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The Red Sea Deep Water is a potent source
of atmospheric ethane and propane
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Non-methane hydrocarbons (NMHCs) such as ethane and propane are significant atmo-
spheric pollutants and precursors of tropospheric ozone, while the Middle East is a global
emission hotspot due to extensive oil and gas production. Here we compare in situ
hydrocarbon measurements, performed around the Arabian Peninsula, with global model
simulations that include current emission inventories (EDGAR) and state-of-the-art atmo-
spheric circulation and chemistry mechanisms (EMAC model). While measurements of high
mixing ratios over the Arabian Gulf are adequately simulated, strong underprediction by the
model was found over the northern Red Sea. By examining the individual sources in the model
and by utilizing air mass back-trajectory investigations and Positive Matrix Factorization
(PMF) analysis, we deduce that Red Sea Deep Water (RSDW) is an unexpected, potent
source of atmospheric NMHCs. This overlooked underwater source is comparable with total
anthropogenic emissions from entire Middle Eastern countries, and significantly impacts the
regional atmospheric chemistry.
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he Middle East accommodates more than half of the

world’s known oil and gas reserves!. Fossil fuel exploitation

in this region is responsible for the release of large amounts
of gaseous pollutants into the atmosphere, including methane
(CH,4)? and non-methane hydrocarbons (NMHCs)3. Ethane and
propane have the strongest sources?, and being relatively long-
lived (ethane ca. 2 months, propane ca. 2 weeks)” are ubiquitous
in the global atmosphere. Atmospheric oxidation of NMHCs in
the presence of nitrogen oxides (NO,) leads to production of
tropospheric ozone®’” and peroxyacetyl nitrates (PAN) that are
phytotoxic®-10 and harmful to human health!!. The abundance of
NMHCs and NO, in combination with the intense photo-
chemistry in the Arabian Basin results in extremely high ozone
mixing ratios that can reach up to 200 ppb!2.

Globally, the atmospheric concentrations of ethane and pro-
pane exhibit temporal trends that are closely related to anthro-
pogenic activities. The general decline in fossil fuel emissions
toward the end of the twentieth century resulted in a decline of
global atmospheric ethane and propane!3. Conversely, the sub-
sequent expansion of US oil and natural gas production has led to
a reversal of their global atmospheric trends, with emissions
increasing since 20103

While anthropogenic activities substantially influence the
emission rate and composition of atmospheric hydrocarbons,
Earth’s natural degassing is also a significant source!%. Natural
geologic (i.e, mud volcanoes, onshore and marine seeps, and
micro seepage, geothermal and volcanic) sources contribute to
both ambient ethane and propane concentrations, and their
inclusion in global emission inventories helps to better explain
the reported values from the expanding global observation net-
work!®. Indeed such sources will have dominated preindustrial
emissions.

During the AQABA ship campaign, which took place between
July and August 2017, NMHCs were monitored around the
Arabian Peninsula (Supplementary Fig. 1). By comparing
the observations with model simulations, we aim to evaluate the
emission inventories and atmospheric chemistry mechanisms
while focusing on the most abundant anthropogenic hydro-
carbons: ethane and propane. The largest measurement/model
discrepancy was observed over the northern part of the Red Sea,
which was investigated in terms of possible underestimation of
existing sources and emission patterns (i.e., ratios between the
measured hydrocarbons) that are derived by using positive matrix
factorization analysis.

Results and discussion

Observations and model simulations. The atmospheric mixing
ratios of ethane and propane ranged over three orders of mag-
nitude around the periphery of the Arabian Peninsula (Supple-
mentary Figs. 2-4). From their tropospheric background values
over the Arabian Sea (defined as the lowest 10% of data points:
0.18 +£0.02 ppb for ethane and 0.02 + 0.01 ppb for propane), to a
maximum of ~50 ppb over the Arabian Gulf, variations in
absolute and relative abundance of the NMHCs indicated mul-
tiple emission sources'®!”. The high mixing ratios over the
Arabian Gulf and Suez Canal could be attributed to emissions
from the intense oil and gas activities and urban centers,
respectively!®. However, in the region with the second highest
average abundance, namely the northern part of the Red Sea, the
levels of the measured NMHCs could not be attributed to a
known source!®.

To identify the source and to generally evaluate the Middle
Eastern NMHC emission patterns, a state-of-the-art atmospheric
chemistry model (EMAC, ECHAMS5/MESSy for Atmospheric
Chemistry)!819 was used to simulate the concentrations along the

route. As emission inventory input, we used the most recent
version of the Emission Database for Global Atmospheric
Research (EDGAR v4.3.2)2021, which was further upgraded to
include gas flare emissions and geothermal sources (see the
“Methods” section).

The observed ethane mixing ratios were reproduced by the
model for most of the route (Fig. 1), indicating that emission
sources and atmospheric processes in the Middle East region are
generally well understood. Significant model underestimations
(Suez Canal, northern Arabian Gulf) and overestimations (Gulf of
Oman) occurred for short periods only during the first leg of the
route, suggesting local, small-scale inconsistencies in the emission
sources. The only region that was inadequately simulated during
both legs of the route was the northern part of the Red Sea where
measured mixing ratios of ethane and propane were up to about
20 (average + standard deviation =4.3 £3.8) and 40 (average +
standard deviation = 7.8 £5.9) times higher than model predic-
tions. According to the model results, biomass burning, fuel
production and transmission, and transformation industry
emissions regulate the regional hydrocarbon abundance (Fig. 1d;
Supplementary Fig. 5). However, neither the dominant nor any of
the 15 inventory sources was able to explain the observations,
even when the emission strength was varied (Supplementary
Fig. 6).

Source apportionment. To derive the hydrocarbon signature of
the potent unidentified source, a well-established receptor model
(positive matrix factorization; US EPA PMF 5.0) was utilized?2.
Receptor models use ambient observations to apportion the
observed species concentrations to signature sources by assessing
changes in species correlation with time and finding the optimum
solution that explains the concentrations of all observed
constituents.

The PMF analysis of the northern Red Sea data identified 4
distinct emission sources/factors (Fig. 2a). Factor 1 illustrates an
emission source that is rich in C2-C6 hydrocarbons, alkenes and
acetonitrile (a biomass-burning tracer?), with contributions
mainly during the first leg when the air masses originate from
the Suez Canal (Supplementary Fig. 7). In addition, it correlates
with anthropogenic activity markers such as acetone, methanol,
and acetaldehyde (Supplementary Fig. 8), confirming the urban
character of this emission source. By contrast, factor 4 was
significant only during the second leg (Supplementary Fig. 9)
when the air originated from the Sinai Peninsula. The small
concentration contribution and back-trajectory-specific direction
suggest a background signature from a region with small emission
sources. Factor 3 apportions marine traffic emissions that are
clearly distinguishable from the sporadic occurrences (Supple-
mentary Fig. 10), high ethene, large alkanes (>C4), and the
absence of ethane!® in the emission pattern.

The remaining factor 2 is characterized by exceptionally high
alkane concentrations that decrease with increasing carbon
number. Alkene contribution is negligible, and in combination
with the absence of acetonitrile in the emission signature, factor 2
points toward a non-anthropogenic emission source. The source
contribution to the measured signal is expressed by the
significance of the factor that is termed as factor strength. As
shown in Fig. 2b, this source contributed most to the
measurements over the northmost part of Red Sea and in
particular between 23° and 27° latitude. Since the model
underestimation (expressed by the ratio between measurements
and models) increases with the strength of factor 2 (Fig. 2¢), it
becomes evident that it represents the missing source.

Summarizing, the high ethane and propane mixing ratios that
were observed over the northern part of Red Sea could not be
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Fig. 1 Comparison between ethane measurements and model simulations. Timeline ratios are displayed for both leg 1 (a) and leg 2 (b). In ¢, geospatial
ratio statistics are displayed with the boxplots that illustrate the median with red line and the mean with red squares. The bottom and top edges of the box
indicate the 25th (g1) and 75th (g3) percentiles, respectively. The boxplot draws points as outliers if they are greater than g3 + w x (g3 — g1) or less than
g1 — wx (g3 — g1). The whiskers correspond to £2.76 and 99.3% coverage if the data are normally distributed. In d, geospatial measured volume mixing
ratios of ethane are shown with black boxplots where the red circles are the median measured values and the whiskers are defined as in (¢). The modeled

mixing ratios are in bars for each emission sector.

explained by the known sources that are included in the emission
inventory (Supplementary Fig. 6). PMF analysis identified the
emission source signature, suggesting that it is distinct from other
known sources, of non-anthropogenic origin, and specific to the
region of the Red Sea. Back-trajectory calculations (Supplemen-
tary Fig. 7) show that the origin of the air masses remained
unchanged along each leg. The highest ethane mixing ratio
underprediction occurred over two hot spots pointing toward a
local source. One possibility is that the missing source of
hydrocarbons is the sea. Marine emissions of NMHCs have been
documented previously?*-2%, however, fluxes were low. If the
hydrocarbons originate from the sea, then an exponential
relationship between the measured mixing ratios and wind speed
can be expected due to the flux dependency on wind strength7-28,
Indeed, ethane, propane, butanes, and methane mixing ratios do
display exponential increases with the wind speed that addition-
ally correlates with the model underestimation (Supplementary
Fig. 11). Methane in particular was substantially increased over
the northern Red Sea, with an enrichment (i.e., subtracted
backgrounds) methane to ethane ratios of 93 + 77, considerably
higher than the respective ratios observed over the Arabian Gulf
(35 + 23) that represents the high end of oil- and gas-processing-
related ratios®.

Red Sea Deep Water. The Red Sea lies between the Arabian and
African continental plates and has some unique geological fea-
tures. The southern Red Sea floor has been spreading for the past
5 million years, while the northern part is in a stage of continental
rifting?®. Distinct movements of the tectonic plates have led to a
partly fractured sea floor and the formation of numerous brine-

filled pools that are characterized by close-to-solubility limit
halite (mineral form of NaCl) concentrations and strong tem-
perature gradients3?31. Generally, the water occupying depths
from 300 to 2000 m in the Red Sea is recognized as the warmest
and saltiest deep water in the world with pronounced season-
ality32, although the rates and mechanisms of its renewal remain
uncertain.

Hydrocarbon release from the Red Sea floor can occur through
direct fluid seepage from hydrocarbon reservoirs deposited above
offshore rocks, located between 25 and 28°N (e.g., Rudeis and
Kareen formation). In addition, the Gulfs of Suez and Aqaba
contribute to the RSDW through bottom-trapped density
outflows?3. Considering that this region is known for the large
oil and gas reserves, natural seepage and crude oil/gas seepage
from leaky subsea wells could be a significant submarine source of
NMHC:s in this region. Finally, the numerous brine pools that are
located on the sea floor need to be considered. Depending on
their chemical composition, the brine pools are classified into two
distinct types3!. The formation of Type I brine pools is controlled
by evaporate dissolution and sediment alteration, characterized
by exceptionally high methane and hydrocarbon concentrations.
Short-chained hydrocarbons are formed by the degradation of
long-chained hydrocarbons that originate from the organic-rich
sedimentary rocks># and the bioproduction in the brine’s water to
sediment interface3>3°, Type II brine pools are controlled by
volcanic/magmatic alterations and are poor in organic material.
They are more common and are frequently found in the southern
and middle part of the Red Sea floor. In contrast, only two brine
pools are classified as type I: the Oceanographer deep (26°17.2'N,
35°01.0'E)37 and the Kebrit deep (24°43.1'N, 36°17'E)38.
Oceanographer in particular is known to contain high methane
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concentrations (4921 pl/13° (average methane inside type II brines
is 0.04 +£0.04 u/1))3! and it is located directly underneath the
region with the highest discrepancy between NMHC measure-
ments and model simulations. The mixing between the dense
brine pools and RSDW occurs via diffusion across the strong
salinity gradient, and the reported methane emissions are
relatively weak with values up to 393 kg/yr for the Kebrit deep0.
However, the impact of above-brine water currents that may
enhance the fluxes has not been quantified, so this emission
estimate remains uncertain.

Considering the aforementioned potential sources, it seems
entirely plausible that the RSDW is highly enriched in ethane and
propane from a deep sea source. The transfer from deep water to
the surface can be relatively rapid due to the exceptionally
effective vertical mixing of the Red Sea deep water and the
outflows from the Gulfs of Suez and Aqaba that have been
considered to be important for the RSDW renewal in the period
1982-20013241:42,

The upwelling of the intermediate and deep water takes place in
the narrow band along the Egyptian coast. Spatially, the upwelling
is restricted to the northmost Red Sea (north of 24°N) and
coincides with the location of the missing NMHC source. The
complex overturning circulation in the Red Sea has a pronounced
seasonal cycle*143 that modulates the vertical transport and can
potentially amplify the emissions to the atmosphere during winter.
The upwelling is weaker in summer compared with the winter
since atmospheric cooling drives the open water convection and
enhances the vertical mixing in the water column. Due to the weak
stratification of the water column in the northern part of the basin,
the convective mixing can be especially deep and reaches the sea
floor*24445, Model estimates of the renewal times range from 19 to

90 years, while tracer studies indicate somewhat faster renewal
times to about 26 years®>*2, Further, mesoscale eddies are
particularly effective in the areas of the Oceanographer and Kebrit
deeps®® and may contribute to the vertical transport of
hydrocarbons. Eddies may also affect deep-water environment
with downward effective transfer rate of 200-600 mday~! as
measured in the Pacific Ocean?’.

While the relative significance of the various submarine
hydrocarbon sources cannot be ascertained, we assume that their
cumulative contribution represents the missing source derived in
this study. This assumption is supported by the similarity in the
PMF-derived chemical emission profiles (increased alkane
concentrations and the absence of alkenes and other anthro-
pogenic tracers in the emission signature). Therefore, we surmise
that methane and non-methane hydrocarbons can potentially
reach the surface and degas into the atmosphere following air-sea
exchange mechanisms.

Flux calculations. To test this hypothesis, two source points (over
two model resolution grids (1.1 1.1°) with intensity 2:1 from
north to south) were added to the model simulation as additional
point sources from the ocean surface at the location of the type I
brine pools. While Type I brine pools were chosen as the reference
location, the emission points cover a large area and thereby include
emissions from all aforementioned potential sources. Initially,
approximate emission rates that match the factor 2 signature
were imported. The measurement to model ratio output for
NMHCs was substantially improved with median values deviating
from unity by only ca. #30%. Therefore, the emission rates
were fine-tuned so that the measurement/model median ratio was
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equal to 1, and hence the emission strength of the RSDW could be
ascertained. This resulted in predicted emission rates for ethane
(0.12+0.06 Tgyr~1), propane (0.12+0.06 Tgyr—1), i-butane=
0.03+0.03 Tgyr~!, and n-butane=0.07 +0.06 Tgyr—! (uncer-
tainties are based on the standard deviation of the measurement/
model ratio values within the 25th and 75th percentile). Increasing
uncertainties will be introduced when considering the seasonality of
the deep-water circulation, the wind speeds at the air-sea interface,
and the potential temporal variability of the emissions (i.e., trig-
gered events by the increased seismic activity in the region®3). As a
final step, the derived emission rates were added to the model and
the simulations were repeated. The inclusion of the RSDW emis-
sions in the emission inventory significantly improves the model-
measurement comparison, making it equivalent to the agreement
seen elsewhere on the route (Fig. 3; Supplementary Fig. 12, Sup-
plementary Fig. 6q). The uncertainties here are likely associated
with water current circulation with depth and the exact location of
the degassing points. Furthermore, the seabed emissions are likely
higher than those reported due to oxidation and bacterial degraders
in the water column?>0,

Considering the linearity between the measured ethane and
methane mixing ratios (Supplementary Fig. 13) and by assuming
common source origin, an emission rate of ca. 1.3 Tg CH, yr~!
is derived. While this rate is only a small fraction of the
global natural methane sources (238-484 Tg CH,yr—1)°L, it is
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responsible for the high ambient methane mixing ratios observed
over the northern Red Sea (average = 1.94 £ 0.03 ppm).

Implications. The degassing rates for ethane and propane derived
here are considerable and comparable in magnitude with the
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emissions from several Middle Eastern countries, known to be
exceptional sources related to the hydrocarbon industry (Fig. 4).
The combined ethane and propane emission rates rival those
from countries, with the most intense oil and gas activities, such
as the United Arabic Emirates (UAE), Kuwait, and Oman. In
addition, the associated methane emissions from the RSDW are a
hitherto unaccounted source of atmospheric methane. Con-
sidering the seasonality of the deep-water circulation, it is likely
that the emissions to the atmosphere will be further enhanced
during the wintertime.

While in much of the Middle East NO, abundance is a rate-
limiting factor in oxidant photochemistry!?, it could be
expected that over the Red Sea NMHCs are rate limiting due
to small upwind anthropogenic sources. To evaluate the
implications of the newly discovered NMHC emission source
for atmospheric chemistry, the differences in key atmospheric
constituents (hydroxyl radical (OH), ozone (O;), and PAN)
were investigated for the entire area of Northern Red
Sea using the model with and without the inclusion of the
RSDW sources of ethane, propane, and butanes. Interestingly,
summertime average OH depletion is significant over the
degassing spots (=—40%; max=—70%; Supplementary
Fig. 14). Downwind of the source location, summertime
average ozone production is somewhat enhanced (up to 11%;
Supplementary Fig. 15) while there is a prodigious increase in
PAN abundance (=+4102%; max =750%; Supplementary
Fig. 16). This represents a significant deterioration of regional
air quality, as PAN, a lachrymator and urban smog component
is harmful to human health>2>3, and directly related to ethane
concentrations.

In the coming decades, ship traffic through the Red Sea and
Suez Canal is projected to increase strongly®?, with a concomitant
rise in NO, emissions. From the increase of NO, emissions in the
model (comparing with and without the RSDW emissions) it is
expected that the degassing hydrocarbons will amplify ozone
formation in the future (Fig. 5). The photochemical pollution
from anthropogenic NO, and degassing NMHCs from RSDW
will directly affect air quality, for example in Neom city, a cross-
border megaproject in the Tabuk Province of north-western
Saudi Arabia”®.

Methods

The AQABA ship campaign. To study the Air Quality and climate in the Ara-
bian Basin (AQABA), a ship expedition was conducted in July and August 2017.
The research vessel Kommandor Iona (IMO: 8401999, flag: UK, length overall x
breadth extreme: 72.55 m x 14.9 m) was equipped with five air-conditioned
laboratory containers that hosted a large suite of atmospheric gas and aerosol
measurement equipment. The ship sailed from Toulon (France), crossed the
Mediterranean Sea, and through the Suez Canal covered the periphery of the
Arabian Peninsula to Kuwait and back. In total, 20,000 km of the marine route
was covered with an average speed of 3.4 + 1.8 m s~! over the course of 60 days.
Further information on the AQABA ship campaign can be found elsewhere in
the literature!6:17:57,

Non-methane hydrocarbon measurements. Non-methane hydrocarbons
(C2-C8) were measured in situ with two coupled, commercial gas
chromatography-flame ionization detectors (GC-FID; AMA Instruments GmbH,
Germany). Detailed information on the instrumentation, experimental setup,
sampling, and calibrations can be found elsewhere!. Briefly, atmospheric samples
were collected through a common 5.5-m tall (3 m above the container), 0.2-m-
diameter, high-flow (=10 m3 min—!) stack with a subflow of 2.5 L m~!. The air
passed through a PTFE filter (5-um pore size, Sartorius Corporate Administration
GmbH, Germany) and heated (40 °C) Teflon lines before it was drawn into the
instruments with a flow of 90 sccm (2 x 45 cm? (stp) min~! (sccm)). An ozone
scrubber (Na,S,05-infused quartz filters) and a Nafion dryer (500-sccm counter-
flow) were used to eliminate the effects of ozone and humidity in sample collection.
The sampling times and volumes were adjusted according to ambient NMHC
concentrations and wave conditions. During polluted conditions (e.g., Arabian Gulf
and the Suez Canal) short sampling times (10 min) and small volumes (450 mL)
allowed higher time resolution (50 min per measurement), while under clean
conditions, such as those found in the Arabian Sea, longer sampling times and
volumes (30 min, 1350 mL, time resolution = 1 h) improved detection limits. For
most of the route, the sampling time was 20 min, the sampling volume 900 mL, and
the time resolution 50 min per measurement. The diverse conditions met during
the campaign led to the geographical demarcation that was used during data
analysis (Supplementary Fig. 1).

Model simulations. In this work the EMAC (ECHAMS5/MESSy Atmospheric
Chemistry) model has been used. The EMAC model is a numerical chemistry and
climate simulation system that includes submodels describing tropospheric and
middle atmosphere processes and their interaction with oceans, land, and human
effects!8. It uses the second version of the Modular Earth Submodel System
(MESSy2)* to link multi-institutional computer codes. The core atmospheric model
is the fifth-generation European Centre Hamburg general circulation model
(ECHAMS5)!938, For this study, we applied EMAC (ECHAMS version 5.3.02, MESSy
version 2.53.0) in the T106L31 resolution, i.e., with a spherical truncation of T106
(corresponding to a quadratic Gaussian grid of ~1.1 by 1.1° in latitude and longitude)
with 31 vertical hybrid pressure levels up to 10 hPa. The simulations cover the period
of the AQABA field campaign, i.e., from June to September 2017. The dynamics were
weakly nudged by Newtonian relaxation toward ERA-Interim reanalysis data®. The
model configuration of the chemical mechanism is similar to that of Lelieveld et al.C,
where the comprehensive MOM (Mainz Organic Mechanism)®! NMHC chemistry
representation has been used. Biomass-burning and anthropogenic emissions were
prescribed based on the global fire assimilation system® and EDGAR, v4.3.220:21
database, respectively. Furthermore, the emissions of ethane were subdivided into
different source sectors as shown in Supplementary Figs. 2, 5, and 6. The ethane,
propane, n-butanes, and i-butane emissions were scaled by factors of 1.9, 1.7, 1.0, and
0.43, respectively, to match recent global emission estimates in the literature®1>.
Geothermal sources in the region!# were estimated by scaling sulfuric volcanic
emissions to 0.2 Tgyr—!. All emissions were vertically distributed following the
literature®®. Gas flares were estimated based on the work of Caseiro et al.®.

Positive matrix factorization. PMF is a receptor model that uses an advanced
multivariate factor analysis technique that is based on weighted least-square fits
using realistic error estimates to weight data values, and by imposing non-
negativity constraints in the factor computational process. PMF is widely used to
identify and quantify the main sources of atmospheric pollutants®4-¢. The mathe-
matical background of PMF analysis is comprehensively described elsewhere®”. Briefly,
the statistical method uses a mass balance equation, which in the receptor model is
expressed as

»
X :ZGikaj+Eij7 (1)
=

Here, Xj; is the concentration of j species measured in sample i and Gy is the
species contribution of the k source to sample i. F; (frequently reported as
source profiles) is the fraction of j species from the k source, while Ej; is a
residual associated with the j species concentration measured in the i sample.
Finally, p denotes the total number of the sources. The goal of the model is to
reproduce x;; matrix by finding values for Gy and Fy; matrices for a given p. The
values of Gy, and Fy; matrices are adjusted until a minimum Q (the loss function)
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for a given p is found®8. PMF solves the receptor modeling problem by
minimizing the loss function Q based on the uncertainty of each observation by
the following equation:

033 (%) o

—1 j=1 ij

where oj; is an estimate of the uncertainty for the jth species in the i sample, 7 is
the number of samples, and m is the number of species.

PMF application to volatile organic compound (VOC) source apportionment
and profile contribution has been applied to a wide range of environments
including urban and rural areas®®-72. A main advantage of PMF is that it can
provide the source profile and contribution without any prior knowledge of VOC
emission profiles. In this study, PMF was applied to the 50-min data samples of the
AQABA campaign for identification and quantification of the major observed VOC
sources, using the US EPA PMF 5.0 software?? (https://www.epa.gov/air-research).
Missing points were replaced with the median concentration of the corresponding
species over the entire measurement matrix and they were accompanied by an
uncertainty of 4 times the species-specific median, as suggested2. It should be
mentioned here that this is the first application of PMF to data from a moving
platform (ship). This might introduce a small bias, despite the fact that the data
were filtered for own ship exhaust. It should also be noted that the background was
not removed from the measurements, since the background changes as the ship
travels.

Since PMF is a weighted least-squares method, individual estimates of the
uncertainty in each data value are necessary. The uncertainty input data matrix
followed established approaches?%73 by including the measurement uncertainty
of each sample and NMHC species'®. As a complementary criterion, a signal-to-
noise condition was additionally applied in the data as suggested in the
literature’2. Individual species that retained a significant signal were separated
from those dominated by noise. When signal-to-noise (S/N) ratio was <0.2,
species were judged as bad and removed from the analysis. Species with 0.2 <S/
N <2 were characterized as weak and their uncertainty was tripled. Species with
S/N ratio greater than 2 (S/N >2) were defined as strong and remained
unchanged.

As PMF is a descriptive model, there are no objective standards for choosing
the right number of factors®. However, in order to acquire realistic source
profiles and an optimum number of factors, a multicriterion was applied. This
included the symmetric distribution of scaled residuals (+30), the investigation of
all Q values (Qirue> Qrobust a1d Qexpectea) (see Eq. (2)), and the interrelationship
investigations between the predicted and observed volume mixing ratios.
Monitoring of Q/Qcyp index with increasing number of factors was used to
identify the optimal mathematical solution. The Q value is an assessment of how
well the model fits the input data. The difference between the modeled Q value
and the theoretical Q value gives a good indication of the suitability of the chosen
number of factors. A large decrease in the ratio is indicative of increased
explanatory power in the model of the data, while a small decrease is suggestive
of little improvement with extra factors. As a consequence, in most areas the
number of factors was chosen after Q/Qcyp index decreased significantly
(Supplementary Fig. 16). In the PMF analysis, the Q/Qcy, values represented the
ratios between the actual sum of the squares of the scaled residuals (Q) obtained
from the PMF least-squares fit and the ideal Q (Qexp)> Which was obtained if the
fit residuals at each point were equal to the noise specified for each data point.
The optimum solution suggested by the Q/Qeyp ratio is 4-5 factors, depending on
the region of application; however, when the 5-factor solution was examined, a
split in the factor was observed. Thus a 4-factor solution was selected. It has to be
noted that factor 2 (Fig. 1) NMHC signature remained relatively unchanged
under both 4- and 5-factor outputs. Nine different modeling conditions were
examined with p values (number of factors) ranging from 2 to 10 where each
simulation was randomly conducted 20 times.

To evaluate the reproducibility of the PMF solution and the adequate number
of PMF factors with specific focus on the original submatrix F, the bootstrap
technique was applied?27374, A bootstrap data set was constructed by sampling
blocks of observations from the original data set in random order until reaching
the size of the original input data. A base bootstrap model method was carried
out, executing 100 iterations, using a random seed and a minimum Pearson
correlation coefficient (R value) of 0.6 as suggested in the literature®®73, All the
modeled factors were well reproduced over at least 85% of runs, indicating that
the model uncertainties can be interpreted, and that the number of factors is
appropriate. The remaining 15% was distributed among the existing factors,
while it should be noted that no runs were unmapped (unmapped is considered a
factor when the bootstrap factor is not correlated to any of the base factors). For
all the factors, 90% of the species (of the base run) were within the interquartile
range (25th-75th percentile) of the bootstrap runs, hence highlighting the
robustness of the PMF. The correlation between total VOC-reconstructed
concentrations from all four factors with total VOC-observed concentrations is
depicted in Supplementary Fig. 19. R? was 0.92, indicating good agreement
between the receptor model and the observations (Supplementary Fig. 18). This
also highlights that PMF model explained almost all variance of the total
concentration of the 18 VOCs.

Data availability
The data are available upon request to all scientists agreeing to the AQABA protocol
(https://doi.org/10.5281/zenodo.3050041).
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