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Psychologists rarely ensure that their data are findable, 
accessible, interoperable, and reusable (FAIR; Borghi 
& Van Gulick, 2018; Hardwicke et  al., 2018; Kidwell 
et al., 2016; Wilkinson et al., 2016). Reuse of a data set 
is therefore difficult for researchers who lack intimate 
knowledge of it—a group that may come to include the 
data collector and his or her collaborators after a few 
years. Furthermore, data sets are rarely documented in 
standard formats that can be read by search engines 
and other algorithmic approaches to data, whereas pro-
prietary formats, such as .sav (SPSS), are widely used. 
Often only a processed subset of the data, without 
item-level information, is released.

There are at least three likely reasons for insufficient 
documentation of data sets in psychology. One is the 
curse of knowledge: It is difficult to imagine which 
descriptions will be cryptic to readers who are not famil-
iar with the data. A second reason is a lack of standards 

and training: Psychological scientists tend to receive 
little to no training in data documentation, and the train-
ing that is offered is often ad hoc. Because many data 
sets in psychology are small and specific to certain 
research questions, few departments hire specialized 
data librarians who can concentrate knowledge on the 
topic and support researchers in archiving useful data. 
However, even disciplines with a stronger history of 
data sharing, such as ecology, struggle to share reusable 
data (Roche, Kruuk, Lanfear, & Binning, 2015). The third 
likely reason stems from career incentives: They do not 
favor the significant time investment necessary for the 
kind of data documentation that would best advance 
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Abstract
Data documentation in psychology lags behind not only many other disciplines, but also basic standards of usefulness. 
Psychological scientists often prefer to invest the time and effort that would be necessary to document existing data 
well in other duties, such as writing and collecting more data. Codebooks therefore tend to be unstandardized and 
stored in proprietary formats, and they are rarely properly indexed in search engines. This means that rich data sets 
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knowledge generation in the long term, but they do 
favor writing grant applications to collect more data 
before existing data sets have been fully used. There-
fore, psychological scientists often have a surfeit of data 
and use rich data sets only once.

The codebook package gives psychological scientists 
a tool they can use in the short term, and that potentially 
even saves them time, in order to create a resource that 
is useful for everyone in the long term. It automates 
commonly performed data-summary steps, such as gen-
erating descriptive statistics and plots. It can compute 
state-of-the-art reliability indices automatically (Crutzen, 
2014; McNeish, 2018; Peters, 2014). It makes variable 
and value labels easily accessible in R, while at the same 
time generating standardized metadata about a data set 
that can be read by other researchers and by search 
engines (e.g., Google Dataset Search, https://toolbox 
.google.com/datasetsearch) and other data processors.

The Roles of a Codebook

A good codebook1 fulfills several roles. By giving a high-
level summary of the data and providing meaningful 
labels, it can make it easier to discover errors, miscoded 
missing values, oddly shaped distributions, and other 
cues signaling problems, thereby allowing data creators 
to clean their data sets more efficiently and reproducibly. 
A high-level summary, ideally combined with text 
explaining the structure and nature of the data set, also 
helps to explain an unfamiliar data set to researchers 
who want to reproduce analyses or reuse the data. This 
should lead to fewer errors resulting from analyzing a 
data set without understanding measurement specifics, 
which values encode missingness, whether certain sur-
vey weights have to be used, and so on.

Codebooks also offer standardization. There are few 
exceptions (e.g., Gorgolewski et al., 2016) to the gen-
eral lack of standards in descriptions of psychological 
data. Projects using integrated data analysis—that is, 
projects in which the same analysis is performed across 
multiple cohorts to boost power and generalizability 
(Leszko, Elleman, Bastarache, Graham, & Mroczek, 
2016)—currently devote ample amounts of time to get-
ting multiple data sets into the same format. Human 
analysts benefit from standardization, but they can make 
do with unstandardized data if need be. Search engines 
and other algorithmic approaches to data, however, have 
a more difficult task when data are not standardized—
and psychological scientists frequently rely on search 
engines. Without a good codebook, how can a search 
engine tell whether a data set including the word intel-
ligence consists of measures of intelligence or elderly 
people’s responses to whether they would be willing 
to use an intelligent household robot? The task becomes 
even more challenging when it comes to structural 

aspects of the data: How do search engines identify a 
study using peer reports or dyadic data? How do they 
differentiate experiments in which mood was manipu-
lated from those in which it was the outcome? And how 
can researchers filter their searches by sample size, to 
find only data sets in which each of at least 100 indi-
viduals was measured at least 10 times? For example, 
the Open Science Framework (OSF) currently relies on 
user-supplied tags—a very limited approach—and is not 
indexed in Google Dataset Search. As a result, it is dif-
ficult to find a data set on OSF without either knowing 
exactly where to look or investing a lot of time.

Disclosures

The R code for the codebook package is open source. 
The most current version can be accessed on GitHub 
(https://github.com/rubenarslan/codebook), and major 
versions are archived permanently on Zenodo 
(doi:10.5281/zenodo.2574896) and in the CRAN pack-
age repository (https://cran.r-project.org/web/pack 
ages/codebook/index.html). A Web site for the code-
book package documents all usable functions and pres-
ents further vignettes illustrating how to use the package 
(https://rubenarslan.github.io/codebook/); this infor-
mation is also accessible within R. The Web app docu-
mented in Box 1 can be accessed at https://codebook 
.formr.org. A gallery of existing codebooks can be 
found at https://rubenarslan.github.io/codebook_gal 
lery/. Google indexes all public codebooks produced 
with this package; to see how indexed codebooks look, 
go to https://toolbox.google.com/datasetsearch/search? 
query=site%3Arubenarslan.github.io.

The codebook Package

Immediate benefits

The codebook package (Arslan, 2018) makes it easy to 
share codebooks in many commonly used formats: .pdf 
files, .HTML Web sites, spreadsheets, R data frames, and 
proprietary data-set formats (e.g., SPSS and Stata files). 
These options facilitate sharing information about a 
data set with coauthors, reviewers, and readers. The 
codebooks generated by the package are more exten-
sive and more portable than those produced by most 
other current approaches: They include not only meta-
data, such as variable names and variable and value 
labels, but also high-level summaries of the data, such 
as means and standard deviations, plots of distributions, 
counts of missing values and complete entries, and 
descriptions of patterns of missing data. Other available 
metadata, such as information about which items were 
shown to whom or the order in which questions were 
asked, are also displayed.

https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
https://github.com/rubenarslan/codebook
https://cran.r-project.org/web/packages/codebook/index.html
https://cran.r-project.org/web/packages/codebook/index.html
https://rubenarslan.github.io/codebook/
https://codebook.formr.org
https://codebook.formr.org
https://rubenarslan.github.io/codebook_gallery/
https://rubenarslan.github.io/codebook_gallery/
https://toolbox.google.com/datasetsearch/search?query=site%3Arubenarslan.github.io
https://toolbox.google.com/datasetsearch/search?query=site%3Arubenarslan.github.io
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The codebook Web app (https://codebook.formr.org) is an easy entry point to generating codebooks using SPSS 
or Stata files that are on your computer and already have properly labeled variables and values. It is especially 
convenient if you do not use R. This app allows you to turn SPSS and Stata files into codebooks that are in an 
open (i.e., nonproprietary) format and can be shared easily. The codebook Web app is a simple Web sitea (see 
Fig. 1) that shows an editable R Markdown document on the left and what initially appears as an empty space 
on the right. You can ignore the document for the moment; you will learn how to edit it in the remainder of this 
Tutorial. To generate a codebook, visit https://codebook.formr.org and choose a file from the bar at the top. This 
file can be in any format that can be read by the R package rio, such as .rds (R data serialization), .sav (SPSS), 
.dta (Stata), .xlsx (Excel), .or csv (comma-separated values).b Then simply click the green button labeled “Gen-
erate codebook.” Depending on the size of the data set you have chosen, you may have to wait a few minutes. 
When it is ready, the codebook will appear on the right. You can browse the codebook in the app or download 
it for later using the second green button.

The Web app sets reasonable defaults and allows the user to edit the text and the R code to improve the re-
sulting codebook. However, the Web app does not store edits, is less interactive than working in R, and requires 
the user to temporarily upload the data set to a server. This is not permissible for certain restricted-use data sets. 
Moreover, very large data sets may result in an error message because of resource limits imposed by the server. 
If you want to document large, private, or a number of data sets, or if you first need to add the metadata in R, I 
recommend installing the codebook package locally.

aThis Web site was constructed using OpenCPU (Ooms, 2014), a way of using R on the Web that is similar but not identical 
to Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2018). bFor more information, read rio’s documentation (Chan & Leeper, 
2018).

Box 1.  Generate a Codebook in Three Clicks

By making data-set contents and structure more 
transparent, the codebook package makes it easier for 
researchers to search for data sets that might be useful 
for answering their research questions and to decide 
whether to reuse a data set for a particular research 

question without seeing the data. This is particularly 
useful when the data cannot be openly shared and 
access needs to be requested (e.g., because of privacy 
constraints); it is also more convenient than download-
ing and examining a plethora of data sets when data 

Fig. 1.  A screenshot of the codebook Web app after a codebook has been generated.

https://codebook.formr.org
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are open. It is especially useful when the literature of 
adjacent scientific fields is not typically shared between 
those fields, such that researchers may not easily 
become aware of data sets available in the other disci-
pline, even though the data can often be repurposed 
for different questions in their own discipline.

Even after downloading a data set, analysts will go 
back and forth between the metadata and data fre-
quently in order to find relevant variables, refresh their 
memory, or simply label axes accurately. By making 
metadata available in R, the codebook package puts this 
information at analysts’ fingertips.

Long-term benefits

When analysts and would-be data sharers use the code-
book package to document their data sets, they also 
create machine-readable metadata. Hidden in the HTML 
files that can be generated are JSON-LD ( JavaScript 
Object Notation for Linked Data) blocks. This format is 
an extensible shared vocabulary for data sets that is 
supported by search engines, including Google. Large-
scale providers of public data, such as IPUMS (Inte-
grated Public Use Microdata Series, https://www.ipums 
.org/), already generate JSON-LD for data sets. Some 
providers of large data sets use other, older solutions, 
such as the Data Documentation Initiative (Rasmussen 
& Blank, 2007), but it is difficult to learn about and use 
these solutions with open and free tools. My focus in 
creating the codebook package was on making this 
functionality available as a bottom-up tool that is suit-
able for nonspecialists, uses a modern metadata format, 
is open source and freely available (both in the sense 
of cost and in not being tied to one platform), and can 
be improved by its users.

Going beyond search engines, projects such as 
Wikidata (“Wikidata: Introduction,” 2018) link struc-
tured data from sources across the Web (Google, 2018; 
Noy & Brickley, 2017). If data sets were sufficiently 
complete and structured, Wikipedia could, for instance, 
automatically display information about the sex differ-
ences in various traits in their respective entries, or 
synthesize the heritability of traits studied using meta-
analytic and genetic methods. A Wikipedia for traits 
that arranges items and traits into ontologies (or nomo-
logical networks) by collecting bivariate correlations 
could simply emerge for free instead of being painstak-
ingly assembled, as in the metaBUS and SAPA projects 
(Bosco, Steel, Oswald, Uggerslev, & Field, 2015; 
Condon, 2018). Structuring data would also enrich 
existing data for researchers, for example, by tying loca-
tions recorded in psychological data to geographic or 
administrative metadata, or by tying the time of study 
participation to current events and news. There are 

many ways in which existing data could be reused for 
purposes not imagined by the researchers who released 
the data. Findability and accessibility of data sets are 
crucial for this expanded utility. Meta-analysis would 
also become much easier. In particular, relevant unpub-
lished effect sizes could be discovered more easily if 
data sets could be found via search engines by querying 
the constructs measured. This approach compares 
favorably with sending requests out through mailing 
lists and browsing conference abstracts for clues. 
Including more unpublished and unpredicted effects in 
meta-analyses could reduce selection bias in estimated 
effect sizes (Bosco, Aguinis, Field, Pierce, & Dalton, 
2016). Even published work can be hard to find using 
keyword searches and requires a lot of human filtering. 
Currently, ontologies and meta-analysis databases can 
be built by determined teams, but have no economy of 
scale and little potential for automation because every 
step requires the efforts of qualified researchers and 
research assistants.

Alternatives

Several other ways to create codebooks exist (see Table 
1 for a summary of features). The closest relative to the 
codebook package is the dataspice R package (Boettiger 
et  al., 2018), which also generates machine-readable 
metadata but does not provide an overview of distribu-
tions, reliabilities, and missing data; nor does it allow 
users to easily reuse existing metadata in SPSS and 
Stata files (i.e., labels for variables, values, and missing 
values). However, it excels at helping inexperienced 
R users interactively enter metadata that do not yet 
exist in a structured form. Conceivably, the codebook 
and dataspice packages could be integrated in the 
future by working with the same metadata substrate; 
the dataspice R package is currently available only on 
GitHub.

The dataMaid R package (Helby Petersen & Thorn 
Ekstrøm, 2018) also offers a codebook function. It 
generates a similar, but pdf-focused, overview docu-
ment, but neither computes reliabilities nor generates 
machine-readable metadata. The summarytools R pack-
age (Comtois, 2019) generates overviews, in HTML for-
mat, that are similar to those of dataMaid and have 
similar limitations. These packages focus on helping 
users find errors in their own data and do not prioritize 
sharing metadata.

As does codebook, the Dataset Nutrition Label 
(Holland, Hosny, Newman, Joseph, & Chmielinski, 
2018) project generates high-level data-set overviews 
for machine learning, but it does not yet offer a public-
facing product; furthermore, it does not yet generate 
machine-readable metadata. There are also several 

https://www.ipums.org/
https://www.ipums.org/
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online interfaces in which one can enter metadata. The 
DataWiz platform (https://datawiz.leibniz-psychology 
.org; Kerwer, Bölter, Dehnhard, Günther, & Weichsel- 
gartner, 2017) helps users generate data-set documenta-
tion that complies with funders’ statutes, but lacks a 
dedicated outlet for sharing machine-readable metadata 
that can be indexed by search engines and instead 
focuses on administrative information that is not par-
ticularly interesting for other researchers, such as infor-
mation on funders and data-management plans.

I have tried describing the same data set on various 
well-known commercial, nonprofit, and governmental 
platforms, including OSF, Figshare, DataDryad, ReShare, 
the Inter-university Consortium for Political and Social 
Research (ICPSR), Dataverse, PsychData, and Zenodo. 
I found that none make use of metadata that are already 
stored in a data file. Some, such as OSF, do not use 
metadata related to a data set’s contents at all. With 
others, such as ReShare, I had to give up after the sign-
up process led to errors. Yet others, such as Dataverse, 
allow for metadata, but they have to be entered in a 
cumbersome online interface, even if they already exist 
in a structured format, and a researcher does not derive 
any selfish benefit from entering the metadata. These 
platforms are thus better suited to storing data; the rich 
description of the data for other humans and search 
engines might be housed more comfortably elsewhere. 

The most mature platform for social-science research 
appears to be openICPSR (https://www.openicpsr.org). 
In sum, the codebook solutions I found, with the excep-
tion of dataspice, do not provide rich metadata for 
humans and machines, can make heavy demands on 
researchers’ time, and give little in return.

Using the codebook Package Locally in 
RStudio

In this section, I provide an introduction to how to use 
the codebook package on your local computer within 
R. It is also possible to use the Web app if you are not 
an R user or want to see results quickly (Box 1).

One-time preparatory work and 
assumed knowledge

RStudio is an integrated development environment for 
R. The codebook package can make use of some of 
RStudio’s features (such as the Viewer tab, R Markdown 
editing, and addins), but it works independently of it. 
I strongly recommend using RStudio with the codebook 
package in order to prevent problems resulting from 
misspecified paths and to simplify the transition to self-
contained reproducible project management, and in the 
remainder of this Tutorial, I assume that codebook is 

Table 1.  Comparison of the Features of Various Codebook Solutions

Feature codebook dataspice summarytools

Dataset 
Nutrition 

Label dataMaid DataWiz
Other online 

providers

Machine-
readable 
metadata

Yes, for 
data 
sets and 
variable 
labels

Yes, for  
data 
sets and 
variable 
labels

No Not yet No Yes, but only 
citation-
related 
metadata

Yes, but 
usually only 
citation-
related 
metadata

Distribution 
plots of the 
data

Yes No Yes Yes Yes No Varies

Reliability 
computation

Yes No No No No No No

Missingness 
patterns

Yes No No Yes No No No

Web interface Yes Yes (Shiny) No No Not yet Yes Yes
Interactive 

entry of 
metadata

No Yes (locally) No No No Yes (online) Yes (online)

Independent 
storage

Yes Yes Yes Yes Yes Yes No

Metadata 
available 
locally during 
analysis

Yes No Yes No No No No

https://datawiz.leibniz-psychology.org
https://datawiz.leibniz-psychology.org
https://www.openicpsr.org
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used in combination with RStudio. You can generate a 
codebook without previous experience with R and 
RStudio with the help of this Tutorial. For an introduc-
tion to R and RStudio, readers can consult the excellent 
Tutorial for the apaTables package (Stanley & Spence, 
2018).

Installing R Markdown.  The codebook package 
makes use of the rmarkdown package (Allaire et  al., 
2018). R Markdown creates living documents that let you 
intermesh text, graphics, and code in a fully reproducible 
manner. R Markdown documents are simple plain-text 
documents that can be knit into rich HTML, pdf, or Word 
documents. To install R Markdown, simply click on “File,” 
then select “New File,” and then “R Markdown” in the 
RStudio menu. RStudio will prompt you to install the nec-
essary packages at this point. The resulting document 
serves as a succinct introduction to R Markdown. Verbal 
explanations in plain text surround code blocks, which 
start with ```{r} and end with ```, each delimiter 
appearing on a new line. Click the “Knit” button at the 
top of the document and select a file name. Within sec-
onds, the document will be turned into an HTML docu-
ment with formatting and graphics, shown in the 
bottom-right viewer panel.

Installing codebook.  Once R and R Markdown are 
installed, run the following command in the RStudio con-
sole to install the codebook package:

install.packages("codebook")

This command will automatically install the codebook 
package, as well as several other R packages, some of 
which are discussed in this Tutorial. Another way to 
install the packages is by clicking the “Install” button 
in the bottom-right Packages tab in RStudio, then typing 
in “codebook” and hitting “Enter.”

Creating your codebook

Now you need an R Markdown file to serve as the basis 
for your codebook. Because codebooks look best with 
a few defaults already set, load a template by executing 
the following command in the RStudio console:

codebook::new_codebook_rmd()

The file that just opened is the template you will be 
working with. It has been saved as the file “codebook.
Rmd” in your working directory. For now, it is just an 
empty template without data. Try clicking on “Knit” at 
the top of the document. In the RStudio viewer pane 
on the bottom right, a codebook for a mock data set 

included with the package will appear.2 The codebook 
and its table of contents may look a little squished 
depending on the size of your screen. You can expand 
them to a full browser window by clicking on the little 
window with an arrow in the Viewer tab.

Loading data

It is time to load some data. I describe this process 
using the bfi data set made available in the psych R 
package (Goldberg, 1999; Revelle et al., 2017; Revelle, 
Wilt, & Rosenthal, 2010). The bfi data set is already very 
well documented in the psych package, but by using 
the codebook package, one can add automatically com-
puted reliabilities, graphs, and machine-readable meta-
data to the mix. The data set is available within R, but 
because this will not usually be the case when you are 
working with the codebook package, I have uploaded 
it to OSF, which also features many other publicly avail-
able data sets. A new package in R, rio (Chan & Leeper, 
2018), makes loading online data in almost any format 
as easy as loading local data. You can import the bfi 
data set directly from OSF3 by replacing the line

codebook_data <- codebook::bfi

with

codebook_data <- rio::import(
   "https://osf.io/s87kd/download", 
    "csv")

on line 34 in the template. R Markdown documents 
have to be reproducible and self-contained, so it is not 
enough for a data set to be loaded locally; you must 
load the data set at the beginning of the document. You 
can also use the document interactively, although this 
will not work seamlessly for the codebook package.4 To 
see how this works, execute the line you just added by 
pressing “Command + Enter” (on a Mac) or “Ctrl + 
Enter” (on other platforms).

RStudio has a convenient data viewer you can use 
to check whether your command worked. In the Envi-
ronment tab on the top right, you should see “code-
book_data.” Click that row to open a spreadsheet view 
of the data set in RStudio. As you can see, it is not 
particularly informative—just long columns of numbers 
with variable names like “A4.” Does “A” refer to aggres-
siveness, agreeableness, or the German industrial norm 
for paper size? The lack of useful metadata is obvious. 
Click on “Knit” again to see what the codebook package 
can do with this. It will take time for the result to appear 
in the Viewer tab, but when it does, scroll through it. 
You can see a few warnings stating that the package 
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saw items that might form part of a scale, but there was 
no aggregated scale. You will also see graphs of the 
distributions for all the items and summary statistics.

Adding and changing metadata

Variable labels.  The last codebook you generated 
could already be useful if the variables had meaningful 
names and self-explanatory values. Unfortunately, they 
do not, which is typically the case. Generally, you will 
need more metadata: labels for variables and values, a 
data-set description, and so on. The codebook package 
can use metadata that are stored in R attributes. Attributes 
in R are most commonly used to store variable types; for 
instance, datetime in R is just a number with two attri-
butes (a time zone and a class marking it as a date and 
time). However, R attributes can just as easily store other 
metadata; the Hmisc (Harrell, 2019), haven (Wickham, 
Miller, & RStudio, 2018), and rio (Chan & Leeper, 2018) 
packages, for example, use attributes to store labels. 
The benefit of storing variable metadata in attributes is 
that even data sets that are the product of merging and 
processing raw data retain the necessary metadata. The 
haven and rio packages set these attributes when 
importing data from SPSS or Stata files. However, it is 
also easy to add metadata yourself, as with the follow-
ing code:

attributes(codebook_data$C5)$label  
<- "Waste my time."

You have just assigned a new label to a variable (i.e., 
the variable C5 in the bfi data set). Because this is a lot 
to type over and over again as you label more variables, 
you may want to use a few convenience functions in 
the labelled package (Larmarange, 2019) instead. Load 
the labelled package by writing the following in your 
codebook.Rmd file:

library(labelled)

Now you can label the C5 item using the following 
shorthand:

var_label(codebook_data$C5) <- "Waste 
my time."

Write one of these labeling commands after loading 
the data set and click on “Knit” again. As you can see 
in the viewer pane, the graph for the C5 variable now 
has a label at the top.5 If the prospect of adding labels 
for every single variable seems tedious, do not fear. 
Many researchers already have a codebook in the form 
of a spreadsheet, and this can be used to avoid entering 

labels one by one. The bfi data set in the psych package 
is a good example of this because it comes with a tabu-
lar dictionary. After loading the bfi data, instead of 
labeling variables one at a time as just illustrated, type 
the following to import this data dictionary:

dict <- rio::import(
   "https://osf.io/cs678/download", 
    "csv")

To see what you just loaded, click on the “dict” row 
in the Environment tab in the top right panel. You will 
see that the dictionary has information on the construct 
on which each item loads and on the direction with 
which it should load on the construct. You can make 
the metadata in the dictionary usable through the code-
book package, but working on the data frames will 
often help you do this; to make this easier, use the dplyr 
package (Wickham, François, Henry, Müller, & RStudio, 
2019). Load it by typing the following:

library(dplyr)

To label more than one variable at once, you need a 
list of variable labels. Each element of the list is one item 
that you want to label. For example, you could label 
variables C5 and C1 at once by using the following code:

var_label(codebook_data) <- list(
   C5 = "Waste my time.",
   C1 = "Am exacting in my work."
)

However, there is already a list of variables and 
labels in your data dictionary that you can use, so you 
do not have to perform the tedious task of writing out 
the list. You do have to reshape it slightly, though, 
because it is currently in the form of a rectangular data 
frame, not a named list. To do so, you will use a con-
venience function from the codebook package called 
dict_to_list. This function expects to receive a 
data frame with two columns: The first should contain 
the variable names, and the second should contain the 
variable labels. To select these columns, you will use 
the select function from the dplyr package. You will 
also need to use a special operator, %>%. This operator, 
called a pipe, allows you to read and write R code from 
left to right, almost as you would write an English sen-
tence. To label the variables using the dictionary, you 
need to take the dict data set, select the variable and 
label columns, and use the dict_to_list function. 
You also need to assign the result of this operation to 
become the variable labels in codebook_data. You can 
do all this in a single line using pipes:

https://osf.io/cs678/download
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var_label(codebook_data) <- dict %>% 
select(variable, label) %>%  
dict_to_list()

Click on “codebook_data” in the Environment tab 
again. You should now see the variable labels below the 
variable names. If you click on “Knit” again, you will see 
that your codebook now contains the variable labels. 
They are both part of the plots and part of the codebook 
table at the end of the document. They are also part of 
the metadata that can be found using, for example, 
Google Dataset Search, but this will not be visible to you.

Value labels.  You may have noticed that the values for 
the education variable in the bfi data set are shown as 
numbers. Do they indicate the number of years of edu-
cation? The average is 3, so that seems unlikely. In fact, 
these numbers signify levels of education. In the dict 
data frame, you can see that there are value labels for 
the levels of this variable. However, these levels of edu-
cation are abbreviated, and you can probably imagine 
that it would be difficult for an automated program to 
understand how they map to the values in your data set. 
You can do better, using another function from the 
labelled package: not var_label this time, but val_
labels. Unlike var_label, val_labels expects not 
just one label, but a named vector,6 with a name for each 
value to be labeled. Named vectors are created using the 
c() function (labels go in quotation marks before the equal 
sign, and values go after the equal sign. Add the following 
lines at the end of the code you have entered thus far:

val_labels(codebook_data$gender) <- 
 c("male" = 1, "female" = 2)

   val_labels(codebook_data$education) 
    <- c(

     "in high school" = 1,

     "finished high school" = 2,

     "some college" = 3,

     "college graduate" = 4,

     "graduate degree" = 5)

Click on the “Knit” button. The bars in the graphs for 
education and gender should now be labeled.

Now consider the data set’s many Likert items, which 
all have the same value labels. You could assign these 
labels in the same way you did for gender and education, 
entering the same lines for each variable over and over, 
or you could create a function to do the job for you 
instead. We will call this function add_likert_
labels . In the code defining this function, the 

keyword function is followed by parentheses and 
then braces. Inside the parentheses is an x that serves 
as a placeholder for the many variables you will use 
the function for in the next step. The code inside the 
braces shows what you plan to do with the variable x; 
use the val_labels function and assign a named 
vector. The last statement determines the resulting value 
of the function. You should explicitly return x by writ-
ing it out on its own line:

add_likert_labels <- function(x) {

   val_labels(x) <- c("Very Inaccurate" = 1,

     "Moderately Inaccurate" = 2,

     "Slightly Inaccurate" = 3,

     "Slightly Accurate" = 4,

     "Moderately Accurate" = 5,

     "Very Accurate" = 6)

   x

}

A function is just a tool and does nothing on its own; 
you have not used the add_likert_labels function 
simply by entering this code. To use this function only 
on the Likert items, you need a list of them. An easy 
way to create a list is to use the filter and pull 
functions from the dplyr package to select the desired 
variables from the dict data frame (in the present case, 
the Big Six items from the bfi data set):

likert_items <- dict %>% filter(Big6 
 != "") %>% pull(variable)

To apply your new function to these items, use 
another function from the dplyr package called 
mutate_at. It expects a list of variables and a func-
tion that applies to each. You have both! You can 
now add value labels to all the Likert items in 
codebook_data:

codebook_data <- codebook_data %>% 
mutate_at(likert_items,  
add_likert_labels)

Click on “Knit” again. The graphs for all the items 
should now have value labels. However, this display is 
quite repetitive. How about grouping the items by the 
factors that they are supposed to load on? And while 
you are at it, how can the metadata about keying (or 
reverse coding) in your dictionary become part of the 
data set?
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Adding scales.  The codebook package relies on a sim-
ple convention to summarize psychological scales, which 
are aggregates across several items. Your next step will 
be to assign a new variable, extraversion, to the result of 
selecting all extraversion items in the data set and pass-
ing them to the aggregate_and_document_scale 
function. This function takes the mean of its inputs and 
assigns a label to the result, so that you can still tell which 
variables it is an aggregate of. The code for creating the 
extraversion scale is as follows:

codebook_data$extraversion <- codebook_data 
 %>% select(E1:E5) %>% 
 aggregate_and_document_scale()

Try knitting now. In the resulting codebook, the 
items for extraversion have been grouped in one graph. 
In addition, several internal-consistency coefficients 
have been calculated. However, they are oddly low. 
You need to reverse-code items, such as “Don’t talk a 
lot,” that load negatively on the extraversion factor.

To do so, I suggest following a simple convention 
early on, when you come up with the names for the 
items in your study. Specifically, use scale_numberR as 
the format for reverse-coded items (e.g., bfi_extra_1R 
for a reverse-coded extraversion item, bfi_neuro_2 for 
a non-reverse-coded neuroticism item). That way, ana-
lysts who use the codebook will know how items relate 
to their scales. For the present exercise, though, you 
can keep the names already encoded in the bfi data 
dictionary you imported, but simply rename the reverse-
coded items so that you cannot forget about their direc-
tion. First, you need to grab from the dictionary all the 
items with a negative keying, by adding the following 
line above the aggregate_and_document_
scale() line of code you just entered:

reversed_items <- dict %>% filter
 (Keying == -1) %>% pull(variable)

You can see in the Environment tab that names such 
as A1, C4, and C5 are now stored in the reversed_items 
vector. You can now refer to this vector in the rename_
at function, which applies a function to all variables 
you list. In the immediately following line of code, use 
the very simple function add_R, which does exactly 
what its name indicates:

codebook_data <- codebook_data %>%
 rename_at(reversed_items, add_R)

Click on “codebook_data” in the Environment tab, 
and you will see that some variables have been 

renamed: A1R, C4R, and C5R, and so on. This could 
lead to an ambiguity: Does the suffix “R” mean “should 
be reversed before aggregation” or “has already been 
reversed”? With the help of metadata in the form of 
labeled values, there is no potential for confusion. You 
can reverse the underlying values, but keep the value 
labels right. So with these Likert items, if somebody 
responded “very accurate,” that label remains, but the 
underlying value switches from 6 to 1 for a reverse-
scored item. The data you generally import will rarely 
include labels that remain correct regardless of whether 
underlying values are reversed, but the codebook pack-
age makes it easy to bring the data into this shape. In 
the next line of code, a command using dplyr functions 
and the reverse_labelled_values function can 
easily remedy this problem:

codebook_data <- codebook_data %>% 
 mutate_at(vars(matches("\\dR$")), 
 reverse_labelled_values)

All this statement does is find variable names that 
end with a number (\d is the regular expression for a 
number; a dollar sign denotes the end of the string) 
and “R” and reverse them.7 Because the extraversion 
items have been renamed, we have to amend our scale-
aggregation line slightly:

codebook_data$extraversion <- 
 codebook_data %>% select(E1R:E5) %>% 
 aggregate_and_document_scale()

Try knitting again. The reliability for the extraversion 
scale should be much higher, and all items should load 
positively. Adding further scales is easy: Just repeat the 
last line of code, changing the names of the scale and 
the items. Adding scales that integrate smaller scales is 
also straightforward. The data dictionary mentions the 
Giant Three—try adding one, plasticity, which sub-
sumes extraversion and openness:

codebook_data$plasticity <- codebook_data 
 %>% select(E1R:E5, O1:O5R) %>% 
 aggregate_and_document_scale()

Note that writing E1R:E5 works only if the items 
are all in order in your data set. If items from different 
constructs are intermixed, you will need a different way 
to select them. One option is to list all items, writing 
select(E1R, E2R, E3, E4, E5). This can get 
tedious when many items need to be listed. Another 
solution is to write select(starts_with("E")). 
Although this is quite elegant, it will not work in this 
case because you have more than one label that starts 
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with “E”; this command would include education items 
along with the extraversion items you want. This is a 
good reason to give items descriptive stems, such as 
extraversion_ or bfi_extra. Longer stems not 
only make confusion less likely, but also make it pos-
sible for you to refer to groups of items by their stems, 
and ideally to refer to their aggregates by only their 
stems. If you have already named an item too minimally, 
another solution is to use a regular expression, as in the 
earlier code for matching reversed items. In this scenario, 
select(matches("^E\\dR?$")) would work.8

Metadata about the entire data set

Finally, you might want to sign your work and add a 
few descriptive words about the entire data set. If you 
simply edit the R Markdown document to add a descrip-
tion, this information will not become part of the 
machine-readable metadata. Metadata (or attributes) 
about a data set as a whole are much less persistent 
than metadata about variables. Hence, you should add 
your description of the data set right before calling the 
codebook function, which actually begins the genera-
tion of your codebook. Adding metadata about the data 
set is very simple: Just wrap the metadata function 
around codebook_data and assign a value to a field. 
The name and description fields are required, so if you 
do not edit them, they will be automatically generated 
using the name of the data frame and its contents. To 
overwrite these values and describe the bfi data set 
more clearly, enter the following lines above the call  
codebook(codebook_data):

metadata(codebook_data)$name <- "25 
 Personality items representing 5 
 factors"

metadata(codebook_data)$description <- 
 "25 personality self report items 
 taken from the International 
 Personality Item Pool (ipip.ori.org)
 [...]"

It is good practice to give data sets a canonical iden-
tifier. This way, if a data set is described in multiple 
locations, it can still be identified as the same data set. 
For instance, when I set a canonical identifier for the 
bfi data set, I did not want to use the URL of the R 
package from which I took it because URLs can change; 
instead, I generated a persistent document object iden-
tifier (DOI) on OSF and specified it as follows:

metadata(codebook_data)$identifier <- 
 �"https://dx.doi.org/10.17605/OSF.IO/
K39BG"

In order to let other people know whom they can 
contact about the data set, how to cite it, and where to 
find more information, we will set the attributes creator, 
citation, and URL as follows:

metadata(codebook_data)$creator <- 
 "William Revelle"

metadata(codebook_data)$citation <- 
 "Revelle, W., Wilt, J., & Rosenthal, A. 
 (2010). Individual differences in 
 cognition: New methods for examining 
 the personality-cognition link. In A. 
 Gruszka, G. Matthews, & B. Szymura 
 (Eds.), Handbook of individual 
 differences in cognition: Attention, 
 memory, and executive control (pp. 
 27–49). New York, NY: Springer."

metadata(codebook_data)$url <- 
"https://CRAN.R-project.org/
package=psych"

Finally, it is useful to note when and where the data 
were collected, as well as when they were published. 
Although I could not find information as specific as 
would be ideal, here is the code for entering some 
further information about the bfi data:

metadata(codebook_data)$datePublished <- 
 "2010- 01 - 01"

metadata(codebook_data)$
 temporalCoverage <- "Spring 2010"

metadata(codebook_data)$
 spatialCoverage <- "Online"

The attributes that can be assigned are documented 
in more depth at https://schema.org/Dataset (Schema 
.org, n.d.). You can also add attributes that are not 
documented by Schema.org, but they will not become 
part of the machine-readable metadata. Click on “Knit” 
again. In the Viewer tab, you can see that the metadata 
section of the codebook has been populated with your 
additions.

Exporting and Sharing the Data With 
Metadata

Having added all the variable-level metadata, you might 
want to reuse the marked-up data elsewhere or share 
it with collaborators or the public. You can most easily 
export the data and metadata using the rio package 
(Chan & Leeper, 2018), which permits embedding the 
variable metadata in the data-set file for those formats 
that support this. The only way to keep all the metadata 

https://dx.doi.org/10.17605/OSF.IO/K39BG
https://dx.doi.org/10.17605/OSF.IO/K39BG
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
https://schema.org/Dataset
http://www.Schema.org, n.d.
http://www.Schema.org, n.d.
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in one file is by staying in R, as in the following line 
of code:

rio::export(codebook_data, "bfi.rds") 
 # to R data structure file

The variable-level metadata can also be transferred 
to SPSS and Stata files, as follows:

rio::export(codebook_data, "bfi.sav") 
 # to SPSS file

rio::export(codebook_data, "bfi.dta") 
 # to Stata file

Note that this export is based on reverse-engineering 
the SPSS and Stata file structure, so the resulting files 
should be tested before sharing them.

Releasing the Codebook Publicly

If you want to share your codebook with other people, 
you can use the codebook.html file in the project folder 
you created at the start. You can e-mail it to collabora-
tors or upload it to OSF file storage. However, if you 
want Google Dataset Search to index your data set, this 
is not sufficient. For security reasons, OSF will not 
render your HTML files, and Google will not index the 
content of your e-mails (at least not publicly). You need 
to post your codebook online. If you already have your 
own Web site9, uploading the HTML file to your own 
Web site should be easy. The simplest way I found for 
publishing the HTML for the codebook is as follows. 
First, rename the codebook.html file as index.html. 
Then create an account on netlify.com. Once you’re 
signed in, drag and drop the folder containing the code-
book to the Netlify Web page (make sure the folder 
does not contain anything you do not want to share, 
such as raw data). Netlify will upload the files and cre-
ate a random URL, such as estranged-armadillo.netlify.
com. You can change this to something more meaning-
ful, such as bfi-study.netlify.com, in the settings. Next, 
visit the URL to check that you can see the codebook. 
The last step is to publicly share a link to the codebook 
so that search engines can discover it; for instance, you 
could tweet the link with the hashtag #codebook.10 If 
you can, you should also link to the codebook from 
the repository where you have shared the data, so that 
researchers who find your data will also find your code-
book. For instance, I added a link to my codebook for 
the bfi data set on OSF (https://osf.io/k39bg/), where 
I have also shared the data. Depending on the speed 
of the search-engine crawler, the data set, including its 
contents, should be findable on Google Dataset Search 
in anywhere from 3 to 21 days.

When and Why You Should Generate a 
Codebook

You have just created a public good, but there are also 
personal benefits to generating codebooks this way. 
Codebooks are useful not only for other researchers, 
but also for the majority of us who struggle to keep all 
the details about our own data sets in mind at all times. 
Properly annotated data can help us complete rote tasks 
faster and help us make fewer errors. Usually, it will be 
easier to create a codebook, and the codebook will be 
more accurate, if one creates it right after data collec-
tion, when the study is still fresh in mind, rather than 
waiting until later. I hope the increased convenience of 
having codebooks at hand during analysis might moti-
vate you to create them early on.

Designing studies so that the collected data can be 
automatically turned into a codebook should lead to 
more meaningful variable names and labels, and reus-
able data sets. Currently, pending agreement on naming 
conventions for psychological variables, the codebook 
package picks up on variables that carry meaning 
regarding the structure of the data set according to the 
conventions used in the formr survey framework (formr.
org; Arslan, Walther, & Tata, in press), but columns from 
other survey providers can be renamed according to 
these conventions if they carry the same meaning.11 To 
provide useful codebooks, the codebook package draws 
on functionality supplied by many other R packages. I 
discuss them in this section to give their authors credit, 
but you do not need to learn about all of them in order 
to use the codebook package. Part of the benefit of 
putting forethought into metadata (such as variable 
names) is that automated data summaries can be more 
meaningful and require less additional user input and 
interpretation. For example, the variable labels you 
made for your bfi codebook will be reused by default 
in the plots and model summaries generated using the 
sjPlot package (Lüdecke, 2018). However, nobody 
should avoid generating machine-readable codebooks 
because one of the automated summaries does not look 
right. Therefore, all the sections of the codebook you 
just generated can be turned off via arguments of the 
main codebook function. The following features of 
the codebook package may save you time or prevent 
errors in your work with data sets.

Checking the codebook during 
analysis

Often, during data analysis, we want to confirm that 
a variable is the one we intend to use or that values 
are in the correct order, or we may need to find a 

https://osf.io/k39bg/
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variable but not remember what we called it. To solve 
these and similar problems, go to the “Addins” menu 
in the top bar in the RStudio window and choose 
“Static Label browser” (Fig. 2). This browser shows 
the variable and value labels for a data set in the bot-
tom right viewer pane of RStudio. It selects the data 
set that is alphabetically first in the environment or 
the data set with the name of any text that is selected 
in the editor. You can also pick a data frame by typing 
label_browser_static(data_frame_name) 
in the console.

Because you have loaded only the codebook_data 
data set and the dict data set, the browser will choose 
codebook_data. In the Viewer tab, you can now see 
the variable names and the variable and value labels 
(Fig. 3). When the static label browser is open, you can 
keep working on and executing your R code. The code-
book browser and the dynamic label browser have the 
advantage of allowing you to select a data set conve-
niently via a dropdown instead of via text selection, 
but because they are implemented as Shiny apps 
(Chang, Cheng, Allaire, Xie, & McPherson, 2018), code 
can be executed only after they have been stopped 
(using the red stop button).

Automatically making sense of 
metadata when you have preprocessed 
the data file elsewhere

Dealing with miscoded missing values.  Sometimes 
not all the missing values in a data set imported from  
SPSS or Stata will be set correctly. For example, SPSS users 
often code missing values as 99 or 999, but fail to actu
ally label these as missing-value placeholders. To correct 
for this, the codebook Web app (Box 1) runs the function 
detect_missing. When its argument ninety_nine_
problems is set to true, values of 99 or 999 will be set 
as missing values (when 99 or 999 is not in the plausible 

range for the variable in question). When the argument 
only_labelled is set to true, values of 99 or 999 will be 
set as missing values only if they have a label. A similar 
option is available for negative values, a convention com-
monly used in Stata. The detect_missing function will 
not do anything for the bfi data set because it has no labeled 
missing values, but calling it by default should be harmless.

Detecting scales that have been aggregated out-
side of R.  If your items have been aggregated outside 
of R, the function detect_scales is helpful. Calling 
this function on the entire data set will link items and 
scales. This linkage is a precondition for the Likert plots 
and reliability computations to work. The function is 
called by default when data are uploaded into the Web 
app (Box 1) or when the default codebook template is 
used. It will also warn you if it finds numbered items 
with no apparent aggregate, or if an apparent aggregate 
is not perfectly correlated with the sum of the items 
(which often indicates a missing item or ad hoc reverse-
coded item).

Survey response rates and durations

If a data frame has a “session” column to identify par-
ticipants and datetimes in “created,” “modified,” “ended,” 
and “expired” columns, the codebook package can cal-
culate a few commonly desired summaries about par-
ticipation in a survey. It can give the number of 
participants and the number of rows per participant. It 
can show the dates and times people enrolled and, by 
subtracting the “created” value from the “ended” value, 
how long it took participants to fill out the survey. By 
checking for missing values in the “modified” column, 
it can differentiate people who filled out information 
in the survey from those who did not. By checking for 
missing values in the “expired” column, it can deter-
mine how many participants did not finish the survey 
in time. The resulting values will be summarized in the 
beginning of the codebook, if the necessary variables 
exist. The manual for the codebook package (https://
rubenarslan.github.io/codebook/articles/codebook 
.html) provides an example.

Reliability estimates and Likert plots

The codebook package automatically calculates an esti-
mate of reliability for all defined scales. By default, this 
is done using the internal-consistency indices computed 
by the scaleDiagnosis function in the userfriend-
lyscience package (Crutzen, 2014; Crutzen & Peters, 
2017; Peters, 2014) if there is just one row per partici-
pant. If there are up to two rows per participant, the 
package will calculate internal consistencies for each 

Fig. 2.  Screenshot showing the three addins that the codebook 
package supplies to make metadata available during analysis. In this 
case, the “Static Label browser” has been selected so that the user can 
view the variable names and labels.

https://rubenarslan.github.io/codebook/articles/codebook.html
https://rubenarslan.github.io/codebook/articles/codebook.html
https://rubenarslan.github.io/codebook/articles/codebook.html
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time point and a retest correlation between time points 
(data have to be sorted by time), again using the user-
friendlyscience package. If there is a variable number 
of rows per participant and there are more than two 
rows in some cases, the multilevel.reliability 
function in the psych package (Revelle, 2019) reports 
the generalizability of changes over time, of the person 
average, and more (Shrout & Lane, 2012). For ordinal 
variables, the scale summary also includes a Likert 
plot (Fig. 4) generated using the likert package (Bryer 
& Speerschneider, 2016). A boon of defining metadata 
up front is that you do not have to get your data into 
the shape expected by these various functions; the 
codebook package can handle this for you, because it 
understands how scales and items relate to each other. 
Given the right metadata, the package could also be 
extended to automatically compute measures of preci-
sion suitable for reaction times or other psychological 
data.

Distribution plots and descriptive 
summaries

The codebook package also shows a plot of the distri-
bution for each individual item and scale, except when 
there are large numbers of unique values (e.g., for free 
text responses, it shows the distribution of number of 

characters instead). These plots are labeled using the 
variable names and variable and value labels. They can 
be generated in isolation by calling the function plot_
labelled(codebook_data$E1R) for specific vari-
ables. Further, you can use the skimr package (McNamara, 
Arino de la Rubia, Zhu, Ellis, & Quinn, 2019) so that each 
item or scale will be accompanied by a compact sum-
mary of the data, such as the number of missing values, 
the mean, the range, the standard deviation (for numeric 
data), and the top count (for categorical data, dates, text, 
and other data types). If there are labeled missing val-
ues (e.g., “user did not do this part of the survey” vs. 
“user did not respond to this item”), the summary 
includes the count of the types of missing values in a 
separate plot.

Missingness patterns

Although the number and types of missing values are 
always summarized for each item, this does not tell a 
prospective analyst how many data points have nonmiss-
ing data that can be used in the planned bivariate or 
multivariate analysis. The codebook package therefore 
displays a table of missingness patterns that shows the 
number of complete cases, cases with missing data for 
one variable, and variables for which values are fre-
quently missing, as well as whether there are common 

Fig. 3.  Screenshot illustrating how variable names and variable and value labels are shown in the RStudio Viewer tab.
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patterns of missingness (e.g., all questions about rela-
tionships are missing for single people). This information 
is useful mainly for reusability. If other analysts need to 
request access through a cumbersome procedure, such 
as that required by the National Institutes of Health’s 
Data and Specimen Hub, they might like reassurance 
that the combination of variables they are interested was 
actually measured often enough for the data set to be 
useful to them before they immerse themselves in forms.

Codebook table

At the end of a codebook document is a rich tabular data 
dictionary (Fig. 5). This searchable table is made possible 
through the DT package (Xie, 2018). It can be exported 

to Excel, csv, and other formats from the browser. The 
variable names in the table are linked to the details in 
the HTML codebook. The table also includes variable and 
value labels, as well as the compact data summaries gen-
erated by skimr (McNamara et al., 2019). You can create 
this table directly without making a full codebook by 
calling the function codebook_table, but to share a 
codebook with other people, I recommend also making 
available the HTML version of the codebook, which con-
tains the metadata in a search-engine-friendly format.

JSON-LD data

As mentioned earlier, the HTML codebook contains 
JSON-LD blocks, although these are unseen12 by the 

Fig. 4.  A Likert plot for the conscientiousness scale in the bfi data set in the psych package.
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researcher. JSON-LD follows a flexible and extensible 
standard for metadata and is how search engines, such 
as Google, “see” your data. Although it is presently 
limited to basic descriptive functionality, efforts are 
underway to extend it for use in biology and psychol-
ogy. If you publish a codebook generated using the 
package online, so that Google can index it, it will 
appear in the Google Dataset Search after some time 
(3–21 days). Unlike many other data platforms, the 
codebook package ensures that the data-set description 
contains all variable names and labels, thereby making 
it much easier to find relevant data. A heavily abbrevi-
ated example of JSON-LD data on the bfi data set would 
look like this:

{

"@context": "http://schema.org/",

"@type": "Dataset",

"name": "25 Personality items 
representing 5 factors",

"description": "25 personality self 
report items taken from the 
International Personality Item Pool 
(ipip.ori.org)[...]",

"identifier": "https://CRAN.R-project 
.org/package=psych",

"datePublished": "2010-01-01",

"creator": {

"@type": "Person",

"givenName": "William",

"familyName": "Revelle",

"email": "revelle@northwestern.edu",

"affiliation": {

"@type": "Organization",

"name": "Northwestern University"

}

},

"citation": "Revelle, W., Wilt, J., & 
Rosenthal, A. (2010). Individual 
differences in cognition: New methods 
for examining the personality-
cognition link. In A. Gruszka, G. 
Matthews, & B. Szymura (Eds.), 
Handbook of individual differences in 
cognition: Attention, memory, and 
executive control (pp. 27–49). New 
York, NY: Springer.",

"url": "https://cran.r-project.org/web/
packages/psych/index.html",

"temporalCoverage": "Spring 2010",

"spatialCoverage": "Online",

"keywords": ["E1R", "E2R", "E3", "E4",  
"E5", "gender", "education", "age", 
"extra"],

"variableMeasured": [

Fig. 5.  The first row of a codebook table.

http://schema.org/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych
mailto:revelle@northwestern.edu
https://cran.r-project.org/web/packages/psych/index.html
https://cran.r-project.org/web/packages/psych/index.html
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{

"name": "E1R",

"description": "Extraversion: Don't 
talk a lot.",

"value": "6. Very Inaccurate,\n5. 
Moderately Inaccurate,\n4. 
Slightly Inaccurate,\n3. Slightly 
Accurate,\n2. Moderately 
Accurate,\n1. Very Accurate",

"maxValue": 6,

"minValue": 1,

"@type": "propertyValue"

},

{

"name": "gender",

"description": "Self-reported 
gender",

"value": "1. male,\n2. female",

"maxValue": 2,

"minValue": 1,

"@type": "propertyValue"

},

{

"name": "extraversion",

"description": "5 extraversion items 
aggregated by rowMeans",

"@type": "propertyValue"

}

]

}

Note that this block of code is basically a nested list of 
properties—some rather technical, but most with an obvi-
ous meaning. (Interested readers may want to refer to 
Schema.org, n.d., for documentation of possible attributes, 
but typical users of the codebook package can assume that 
the package creates correct attributes automatically.)

In the future, psychologists could extend the list of 
possible attributes to document certain psychological 
measurement scales; whether a variable is a self- or 
informant-report item or a measured behavior; the type 
of data set or research design, and even single items 
such as demographic questions. Extending the schema 
is an open and community-driven process. Other 
research communities, such as those in the health and 
life sciences and in the biological sciences, have started 
schema-extension processes on Web sites such as 
https://health-lifesci.schema.org/ and http://biosche 
mas.org/. Discussions about extending schemas often 
take place on GitHub. The Society for the Improvement 
of Psychological Science has formed a work group for 
the specification of psychological data.13

Summary

Standardized, metadata-rich codebooks are useful to 
data creators, their teams, and the scientific community. 
The inconvenience and effort involved in creating such 
codebooks may have contributed to the current state 
of affairs in psychology: Those codebooks that exist 
are frequently unstandardized and lack information that 
is essential to understanding the data, and data sets are 
not always available in open formats and are rarely 
machine readable—and are therefore undiscoverable 
via Web searches. In short, data are rarely easily find-
able, accessible, interoperable, and reusable. The 
codebook package makes some common tasks easier: 
It speeds up the data-cleaning and -summary process, 
and makes data findable and accessible using tools such 
as Google Dataset Search, independently of where the 
data are stored or whether they are even publicly avail-
able. Thanks to a public standard vocabulary, the meta-
data are interoperable. And because the package creates 
codebooks that are rich, descriptive, and interpretable 
by other researchers, the data become more reusable. 
The metadata are also portable; structured metadata 
can be imported to and exported from many formats. 
A working codebook can be generated by an inexpe-
rienced user within minutes. If researchers follow cer-
tain conventions or use specific survey providers when 
generating a data set, or if they reuse metadata available 
in a closed-source format such as .sav files, they can 
save even more time, letting the codebook package take 
over graphing distributions, computing descriptive sta-
tistics, describing missingness patterns, and estimating 
reliabilities. It is my hope that the codebook package 
will encourage researchers to generate rich codebooks 
that benefit themselves and the scientific community as 
a whole.

https://health-lifesci.schema.org/
http://biosche
mas.org/
http://biosche
mas.org/
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Notes

1. Other widely used related terms are data dictionary, which 
tends to indicate a tabular format, and the broader terms data 
documentation and simply metadata.
2. The generated document is named “codebook.html.” You can 
open this file in your project directory any time to view the 
codebook or share it with other people.

3. Loading local data is just as easy; remember to put the data 
set you want to use in the same directory as the codebook.rmd 
file in order to avoid having to think about paths. For example, 
to load the bfi data set from a local file, go to OSF at https://
osf.io/s87kd/, download the .csv file and put it in the direc-
tory with the codebook.rmd file, and then type codebook_data 
<- rio::import("bfi.csv") on line 33 in the template. Note 
that the package will automatically use a file’s extension to select 
how to import the file, and almost all common standard file exten-
sions for tabular data are supported, including SPSS and Stata.
4. The output generated by the codebook package does not fit 
inside the interactive results box that RStudio uses.
5. Further information about adding labels with the labelled 
package can be found in Larmarange (n.d.).
6. In R, vectors are variables that contain one or many values 
of one type (e.g., numbers or text). All variables in normal data 
frames are vectors.
7. This function can work automatically only if the highest and 
lowest possible values are both encoded in the labels or levels 
attribute of the variable. Otherwise, codebook cannot infer the 
possible range of the values and will not know how to translate 
the highest into the lowest value.
8. This code means, “match only variables whose names start 
with (^) the letter E, continue with one digit (\\d) optionally 
followed by the letter R (R?), and then end ($).”
9. If you want to learn how to make a personal Web site using 
GitHub or GitLab, there are several guides available (e.g., 
University of Glasgow Institute of Neuroscience and Psychology, 
n.d.).
10. I would happily share the first 10 codebooks published this 
way with my Twitter followers and also give feedback on them.
11. An example of renaming columns from a Qualtrics survey 
can be found in the documentation for the codebook package 
(https://rubenarslan.github.io/codebook/).
12. By clicking on “JSON-LD metadata,” in small text at the bot-
tom of the generated codebook, you can see a copy of what 
search engines see.
13. Interested parties can find more information at https://
github.com/mekline/psych-DS.
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Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E.,  
Piechowski, S., Falkenberg, L.-S., . . . Nosek, B. A. (2016). 
Badges to acknowledge open practices: A simple, low-
cost, effective method for increasing transparency. PLOS 
Biology, 14(5), Article e1002456. doi:10.1371/journal 
.pbio.1002456

Larmarange, J. (2019). labelled: Manipulating labelled data 
(R package Version 2.1.0) [Computer software]. Retrieved 
from https://CRAN.R-project.org/package=labelled

Larmarange, J. (n.d.). Introduction to labelled. Retrieved 
from https://cran.r-project.org/web/packages/labelled/
vignettes/intro_labelled.html

Leszko, M., Elleman, L. G., Bastarache, E. D., Graham, E. K., 
& Mroczek, D. K. (2016). Future directions in the study 
of personality in adulthood and older age. Gerontology, 
62, 210–215. doi:10.1159/000434720

Lüdecke, D. (2018). sjPlot: Data visualization for statistics  
in social science. doi:10.5281/zenodo.1308157

McNamara, A., Arino de la Rubia, E., Zhu, H., Ellis, S., & Quinn, 
M. (2019). skimr: Compact and flexible summaries of data 
(R package Version 1.0.5) [Computer software]. Retrieved 
from https://CRAN.R-project.org/package=skimr

McNeish, D. (2018). Thanks coefficient alpha, we’ll take it  
from here. Psychological Methods, 23, 412–433. doi:10 
.1037/met0000144

Noy, N., & Brickley, D. (2017, January 24). Facilitating the 
discovery of public datasets [Blog post]. Retrieved from 
http://ai.googleblog.com/2017/01/facilitating-discov 
ery-of-public.html

Ooms, J. (2014). The OpenCPU system: Towards a univer-
sal interface for scientific computing through separa-
tion of concerns. arXiv. Retrieved from http://arxiv.org/
abs/1406.4806

Peters, G.-J. Y. (2014). The alpha and the omega of scale reli-
ability and validity: Why and how to abandon Cronbach’s 
alpha and the route towards more comprehensive assess-
ment of scale quality. European Health Psychologist, 16, 
56–69.

Rasmussen, K. B., & Blank, G. (2007). The data documen-
tation initiative: A preservation standard for research. 
Archival Science, 7, 55–71. doi:10.1007/s10502-006-
9036-0

Revelle, W. (2019). psych: Procedures for psychological, psy-
chometric, and personality research (R package Version 
1.8.12) [Computer software]. Retrieved from https://
CRAN.R-project.org/package=psych

https://CRAN.R-project.org/package=likert
https://CRAN.R-project.org/package=likert
https://CRAN.R-project.org/package=rio
https://CRAN.R-project.org/package=rio
https://CRAN.R-project.org/package=shiny
https://cran.r-project.org/web/packages/summarytools/
https://cran.r-project.org/web/packages/summarytools/
https://developers.google.com/search/docs/data-types/dataset
https://developers.google.com/search/docs/data-types/dataset
https://CRAN.R-project.org/package=Hmisc
https://cran.r-project.org/web/packages/dataMaid/index.html
https://cran.r-project.org/web/packages/dataMaid/index.html
https://arxiv.org/abs/
https://e-science-tage.de/sites/default/files/2017-04/est_talk_kerwer_17-03-2017.pdf
https://e-science-tage.de/sites/default/files/2017-04/est_talk_kerwer_17-03-2017.pdf
https://CRAN.R-project.org/package=labelled
https://cran.r-project.org/web/packages/labelled/vignettes/intro_labelled.html
https://cran.r-project.org/web/packages/labelled/vignettes/intro_labelled.html
https://CRAN.R-project.org/package=skimr
http://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
http://ai.googleblog.com/2017/01/facilitating-discovery-of-public.html
http://arxiv.org/abs/
http://arxiv.org/abs/
https://CRAN.R-project.org/package=psych
https://CRAN.R-project.org/package=psych


Document Data With codebook	 187

Revelle, W., Condon, D. M., Wilt, J., French, J. A., Brown, A., & 
Elleman, L. G. (2017). Web- and phone-based data collec-
tion using planned missing designs. In N. G. Fielding, R. M.  
Lee, & G. Blank (Eds.), The SAGE handbook of online 
research methods (pp. 578–594). London, England: 
Sage.

Revelle, W., Wilt, J., & Rosenthal, A. (2010). Individual dif-
ferences in cognition: New methods for examining the 
personality-cognition link. In A. Gruszka, G. Matthews, 
& B. Szymura (Eds.), Handbook of individual differences  
in cognition: Attention, memory, and executive control 
(pp. 27–49). New York, NY: Springer.

Roche, D. G., Kruuk, L. E. B., Lanfear, R., & Binning, S. A. 
(2015). Public data archiving in ecology and evolution: 
How well are we doing? PLOS Biology, 13(11), Article 
e1002295. doi:10.1371/journal.pbio.1002295

Schema.org. (n.d.). Dataset. Retrieved from https://schema 
.org/Dataset

Shrout, P., & Lane, S. P. (2012). Psychometrics. In T. S. Conner 
& M. R. Mehl (Eds.), Handbook of research methods for 
studying daily life (pp. 302–320). New York, NY: Guilford 
Press.

Stanley, D. J., & Spence, J. R. (2018). Reproducible tables 
in psychology using the apaTables package. Advances 

in Methods and Practices in Psychological Science, 1, 
415–431. doi:10.1177/2515245918773743

University of Glasgow Institute of Neuroscience and 
Psychology. (n.d.). Academic webpages. Retrieved from 
https://gupsych.github.io/acadweb/

Wickham, H., François, R., Henry, L., Müller, K., & RStudio. 
(2019). dplyr: A grammar of data manipulation (R package 
Version 0.8.0.1) [Computer software]. Retrieved from 
https://CRAN.R-project.org/package=dplyr

Wickham, H., Miller, E., & RStudio. (2019). haven: Import and 
export ‘SPSS’, ‘Stata’ and ‘SAS’ files (R package Version 
2.1.0) [Computer software]. Retrieved from https://
CRAN.R-project.org/package=haven

Wikidata: Introduction. (2018). Retrieved from https://www 
.wikidata.org/wiki/Wikidata:Introduction

Wilkinson, M. D., Dumontier, M., Aalbersberg, IJ. J., 
Appleton, G., Axton, M., Baak, A., . . . Mons, B. (2016). 
The FAIR Guiding Principles for scientific data manage-
ment and stewardship. Scientific Data, 3, Article 160018. 
doi:10.1038/sdata.2016.18

Xie, Y. (2018). DT: A wrapper of the JavaScript library 
‘DataTables’ (R package Version 0.5) [Computer soft-
ware]. Retrieved from https://CRAN.R-project.org/pack 
age=DT

https://schema.org/Dataset
https://schema.org/Dataset
https://gupsych.github.io/acadweb/
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=haven
https://CRAN.R-project.org/package=haven
https://www.wikidata.org/wiki/Wikidata:Introduction
https://www.wikidata.org/wiki/Wikidata:Introduction
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=DT

