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Appendix 1 - The relative efficiency is a robust
statistic when data span different ranges of
computational cost

Given two free energy methods, A and B, we want to use our efficiency statistic to
accept or reject the hypothesis that A is more efficient than B, or vice versa. When
the data available for methods A and B cover the same range of computational cost,
then Ew[errA(c)] and Ew[errB(c)] can be directly compared, and standard statistical
inference tools can be applied to the statistic defined in Eq. (3) in the main text.
In this challenge, however, each submission provided data spanning very different
ranges of computational cost. For example, GROMACS/EE does not provide free
energy predictions during the initial part of the calculation corresponding to the
equilibration stage, which is used to calibrate the expanded ensemble weights. Mean
errors computed over different ranges of c (i.e. different weight functions w(c))
cannot be meaningfully compared, and the analysis thus requires some attention.
To understand why this is a problem, consider two runs of the same method, A’ and
A”, for which the RMSE decays as a function of the computational cost according
to a standard unbiased Monte Carlo model

RMSE(c) =
α√
c

(1)

where α > 0. The two calculations are identical, but the data available for A’
and A” covers different intervals [cmin,A′ , cmax,A′ ] and [cmin,A′′ , cmax,A′′ ] respectively
as sketched in SI Figure 1. A reasonable property to expect from our statistic is to
assign the same inefficiency to data generated by the same method. However, using
Eq. (1) in the main text and (1), we can compute the mean RMSE as

Ew[RMSE(c)] =

∫ cmax

cmin
RMSE(c)dc

cmax − cmin

= 2α

√
cmax −

√
cmin

cmax − cmin

(2)

which implies that the mean RMSE of methods A and B will generally be different
unless computed over the same cost interval. This is also evident from the submitted
data, as can be seen in SI Figure 4.

In order to arrive at a statistic that can be properly compared, there are at least
three solutions. The first, and simplest, is to compute the inefficiency statistic in
the range [cmin, cmax] for which there are data for all the methods and discard all
data points outside the interval. Alternatively, when a robust model of the error
decay is available, as with the example in Eq. (1), it may be possible to remove
the dependency on the range of computational costs by appropriate scaling. In
the example above, this could be achieved by comparing Ew[RMSE(c)] · cmax−cmin√

cmax−
√
cmin

instead of Ew[RMSE(c)]. However, both these strategies are impractical here due
to the very different ranges of c, which would require discarding between 50% and
75% of the data points for several methods, and the difficulty of finding a model
for the error functions that could satisfactorily fit the data from all methodologies.

Instead, we decided to report and compare the inefficiency relative to a common
reference method through the relative efficiency in Eq. 5 in the main text. We
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SI Figure 1: Relative efficiency is robust to differences in computational cost ranges.
Examples of RMSE trajectories for two hypothetical methods (Z and A) with decay proportional
to c−1/2. The mean error, E [RMSE], of two runs of an identical method (A’ and A”) is affected
by the range of computational cost considered. On the other hand, the inset plot shows that
the relative efficiencies with respect to the reference method Z computed from the two runs are
identical. To be used as a reference, a method must span the full range of computational costs
covered by the data.
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expect this statistic to be more robust with respect to the range of c than the simple
mean error. In particular, assuming the error function to obey the general model
err(c) = αXf(c) (e.g., f(c) = c−1/2 in the example in Eq. (1)), with the constant
αX characterizing the decay rate of the method X, then the relative efficiency does
not depend on the range of the computational costs

eerr,X/Z = −log10

(
αX

αZ

)
(3)

and the relative efficiency of different methods can be directly compared to each
other even if their data spans different intervals (SI Figure 1). A meaningful compar-
ison still requires the methods to obey the same decay model, but the key advantage
here is that an explicit expression for f(c) is not required. In practice, the relative
efficiency and the ranking it produces seem to be relatively robust to differences in
computational cost ranges for most methods (SI Figure 5) with fluctuations that
are within the statistical uncertainty of the estimates (SI Figure 6)

Appendix 2 - Sensitivity analysis of HREX
calculations

In order to obtain insights into the origin of these differences, we focused on APR
and HREX. The choice of focusing on these two methods was mainly due to tech-
nical feasibility as we considered it possible to run further HREX calculations after
minimizing the differences in setups and other simulation parameters. This option
was not available for investigating the differences between HREX and SOMD, for
example, due to the lack of support for reaction field in YANK. Differences be-
tween HREX and other methods were not statistically significant or, in the case of
CB8-G3 predictions from NAMD/BAR, likely the result of uncoverged calculations.
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SI Table 1: Summary of the free energy calculations run for the sensitivity analy-
sis. Average binding free energy predictions computed from five independent OpenMM/HREX
calculations with 95% t-based confidence intervals under different simulation conditions. The
AMBER/APR results are also reported in the first row to facilitate the comparison. All
OpenMM/HREX binding free energies are reported after 20 ns/replica, including the one com-
puted by the reference calculations after 40 ns/replica (second row). The HREX calculations were
run by varying the Lennard-Jones cutoff, the exact value of the Coulomb constant, the restraint
applied between host and guest, the Langevin discretization algorithm, and the box size and ion
concentration. The only statistically significant difference in binding free energy was obtained af-
ter changing the cutoff from using a switching function between 9 Å and 10 Å to a 9 Å truncated
cutoff.

method LJ cutoff
Coulomb
constant

Restraint
Langevin
integrator

discretization

Complex
box size /

ionic strength

∆G
[kcal/mol]

AMBER/APR 9 Å truncated AMBER multiple AMBER leap-frog
44x43x67 Å3

73.9 mM
-6.3 ± 0.1

OpenMM/HREX 9–10 Å switched OpenMM harmonic BAOAB
43x43x43 Å3

64.3 mM
-6.7 ± 0.1

OpenMM/HREX 9 Å truncated OpenMM harmonic BAOAB
43x43x43 Å3

64.3 mM
-7.0 ± 0.1

OpenMM/HREX 9 Å truncated AMBER harmonic BAOAB
43x43x43 Å3

64.3 mM
-7.1 ± 0.1

OpenMM/HREX 9 Å truncated AMBER flat-bottom BAOAB
43x43x43 Å3

64.3 mM
-6.98 ± 0.08

OpenMM/HREX 9 Å truncated AMBER harmonic OpenMM leap-frog
43x43x43 Å3

64.3 mM
-7.14 ± 0.08

OpenMM/HREX 9 Å truncated AMBER harmonic BAOAB
44x43x67 Å3

73.9 mM
-7.1 ± 0.1

Moreover, we observed a systematic and statistically distinguishable difference of
0.3–0.4 kcal/mol in the final free energies from APR and HREX for all systems,
which we found particularly curious. We verified by manual inspection that the
distance between host and guest in the unbound state of APR was sufficient for the
PMF to reach a plateau.

The conditions and the results of the additional HREX calculations are sum-
marized in SI Table 1. All the new OpenMM/HREX calculations were run for
20 ns/replica (i.e. half the duration of the calculations in the original conditions),
and we thus report in the table the original HREX binding free energy obtained
at the same computational cost, which is statistically indistinguishable from the
mean ∆G after 40 ns/replica. Surprisingly, simulating with a 9 Å truncated cutoff
instead of using a switching function between 9 Å and 10 Å decreased the original
OpenMM/HREX ∆G prediction by 0.3 kcal/mol, widening the difference between
the two methods.

The source of this sensitivity may be connected to the central role of the van
der Waals interactions in stabilizing the host-guest complex, and the size of the
host, whose diameter is in the order of the cutoff. Changing the other parameters
did not alter the binding free energy significantly. In particular, the predictions
proved insensitive to the exact value of the Coulomb constant, which is slightly
different in AMBER and OpenMM [6], and to the specific restraint used to restrict
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SI Figure 2: OA-G3 restraint radius distributions, and binding free energy depen-
dency on the binding site definition. Distribution of the harmonic restraint radius (left)
in the bound (purple), discharged (green), and decoupled state (yellow) for OA-G3-0, and pre-
dicted binding free energy as a function of the restraint radius cutoff (right). The black vertical
line represents the threshold used during the reweighting analysis. The orange horizontal line in
the right-bottom plot is the MBAR-predicted free energy of OA-G3-0 that did not undergo the
reweighting procedure. The binding affinity is insensitive to the restraint cutoff radius between a
large range of values that include most of the bound state distribution.

the conformational space available to the guest in the HREX calculation, which
used a relatively tight harmonic potential (spring constant 0.17 kcal/mol/Å2) in
the original calculation and a more permissive flat-bottom potential (well radius
7.5 Å, spring constant 5 kcal/mol/Å2) in the second case. We also investigated the
impact of using a leapfrog Langevin integrator instead of a BAOAB discretization
scheme, but this proved to be statistically insignificant as well with a timestep
of 2 fs. It should be noted that the two leapfrog integration schemes provided in
OpenMM [2] and AMBER [3] still have differences so it is still theoretically possible
for the discretization error to contribute to the differences in free energy obtained
by the two methods. We then re-ran OpenMM/HREX complex phase using the
same input files generated for AMBER/APR. These solvation boxes were bigger to
allow sampling long distances between host and guest, and the ionic strengths were
slightly different. Again, the HREX binding free energy did not change significantly.

Finally, we examined the robustness of the reweighting step in YANK’s analysis
pipeline. Using a harmonic restraint in the bound state of the HREX calculation
introduced a bias that was corrected by reweighting the data with MBAR to a
state using a restraint following a square-well potential of a specific radius, which
effectively defined the binding site (see also Detailed Methods). We thus looked into
whether the binding free energy was sensitive to the radius of the binding site, and
whether the reweighting procedure was statistically robust, or if an eventual poor
overlap between the sampled and reweighted distribution could introduce significant
statistical error. The results of the analysis represented in SI Figure 2 for OA-G3
show that very little statistical error is introduced in the reweighting process, and
that the binding free energy is robust to the square well radius (i.e. the radius of the
defined binding site), as expected from a tight binder [1]. Moreover, comparing the
distributions of the restraint radius sampled in the bound and decoupled states, with
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the latter distribution having much larger support than the former (SI Figure 2),
suggests that the spring constant of the harmonic potential was appropriate and
did not limit the exploration of the binding site in the bound state.

Appendix 3 - Incorrect initialization of intermediate
states with long correlation time can bias MBAR
estimates

We show here, with the help of a toy example, how initializing all the replicas with a
bound-state conformation can introduce bias of negative sign in the MBAR binding
free energy estimates when intermediate states decorrelate very slowly.

This phenomenon is evident by inspecting the expression of the MBAR esti-
mator [4, 5], which first constructs the mixture distribution from all the available
samples

pM(x) =
K∑
k=1

Nk

N

e−uk(x)

Ẑk

(4)

where K is the number of states, Nk is the number of samples from state k, N is
the total number of samples from all states, and Ẑk is the partition function of state
k, and then it computes the free energy as a weighted average of the Boltzmann
weight of state i over all samples as

f̂i = −ln

 1

N

K∑
j=1

Nj∑
n=1

e−ui(xjn)

pM(xjn)

 (5)

If the sampling of any intermediate state starts from a bound-state conformation,
and the state is affected by long correlation times, the samples collected at the
beginning of the simulation will be biased towards the bound state, and the average
Boltzmann weight of the bound state could be overestimated. This would result in
binding free energies that are favorable towards the bound state, or in other words,
it will introduce a bias of negative sign and result in more negative binding free
energies. Trivially, this can be understood directly from Eq. (5) by recognizing that
the denominators of each addend (i.e. pM(xjn)) does not depend on i while, if the
sampling of intermediate states is biased towards the bound state, the numerators
for the bound state will be on average greater than they should be if the intermediate
states were sampled from the correct equilibrium distributions.

We can verify this numerically with a very simple model. The Boltzmann distri-
bution of a harmonic oscillator with spring constant K and equilibrium length µ is
equivalent to the Gaussian distribution

p(x|µ, σ) =
1√
2πσ

∫
e−

(x−µ1)
2

2σ2 dx (6)

where σ =
√
K−1. Consider now a transformation of a harmonic oscillator from

(µ0, σ0) to (µ1, σ1) to (µ2, σ2). With the values of µ and σ in Table 2, the dis-
tributions have, in some sense, similar entropic characteristics of the λ windows
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of a typical absolute alchemical free energy calculation (note the resemblance to
the restraint distance distribution in SI Figure 2) so, with the sole intention of
making the example more immediate, we refer to (µ0, σ0), (µ1, σ1), and (µ2, σ2)
as the bound, intermediate, and decoupled state respectively. The dimension-
less free energy difference between states i and j can be computed analytically
as ∆Fij = Fj − Fi = −ln (σj/σi), and, with perfect sampling, the overlap between
the distributions is sufficient for both BAR and MBAR to estimate the difference
in free energy between the states correctly (Table 2). We can simulate the scenario
in which the sampling of the intermediate state are biased towards the bound state
but the decoupled state decorrelate fast simply by collecting the intermediate state
samples from the bound state distribution with µ1 = µ0 = 0.0 and σ1 = σ0 = 2.0.
In this case, even if both the bound and decoupled states are sampled correctly, all
the MBAR predictions are biased towards free energies that are favorable to the
bound state (Table 2).

SI Table 2: MBAR predictions for harmonic oscillators of different equilibrium lengths and
standard deviation with perfect and biased sampling. Five million samples were collected for each
Gaaussian distribution. Uncertainties of the predicted free energies are given as two times the
MBAR uncertainty estimate. With biased sampling, state 1 was sampled from distribution 0 to
simulate a slowly decorrelating intermediate state from an initial conformation typical of state
0. When the sampling of an intermediate state is biased towards one of the end states, the free
energy prediction will be favorable towards that state.

state µ σ true ∆Fi1
BAR ∆Fi1

perfect sampling
MBAR ∆Fi1

perfect sampling
MBAR ∆Fi1

biased sampling

0 0.0 2.0 0.0 0.0 0.00 0.0
1 2.0 2.0 0.0 0.0005 ± 0.0006 -0.0001 ± 0.0004 -0.2954 ± 0.0004
2 2.0 5.0 0.9163 0.9151 ± 0.0008 0.9155 ± 0.0006 0.7486 ± 0.0006

SI Figure 3: Schematics of the strategy adopted to simulated perfect sampling (left) and sampling
of the ”intermediate” state (state 1, green) biased towards the ”bound” state (state 0, blue). In
both cases, the ”decoupled” state (state 2, orange) is assumed to decorrelate quickly.
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Supporting Figures

SI Figure 4: Mean error of all submissions as a function of the calculation length.
Mean standard deviation, absolute bias, and RMSE computed were computed with Eq. (8) in the
main text, considering an increasing number of energy evaluations. The dash line is used for the
method used as a reference in the calculation of the relative efficiencies. Because of the strong
dependence on the number of energy evaluations, a meaningful comparison between methods using
this statistic should be restricted to the range of computational cost for which data is available
for all method.
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SI Figure 5: Relative efficiencies with respect to OpenMM/HREX as a function of
the calculation length. Ratio of mean standard deviation, absolute bias, and RMSE computed
considering an increasing number of energy evaluations. After an initial transient, the ranking of
different methods based on the relative efficiency is fairly independent on the calculation lengths.
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SI Figure 6: Relative efficiency as a function of the computational cost with bootstrap
95% confidence interval for all methods. Ratio of mean standard deviation, absolute bias,
and RMSE computed considering an increasing number of energy evaluations. The confidence
interval were computed with bias-corrected and accelerated bootstrap. A confidence interval
entirely above/below 1 is evidence of a better performance of APR/HREX.
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SI Figure 7: Free energy, standard deviation, and bias as a function of computational
cost. The trajectories and shaded areas in the top row represent the mean binding free energies
and 95% t-based confidence intervals computed from the 5 replicate predictions for CB8-G3 (left
column), OA-G3 (center), and OA-G6 (right) for all submissions. The second and third row show
as a function of the computational effort the standard deviation and the bias respectively.
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SI Table 3: Final binding free energy predictions of the single replicate calculations. Estimates of binding free energy predictions with uncertainty submitted by all
participants for the individual replicate calculations. The results for GROMACS/EE-fullequil are identical to GROMACS/EE.

CB8-G3 OA-G3 OA-G6

Method CB8-G3-0 CB8-G3-1 CB8-G3-2 CB8-G3-3 CB8-G3-4 OA-G3-0 OA-G3-1 OA-G3-2 OA-G3-3 OA-G3-4 OA-G6-0 OA-G6-1 OA-G6-2 OA-G6-3 OA-G6-4

AMBER/APR -10.9 ± 0.4 -9.9 ± 0.4 -10.1 ± 0.3 -11.0 ± 0.4 -10.7 ± 0.3 -6.4 ± 0.1 -6.2 ± 0.1 -6.3 ± 0.1 -6.2 ± 0.1 -6.3 ± 0.1 -6.8 ± 0.2 -6.9 ± 0.2 -6.8 ± 0.2 -6.8 ± 0.2 -6.6 ± 0.2

GROMACS/NS-DS/SB -11.5 ± 0.3 -11.1 ± 0.2 -11.8 ± 0.2 -11.0 ± 0.2 -11.4 ± 0.1 -6.2 ± 0.2 -6.4 ± 0.2 -6.4 ± 0.1 -6.6 ± 0.1 -6.6 ± 0.2 -7.3 ± 0.3 -7.2 ± 0.2 -7.0 ± 0.2 -7.0 ± 0.1 -6.8 ± 0.1

GROMACS/NS-DS/SB-long -11.4 ± 0.2 -11.2 ± 0.2 -11.4 ± 0.1 -11.4 ± 0.1 -11.0 ± 0.1

GROMACS/EE -6.49 ± 0.06 -6.76 ± 0.05 -6.57 ± 0.05 -6.56 ± 0.05 -6.54 ± 0.05 -6.96 ± 0.05 -6.98 ± 0.05 -6.97 ± 0.05 -7.16 ± 0.05 -6.87 ± 0.05

GROMACS/NS-Gauss-F 5.0 ± 2.0 -2.0 ± 1.0 -5.0 ± 1.0 -3.2 ± 0.8 13.0 ± 1.0 -6.7 ± 0.3 -5.1 ± 0.6 -6.3 ± 0.2 -5.1 ± 0.6 -6.2 ± 0.4 -6.2 ± 0.4 -5.4 ± 0.4 -5.8 ± 0.4 -5.1 ± 0.6 -2.5 ± 0.6

GROMACS/NS-Gauss-R -14.3 ± 0.5 -13.3 ± 0.6 -12.2 ± 0.2 -14.7 ± 0.8 -14.5 ± 0.4 -17.0 ± 2.0 -30.0 ± 20.0 -50.0 ± 20.0 -11.0 ± 1.0 -11.6 ± 1.0 -22.0 ± 2.0 -14.4 ± 1.0 -21.0 ± 3.0 -17.0 ± 2.0 -16.0 ± 1.0

GROMACS/NS-Jarz-F -13.0 ± 0.3 -12.3 ± 0.3 -12.4 ± 0.3 -13.1 ± 0.3 -12.4 ± 0.2 -8.1 ± 0.2 -7.9 ± 0.3 -7.7 ± 0.3 -6.8 ± 0.3 -6.7 ± 0.3 -5.4 ± 0.6 -7.7 ± 0.3 -8.5 ± 0.3 -7.7 ± 0.3 -7.3 ± 0.4

GROMACS/NS-Jarz-R -10.5 ± 0.4 -10.3 ± 0.3 -10.8 ± 0.3 -10.1 ± 0.3 -10.2 ± 0.3 -5.0 ± 0.4 -6.0 ± 0.4 -5.3 ± 0.2 -5.8 ± 0.3 -5.9 ± 0.4 -6.7 ± 0.5 -7.1 ± 0.4 -5.3 ± 0.3 -6.2 ± 0.3 -5.6 ± 0.2

NAMD/BAR -11.7 ± 0.3 -13.9 ± 0.3 -11.4 ± 0.3 -13.7 ± 0.2 -12.4 ± 0.2 -6.85 ± 0.05 -6.82 ± 0.05 -6.78 ± 0.05 -6.71 ± 0.05 -6.85 ± 0.05 -7.17 ± 0.06 -7.31 ± 0.05 -7.33 ± 0.05 -7.28 ± 0.06 -7.32 ± 0.05

OpenMM/REVO -17.3 ± 0.8 -15.8 ± 0.8 -16.0 ± 0.8 -14.9 ± 0.8 -16.4 ± 0.8 -11.0 ± 2.0 -11.0 ± 2.0 -13.0 ± 2.0 -10.0 ± 2.0 -8.0 ± 2.0 -11.6 ± 0.8 -12.1 ± 0.8 -12.0 ± 0.8 -10.9 ± 0.8 -13.3 ± 0.8

OpenMM/SOMD -15.0 ± 0.1 -14.03 ± 0.09 -11.0 ± 0.1 -13.71 ± 0.09 -15.54 ± 0.09 -5.75 ± 0.03 -5.85 ± 0.03 -5.55 ± 0.03 -5.72 ± 0.03 -5.61 ± 0.03 -6.73 ± 0.03 -7.04 ± 0.03 -6.91 ± 0.03 -6.74 ± 0.03 -7.35 ± 0.03

OpenMM/HREX -10.82 ± 0.07 -10.97 ± 0.07 -10.88 ± 0.07 -10.56 ± 0.07 -11.0 ± 0.07 -6.75 ± 0.04 -6.65 ± 0.04 -6.74 ± 0.04 -6.71 ± 0.04 -6.73 ± 0.06 -7.19 ± 0.05 -7.18 ± 0.05 -7.12 ± 0.05 -7.15 ± 0.05 -7.24 ± 0.05
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SI Table 4: Relative efficiency of unidirectional nonequilibrium estimators in compar-
ison to BAR. Relative efficiencies of a method X are reported with respect to GROMACS/NS-
DS/SB-long as eerr,X/GROMACS/NS-DS/SB-long as defined by Eq. (6) in the main text. The lower
and upper bound of the 95% confidence intervals bootstrap estimates for the relative efficiencies
are reported as subscript and superscript respectively. The theoretical free energy used to com-
pute the bias was estimated as the final average free energy of the 5 replicates predictions of
GROMACS/NS-DS/SB-long.

CB8-G3 OA-G3 OA-G6

Method estd e|bias| eRMSE estd e|bias| eRMSE estd e|bias| eRMSE

GROMACS/NS-Gauss-F -1.5
−0.7
−1.8 -2.0

−1.5
−2.3 -1.7

−1.4
−2.0 -0.5

−0.3
−0.7 -0.5

0.2
−0.8 -0.5

−0.2
−0.6 -0.7

−0.4
−0.8 -0.9

−0.8
−1.0 -0.8

−0.6
−0.8

GROMACS/NS-Gauss-R -0.7
−0.4
−1.0 -1.4

−1.1
−1.7 -1.1

−0.9
−1.3 -1.7

−0.8
−2.0 -2.0

−1.5
−2.5 -1.8

−1.1
−2.1 -1.1

−0.9
−1.4 -1.6

−1.2
−2.0 -1.4

−1.2
−1.6

GROMACS/NS-Jarz-F -0.2
0.2
−0.4 -1.0

−0.7
−1.4 -0.8

−0.5
−1.0 -0.4

−0.2
−0.9 -0.8

−0.2
−1.2 -0.5

0.1
−0.8 -0.6

−0.4
−0.8 -0.1

0.4
−0.6 -0.5

−0.0
−0.8

GROMACS/NS-Jarz-R -0.3
−0.1
−0.7 -0.8

−0.4
−1.2 -0.6

−0.3
−0.8 -0.3

0.0
−0.5 -0.9

−0.7
−1.2 -0.6

−0.3
−0.8 -0.3

−0.1
−0.8 -0.7

−0.4
−1.0 -0.5

−0.4
−0.7

GROMACS/NS-DS/SB-long 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SI Figure 8: Volume fluctuations sampled by the Berendsen barostat in expanded
ensemble calculations by state. Average volume sampled in each intermediate state in the
complex stage of the double decoupling calculation. State 0 is the bound state and state 39 is the
decoupled state. Error bars are standard deviations of the volume distribution.
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SI Figure 9: Comparison of single-replicate uncertainty estimates and 5-replicate
standard deviation. Binding free energy trajectories (top row) and their uncertainty estimates
(bottom row) as a function of the number of force/energy evaluations. The estimates for the
individual replicate calculations were submitted by the challenge participants, and they are plotted
in pastel colors. The best available estimates (in black) for ∆G and std(∆G) were taken to be
respectively the mean and standard deviation of 5 individual ∆G trajectories. A 95% chi-based
confidence interval is plotted as a gray shaded area around the best estimate of the standard
deviation.
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SI Figure 10: Rare events with large dissipated work impact the free energy. Work
values underlying the ∆G estimates are depicted together with the free energy values based on the
Jarzynski’s Gaussian approximation. The orange lines denote work values for the 10 independent
simulations that were performed for each initial pose (OA-G3-2 on the left and OA-G3-3 on the
right). The work values from the simulations that cause the largest jumps in ∆G are shown in
thick orange lines. The figure illustrates that this estimator is highly sensitive to rare events where
large work dissipation is encountered during an alchemical transition.
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SI Figure 11: HREX uncertainties as a function of the statistical inefficiency. Binding
free energy trajectories and their uncertainty estimates as a function of the number of force/energy
evaluations and statistical inefficiency. The estimates for the individual replicate calculations were
computed with MBAR, and they are plotted in pastel colors. The best available estimates (in
black) for ∆G and std(∆G) were taken to be respectively the mean and standard deviation of
5 individual ∆G trajectories. A 95% chi-based confidence interval is plotted as a gray shaded
area around the best estimate of the standard deviation. The MBAR uncertainties are within
the confidence interval of the true standard deviation, but they are insensitive to the specific free
energy trajectory.
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SI Table 5: Free energy of replicate SOMD calculations. Average binding free energy
predictions computed from three replicate calculations of each of the five initial conformations of
the CB8-G3 system (i.e., CB8-G3-0, ..., CB8-G3-4) plus/minus the standard error of the average.
CB8-G3-2 agrees within statistical uncertainty to the other four initial conformations, which
suggests that the different free energy trajectory submitted was the result of long correlation
time, and that, given a sufficiently long simulation, SOMD would be able to overcome the energy
barrier associated to the corresponding slow degree of freedom.

initial conformation Average ∆G [kcal/mol]

CB8-G3-0 -13.2 ± 0.8
CB8-G3-1 -14.3 ± 0.3
CB8-G3-2 -13 ± 1
CB8-G3-3 -13.7 ± 0.9
CB8-G3-4 -14 ± 1

SI Table 6: Summary of the expanded ensemble and HREX calculations in NVT
and NPT. Average binding free energy predictions computed from five independent replicate
calculations with 95% t-based confidence intervals under different simulation conditions. The
barostat column reports whether the simulation was run in NVT (/) or in NPT with a Monte
Carlo or Berendsen barostat. The number of grid point for the PME mesh is reported for both the
complex and the solvent phase, in this order, when they differ or only once when the same grid
was used for both. The simulations in NVT were performed at the average volume sampled by the
NPT simulations. Removing the Berendsen barostat caused the free energy of GROMACS/EE to
change by 0.6 ± 0.3, while the free energy obtained by YANK with and without the Monte Carlo
barostat are identical. Varying the PME parameters did not alter significantly the predictions.
The rows labeled with an asterisk refers to the calculations that were used as the final submissions.

system method barostat PME FFT grid
PME spline order/

error tolerance
∆ G [kcal/mol]

GROMACS/EE Berendsen 48x48x48 4 / 10−5 -6.0 ± 0.2
OA-G3

*OpenMM/YANK Monte Carlo 54x54x54 - 40x40x40 5 / 10−4 -6.70 ± 0.02
GROMACS/EE Berendsen 48x48x48 4 / 10−5 -6.9 ± 0.2

OA-G6
*OpenMM/YANK Monte Carlo 54x54x54 - 40x40x40 5 / 10−4 -7.17 ± 0.05

GROMACS/EE / 48x48x48 4 / 10−5 -6.6 ± 0.2
OA-G3

OpenMM/YANK / 54x54x54 - 40x40x40 5 / 10−4 -6.7 ± 0.1
GROMACS/EE / 48x48x48 4 / 10−5 -7.0 ± 0.2

OA-G6
OpenMM/YANK / 54x54x54 - 40x40x40 5 / 10−4 -7.15 ± 0.09

*GROMACS/EE / 48x48x48 5 / 10−5 -6.6 ± 0.1
OA-G3

OpenMM/YANK / 48x48x48 5 / 10−5 -6.64 ± 0.07
*GROMACS/EE / 48x48x48 5 / 10−5 -7.0 ± 0.1

OA-G6
OpenMM/YANK / 48x48x48 5 / 10−5 -7.1 ± 0.1
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SI Figure 12: Double decoupling thermodynamic cycle used by YANK for the
OpenMM/HREX submission. In both the complex (top) and solvent (bottom) phases of
the thermodynamic cycle, the Coulomb charges were annihilated completely before decoupling
the Lennard-Jones interactions. A counterion with charge equal and opposite the net charge of
the guest is also decoupled to maintain the box neutrality. In the complex phase, a harmonic
restraint was kept activated throughout the calculation, and the end states were reweighted to a
state in which the restraint was substituted by a square well restraint that robustly defined the
binding site.

�Gbias �GV dW�Gelectro

�Gbind

�Gbias

�Gtransfer = 0

�Grestr�GV dW�Gelectro

SI Figure 13: Decomposition of the OpenMM/HREX free energy prediction by phase
for CB8-G3. Complex (orange), solvent (blue), and total (black) mean free energy trajectory
computed from the five replicates as a function of the computational cost. Shaded areas represent
the standard deviation of the mean free energy. The three axes used to plot the three trajectories
are shifted to ease the comparison of the components, but they have the same scale.

0 20 40 60 80 100
simulation percentage

21.0

20.5

20.0

19.5

19.0

18.5

18.0

G
 to

ta
l [

kc
al

/m
ol

]

151.0

150.5

150.0

149.5

149.0

148.5

148.0

G
 c

om
pl

ex
 [k

ca
l/m

ol
]

129.0

129.5

130.0

130.5

131.0

131.5

132.0

G
 s

ol
ve

nt
 [k

ca
l/m

ol
]

31



SI Figure 14: Decomposition of the OpenMM/HREX free energy prediction in en-
tropy and enthalpy for CB8-G3. Mean enthalpy (orange), entropy (blue), and free energy
(black) of binding as a function of the computational cost. The mean is computed from the 5
replicates, and the shaded areas represent the standard deviation of the mean. The axes of entropy
and −T∆S have the same scale, while the free energy is plotted over a smaller range of values to
ease the comparison.
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SI Figure 15: Trajectories of the number of bound waters for each state in CB8-G3-0.
State 0 is the interacting state, while the last state is the decoupled state. The trajectory is
plotted against the Hamiltonian replica exchange iteration. The number of bound waters were
computed from counting the water molecules with at least one atom within the convex hull of the
heavy atoms of CB8.
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SI Figure 16: Histograms of the number of bound water by thermodynamic state
in the complex phase of OA-G3-0 and OA-G6-0. The color maps the progression of the
alchemical protocol from the bound state (purple, lower part of the histogram) to the discharged
state (blue, middle part), where all the charges are turned off but Lennard-Jones interactions are
still active, and decoupled state (yellow, upper part). Only the histograms of every other state in
the protocol is plotted for clarity.
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