the Inter-university Consortium for Political and Social
Research (ICPSR), Dataverse, PsychData, and Zenodo.
I found that none make use of metadata that are already
stored in a data file. Some, such as OSF, do not use
metadata related to a data set’s contents at all. With
others, such as ReShare, I had to give up after the sign-
up process led to errors. Yet others, such as Dataverse,
allow for metadata, but they have to be entered in a
cumbersome online interface, even if they already exist
in a structured format, and a researcher does not derive
any selfish benefit from entering the metadata. These
platforms are thus better suited to storing data; the rich
description of the data for other humans and search
engines might be housed more comfortably elsewhere.

The most mature platform for social-science research
appears to be openICPSR (https://www.openicpsr.org).
In sum, the codebook solutions I found, with the excep-
tion of dataspice, do not provide rich metadata for
humans and machines, can make heavy demands on
researchers’ time, and give little in return.

Using the codebook Package Locally in
RStudio

In this section, I provide an introduction to how to use
the codebook package on your local computer within
R. It is also possible to use the Web app if you are not
an R user or want to see results quickly (Box 1).

One-time preparatory work and
assumed knowledge

RStudio is an integrated development environment for
R. The codebook package can make use of some of
RStudio’s features (such as the Viewer tab, R Markdown
editing, and addins), but it works independently of it.
I strongly recommend using RStudio with the codebook
package in order to prevent problems resulting from
misspecified paths and to simplify the transition to self-
contained reproducible project management, and in the
remainder of this Tutorial, I assume that codebook is

Table 1.  Comparison of the Features of Various Codebook Solutions

Feature codebook dataspice summarytools

Dataset
Nutrition

Label dataMaid DataWiz
Other online

providers

Machine-
readable
metadata

Yes, for
data
sets and
variable
labels

Yes, for
data
sets and
variable
labels

No Not yet No Yes, but only
citation-
related
metadata

Yes, but
usually only
citation-
related
metadata

Distribution
plots of the
data

Yes No Yes Yes Yes No Varies

Reliability
computation

Yes No No No No No No

Missingness
patterns

Yes No No Yes No No No

Web interface Yes Yes (Shiny) No No Not yet Yes Yes
Interactive

entry of
metadata

No Yes (locally) No No No Yes (online) Yes (online)

Independent
storage

Yes Yes Yes Yes Yes Yes No

Metadata
available
locally during
analysis

Yes No Yes No No No No

https://datawiz.leibniz-psychology.org
https://datawiz.leibniz-psychology.org
https://www.openicpsr.org

174	 Arslan

used in combination with RStudio. You can generate a
codebook without previous experience with R and
RStudio with the help of this Tutorial. For an introduc-
tion to R and RStudio, readers can consult the excellent
Tutorial for the apaTables package (Stanley & Spence,
2018).

Installing R Markdown.  The codebook package
makes use of the rmarkdown package (Allaire et al.,
2018). R Markdown creates living documents that let you
intermesh text, graphics, and code in a fully reproducible
manner. R Markdown documents are simple plain-text
documents that can be knit into rich HTML, pdf, or Word
documents. To install R Markdown, simply click on “File,”
then select “New File,” and then “R Markdown” in the
RStudio menu. RStudio will prompt you to install the nec-
essary packages at this point. The resulting document
serves as a succinct introduction to R Markdown. Verbal
explanations in plain text surround code blocks, which
start with ```{r} and end with ```, each delimiter
appearing on a new line. Click the “Knit” button at the
top of the document and select a file name. Within sec-
onds, the document will be turned into an HTML docu-
ment with formatting and graphics, shown in the
bottom-right viewer panel.

Installing codebook.  Once R and R Markdown are
installed, run the following command in the RStudio con-
sole to install the codebook package:

install.packages("codebook")

This command will automatically install the codebook
package, as well as several other R packages, some of
which are discussed in this Tutorial. Another way to
install the packages is by clicking the “Install” button
in the bottom-right Packages tab in RStudio, then typing
in “codebook” and hitting “Enter.”

Creating your codebook

Now you need an R Markdown file to serve as the basis
for your codebook. Because codebooks look best with
a few defaults already set, load a template by executing
the following command in the RStudio console:

codebook::new_codebook_rmd()

The file that just opened is the template you will be
working with. It has been saved as the file “codebook.
Rmd” in your working directory. For now, it is just an
empty template without data. Try clicking on “Knit” at
the top of the document. In the RStudio viewer pane
on the bottom right, a codebook for a mock data set

included with the package will appear.2 The codebook
and its table of contents may look a little squished
depending on the size of your screen. You can expand
them to a full browser window by clicking on the little
window with an arrow in the Viewer tab.

Loading data

It is time to load some data. I describe this process
using the bfi data set made available in the psych R
package (Goldberg, 1999; Revelle et al., 2017; Revelle,
Wilt, & Rosenthal, 2010). The bfi data set is already very
well documented in the psych package, but by using
the codebook package, one can add automatically com-
puted reliabilities, graphs, and machine-readable meta-
data to the mix. The data set is available within R, but
because this will not usually be the case when you are
working with the codebook package, I have uploaded
it to OSF, which also features many other publicly avail-
able data sets. A new package in R, rio (Chan & Leeper,
2018), makes loading online data in almost any format
as easy as loading local data. You can import the bfi
data set directly from OSF3 by replacing the line

codebook_data <- codebook::bfi

with

codebook_data <- rio::import(
 "https://osf.io/s87kd/download",
 "csv")

on line 34 in the template. R Markdown documents
have to be reproducible and self-contained, so it is not
enough for a data set to be loaded locally; you must
load the data set at the beginning of the document. You
can also use the document interactively, although this
will not work seamlessly for the codebook package.4 To
see how this works, execute the line you just added by
pressing “Command + Enter” (on a Mac) or “Ctrl +
Enter” (on other platforms).

RStudio has a convenient data viewer you can use
to check whether your command worked. In the Envi-
ronment tab on the top right, you should see “code-
book_data.” Click that row to open a spreadsheet view
of the data set in RStudio. As you can see, it is not
particularly informative—just long columns of numbers
with variable names like “A4.” Does “A” refer to aggres-
siveness, agreeableness, or the German industrial norm
for paper size? The lack of useful metadata is obvious.
Click on “Knit” again to see what the codebook package
can do with this. It will take time for the result to appear
in the Viewer tab, but when it does, scroll through it.
You can see a few warnings stating that the package

Document Data With codebook	 175

saw items that might form part of a scale, but there was
no aggregated scale. You will also see graphs of the
distributions for all the items and summary statistics.

Adding and changing metadata

Variable labels.  The last codebook you generated
could already be useful if the variables had meaningful
names and self-explanatory values. Unfortunately, they
do not, which is typically the case. Generally, you will
need more metadata: labels for variables and values, a
data-set description, and so on. The codebook package
can use metadata that are stored in R attributes. Attributes
in R are most commonly used to store variable types; for
instance, datetime in R is just a number with two attri-
butes (a time zone and a class marking it as a date and
time). However, R attributes can just as easily store other
metadata; the Hmisc (Harrell, 2019), haven (Wickham,
Miller, & RStudio, 2018), and rio (Chan & Leeper, 2018)
packages, for example, use attributes to store labels.
The benefit of storing variable metadata in attributes is
that even data sets that are the product of merging and
processing raw data retain the necessary metadata. The
haven and rio packages set these attributes when
importing data from SPSS or Stata files. However, it is
also easy to add metadata yourself, as with the follow-
ing code:

attributes(codebook_data$C5)$label
<- "Waste my time."

You have just assigned a new label to a variable (i.e.,
the variable C5 in the bfi data set). Because this is a lot
to type over and over again as you label more variables,
you may want to use a few convenience functions in
the labelled package (Larmarange, 2019) instead. Load
the labelled package by writing the following in your
codebook.Rmd file:

library(labelled)

Now you can label the C5 item using the following
shorthand:

var_label(codebook_data$C5) <- "Waste
my time."

Write one of these labeling commands after loading
the data set and click on “Knit” again. As you can see
in the viewer pane, the graph for the C5 variable now
has a label at the top.5 If the prospect of adding labels
for every single variable seems tedious, do not fear.
Many researchers already have a codebook in the form
of a spreadsheet, and this can be used to avoid entering

labels one by one. The bfi data set in the psych package
is a good example of this because it comes with a tabu-
lar dictionary. After loading the bfi data, instead of
labeling variables one at a time as just illustrated, type
the following to import this data dictionary:

dict <- rio::import(
 "https://osf.io/cs678/download",
 "csv")

To see what you just loaded, click on the “dict” row
in the Environment tab in the top right panel. You will
see that the dictionary has information on the construct
on which each item loads and on the direction with
which it should load on the construct. You can make
the metadata in the dictionary usable through the code-
book package, but working on the data frames will
often help you do this; to make this easier, use the dplyr
package (Wickham, François, Henry, Müller, & RStudio,
2019). Load it by typing the following:

library(dplyr)

To label more than one variable at once, you need a
list of variable labels. Each element of the list is one item
that you want to label. For example, you could label
variables C5 and C1 at once by using the following code:

var_label(codebook_data) <- list(
 C5 = "Waste my time.",
 C1 = "Am exacting in my work."
)

However, there is already a list of variables and
labels in your data dictionary that you can use, so you
do not have to perform the tedious task of writing out
the list. You do have to reshape it slightly, though,
because it is currently in the form of a rectangular data
frame, not a named list. To do so, you will use a con-
venience function from the codebook package called
dict_to_list. This function expects to receive a
data frame with two columns: The first should contain
the variable names, and the second should contain the
variable labels. To select these columns, you will use
the select function from the dplyr package. You will
also need to use a special operator, %>%. This operator,
called a pipe, allows you to read and write R code from
left to right, almost as you would write an English sen-
tence. To label the variables using the dictionary, you
need to take the dict data set, select the variable and
label columns, and use the dict_to_list function.
You also need to assign the result of this operation to
become the variable labels in codebook_data. You can
do all this in a single line using pipes:

https://osf.io/cs678/download

176	 Arslan

var_label(codebook_data) <- dict %>%
select(variable, label) %>%
dict_to_list()

Click on “codebook_data” in the Environment tab
again. You should now see the variable labels below the
variable names. If you click on “Knit” again, you will see
that your codebook now contains the variable labels.
They are both part of the plots and part of the codebook
table at the end of the document. They are also part of
the metadata that can be found using, for example,
Google Dataset Search, but this will not be visible to you.

Value labels.  You may have noticed that the values for
the education variable in the bfi data set are shown as
numbers. Do they indicate the number of years of edu-
cation? The average is 3, so that seems unlikely. In fact,
these numbers signify levels of education. In the dict
data frame, you can see that there are value labels for
the levels of this variable. However, these levels of edu-
cation are abbreviated, and you can probably imagine
that it would be difficult for an automated program to
understand how they map to the values in your data set.
You can do better, using another function from the
labelled package: not var_label this time, but val_
labels. Unlike var_label, val_labels expects not
just one label, but a named vector,6 with a name for each
value to be labeled. Named vectors are created using the
c() function (labels go in quotation marks before the equal
sign, and values go after the equal sign. Add the following
lines at the end of the code you have entered thus far:

val_labels(codebook_data$gender) <-
 c("male" = 1, "female" = 2)

 val_labels(codebook_data$education)
 <- c(

 "in high school" = 1,

 "finished high school" = 2,

 "some college" = 3,

 "college graduate" = 4,

 "graduate degree" = 5)

Click on the “Knit” button. The bars in the graphs for
education and gender should now be labeled.

Now consider the data set’s many Likert items, which
all have the same value labels. You could assign these
labels in the same way you did for gender and education,
entering the same lines for each variable over and over,
or you could create a function to do the job for you
instead. We will call this function add_likert_
labels . In the code defining this function, the

keyword function is followed by parentheses and
then braces. Inside the parentheses is an x that serves
as a placeholder for the many variables you will use
the function for in the next step. The code inside the
braces shows what you plan to do with the variable x;
use the val_labels function and assign a named
vector. The last statement determines the resulting value
of the function. You should explicitly return x by writ-
ing it out on its own line:

add_likert_labels <- function(x) {

 val_labels(x) <- c("Very Inaccurate" = 1,

 "Moderately Inaccurate" = 2,

 "Slightly Inaccurate" = 3,

 "Slightly Accurate" = 4,

 "Moderately Accurate" = 5,

 "Very Accurate" = 6)

 x

}

A function is just a tool and does nothing on its own;
you have not used the add_likert_labels function
simply by entering this code. To use this function only
on the Likert items, you need a list of them. An easy
way to create a list is to use the filter and pull
functions from the dplyr package to select the desired
variables from the dict data frame (in the present case,
the Big Six items from the bfi data set):

likert_items <- dict %>% filter(Big6
 != "") %>% pull(variable)

To apply your new function to these items, use
another function from the dplyr package called
mutate_at. It expects a list of variables and a func-
tion that applies to each. You have both! You can
now add value labels to all the Likert items in
codebook_data:

codebook_data <- codebook_data %>%
mutate_at(likert_items,
add_likert_labels)

Click on “Knit” again. The graphs for all the items
should now have value labels. However, this display is
quite repetitive. How about grouping the items by the
factors that they are supposed to load on? And while
you are at it, how can the metadata about keying (or
reverse coding) in your dictionary become part of the
data set?

Document Data With codebook	 177

Adding scales.  The codebook package relies on a sim-
ple convention to summarize psychological scales, which
are aggregates across several items. Your next step will
be to assign a new variable, extraversion, to the result of
selecting all extraversion items in the data set and pass-
ing them to the aggregate_and_document_scale
function. This function takes the mean of its inputs and
assigns a label to the result, so that you can still tell which
variables it is an aggregate of. The code for creating the
extraversion scale is as follows:

codebook_data$extraversion <- codebook_data
 %>% select(E1:E5) %>%
 aggregate_and_document_scale()

Try knitting now. In the resulting codebook, the
items for extraversion have been grouped in one graph.
In addition, several internal-consistency coefficients
have been calculated. However, they are oddly low.
You need to reverse-code items, such as “Don’t talk a
lot,” that load negatively on the extraversion factor.

To do so, I suggest following a simple convention
early on, when you come up with the names for the
items in your study. Specifically, use scale_numberR as
the format for reverse-coded items (e.g., bfi_extra_1R
for a reverse-coded extraversion item, bfi_neuro_2 for
a non-reverse-coded neuroticism item). That way, ana-
lysts who use the codebook will know how items relate
to their scales. For the present exercise, though, you
can keep the names already encoded in the bfi data
dictionary you imported, but simply rename the reverse-
coded items so that you cannot forget about their direc-
tion. First, you need to grab from the dictionary all the
items with a negative keying, by adding the following
line above the aggregate_and_document_
scale() line of code you just entered:

reversed_items <- dict %>% filter
 (Keying == -1) %>% pull(variable)

You can see in the Environment tab that names such
as A1, C4, and C5 are now stored in the reversed_items
vector. You can now refer to this vector in the rename_
at function, which applies a function to all variables
you list. In the immediately following line of code, use
the very simple function add_R, which does exactly
what its name indicates:

codebook_data <- codebook_data %>%
 rename_at(reversed_items, add_R)

Click on “codebook_data” in the Environment tab,
and you will see that some variables have been

renamed: A1R, C4R, and C5R, and so on. This could
lead to an ambiguity: Does the suffix “R” mean “should
be reversed before aggregation” or “has already been
reversed”? With the help of metadata in the form of
labeled values, there is no potential for confusion. You
can reverse the underlying values, but keep the value
labels right. So with these Likert items, if somebody
responded “very accurate,” that label remains, but the
underlying value switches from 6 to 1 for a reverse-
scored item. The data you generally import will rarely
include labels that remain correct regardless of whether
underlying values are reversed, but the codebook pack-
age makes it easy to bring the data into this shape. In
the next line of code, a command using dplyr functions
and the reverse_labelled_values function can
easily remedy this problem:

codebook_data <- codebook_data %>%
 mutate_at(vars(matches("\\dR$")),
 reverse_labelled_values)

All this statement does is find variable names that
end with a number (\d is the regular expression for a
number; a dollar sign denotes the end of the string)
and “R” and reverse them.7 Because the extraversion
items have been renamed, we have to amend our scale-
aggregation line slightly:

codebook_data$extraversion <-
 codebook_data %>% select(E1R:E5) %>%
 aggregate_and_document_scale()

Try knitting again. The reliability for the extraversion
scale should be much higher, and all items should load
positively. Adding further scales is easy: Just repeat the
last line of code, changing the names of the scale and
the items. Adding scales that integrate smaller scales is
also straightforward. The data dictionary mentions the
Giant Three—try adding one, plasticity, which sub-
sumes extraversion and openness:

codebook_data$plasticity <- codebook_data
 %>% select(E1R:E5, O1:O5R) %>%
 aggregate_and_document_scale()

Note that writing E1R:E5 works only if the items
are all in order in your data set. If items from different
constructs are intermixed, you will need a different way
to select them. One option is to list all items, writing
select(E1R, E2R, E3, E4, E5). This can get
tedious when many items need to be listed. Another
solution is to write select(starts_with("E")).
Although this is quite elegant, it will not work in this
case because you have more than one label that starts

178	 Arslan

with “E”; this command would include education items
along with the extraversion items you want. This is a
good reason to give items descriptive stems, such as
extraversion_ or bfi_extra. Longer stems not
only make confusion less likely, but also make it pos-
sible for you to refer to groups of items by their stems,
and ideally to refer to their aggregates by only their
stems. If you have already named an item too minimally,
another solution is to use a regular expression, as in the
earlier code for matching reversed items. In this scenario,
select(matches("^E\\dR?$")) would work.8

Metadata about the entire data set

Finally, you might want to sign your work and add a
few descriptive words about the entire data set. If you
simply edit the R Markdown document to add a descrip-
tion, this information will not become part of the
machine-readable metadata. Metadata (or attributes)
about a data set as a whole are much less persistent
than metadata about variables. Hence, you should add
your description of the data set right before calling the
codebook function, which actually begins the genera-
tion of your codebook. Adding metadata about the data
set is very simple: Just wrap the metadata function
around codebook_data and assign a value to a field.
The name and description fields are required, so if you
do not edit them, they will be automatically generated
using the name of the data frame and its contents. To
overwrite these values and describe the bfi data set
more clearly, enter the following lines above the call
codebook(codebook_data):

metadata(codebook_data)$name <- "25
 Personality items representing 5
 factors"

metadata(codebook_data)$description <-
 "25 personality self report items
 taken from the International
 Personality Item Pool (ipip.ori.org)
 [...]"

It is good practice to give data sets a canonical iden-
tifier. This way, if a data set is described in multiple
locations, it can still be identified as the same data set.
For instance, when I set a canonical identifier for the
bfi data set, I did not want to use the URL of the R
package from which I took it because URLs can change;
instead, I generated a persistent document object iden-
tifier (DOI) on OSF and specified it as follows:

metadata(codebook_data)$identifier <-
 �"https://dx.doi.org/10.17605/OSF.IO/
K39BG"

In order to let other people know whom they can
contact about the data set, how to cite it, and where to
find more information, we will set the attributes creator,
citation, and URL as follows:

metadata(codebook_data)$creator <-
 "William Revelle"

metadata(codebook_data)$citation <-
 "Revelle, W., Wilt, J., & Rosenthal, A.
 (2010). Individual differences in
 cognition: New methods for examining
 the personality-cognition link. In A.
 Gruszka, G. Matthews, & B. Szymura
 (Eds.), Handbook of individual
 differences in cognition: Attention,
 memory, and executive control (pp.
 27–49). New York, NY: Springer."

metadata(codebook_data)$url <-
"https://CRAN.R-project.org/
package=psych"

Finally, it is useful to note when and where the data
were collected, as well as when they were published.
Although I could not find information as specific as
would be ideal, here is the code for entering some
further information about the bfi data:

metadata(codebook_data)$datePublished <-
 "2010- 01 - 01"

metadata(codebook_data)$
 temporalCoverage <- "Spring 2010"

metadata(codebook_data)$
 spatialCoverage <- "Online"

The attributes that can be assigned are documented
in more depth at https://schema.org/Dataset (Schema
.org, n.d.). You can also add attributes that are not
documented by Schema.org, but they will not become
part of the machine-readable metadata. Click on “Knit”
again. In the Viewer tab, you can see that the metadata
section of the codebook has been populated with your
additions.

Exporting and Sharing the Data With
Metadata

Having added all the variable-level metadata, you might
want to reuse the marked-up data elsewhere or share
it with collaborators or the public. You can most easily
export the data and metadata using the rio package
(Chan & Leeper, 2018), which permits embedding the
variable metadata in the data-set file for those formats
that support this. The only way to keep all the metadata

https://dx.doi.org/10.17605/OSF.IO/K39BG
https://dx.doi.org/10.17605/OSF.IO/K39BG
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
https://schema.org/Dataset
http://www.Schema.org, n.d.
http://www.Schema.org, n.d.

Document Data With codebook	 179

in one file is by staying in R, as in the following line
of code:

rio::export(codebook_data, "bfi.rds")
 # to R data structure file

The variable-level metadata can also be transferred
to SPSS and Stata files, as follows:

rio::export(codebook_data, "bfi.sav")
 # to SPSS file

rio::export(codebook_data, "bfi.dta")
 # to Stata file

Note that this export is based on reverse-engineering
the SPSS and Stata file structure, so the resulting files
should be tested before sharing them.

Releasing the Codebook Publicly

If you want to share your codebook with other people,
you can use the codebook.html file in the project folder
you created at the start. You can e-mail it to collabora-
tors or upload it to OSF file storage. However, if you
want Google Dataset Search to index your data set, this
is not sufficient. For security reasons, OSF will not
render your HTML files, and Google will not index the
content of your e-mails (at least not publicly). You need
to post your codebook online. If you already have your
own Web site9, uploading the HTML file to your own
Web site should be easy. The simplest way I found for
publishing the HTML for the codebook is as follows.
First, rename the codebook.html file as index.html.
Then create an account on netlify.com. Once you’re
signed in, drag and drop the folder containing the code-
book to the Netlify Web page (make sure the folder
does not contain anything you do not want to share,
such as raw data). Netlify will upload the files and cre-
ate a random URL, such as estranged-armadillo.netlify.
com. You can change this to something more meaning-
ful, such as bfi-study.netlify.com, in the settings. Next,
visit the URL to check that you can see the codebook.
The last step is to publicly share a link to the codebook
so that search engines can discover it; for instance, you
could tweet the link with the hashtag #codebook.10 If
you can, you should also link to the codebook from
the repository where you have shared the data, so that
researchers who find your data will also find your code-
book. For instance, I added a link to my codebook for
the bfi data set on OSF (https://osf.io/k39bg/), where
I have also shared the data. Depending on the speed
of the search-engine crawler, the data set, including its
contents, should be findable on Google Dataset Search
in anywhere from 3 to 21 days.

When and Why You Should Generate a
Codebook

You have just created a public good, but there are also
personal benefits to generating codebooks this way.
Codebooks are useful not only for other researchers,
but also for the majority of us who struggle to keep all
the details about our own data sets in mind at all times.
Properly annotated data can help us complete rote tasks
faster and help us make fewer errors. Usually, it will be
easier to create a codebook, and the codebook will be
more accurate, if one creates it right after data collec-
tion, when the study is still fresh in mind, rather than
waiting until later. I hope the increased convenience of
having codebooks at hand during analysis might moti-
vate you to create them early on.

Designing studies so that the collected data can be
automatically turned into a codebook should lead to
more meaningful variable names and labels, and reus-
able data sets. Currently, pending agreement on naming
conventions for psychological variables, the codebook
package picks up on variables that carry meaning
regarding the structure of the data set according to the
conventions used in the formr survey framework (formr.
org; Arslan, Walther, & Tata, in press), but columns from
other survey providers can be renamed according to
these conventions if they carry the same meaning.11 To
provide useful codebooks, the codebook package draws
on functionality supplied by many other R packages. I
discuss them in this section to give their authors credit,
but you do not need to learn about all of them in order
to use the codebook package. Part of the benefit of
putting forethought into metadata (such as variable
names) is that automated data summaries can be more
meaningful and require less additional user input and
interpretation. For example, the variable labels you
made for your bfi codebook will be reused by default
in the plots and model summaries generated using the
sjPlot package (Lüdecke, 2018). However, nobody
should avoid generating machine-readable codebooks
because one of the automated summaries does not look
right. Therefore, all the sections of the codebook you
just generated can be turned off via arguments of the
main codebook function. The following features of
the codebook package may save you time or prevent
errors in your work with data sets.

Checking the codebook during
analysis

Often, during data analysis, we want to confirm that
a variable is the one we intend to use or that values
are in the correct order, or we may need to find a

https://osf.io/k39bg/

180	 Arslan

variable but not remember what we called it. To solve
these and similar problems, go to the “Addins” menu
in the top bar in the RStudio window and choose
“Static Label browser” (Fig. 2). This browser shows
the variable and value labels for a data set in the bot-
tom right viewer pane of RStudio. It selects the data
set that is alphabetically first in the environment or
the data set with the name of any text that is selected
in the editor. You can also pick a data frame by typing
label_browser_static(data_frame_name)
in the console.

Because you have loaded only the codebook_data
data set and the dict data set, the browser will choose
codebook_data. In the Viewer tab, you can now see
the variable names and the variable and value labels
(Fig. 3). When the static label browser is open, you can
keep working on and executing your R code. The code-
book browser and the dynamic label browser have the
advantage of allowing you to select a data set conve-
niently via a dropdown instead of via text selection,
but because they are implemented as Shiny apps
(Chang, Cheng, Allaire, Xie, & McPherson, 2018), code
can be executed only after they have been stopped
(using the red stop button).

Automatically making sense of
metadata when you have preprocessed
the data file elsewhere

Dealing with miscoded missing values.  Sometimes
not all the missing values in a data set imported from
SPSS or Stata will be set correctly. For example, SPSS users
often code missing values as 99 or 999, but fail to actu
ally label these as missing-value placeholders. To correct
for this, the codebook Web app (Box 1) runs the function
detect_missing. When its argument ninety_nine_
problems is set to true, values of 99 or 999 will be set
as missing values (when 99 or 999 is not in the plausible

range for the variable in question). When the argument
only_labelled is set to true, values of 99 or 999 will be
set as missing values only if they have a label. A similar
option is available for negative values, a convention com-
monly used in Stata. The detect_missing function will
not do anything for the bfi data set because it has no labeled
missing values, but calling it by default should be harmless.

Detecting scales that have been aggregated out-
side of R.  If your items have been aggregated outside
of R, the function detect_scales is helpful. Calling
this function on the entire data set will link items and
scales. This linkage is a precondition for the Likert plots
and reliability computations to work. The function is
called by default when data are uploaded into the Web
app (Box 1) or when the default codebook template is
used. It will also warn you if it finds numbered items
with no apparent aggregate, or if an apparent aggregate
is not perfectly correlated with the sum of the items
(which often indicates a missing item or ad hoc reverse-
coded item).

Survey response rates and durations

If a data frame has a “session” column to identify par-
ticipants and datetimes in “created,” “modified,” “ended,”
and “expired” columns, the codebook package can cal-
culate a few commonly desired summaries about par-
ticipation in a survey. It can give the number of
participants and the number of rows per participant. It
can show the dates and times people enrolled and, by
subtracting the “created” value from the “ended” value,
how long it took participants to fill out the survey. By
checking for missing values in the “modified” column,
it can differentiate people who filled out information
in the survey from those who did not. By checking for
missing values in the “expired” column, it can deter-
mine how many participants did not finish the survey
in time. The resulting values will be summarized in the
beginning of the codebook, if the necessary variables
exist. The manual for the codebook package (https://
rubenarslan.github.io/codebook/articles/codebook
.html) provides an example.

Reliability estimates and Likert plots

The codebook package automatically calculates an esti-
mate of reliability for all defined scales. By default, this
is done using the internal-consistency indices computed
by the scaleDiagnosis function in the userfriend-
lyscience package (Crutzen, 2014; Crutzen & Peters,
2017; Peters, 2014) if there is just one row per partici-
pant. If there are up to two rows per participant, the
package will calculate internal consistencies for each

Fig. 2.  Screenshot showing the three addins that the codebook
package supplies to make metadata available during analysis. In this
case, the “Static Label browser” has been selected so that the user can
view the variable names and labels.

https://rubenarslan.github.io/codebook/articles/codebook.html
https://rubenarslan.github.io/codebook/articles/codebook.html
https://rubenarslan.github.io/codebook/articles/codebook.html

Document Data With codebook	 181

time point and a retest correlation between time points
(data have to be sorted by time), again using the user-
friendlyscience package. If there is a variable number
of rows per participant and there are more than two
rows in some cases, the multilevel.reliability
function in the psych package (Revelle, 2019) reports
the generalizability of changes over time, of the person
average, and more (Shrout & Lane, 2012). For ordinal
variables, the scale summary also includes a Likert
plot (Fig. 4) generated using the likert package (Bryer
& Speerschneider, 2016). A boon of defining metadata
up front is that you do not have to get your data into
the shape expected by these various functions; the
codebook package can handle this for you, because it
understands how scales and items relate to each other.
Given the right metadata, the package could also be
extended to automatically compute measures of preci-
sion suitable for reaction times or other psychological
data.

Distribution plots and descriptive
summaries

The codebook package also shows a plot of the distri-
bution for each individual item and scale, except when
there are large numbers of unique values (e.g., for free
text responses, it shows the distribution of number of

characters instead). These plots are labeled using the
variable names and variable and value labels. They can
be generated in isolation by calling the function plot_
labelled(codebook_data$E1R) for specific vari-
ables. Further, you can use the skimr package (McNamara,
Arino de la Rubia, Zhu, Ellis, & Quinn, 2019) so that each
item or scale will be accompanied by a compact sum-
mary of the data, such as the number of missing values,
the mean, the range, the standard deviation (for numeric
data), and the top count (for categorical data, dates, text,
and other data types). If there are labeled missing val-
ues (e.g., “user did not do this part of the survey” vs.
“user did not respond to this item”), the summary
includes the count of the types of missing values in a
separate plot.

Missingness patterns

Although the number and types of missing values are
always summarized for each item, this does not tell a
prospective analyst how many data points have nonmiss-
ing data that can be used in the planned bivariate or
multivariate analysis. The codebook package therefore
displays a table of missingness patterns that shows the
number of complete cases, cases with missing data for
one variable, and variables for which values are fre-
quently missing, as well as whether there are common

Fig. 3.  Screenshot illustrating how variable names and variable and value labels are shown in the RStudio Viewer tab.

182	 Arslan

patterns of missingness (e.g., all questions about rela-
tionships are missing for single people). This information
is useful mainly for reusability. If other analysts need to
request access through a cumbersome procedure, such
as that required by the National Institutes of Health’s
Data and Specimen Hub, they might like reassurance
that the combination of variables they are interested was
actually measured often enough for the data set to be
useful to them before they immerse themselves in forms.

Codebook table

At the end of a codebook document is a rich tabular data
dictionary (Fig. 5). This searchable table is made possible
through the DT package (Xie, 2018). It can be exported

to Excel, csv, and other formats from the browser. The
variable names in the table are linked to the details in
the HTML codebook. The table also includes variable and
value labels, as well as the compact data summaries gen-
erated by skimr (McNamara et al., 2019). You can create
this table directly without making a full codebook by
calling the function codebook_table, but to share a
codebook with other people, I recommend also making
available the HTML version of the codebook, which con-
tains the metadata in a search-engine-friendly format.

JSON-LD data

As mentioned earlier, the HTML codebook contains
JSON-LD blocks, although these are unseen12 by the

Fig. 4.  A Likert plot for the conscientiousness scale in the bfi data set in the psych package.

Document Data With codebook	 183

researcher. JSON-LD follows a flexible and extensible
standard for metadata and is how search engines, such
as Google, “see” your data. Although it is presently
limited to basic descriptive functionality, efforts are
underway to extend it for use in biology and psychol-
ogy. If you publish a codebook generated using the
package online, so that Google can index it, it will
appear in the Google Dataset Search after some time
(3–21 days). Unlike many other data platforms, the
codebook package ensures that the data-set description
contains all variable names and labels, thereby making
it much easier to find relevant data. A heavily abbrevi-
ated example of JSON-LD data on the bfi data set would
look like this:

{

"@context": "http://schema.org/",

"@type": "Dataset",

"name": "25 Personality items
representing 5 factors",

"description": "25 personality self
report items taken from the
International Personality Item Pool
(ipip.ori.org)[...]",

"identifier": "https://CRAN.R-project
.org/package=psych",

"datePublished": "2010-01-01",

"creator": {

"@type": "Person",

"givenName": "William",

"familyName": "Revelle",

"email": "revelle@northwestern.edu",

"affiliation": {

"@type": "Organization",

"name": "Northwestern University"

}

},

"citation": "Revelle, W., Wilt, J., &
Rosenthal, A. (2010). Individual
differences in cognition: New methods
for examining the personality-
cognition link. In A. Gruszka, G.
Matthews, & B. Szymura (Eds.),
Handbook of individual differences in
cognition: Attention, memory, and
executive control (pp. 27–49). New
York, NY: Springer.",

"url": "https://cran.r-project.org/web/
packages/psych/index.html",

"temporalCoverage": "Spring 2010",

"spatialCoverage": "Online",

"keywords": ["E1R", "E2R", "E3", "E4",
"E5", "gender", "education", "age",
"extra"],

"variableMeasured": [

Fig. 5.  The first row of a codebook table.

http://schema.org/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
mailto:revelle@northwestern.edu
https://cran.r-project.org/web/packages/psych/index.html
https://cran.r-project.org/web/packages/psych/index.html

184	 Arslan

{

"name": "E1R",

"description": "Extraversion: Don't
talk a lot.",

"value": "6. Very Inaccurate,\n5.
Moderately Inaccurate,\n4.
Slightly Inaccurate,\n3. Slightly
Accurate,\n2. Moderately
Accurate,\n1. Very Accurate",

"maxValue": 6,

"minValue": 1,

"@type": "propertyValue"

},

{

"name": "gender",

"description": "Self-reported
gender",

"value": "1. male,\n2. female",

"maxValue": 2,

"minValue": 1,

"@type": "propertyValue"

},

{

"name": "extraversion",

"description": "5 extraversion items
aggregated by rowMeans",

"@type": "propertyValue"

}

]

}

Note that this block of code is basically a nested list of
properties—some rather technical, but most with an obvi-
ous meaning. (Interested readers may want to refer to
Schema.org, n.d., for documentation of possible attributes,
but typical users of the codebook package can assume that
the package creates correct attributes automatically.)

In the future, psychologists could extend the list of
possible attributes to document certain psychological
measurement scales; whether a variable is a self- or
informant-report item or a measured behavior; the type
of data set or research design, and even single items
such as demographic questions. Extending the schema
is an open and community-driven process. Other
research communities, such as those in the health and
life sciences and in the biological sciences, have started
schema-extension processes on Web sites such as
https://health-lifesci.schema.org/ and http://biosche
mas.org/. Discussions about extending schemas often
take place on GitHub. The Society for the Improvement
of Psychological Science has formed a work group for
the specification of psychological data.13

Summary

Standardized, metadata-rich codebooks are useful to
data creators, their teams, and the scientific community.
The inconvenience and effort involved in creating such
codebooks may have contributed to the current state
of affairs in psychology: Those codebooks that exist
are frequently unstandardized and lack information that
is essential to understanding the data, and data sets are
not always available in open formats and are rarely
machine readable—and are therefore undiscoverable
via Web searches. In short, data are rarely easily find-
able, accessible, interoperable, and reusable. The
codebook package makes some common tasks easier:
It speeds up the data-cleaning and -summary process,
and makes data findable and accessible using tools such
as Google Dataset Search, independently of where the
data are stored or whether they are even publicly avail-
able. Thanks to a public standard vocabulary, the meta-
data are interoperable. And because the package creates
codebooks that are rich, descriptive, and interpretable
by other researchers, the data become more reusable.
The metadata are also portable; structured metadata
can be imported to and exported from many formats.
A working codebook can be generated by an inexpe-
rienced user within minutes. If researchers follow cer-
tain conventions or use specific survey providers when
generating a data set, or if they reuse metadata available
in a closed-source format such as .sav files, they can
save even more time, letting the codebook package take
over graphing distributions, computing descriptive sta-
tistics, describing missingness patterns, and estimating
reliabilities. It is my hope that the codebook package
will encourage researchers to generate rich codebooks
that benefit themselves and the scientific community as
a whole.

https://health-lifesci.schema.org/
http://biosche
mas.org/
http://biosche
mas.org/

Document Data With codebook	 185

Action Editor

Alex O. Holcombe served as action editor for this article.

Author Contributions

R. C. Arslan is the sole author of this article and is responsible
for its content.

ORCID iD

Ruben C. Arslan https://orcid.org/0000-0002-6670-5658

Acknowledgments

I am grateful to Martin Brümmer for help setting up the proof
of concept for JSON-LD and to early users, including Christoph
Schild, Caroline Zygar, Daniël Lakens, Matti Heino, Lisa
DeBruine, and Mark Brandt, who tested earlier versions of
the codebook package. I also thank Bill Revelle, who publicly
released the bfi data set and gave me permission to use it for
this Tutorial. I particularly thank Ioanna Iro Eleftheriadou,
who tested the codebook package by generating a gallery
from several publicly available data sets on the Open Science
Framework. I thank Deborah Ain and Michele Nathan for
their scientific editing. All remaining errors are mine.

Declaration of Conflicting Interests

The author(s) declared that there were no conflicts of interest
with respect to the authorship or the publication of this
article.

Open Practices

Open Data: not applicable
Open Materials: https://zenodo.org/record/2574896#.XH_Z9iJKjb0
Preregistration: not applicable
All materials have been made publicly available via Zenodo
and can be accessed at https://zenodo.org/record/2574896#
.XH_Z9iJKjb0. The complete Open Practices Disclosure for
this article can be found at http://journals.sagepub.com/doi/
suppl/10.1177/2515245919838783. This article has received the
badge for Open Materials. More information about the Open
Practices badges can be found at http://www.psychological
science.org/publications/badges.

Prior Versions

An earlier version of this manuscript was posted as a preprint
on PsyArXiv (https://psyarxiv.com/5qc6h).

Notes

1. Other widely used related terms are data dictionary, which
tends to indicate a tabular format, and the broader terms data
documentation and simply metadata.
2. The generated document is named “codebook.html.” You can
open this file in your project directory any time to view the
codebook or share it with other people.

3. Loading local data is just as easy; remember to put the data
set you want to use in the same directory as the codebook.rmd
file in order to avoid having to think about paths. For example,
to load the bfi data set from a local file, go to OSF at https://
osf.io/s87kd/, download the .csv file and put it in the direc-
tory with the codebook.rmd file, and then type codebook_data
<- rio::import("bfi.csv") on line 33 in the template. Note
that the package will automatically use a file’s extension to select
how to import the file, and almost all common standard file exten-
sions for tabular data are supported, including SPSS and Stata.
4. The output generated by the codebook package does not fit
inside the interactive results box that RStudio uses.
5. Further information about adding labels with the labelled
package can be found in Larmarange (n.d.).
6. In R, vectors are variables that contain one or many values
of one type (e.g., numbers or text). All variables in normal data
frames are vectors.
7. This function can work automatically only if the highest and
lowest possible values are both encoded in the labels or levels
attribute of the variable. Otherwise, codebook cannot infer the
possible range of the values and will not know how to translate
the highest into the lowest value.
8. This code means, “match only variables whose names start
with (^) the letter E, continue with one digit (\\d) optionally
followed by the letter R (R?), and then end ($).”
9. If you want to learn how to make a personal Web site using
GitHub or GitLab, there are several guides available (e.g.,
University of Glasgow Institute of Neuroscience and Psychology,
n.d.).
10. I would happily share the first 10 codebooks published this
way with my Twitter followers and also give feedback on them.
11. An example of renaming columns from a Qualtrics survey
can be found in the documentation for the codebook package
(https://rubenarslan.github.io/codebook/).
12. By clicking on “JSON-LD metadata,” in small text at the bot-
tom of the generated codebook, you can see a copy of what
search engines see.
13. Interested parties can find more information at https://
github.com/mekline/psych-DS.

References

Allaire, J. J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K.,
Atkins, A., . . . Iannone, R. (2018). rmarkdown: Dynamic
documents for R (R package Version 1.11) [Computer
software]. Retrieved from https://CRAN.R-project.org/
package=rmarkdown

Arslan, R. C. (2018). Cook codebooks from survey metadata
encoded in attributes in R. doi:10.5281/zenodo.1326520

Arslan, R. C., Walther, M., & Tata, C. (in press). formr: A study
framework allowing for automated feedback generation
and complex longitudinal experience sampling studies
using R. Behavior Research Methods.

Boettiger, C., Chamberlain, S., Fournier, A., Hondula, K.,
Krystalli, A., Mecum, B., . . . Woo, K. (2018). dataspice:
Create lightweight schema.org descriptions of dataset.
Retrieved from https://github.com/ropenscilabs/dataspice

Borghi, J. A., & Van Gulick, A. E. (2018). Data management
and sharing in neuroimaging: Practices and perceptions

https://orcid.org/0000-0002-6670-5658
https://zenodo.org/record/2574896#.XH_Z9iJKjb0
https://zenodo.org/record/2574896#.XH_Z9iJKjb0
https://zenodo.org/record/2574896#.XH_Z9iJKjb0
http://journals.sagepub.com/doi/suppl/10.1177/2515245919838783
http://journals.sagepub.com/doi/suppl/10.1177/2515245919838783
http://www.psychologicalscience.org/publications/badges
http://www.psychologicalscience.org/publications/badges
https://psyarxiv.com/5qc6h
https://osf.io/s87kd/
https://osf.io/s87kd/
https://rubenarslan.github.io/codebook/
https://github.com/mekline/psych-DS
https://github.com/mekline/psych-DS
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://github.com/ropenscilabs/dataspice

186	 Arslan

of MRI researchers. PLOS ONE, 13(7), Article e0200562.
doi:10.1371/journal.pone.0200562

Bosco, F. A., Aguinis, H., Field, J. G., Pierce, C. A., & Dalton,
D. R. (2016). HARKing’s threat to organizational research:
Evidence from primary and meta-analytic sources. Per
sonnel Psychology, 69, 709–750. doi:10.1111/peps.12111

Bosco, F. A., Steel, P., Oswald, F. L., Uggerslev, K., & Field,
J. G. (2015). Cloud-based meta-analysis to bridge science
and practice: Welcome to metaBUS. Personnel Assessment
and Decisions, 1(1), Article 2. doi:10.25035/pad.2015.002

Bryer, J., & Speerschneider, K. (2016). likert: Analysis and
visualization of Likert items (R package Version 1.3.5)
[Computer software]. Retrieved from https://CRAN.R-
project.org/package=likert

Chan, C.-H., & Leeper, T. J. (2018). rio: A Swiss-army knife
for data I/O (R package Version 0.5.16) [Computer
software]. Retrieved from https://CRAN.R-project.org/
package=rio

Chang, W., Cheng, J., Allaire, J. J., Xie, Y., & McPherson, J.
(2018). shiny: Web application framework for R (R pack-
age Version 1.2.0) [Computer software]. Retrieved from
https://CRAN.R-project.org/package=shiny

Comtois, D. (2019). summarytools: Tools to quickly and neatly
summarize data (R package Version 0.9.2) [Computer
software]. Retrieved from https://cran.r-project.org/web/
packages/summarytools/

Condon, D. M. (2018). The SAPA Personality Inventory: An
empirically-derived, hierarchically-organized self-report
personality assessment model. PsyArXiv. doi:10.31234/
osf.io/sc4p9

Crutzen, R. (2014). Time is a jailer: What do alpha and its
alternatives tell us about reliability? European Health
Psychologist, 16, 70–74.

Crutzen, R., & Peters, G.-J. Y. (2017). Scale quality: Alpha is
an inadequate estimate and factor-analytic evidence is
needed first of all. Health Psychology Review, 11, 242–
247. doi:10.1080/17437199.2015.1124240

Goldberg, L. R. (1999). A broad-bandwidth, public domain,
personality inventory measuring the lower-level facets
of several five-factor models. In I. Merviele, I. Deary, F.
De Fruyt, & F. Ostendorf (Eds.), Personality psychology
in Europe (Vol. 7, pp. 7–28). Tilburg, The Netherlands:
Tilburg University Press.

Google. (2018). Dataset search. Retrieved from https://devel
opers.google.com/search/docs/data-types/dataset

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock,
R. C., Das, S., Duff, E. P., . . . Poldrack, R. A. (2016).
The brain imaging data structure, a format for organiz-
ing and describing outputs of neuroimaging experi-
ments. Scientific Data, 3, Article 160044. doi:10.1038/
sdata.2016.44

Hardwicke, T. E., Mathur, M. B., MacDonald, K., Nilsonne,
G., Banks, G. C., Kidwell, M. C., . . . Frank, M. C. (2018).
Data availability, reusability, and analytic reproducibility:
Evaluating the impact of a mandatory open data policy
at the journal Cognition. Royal Society Open Science,
5(8), Article 180448. doi:10.1098/rsos.180448

Harrell, F. E., Jr. (2019). Hmisc: Harrell miscellaneous (R
package Version 4.2-0) [Computer software]. Retrieved
from https://CRAN.R-project.org/package=Hmisc

Helby Petersen, A., & Thorn Ekstrøm, C. (2018). dataMaid:
A suite of checks for identification of potential errors
in a data frame as part of the data screening process
(R package Version 1.2.0) [Computer software]. Retrieved
from https://cran.r-project.org/web/packages/dataMaid/
index.html

Holland, S., Hosny, A., Newman, S., Joseph, J., & Chmielinski,
K. (2018). The Dataset Nutrition Label: A framework to
drive higher data quality standards. ArXiv. Retrieved from
https://arxiv.org/abs/1805.03677

Kerwer, M., Bölter, R., Dehnhard, I., Günther, A., &
Weichselgartner, E. (2017). Projekt DataWiz. Retrieved
from https://e-science-tage.de/sites/default/files/2017-
04/est_talk_kerwer_17-03-2017.pdf

Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E.,
Piechowski, S., Falkenberg, L.-S., . . . Nosek, B. A. (2016).
Badges to acknowledge open practices: A simple, low-
cost, effective method for increasing transparency. PLOS
Biology, 14(5), Article e1002456. doi:10.1371/journal
.pbio.1002456

Larmarange, J. (2019). labelled: Manipulating labelled data
(R package Version 2.1.0) [Computer software]. Retrieved
from https://CRAN.R-project.org/package=labelled

Larmarange, J. (n.d.). Introduction to labelled. Retrieved
from https://cran.r-project.org/web/packages/labelled/
vignettes/intro_labelled.html

Leszko, M., Elleman, L. G., Bastarache, E. D., Graham, E. K.,
& Mroczek, D. K. (2016). Future directions in the study
of personality in adulthood and older age. Gerontology,
62, 210–215. doi:10.1159/000434720

Lüdecke, D. (2018). sjPlot: Data visualization for statistics
in social science. doi:10.5281/zenodo.1308157

McNamara, A., Arino de la Rubia, E., Zhu, H., Ellis, S., & Quinn,
M. (2019). skimr: Compact and flexible summaries of data
(R package Version 1.0.5) [Computer software]. Retrieved
from https://CRAN.R-project.org/package=skimr

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it
from here. Psychological Methods, 23, 412–433. doi:10
.1037/met0000144

Noy, N., & Brickley, D. (2017, January 24). Facilitating the
discovery of public datasets [Blog post]. Retrieved from
http://ai.googleblog.com/2017/01/facilitating-discov
ery-of-public.html

Ooms, J. (2014). The OpenCPU system: Towards a univer-
sal interface for scientific computing through separa-
tion of concerns. arXiv. Retrieved from http://arxiv.org/
abs/1406.4806

Peters, G.-J. Y. (2014). The alpha and the omega of scale reli-
ability and validity: Why and how to abandon Cronbach’s
alpha and the route towards more comprehensive assess-
ment of scale quality. European Health Psychologist, 16,
56–69.

Rasmussen, K. B., & Blank, G. (2007). The data documen-
tation initiative: A preservation standard for research.
Archival Science, 7, 55–71. doi:10.1007/s10502-006-
9036-0

Revelle, W. (2019). psych: Procedures for psychological, psy-
chometric, and personality research (R package Version
1.8.12) [Computer software]. Retrieved from https://
CRAN.R-project.org/package=psych

https://CRAN.R-project.org/package=likert
https://CRAN.R-project.org/package=likert
https://CRAN.R-project.org/package=rio
https://CRAN.R-project.org/package=rio
https://CRAN.R-project.org/package=shiny
https://cran.r-project.org/web/packages/summarytools/
https://cran.r-project.org/web/packages/summarytools/
https://developers.google.com/search/docs/data-types/dataset
https://developers.google.com/search/docs/data-types/dataset
https://CRAN.R-project.org/package=Hmisc
https://cran.r-project.org/web/packages/dataMaid/index.html
https://cran.r-project.org/web/packages/dataMaid/index.html
https://arxiv.org/abs/
https://e-science-tage.de/sites/default/files/2017-04/est_talk_kerwer_17-03-2017.pdf
https://e-science-tage.de/sites/default/files/2017-04/est_talk_kerwer_17-03-2017.pdf
https://CRAN.R-project.org/package=labelled
https://cran.r-project.org/web/packages/labelled/vignettes/intro_labelled.html
https://cran.r-project.org/web/packages/labelled/vignettes/intro_labelled.html
https://CRAN.R-project.org/package=skimr
http://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
http://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
http://arxiv.org/abs/
http://arxiv.org/abs/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych

Document Data With codebook	 187

Revelle, W., Condon, D. M., Wilt, J., French, J. A., Brown, A., &
Elleman, L. G. (2017). Web- and phone-based data collec-
tion using planned missing designs. In N. G. Fielding, R. M.
Lee, & G. Blank (Eds.), The SAGE handbook of online
research methods (pp. 578–594). London, England:
Sage.

Revelle, W., Wilt, J., & Rosenthal, A. (2010). Individual dif-
ferences in cognition: New methods for examining the
personality-cognition link. In A. Gruszka, G. Matthews,
& B. Szymura (Eds.), Handbook of individual differences
in cognition: Attention, memory, and executive control
(pp. 27–49). New York, NY: Springer.

Roche, D. G., Kruuk, L. E. B., Lanfear, R., & Binning, S. A.
(2015). Public data archiving in ecology and evolution:
How well are we doing? PLOS Biology, 13(11), Article
e1002295. doi:10.1371/journal.pbio.1002295

Schema.org. (n.d.). Dataset. Retrieved from https://schema
.org/Dataset

Shrout, P., & Lane, S. P. (2012). Psychometrics. In T. S. Conner
& M. R. Mehl (Eds.), Handbook of research methods for
studying daily life (pp. 302–320). New York, NY: Guilford
Press.

Stanley, D. J., & Spence, J. R. (2018). Reproducible tables
in psychology using the apaTables package. Advances

in Methods and Practices in Psychological Science, 1,
415–431. doi:10.1177/2515245918773743

University of Glasgow Institute of Neuroscience and
Psychology. (n.d.). Academic webpages. Retrieved from
https://gupsych.github.io/acadweb/

Wickham, H., François, R., Henry, L., Müller, K., & RStudio.
(2019). dplyr: A grammar of data manipulation (R package
Version 0.8.0.1) [Computer software]. Retrieved from
https://CRAN.R-project.org/package=dplyr

Wickham, H., Miller, E., & RStudio. (2019). haven: Import and
export ‘SPSS’, ‘Stata’ and ‘SAS’ files (R package Version
2.1.0) [Computer software]. Retrieved from https://
CRAN.R-project.org/package=haven

Wikidata: Introduction. (2018). Retrieved from https://www
.wikidata.org/wiki/Wikidata:Introduction

Wilkinson, M. D., Dumontier, M., Aalbersberg, IJ. J.,
Appleton, G., Axton, M., Baak, A., . . . Mons, B. (2016).
The FAIR Guiding Principles for scientific data manage-
ment and stewardship. Scientific Data, 3, Article 160018.
doi:10.1038/sdata.2016.18

Xie, Y. (2018). DT: A wrapper of the JavaScript library
‘DataTables’ (R package Version 0.5) [Computer soft-
ware]. Retrieved from https://CRAN.R-project.org/pack
age=DT

https://schema.org/Dataset
https://schema.org/Dataset
https://gupsych.github.io/acadweb/
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=haven
https://CRAN.R-project.org/package=haven
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=DT

