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Lubricant-infused surfaces (LIS) make drops remarkably mobile. However, the
dynamics of those drops proved to be subtle, due to the numerous phases at stake
(lubricant, drop, solid texture, air). In this article, we highlight the role played by a
feature specific to LIS, namely the “foot” of oil surrounding the drops and drawn by
their surface tension. Consequently, viscous dissipation can be localized in four distinct
regions, which we tune independently through various experimental set-ups. Despite this
complexity, we evidence a universal scaling for the friction law and reconciliate recent
results produced on this topic.
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Introduction

The so-called “liquid-infused surfaces” (LIS) recently attracted a lot of attention, due to the
extremely low adhesion of water or aqueous solutions to them. These materials are covered by
a microscopic texture in which oil is infused so that another liquid deposited on them faces an
impregnated porous-like substrate on which it hardly pins [1-4]. Hence the liquid (hereafter
generically called water) is highly mobile, yet with some friction [4-10] whose nature is still
under debate, owing to the complexity of the situation [4, 6-9].



M
ax

 P
la

nc
k 

In
st

itu
te

 fo
r P

ol
ym

er
 R

es
ea

rc
h 

– 
Au

th
or

’s 
M

an
us

cr
ip

t

2

FIG1: a. Schematic of a drop moving at a speed V on a liquid-infused material. Water (or aqueous phase) is blue,
while the lubricating oil is orange. Six main dynamical regions can be defined. Four of them concern the oil foot
around the drop, with advancing (regions 1 and 3) and receding (regions 2 and 4) sides. The two other regions
are the drop itself (region 6) and the oil film with thickness h within the texture (region 5). The oil foot (size a) is
supposed asymmetric, with an advancing angle q at the front (region 1) and a film of thickness e at the rear
(region 2). Vi (close up in region 5) is the water/oil interface velocity. b. SEM images of the texture made of
NOA (Norland Optical Adhesive) on a glass slide and treated with colloidal particles (courtesy of Florian Geyer,
MPIP). Left: top view of the pillar network (scale bar: 40 µm). Middle: close-up on one pillar (scale bar: 4 µm).
Right: close-up on the nano-roughness at the pillar top (scale bar 400 nm).

We focus here on the generic case of a drop facing a liquid of higher viscosity, which
corresponds to water on most non-volatile oils. Smith et al. [4] showed that friction then
occurs in the oil meniscus (or foot) surrounding the drop and sketched in Fig. 1a. If this
friction were that in the bulk of the foot (assumed to have a constant shape), it would have a
classical Stokes nature, evidenced by a linear relationship between friction and speed.
However, Daniel et al. [7] and Keiser et al. [6] suggested that the shape of the meniscus is
speed dependent, leading to a non-linear relationship between friction and speed. It is worth
discussing the generality of these ideas. A natural parameter, for instance, is the height of the
underlying texture, and Daniel et al. argued that the scaling between the friction and speed
might depend on this height, with a linear relationship for tall pillars and a non-linear one for
short ones [7]. This change was attributed to the possibility of generating Landau-Levich oil
films above short pillars, as drops move, while such films are absorbed by a tall texture [11-
12]. We provide here new experiments in a broad range of velocity, allowing us to discuss the
role of the menisci front in the dissipation process – with the aim of establishing the scaling
form(s) of the friction.

Our main conclusion is that the scaling law for the friction is surprisingly universal, varying
as the power 2/3 of speed on both short and tall pillars. However, the prefactor in the law does
depend on the pillar height, a consequence of the existence or absence of Landau-Levich films
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beneath the moving drop. A transition regime thus exists, depending on the pillar height
and/or drop speed, where the scaling law is transiently lost. We finally confirm the generality
of our results by studying two supplementary configurations, that of a drop confined in a
Hele-Shaw cell, and that of a bubble rising along an inclined LIS plunged in a water bath.

Mobility of drops on LIS

We consider micro-pillars (with density f = 23-25%) etched in SU8-resin after
photolithography, then coated with nanometric colloids (Glaco Mirror Coat, Soft 99). This
double scale of roughness is visible in Fig. 1b and it provides an ultra-low hysteresis once oil
is infused [6, 13] and details on the preparation of the samples are given in the appendix. The
lubricant is a silicone oil with surface tension go = 20 mN/m and viscosity ho =100 mPa×s
while the drop is made of a water/glycerol mixture with hw = 2 mPa×s (hw <<ho). After tilting
the liquid-infused surfaces by an angle a, we measure the constant drop velocity V (reached
after a few millimetres of descent) using a video-camera. In this stationary regime, the friction
F is known, since it balances the weight rgWsina, where r is the water density, W the drop
volume, and g the gravitational acceleration. Varying the tilting angle a from 1° to 40°
increases friction by about two decades, which makes it possible to investigate the
relationship between friction and speed thoroughly.
In Fig. 2a, we plot the drop velocity V as a function of sina, the slope of the liquid-infused
material having small pillars (h = 2 µm). As reported in the literature [6], the graph evidences
a scaling behaviour and we deduce from the slope 3/2 drawn across the data that velocity
increases as the power 2/3 of the driving force, confirming the non-linear character of the
mobility on LIS. A second series of experiments is performed on much taller pillars (h = 75
µm and h = 130 µm), a situation less explored despite its practical interests – the reservoir of
oil inside the pillars being then about 50 times larger than previously. As observed in Fig. 2b,
a scaling law is also observed, the dashes showing a slope similar to that in Fig. 2a. This result
appears robust, being valid for two pillar heights and for a variation of the drop velocity by
two orders of magnitude. But it is also surprising since switching from short to large pillars
should manifest in the absence or presence of Landau-Levich films, respectively, making the
hydrodynamics of the films and thus friction different in both cases.
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FIG. 2: Speed V of water-glycerol drop (hw = 2 mPa×s, W = 20 mL) running down an impregnated, textured
material (ho = 100 mPa×s), tilted by an angle a, as a function of the slope sina. We compare what happens on
short pillars (a, h = 2 µm) and tall pillars (b, h = 75 µm and h = 130 µm), two situations for which the physics is
quite different: Landau-Levich films are expected on short pillars while they get absorbed in the tall texture.
However, scaling laws with the same exponent (3/2, shown by dashes) are observed in both cases.

We now discuss a possible origin for the universal scaling observed for the drop mobility on
LIS and further explore differences between the two experiments reported in Fig. 2.

The complex nature of interfaces on a LIS

As sketched in Fig. 1a, the existence of four phases (solid, oil, water and air) in the wetting of
LIS generates multiple kinds of interfaces close to which dissipation can take place. We
wonder whether all these regions equally contribute to the total friction F and how the texture
topology affects friction. In the following, we use the notation Fi to refer to the friction in
region i. As pointed out by Daniel et al. [7] and by Keiser et al. [6], oil feet should be
dynamically reshaped, which generates original sources of friction compared to more usual
cases.

(1) Oil films may form at the rear of feet (regions 2 and 4 in Fig. 1a). In the Landau-Levich
(LL) framework [11], a foot is deformed by a distance l ~ RCa1/3, leading to a film thickness
e ~ RCa2/3, where R is the drop radius and Ca is the capillary number at deposition
(Ca = hoV/gow in region 2, Ca = hoV/go in region 4, with gow and go the oil-water and oil-air
tensions, respectively). This classical result can be markedly corrected on pillars, depending
on the ratio between the thickness e and the pillar height h: as shown by Seiwert et al. [12], a
LL film is expected only for h < e, while slippage induced in the opposite limit (h > e)
prevents oil deposition above tall pillars. This criterion can be expressed in term of velocity:
LL films exist if the drop velocity V is larger than V* ~ (g/ho)(h/R)3/2. On short pillars, this
criterion is always satisfied, while it can never be met on tall ones, V* increasing by a factor
1000 when multiplying h by 100. Using interferometric measurements, Daniel et al. directly
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observed this wetting transition for drops on LIS, with a prefactor of order 3 for a pillar
density f = 25% [7]. It should be noted though that this prefactor decreases as the pillar
density increases, as recently observed for droplets confined in Hele-Shaw cells [14]. Coming
back to the experiments in Fig. 2 (with f = 25%), V* is 13 mm/s for h ≈ 100 µm, a speed
comparable to the maximal speed reached in our experiments. Hence, we do not expect LL
films on such tall pillars. Conversely, V* falls to 40 µm/s for h ≈ 2 µm, so that LL deposition
should concern the whole range of explored velocities for short pillars. In the latter case, the
corresponding friction F2 and F4 scales as 2p(hoV/e)lR, that is, F2 ~ 2pgowRCa2/3 in region 2
and F4 ~ 2pgoRCa2/3 in region 4. These two quantities of similar amplitude are not linear in
velocity, a consequence of the difference in speed dependency of l and e. Conversely, LL-
friction can be simply neglected on tall pillars (or below V*), which does not explain the
scaling observed in that case.

(2) Yet, Keiser et al. reported that friction depends on the pillar density f [6], which does not
appear in (1). Oil feet move on a mixture of solid and oil (regions 1 and 3 in Fig. 1a), which
generates a dynamic angle q at the front [15-20]. At small q, the viscous force there can be
written ò (hoV/qx)Rdx, where qx is the wedge thickness at a distance x from its tip. Introducing
the meniscus size a (typically 50 µm) and a molecular size b as cut-off distances, we deduce a
friction F1/3~ (hoV/q)R ln(a/b) [18-19]. The logarithmic factor, typically ~10, reflects the
enhancement of the viscous force at contact lines. The model must be corrected on infused
materials: the foot can slip on the thick oil layer between pillars, so that dissipation mainly
takes place on the pillar tops. Restricting friction to these tops provides: F1/3 ~ (hoV/q)fR
ln(a/b). Balancing F1/3 with the capillary force gR(1 - cosq) ≈ gRq2/2 yields Tanner’s law, q~
Ca1/3 [15] and an explicit formula for the friction, F1/3 ~ f2/3ln2/3(a/b) gRCa2/3, with g = go in
region 1 and g = gow in region 3. This friction being independent of the pillar’s height, it is
relevant on any kind of LIS – in particular on tall pillars, where there is no film deposition:
this may explain the non-linear character of the scaling observed in Fig. 2a. It should also be
noted that the presence of LL-films on small pillars (or for V > V*) may significantly reduce
this friction in region 3.

Still, other dissipation mechanisms can be discussed. For instance, the friction in the subjacent
film (region 5 in Fig. 1a) turns out to be negligible, owing to the modest value of the velocity
Vi at the oil/water interface. The stress balance at this interface writes hwV/R ~ hoVi /h, which
yields: Vi ~V hwh/hoR. The corresponding force is (hoVi/h) R2 ~ hwVR, indeed much smaller
than other viscous frictions for hw << ho. Smith et al. [4] finally considered the friction in the
bulk of the foot (with size a), obtained by integrating the viscous stress hoV/a over the surface
area 2paR [4]. The corresponding friction F ~ 2phoVR ~ 2pRgCa is linear in velocity, and thus
expected to be negligible compared to the line friction in Ca2/3 at small Ca.
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Back to experiments

We showed that dissipation at the foot fronts (regions 1 and 3) always needs to be considered,
while friction in rear sides (regions 2 and 4) can be switched on and off by varying pillar
height h or drop velocity V. Despite different physical contents, both frictions at the front and
rear sides of the foot scale as gRCa2/3, which explains why the total friction F most generally
scales as the power 2/3 of V (Fig. 2). We can test the model more accurately by comparing
our data to expected behaviours, as done in Figs. 3a and 3b where we also include data
obtained by Daniel et al. with similar texture.

FIG. 3: Friction of drops (hw = 2 mPa×s) running down tilted LIS (ho = 100 mPa×s). a. Friction F as a function of
the scaling when dissipation is localised in the front foot, as expected for tall pillars (h = 75 µm, green squares;
h = 130 µm, orange diamonds; h = 30 µm, orange circles, data by Daniel et al. [7]). Dashes show a slope 1.
b. Comparison between the friction on short (h = 2 µm, blue diamonds, our data, and empty circles, data from
Daniel et al. [7]) and tall pillars (h = 75 µm, green squares; h = 130 µm, orange diamonds). Orange and blue lines
have a slope 1 with respective prefactors of 1.4 and 2.3 that stress the augmented friction on short pillars.
c. Chronophotographs of the front foot of a moving drop. Laser scanning confocal microscopy and fluorescent
dye allow us to distinguish the oil (in grey) from the rest (water, solid and air), in black. Images are respectively
separated by 11.7 s (first picture, drop velocity V = 10 µm/s) and 1.7 s (second picture, V = 200 µm/s). The
contour of the drop is highlighted in blue, and that of the meniscus in orange. The scale bar is 100 µm. d. For
pillars with intermediate size (h = 5 µm and 9 µm), we observe a transition between the two regimes of friction
(drawn with the orange and blue lines), a consequence of the Landau-Levich transition at sufficiently large
capillary number.
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These graphs allow us not only to test the scaling but also to compare friction on short and tall
pillars. All data nicely collapse on a line of slope 1 (dashes) but the numerical coefficient
depends on the category of pillars: friction is increased by about 60% on short pillars,
compared to that on tall ones. These facts agree with our model. We indeed expect an
additional LL friction on short pillars; and the coefficient of the front friction, [f ln(a/b)]2/3

(that reflects both the composite nature of the substrate and the amplification of viscous
effects in a wedge), should be of order unity, that is, comparable to the coefficient in the rear
friction. We can finally complete these findings by two supplementary experiments.

(1) Since dissipation in the foot front was assumed to be always at stake, it is essential to
show the reality of dynamic angles in regions 1 and 3. To that end, we visualize the moving
menisci using laser scanning confocal microscopy, as described in appendix. A water drop (W
»20µL) placed on a liquid-infused surface (h = 20 µm) is moved with a needle, parallel to the
substrate, in the range of capillary numbers explored in Fig. 3a. Fig. 3c shows three
successive images of region 1 at Ca = 5.10-3 and Ca = 10-2. Incorporating a fluorescent dye in
the oil makes it grey in the image and visible both in the texture and in the foot, while water,
pillars, and air appear in black [21]. Two major observations can be made. Firstly, the oil
meniscus is stationary, even at the larger velocity. This assumption in the model was not
obvious since flows might redistribute oil from the front to the rear of the drop, making, for
instance, the foot globally smaller when velocity is higher and/or with size a varying along
the motion. Secondly, the foot is asymmetric, as we assumed: the rear (region 2) meets
tangentially the substrate (and the resolution of the technique even confirms the absence of
Landau-Levich deposition on these high pillars), while the flow stiffens the front (region 1)
and produces a dynamic contact angle whose value increases with the drop speed. This also
shows that viscous dissipation in region 2 (and 4) is not large enough to deform an oil
meniscus on tall pillars from its quasi-static configuration, which justifies that we do not
consider this dissipation in our balance.

(2) We can also consider pillars with intermediate height. Contrasting with the previous
asymptotic situations, we then expect a transition to Landau-Levich deposition within the
range of explored speed (V* » 300 µm/s for h = 9 µm), which should impact the friction. As
seen in Fig. 3d, data for h = 9 µm (grey triangles) leave the regime of “high friction” at large
Ca for the regime of “low friction” at small Ca. The drop speed at the transition is V* ≈ 200
µm/s, in reasonable agreement with our expectation. Interestingly, the transition is found to be
shifted to smaller Ca for shorter pillars (h = 5 µm, red squares) – in agreement with the fact
that LL-films appear at a lower velocity on smaller texture. Hence varying the texture height
allows us to control the resistance (and thus the speed) of drops on infused materials. This
action is efficient since shortening the pillars roughly doubles the friction, without modifying
its non-linear character in velocity.
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Drops confined in a Hele-Shaw cell

In order to test the universality of the scaling laws, we now observe drops moving in an Hele-
Shaw cell (with gap H = 1110 µm) whose both plates are textured and impregnated. Drops
adopt a pancake shape [22-24], as sketched in Fig. 3a. Increasing the tilt angle of the cell, we
can vary the drop velocity from 0.01 mm/s to 20 mm/s, allowing us to measure the
relationship between friction and velocity by more than three decades in speed.

FIG. 4: a. Front and side views of a Hele-Shaw LIS. A drop with radius R is confined between two LIS
impregnated with silicon oil and separated by a distance H < R. The cell is tilted by an angle a (a = 90° in the
schematics). b. Friction F of drops as a function of the scaling form 2pgowR (hoV/gow)2/3 on LIS (blue circles) and
in Hele-Shaw LIS (H = 1110 µm, green triangles). All surfaces have the same texture (square lattice of circular
pillars, h = 20 µm, f = 23%). Oil and water viscosities are respectively ho = 100 mPa×s and hw = 2 mPa×s. Drop
volumes are varied between 10 and 30 µL and tilt angles between 1° and 90°. Lines have a slope 1 and numerical
factors of 1.4 (blue line), as in Fig. 3, and 3.5 (green line). The small deviation at small speed (tilting angle < 5°)
may be attributed to some residual adhesion, enhanced in this configuration.

Our results are displayed in Fig. 4b. When plotting the friction as a function of the scaling
form 2pgowR(hoV/gow)2/3, we observe that data align along two well-separated lines of slope 1.
The numerical coefficient provided by the fit is 3.5 (green dashes) in the Hele-Shaw cell, that
is, about twice larger than on a LIS (blue dashes, where the numerical factor is 1.4). Even if
the Hele-Shaw configuration strongly modifies the drop geometry, the foot dissipation should
indeed simply double in a cell, that is, when doubling the number of feet.

Bubbles on LIS

We finally consider a gas bubble running up a tilted liquid-infused surface immersed in water
(Fig. 5a). Then, water and air are inverted, compared to the previous configurations. This is
reminiscent of the historical experiment of Bretherthon [25], where a bubble confined in a
capillary tube of radius R is driven by pressure. Then, the friction in the liquid wedge at the
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front of the drop was shown to scale as gRCa2/3. Non-confined bubbles moving on smooth
immersed solids have also been discussed (Aussillous & Quéré [26], Cantat [27], Le Merrer et
al. [28]), a case where the deposition of a film between the bubble and the solid substrate
generates a wedge friction still scaling as Ca2/3. The situation of bubbles moving on immersed
LIS might induce differences: the presence of oil menisci generates two extra dissipative
terms, in regions 1 and 4; in addition, the solid surface is not smooth but textured.

FIG. 5: a. Air bubble with volume W rising on a tilted LIS immersed in water. Water and air are inverted,
compared to Fig. 1a. b. Friction F of drops or bubbles as a function of the scaling form 2pgowR (hoV/gow)2/3 for
drops (blue circles) or bubbles (red diamonds) on a LIS with h = 20 µm and f = 23%. Water viscosity is hw = 2
mPa×s, and oil viscosity is ho = 100 mPa×s for the drop and ho = 10, 100 or 1000 mPa×s for the bubble. Drop and
bubble volumes are 20 µL and 10 µL, respectively, and tilt angle is varied between 1° and 30°. The line has a
slope 1 and a numerical factor of 1.4, as in Fig. 3.

Yet, data for drops and bubbles are found to be superimposed (Fig. 5b), contrasting with what
we would find if we did the same inversion on a regular, hydrophobic solid. This confirms the
negligible role of water and air viscosity in the viscous dissipation, and eventually provides an
independent proof of the role of the oil meniscus (equally present for drops and bubbles) in
the dissipation associated with the fluid motion.

Summary

On the whole, the friction force on a LIS most generally scales as V2/3, a unique behaviour
despite the multiple possible causes of dissipation – that eventually condense in a universal
friction law. In addition, the numerical coefficient in the friction (and thus the drop speed) can
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be efficiently tuned by the pillar height, which shows that the use of texture is not only
relevant for diminishing the liquid adhesion, but also to adjust its friction.
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Appendix 1:
Fabrication of the surfaces and imaging

Textured surfaces are obtained using SU-8 photolithography. A layer of SU-8 resin is spin-
coated on the surface of a clean, dehydrated silicon wafer. The rotating speed imposes the
deposited thickness and thus the pillar height. Reticulation of pillars is performed by UV-light
through a mask and the obtained texture consists of square arrays of either circular or rectangular
pillars. The second scale of roughness is added by dipping the microtextured material in a
solution of Glaco Mirror Coat (Soft 99). After evaporation of the solvent (drying at 70°C for 30
min.), both the substrate and the pillars are coated with a layer of hydrophobic nanobeads
(typical size 30 nm), as shown in Fig. S1.

FIG. S1: a. Schematic of the main steps to obtain transparent textured surfaces in NOA optical adhesive on a glass
slide. b. SEM images of the textures made of NOA optical adhesive on a glass slide (courtesy of Florian Geyer,
MPIP). c. Close-up on the nano-roughness at the pillar tops on the Glaco treated surfaces. Left: top view of the pillar
network (bar: 40 µm). Middle: close-up on one pillar (bar: 4µm). Right: close-up on the pillar top (bar: 400 nm).
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The procedure is repeated three times to ensure a homogeneous coating. Impregnation of the
surfaces is then achieved by capillarity, taking special care not to over-impregnate the surfaces.
To that end, surfaces are tilted with their lower side in contact with a bath of silicone oil of
viscosity ho so that oil rises within the texture. Transparent surfaces (necessary for the
experiments in the Hele-Shaw cell) are obtained by two additional steps: 1) fabrication of a
PDMS counter-mold of the SU-8 texture; 2) mold of this counter-mold with a transparent optical
adhesive (NOA, Norland Optical Adhesive) on a glass slide. This protocol is shown in Fig. S1a,
and SEM images of the transparent surfaces obtained (60 mm x 24 mm, thickness: » 170 mm)
with the NOA optical adhesive before and after the coating with nanobeads are shown in Figs.
S1b and S1c, respectively.

Silicone oil does not completely wet neither SU-8 nor NOA in an aqueous environment. Thus,
direct contact between the drop and the pillar tops exists if no Glaco treatment is made [6],
which explains why the two scales of roughness are necessary to provide an ultra-low adhesion
of water with roll-off angles below 1° for a 20 µL drop [6, 13]. The impregnation method must
also be stressed. Beyond introducing a layer of oil of uncontrolled thickness, over-impregnation
will profoundly affect the dissipation of the front menisci (through the logarithm factor discussed
in the main paper). As this thickness is not controllable over an extended period of time, over-
impregnation will lead to scattered measurements of the friction force.

An inverted laser scanning confocal microscope (Leica TCS SP8 SMD) equipped with a
40x/1.11 water immersion objective lens (Olympus) was employed to image the oil meniscus
surrounding the aqueous drop. The free working distance of the objective is 0.65 mm. The drop
is moved by a glass capillary that pins the liquid and entrains it. Scanned areas are 400 x 400
mm2, if not stated otherwise. Horizontal and vertical resolutions are ~500 nm and ~1 mm,
respectively, and the time span between successive images is 0.78 s (1.29 fps). The scanning
frequency is 400 Hz. Images are acquired at different heights with respect to the bottom surface
of the micropillar substrate. The silicone oil is dyed with a TDI-derivative (terrylene diimide-
based dye, [29], or NileRed from Sigma Aldrich). After impregnation, the fluorescence of the
silicone oil within the texture and in the meniscus appears in grey, while pillars, water and air
remain black. All chemicals were used as received. Processing of the confocal images is done
the Java-based open-source image processing software ImageJ. Contrast and brightness are
optimized, and smoothening algorithms are applied to further improve the image quality by
minimizing the amount of intensity variations.

Appendix 2:
Complements in Hele-Shaw cells

Due to the confined geometry, the experiments in the Hele-Shaw cell show scaling laws that
slightly differ from the one derived in Keiser et al. [6]. We present here supplementary results
about this special geometry (Figure S2).
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FIG. S2: Speed V of water/glycerol mixtures (W = 10 µL, viscosity hw) confined in a vertical Hele-Shaw cell of
thickness 1110 µm (a) or 720 µm (b). The cell walls are LIS impregnated by silicone oil with viscosity ho = 10 mPa×s
(red diamonds), 100 mPa×s (blue circles) or 1000 mPa×s (green triangles). At low hw, the speed is nearly independent
of hw. At large hw, the speed becomes inversely proportional to hw. Dashes show the speed obtained by balancing
gravity with the total friction in the drop and in the menisci (see text). For the Hele-Shaw cell of thickness 720 μm, the
agreement between experiments and model is less convincing at low oil viscosity. The drops then become slightly
elliptic, that is, of larger perimeter, which might contribute to increase the viscous dissipation and thus lower the
velocity.

First, the viscosity of the drop has been varied to explore regions not only with ho >> hw but
also with ho << hw. Two main regimes appear (Fig. S2), showing that dissipation is either
localized in the oil (when ho >> hw) or in the drop (when ho << hw), as known for non-
confined drops [6, 8]. At high drop viscosity (hw >> ho), dissipation takes place in the drop
and the friction is proportional to the speed (Fig. S3a).
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FIG. S3: a. Speed V of a drop (W = 30 µL, hw = 900 mPa×s) in a Hele-Shaw cell impregnated with silicone oil
with viscosity ho = 100 mPa×s as a function of the driving force FM = rgWsina. For hw >> ho, dissipation
localizes in the drop, which makes the friction linear in speed. b. Then, the speed is observed to be independent
of the drop volume W, as predicted by our model. c. Same experiment as in a for hw = 2 mPa×s and ho = 100
mPa×s (hw << ho). Then dissipation localizes in the oil and the dependency between friction with speed becomes
non-linear. d. In this case, the speed varies as the power ¾ of W again in accord with our expectations.

In this simplified configuration (compared to the case of a non-confined drop, explore by
Keiser et al. [6]), we can exactly express the prefactor in the Poiseuille force, which yields:

Fh = 12pR2hwV/H. Balancing this friction with the driving force rgpR2Hsina, we get:

V = rgHsina/12hw

Due to the pancake shape of the drop in this geometry, the velocity is found to be independent
of the drop radius (and volume), which is indeed observed in Fig. S3c.

In the opposite limit (ho >> hw), the dissipation localizes in the oil foot, as described in the
main text, leading to a non-linear relation between the friction force and speed (Fig. S3c).

Balancing the driving force rgpR2Hsina with the friction force Fh = 2pRfgCa2/3L leads to a
new expression for the drop speed:

V =  (rgsina/2fL)3/2 (WH/p)3/4/hg1/2

Both the scaling of the speed V with the driving force and with the volume are verified in the
Figs. 3c and 3d, where the dashes show the slopes 3/2 and 3/4, respectively.

A general relationship between drop velocity and viscosity can finally be obtained by solving
the implicit equation rgWsina = 2(2pRgCa2/3f2/3ln2/3(a/b)) + 12pR2hwV/H, the balance of
gravity with the total friction (in both oil menisci and in the drop). Doing so, we find a very
good agreement (without any adjustable parameters other than the logarithm factor taken as
10, its expected value) between the model and the whole set of data, as seen in Fig. S2.
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