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Abstract The identification of relevant features, i.e., the driving variables that de-
termine a process or the property of a system, is an essential part of the analysis
of data sets whose entries are described by a large number of variables. The pre-
ferred measure for quantifying the relevance of nonlinear statistical dependencies is
mutual information, which requires as input probability distributions. Probability dis-
tributions cannot be reliably sampled and estimated from limited data, especially for
real-valued data samples such as lengths or energies. Here, we introduce total cumula-
tive mutual information (TCMI), a measure of the relevance of mutual dependencies
based on cumulative probability distributions. TCMI can be estimated directly from
sample data and is a non-parametric, robust and deterministic measure that facilitates
comparisons and rankings between feature sets with different cardinality. The rank-
ing induced by TCMI allows for feature selection, i.e. the identification of the set of
relevant features that are statistical related to the process or the property of a system,
while taking into account the number of data samples as well as the cardinality of
the feature subsets. We evaluate the performance of our measure with simulated data,
compare its performance with similar multivariate dependence measures, and demon-
strate the effectiveness of our feature selection method on a set of standard data sets
and a typical scenario in materials science.

Keywords Dependence measure · Information theory ·Mutual information · Feature
selection ·Machine learning ·Materials science

1 Introduction

The past two decades have been marked by an explosion in the availability of scien-
tific data and significant improvements in statistical analysis. Particularly in the phys-
ical sciences, an unparalleled surge in the exploration of data has been witnessed,
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Fig. 1 Empirical cumulative entropy Ĥ (Y ) of normal distribution for 50 data samples, which are shown
as ticks in the bottom of the figure. Insets a.) and b.) show the (ground-truth) probability density (PDF)
and cumulative probability (CDF) of the normal distribution, empirical cumulative distribution, P̂(Y ≤ y),
and estimated probability density, p̂(y). The estimated probability density was obtained by optimizing the
bandwidth of the kernel density estimator with 10-fold cross-validation. Further, histograms of PDF and
CDF are shown to underline the difficulty to approximate continuous distributions by discrete discontinu-
ous functions even for low-dimensional data.

aiming at the data-driven identification of dependencies among physical variables.
These observations have been even interpreted as the dawn of a new paradigm in
science, the “big-data driven” science [1].

The identification of relevant features, i.e, properties or driving variables of a pro-
cess or system’s property and often referred to as actuators or descriptors, has pro-
pelled investigations for an understanding of the underlying processes that generated
the data [2]. In this context, a feature X ∈ X may be an attribute, variable, parameter,
or a combination of the above that has been measured or obtained from experiments
or simulations. The main task is to estimate a statistical dependency, f : X 7→ Y , be-
tween a set of features X and an output Y (target, response function), called functional
dependence, subject to a feature selection criterion Q [3,4],

X∗ = argmax
X′⊆X

Q(Y ;X′) . (1)

Feature selection screens the initial feature set X for relevant features X∗ and ranks
feature subsets based on their relevance. Therefore, it simplifies subsequent statistical
data analysis and reduces the chances of detecting false dependencies. Used as a pre-
liminary step for screening given feature sets, a robust and reliable feature-selection
algorithm could for instance improve the performance and efficiency of data-analytics
techniques such as symbolic regression, both in the genetic-programming [5] and
compressed-sensing implementation [6,7], or regression-tree-based approaches [8].

Feature selection comprises two parts: (i) the choice of a search strategy and (ii)
the feature selection criterion Q for relevance. Search strategies for feature selection
are either optimal (exhaustive) or sub-optimal (greedy). Optimal search strategies in-
clude exhaustive search and accelerated methods based on the monotonic property
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Abbreviation Explanation Reference

CMI Cumulative mutual information [25]
MAC Multivariate maximal correlation analysis [26]
UDS Universal dependency analysis [28,29]
MCDE Monte Carlo dependency estimation [35]
TCMI Total cumulative mutual information this work

Table 1 Abbreviations used in the manuscript.

of a feature selection criterion, such as the branch and bound algorithm [9,10,11,12,
13]. By construction, optimal search strategies explore the complete set of features
for a global optimum. As such, they are impractical for high-dimensional data sets
due to cost and time constraints in computer resources. Therefore, sub-optimal strate-
gies have been developed to find local optima while balancing accuracy and speed:
sequential (floating) forward selection [14,15], sequential backward elimination [16],
and minimal-redundancy-maximal-relevance criterion [17].

The academic community has extensively explored several feature selection crite-
ria to evaluate a feature’s relevance [18], including distance measures [19,20], depen-
dency measures [21], consistency measures [22] and information measures [23]. In
brief, an appropriate feature selection criterion Q must be robust and deterministic,
i.e., such that the feature selection is consistent and reproducible for the same type
of settings and data. The prevailing method for quantifying dependencies is mutual
information [24]. Mutual information quantifies the amount of information variables
X and Y share about each other.

There are several reasons to consider mutual-information-based quantities for fea-
ture selection. The two most important reasons are: (i) mutual information quantifies
nonlinear statistical dependencies and (ii) mutual information provides an intuitive
quantification of relevance for a feature subset X′ ⊆ X relative to an output Y [23].
However, mutual information requires to estimate probability densities, which are
problematic for high-dimensional data sets and are difficult to obtain from continu-
ous distributions.

Prior investigations have implemented diverse approaches to address the problem:
cumulative mutual information CMI [25], multivariate maximal correlation analysis
MAC [26], maximal information coefficient MIC [27], universal dependency analysis
UDS [28,29], and mutual-information-based feature selection algorithms originally
developed for discrete data [30,31,32,33,34]. The list is far from complete. However,
all aforementioned measures are based on clustering, discretization, or estimation of
probability densities of continuous data distributions; and thus make feature selection
extremely dependent on the technique being used and requires to compute the feature
selection criterion for each possible dependency in the data.

Yet, other dependence measures such as Pearson R and Spearman’s rank ρ cor-
relation coefficients [36,37], distance correlation DCOR [38,39], kernel density es-
timation KDE [40,41], or k-nearest neighbor estimation k-NN [42] are limited to
bivariate dependencies only (Pearson, Spearman), are limited to specific types of de-
pendencies (Spearman, DCOR), or require assumptions about the functional form
of f (KDE, k-NN). Recent approaches, such as subspace slicing via high-contrast
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Symbol Definition

Y output, target, response function
X , X features, variables
X̂ empirical estimator of X
Q(Y ;X), Q∗(Y ;X) (adjusted) feature selection criteria

Discrete data
I(Y ;X) Shannon mutual information
D(Y ;X) fraction of information
p(y) (marginal) probability density of y ∈ Y
p(x,y) joint probability density of x ∈ X and y ∈ Y
p(y|x) conditional probability density of y ∈ Y given x ∈ X

Continuous data
I (Y ;X), I ∗(Y ;X) (adjusted) cumulative mutual information
D(Y ;X), D∗(Y ;X) (adjusted) fraction of cumulative information
P(y), P(Y ≤ y) (marginal) cumulative probability density of y ∈ Y
P(x,y), P(X ≤ x,Y ≤ y) joint cumulative probability density of x ∈ X and y ∈ Y
P(y|x), P(Y ≤ Y |X ≤ x) conditional cumulative probability density of y ∈ Y given x ∈ X

Table 2 The list of symbols and notations used in this paper.

subspaces for density-based outliers ranking HiCS [43] or Monte Carlo dependency
estimation MCDE [35], may enable new kind of feature selection criteria. At the
moment, they still require to enumerate all possible combinations of features and,
therefore, are computationally intractable for feature selection tasks.

The approach presented in this paper, instead, employs a mutual-information like
quantity – total cumulative mutual information (TCMI). TCMI is a non-parametric,
robust, and deterministic measure for estimating multivariate dependencies. Similar
to CMI, MAC, and UDS, it is based on cumulative entropy [44,45,46,47] and ad-
justs the relevance of the features depending on the number of data samples and the
cardinality of the feature subsets. While CMI, MAC, and UDS estimate conditional
probability through clustering or discretization, TCMI defines all quantities by cu-
mulative probabilities. We combine TCMI with a feature selection criterion to find
subsets of features that influence the output.

Our feature selection procedure can be roughly divided into three steps: First, we
quantify the dependence between the set of features and an output as the difference
between cumulative marginal and cumulative conditional distributions. Second, we
assess the relevance of a feature subset by comparing the strength of dependence with
the mean dependence of features under the assumption of independence to reliably
estimate the importance of one’s feature [48,49,50]. And third, we identify relevant
features with the branch-and-bound algorithm [9,10,11,12,13], which has proven to
be efficient in the discovery of nonlinear functional dependencies [51,52] and is the
prerequisite for an exhaustive search for feature subsets with guarantees of optimality.

The remainder of this work is organized as follows. Section 2 introduces the the-
oretical background of mutual information and the concept of cumulative mutual
information. Section 3 addresses the problem of estimating cumulative mutual in-
formation for continuous distributions from a limited set of sample data. Section 4
explains the steps to adjust the cumulative mutual information to assess the relevance
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of feature sets. The same section also explains the feature selection criterion and the
branch and bound implementation in detail. Next, Section 5 demonstrates the perfor-
mance of TCMI on generated data, standard data sets, and on a typical scenario in
materials science along with a comparison to similar multivariate dependence mea-
sures, namely CMI, MAC, UDS, and MCDE. Finally, Sections 6 and 7 present the
discussion and conclusions of this work. Abbreviations, notations, and terminologies
are summarized in Tables 1 and 2.

2 Theoretical background

Mutual information and all concepts presented in the following quantify relevance in
terms of the similarity between two distributions U(X,Y ) and V (X,Y ) with Kullback-
Leibler divergence, DKL(U(X,Y )||V (X,Y )) [53]. Based on mutual independence,
they require no explicit modeling to quantify linear and nonlinear dependencies. Fur-
ther, they monotonically increase with the cardinality of the feature’s subset X′ ⊆ X,

min
X∈X′

D(Y ;X′ \X)≤ D(Y ;X′) , (2)

and are invariant under invertible transformations such as translations and any repa-
rameterizations that preserve the order of X and Y [54,23].

For illustration purposes, only the case with two variables X and Y will be dis-
cussed in this section. However, a generalization to multiple variables can be derived
directly from the independence assumption of random variables (see below).

2.1 Mutual information

Mutual information [55,56] relates the joint probability distribution p(x,y) of two
discrete random variables (=features) with the product of their marginal distribution
p(x) and p(y),

I(Y ;X) = ∑
y∈Y

∑
x∈X

p(y,x) log
p(y,x)

p(y)p(x)

≡ DKL(p(y,x)||p(y)p(x)) . (3)

Mutual information is non-negative, is zero if and only if the variables are statistically
independent, p(x,y) = p(x)p(y) (independence assumption of random variables), and
increases monotonically with the mutual interdependence of variables otherwise. Fur-
ther, mutual information indicates the reduction in the uncertainty of Y given X as
I(Y ;X) = H(Y )−H(Y |X), where H(Y ) denotes the Shannon entropy and H(Y |X)
the conditional entropy [24]. The Shannon entropy H(Y ) is defined as the expected
value of the negative logarithm of the probability density p(y),

H(Y ) =−∑
y∈Y

p(y) log p(y) , (4)
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and can be interpreted as a measure of the uncertainty on the occurrence of events y
whose probability p(y) is described by a random variable Y .

The conditional entropy H(Y |X) quantifies the amount of uncertainty about the
value of Y , provided the value of X is known. It is given by

H(Y |X) =−∑
y∈Y

∑
x∈X

p(y,x) log p(y|x) , (5)

where p(y|x) = p(y,x)/p(x) is the conditional probability of y given x. Clearly, 0 ≤
H(Y |X)≤ H(Y ) with H(Y |X) = 0 if variables X and Y are functional dependent and
H(Y |X) = H(Y ) if variables are independent of each other.

Although mutual information is restricted to the closed interval 0 ≤ I(Y ;X) ≤
H(Y ), the upper bound is still dependent on Y . To facilitate comparisons, mutual
information is normalized,

D(Y ;X) =
I(Y ;X)

H(Y )
=

H(Y )−H(Y |X)

H(Y )
. (6)

Normalized mutual information, hereafter referred to as fraction of information
(also known as coefficients of constraint [57], uncertainty coefficient [58], or pro-
ficiency [59]) quantifies the proportional reduction in uncertainty about Y when X
is known. It is in the range D : R×R→ [0,1], where 0 and 1 represent statistical
independence and functional dependence, respectively [60].

2.2 Limitations of mutual information

Although mutual information was originally introduced for discrete data, it is a well-
defined measure in the continuous domain. Defined as,

I(Y ;X) =
∫

y∈Y

∫
x∈X

p(y,x) log
p(y,x)

p(y)p(x)
dxdy , (7)

it requires to estimate probability densities from sample data. Common algorithms
for probability density estimation are clustering [61,62,25], discretization [63,64,
65], and density estimation [66,67,43,68,69]. All aforementioned methods necessar-
ily introduce adjustable parameters. As a result, the arbitrariness of assigning these
parameters has an impact on the identification of the optimal subset of features and
on the ranking induced by the relevance function and the feature selection criterion
(cf. Fig 1).

Other approaches to estimating probability densities are quantities that can be
computed directly from sample data. An example is cumulative probability distribu-
tions, the anti-derivatives of probability densities:

P(x) := P(X ≤ x) =
∫ x

−∞

p(x′)dx′ . (8)

Cumulative probability distributions of a random variable X evaluated at x de-
scribe the probability that X takes a value less than or equal to x. They are based on
accumulated statistics and are more regular and less sensitive to statistical noise than
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probability distributions [46,47]. In addition, they are invariant under translations and
reparameterizations that preserve the order of the original elements of the variables,
i.e., positive monotonic transformations T : R→ R,

P(x) = P(T (x)) ∀x ∈ X : x 7→T (x) such that x2 > x1⇒T (x2)> T (x1) .
(9)

However, cumulative probability distributions are not invariant under inversions
as inversions transform them into either T (X) 7→ X or T (X) 7→ −X . Also, non-
bijective transformations, e.g., T (X) = ±|X |, do not preserve the order of the orig-
inal elements of the variables either. To account for such transformations, they must
be performed on the initial set of features, while creating additional features to be
considered in the feature selection procedure.

Apart from this step, no further considerations are needed to introduce a new
measure of relevance, called cumulative mutual information, analogous to mutual
information.

2.3 Cumulative mutual information

Cumulative mutual information describes the inherent dependence expressed in the
joint cumulative distribution P(x,y) = P(X ≤ x,Y ≤ Y ) of two random variables rel-
ative to the product of their marginal cumulative distribution P(x) and P(y),

I (Y ;X) =
∫

y∈Y

∫
x∈X

P(y,x) log
P(y,x)

P(y)P(x)
dxdy

= DKL(P(y,x)||P(y)P(x)) . (10)

Here, the independence assumption of random variables, P(y,x) = P(y)P(x), re-
sults in a measure, that is again only zero if the variables are statistically independent
and non-negative otherwise. Similarly to mutual information, cumulative mutual in-
formation quantifies the degree of dependency as the reduction in the uncertainty of
Y given X , i.e., I (Y ;X) = H (Y )−H (Y |X). It is a function of cumulative entropy
H (Y ) and conditional cumulative entropy H (Y |X),

H (Y ) =−
∫

y∈Y

∫
x∈X

P(y,x) logP(y)dxdy (11)

H (Y |X) =−
∫

y∈Y

∫
x∈X

P(y,x) logP(y|x)dxdy , (12)

where P(y|x) = P(y,x)/P(x) is the conditional cumulative distribution of y≤Y given
x≤ X (cf. Tab. 2). Again, H (Y |X) = 0 if variables X and Y are functional dependent
and H (Y |X) = H (Y ) if variables X and Y are independent of each other.

Bounds restrict cumulative mutual information to a closed interval 0≤I (Y ;X)≤
H (Y ) with an upper bound still dependent on Y . For this reason, cumulative mutual
information is normalized,

D(Y ;X) =
I (Y ;X)

H (Y )
=

H (Y )−H (Y |X)

H (Y )
, (13)



8 B. Regler et al.

and is hereafter referred to as fraction of cumulative information. Further, cumula-
tive mutual information as well as fraction of cumulative information have the same
properties as mutual information and fraction of information to be monotonically
increasing with the cardinality of the feature set X (Eq. 2).

3 Empirical estimations of cumulative entropy and cumulative mutual
information

The closed-form expression of cumulative mutual information (Eq. 10) is only ap-
plicable in the limit of large data samples, N → ∞, and does not specify how to
empirically derive the quantity in practical applications on a limited set of sample
data.

For this reason, assume an empirical sample {(y1,x1),(y2,x2), . . . ,(yn,xn)} drawn
independently and identically distributed (i.i.d.) according to the joint distribution of
X and Y . Such sample data induces empirical cumulative probability estimates for all
variables Z ∈ {Y,X}, which lead to empirical estimators denoted by a hat (Tab. 2).
For example, the empirical version of cumulative probability distribution is given by
the sum of indicator functions,

P̂(z) =
1
n
|{ i | zi ≤ z}| , ∀zi ∈ Z , (14)

that asymptotically converges to P(z) as n→ ∞ for every value of z ∈ Z (Glivenko-
Cantelli theorem [70,71]). Thus, any empirical estimate, Ê , based on empirical cu-
mulative probability converges pointwise as n→ ∞ to the actual value of E , i.e.,
Ê (Z)→ E (Z) [44,47].

3.1 Empirical cumulative entropy

The cumulative entropy is estimated by means of empirical probability distributions.
For i.i.d. random samples that contain repeated values, empirical cumulative entropy
has the form

Ĥ (Z) =−
k−1

∑
i=1

∆ziP̂(z) log P̂(z) =−
k−1

∑
i=1

(
z(i+1)− z(i)

) ni

n
log

ni

n
, (15)

where z(i) denotes the values z(0) < z(1) < · · · < z(k) in sorted order of Z with z(0) =
−∞, multiplicity ni = |{ j ∈ n : z(i−1) < z j ≤ z(i)}|, and constraint n = ∑

k
i=1 ni.

3.2 Empirical conditional cumulative entropy

By construction, cumulative entropy is sensitive to the range of Z. The same is true for
conditional cumulative entropy H (Y |X) and its empirical estimate Ĥ (Y |X). How-
ever, we are not interested in estimating Ĥ (Y |X), but rather in estimating the fraction
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of cumulative mutual information (Eq. 13). More precisely, we are interested in the
residual fraction of cumulative information,

D̂r(Y ;X) = 1− D̂(Y ;X) =
Ĥ (Y |X)

Ĥ (Y )
. (16)

We apply the following trick: to eliminate the scale dependence of X , we use the fact
that features are invariant under rank-order preserving transformations T (Eq. 9).
Then, all features can be scaled to x′ =T (x) such that ∆x′i = xi+1−xi is constant and
the volume element dx′ in the integrals cancels out (cf. Eq. 12). Such a transformation
is always possible and effectively removes the range dependence of variables from
the residual fraction of cumulative information.

In this way, residual fraction of cumulative mutual information can be computed
independently from the scaling of variables and is given by,

D̂r(Y ;X) =
1
m

m

∑
j=1

∑
n−1
i=1 ∆yiP(yi,x j) logP(yi|x j)

∑
n−1
i=1 ∆yiP(yi,x j) logP(yi)

. (17)

4 Implementation details

Feature selection (Eq. 1) is an optimization problem that either requires a non-convex
dependence measure or additional criteria to judge the optimality of a feature set [72].
Measures based on mutual information do not meet either requirement (cf. Eq. 2).
However, mutual information can be turned into a convex measure by relating the
strength of a dependence with the dependence of the same set of features under the
independence assumption of random variables [48,49]. This is because for a limited
number of samples, independent variables tend to appear related to each other and
can therefore be used to adjust (cumulative) mutual information.

4.1 Baseline adjustment

The limited availability of data makes it in practice challenging to estimate or cal-
culate dependencies on empirical estimators. For example, empirical estimators need
to assign a value (dependence score) close to zero for statistical independent fea-
tures and a score close to one for functional dependent features. However, it is known
that empirical estimators for mutual information never reach the theoretical maxi-
mum (functional dependence) or minimum (statistical independence), respectively
and that mutual information tends to assign stronger dependencies for larger subsets
of features regardless of the underlying relationship [35]. If the relevance of feature’s
subset cannot be evaluated directly by the information value, we need a baseline to
actually compare dependence measures between subsets and different sizes of fea-
ture sets. One solution is to estimate the relevance of a feature subset by an adjusted
measure,

Q∗(Y ;X) = Q(Y ;X)−Q0(Y ;X) , (18)
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where the relevance Q of a feature subset X and the output vector Y is compared
with the relevance Q0 under the independence assumption of random variables [48,
49]. It requires that the adjustment term vanishes for large number of sample data
Q0(Y ;X)→ 0 as n→ ∞ and becomes zero if features are proportional to the output,
Q0(Y ;X)→ 0 as X → Y . While the baseline adjustment for mutual information has
already been addressed [48,49,50,52], we define the baseline adjustment for empiri-
cally cumulative mutual information as follows,

Î ∗(Y ;X) = Î (Y ;X)− Î0(Y ;X) , (19)

D̂∗(Y ;X) =
Î ∗(Y ;X)

Ĥ (Y )
= D̂(Y ;X)− D̂0(Y ;X) (20)

where Î ∗(Y ;X) is the adjusted empirical cumulative mutual information, D̂∗(Y ;X)
is the adjusted fraction of empirical cumulative information, and Î0(Y ;X) is the ex-
pected cumulative mutual information under the independence assumption of random
variables.

Expected cumulative mutual information is given by permuting the values of each
feature independently, X→ X(M), and by taking the average of all particular realiza-
tions M ∈M of cumulative mutual information Î (Y ;X |M),

Î0(Y ;X) = ∑
M∈M

Î (Y ;X |M)P(Y ;X |M) , (21)

with M being the set of all permutations of X and P(Y ;X |M) the probability to find
a particular realization M for a given data set (Y,X).

Although expected cumulative mutual information entails computationally in-
tensive permutations, it can be rewritten in the form of a hypergeometric model of
randomness [73,48,50] with quadratic complexity. The details can be found in the
appendix and are analogous to the baseline adjustment for mutual information [48].

4.2 Total cumulative mutual information

Besides defining a dependence measure based on cumulative probability distributions
(Eq. 8), a similar measure for complementary cumulative probability distributions,
P′(X) := P(X ≥ x) = 1−P(X ≤ x), can be derived, i.e.,

D ′(Y ;X) =
H ′(Y )−H ′(Y |X)

H ′(Y )
, (22)

D̂∗′(Y ;X) = D̂ ′(Y ;X)− D̂ ′0(Y ;X) , (23)

where the cumulative entropies H ′(Y ) and H ′(Y |X) are defined by P′(X). Both mea-
sures D(Y ;X) and D ′(Y ;X) quantify the dependence between features and an output
from different sides of the distribution and impose lower and upper bounds on the in-
formation contained. The question arises of how to construct a single measure from
these two.
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In the context of feature selection, a natural choice is to instantiate total cumula-
tive mutual information (TCMI) as the minimum contribution of fraction of empirical
cumulative information for either of the two measures,

D̂∗TCMI(Y ;X) := min(D̂∗(Y ;X),D̂∗′(Y ;X)) . (24)

Thus, TCMI effectively quantifies the minimum strength of dependency between
features and an output. While D̂∗TCMI(Y ;X) is extremely helpful in feature selection
tasks, we use the average fraction of total cumulative information

〈D̂∗TCMI(Y ;X)〉 := 〈D̂TCMI(Y ;X)〉−〈D̂TCMI, 0(Y ;X)〉 (25)

and

〈D̂TCMI(Y ;X)〉= 1
2
[
D̂(Y ;X)+ D̂ ′(Y ;X)

]
〈D̂TCMI, 0(Y ;X)〉= 1

2
[
D̂0(Y ;X)+ D̂ ′0(Y ;X)

]
, (26)

for assessment tasks, i.e., for evaluating the strength of dependence, that compensates
for imbalances in the contributions of total cumulative mutual information (Eq. 24).

4.3 Feature selection

Having defined our feature selection criterion, we now briefly discuss the feature
selection search strategy. As already mentioned in the introduction, the optimal search
strategy (subset selection) of k features from an initial set of features X= {X1, . . . ,Xd}
is a combinatorial and exhaustive search procedure that is only applicable to low-
dimensional problems. An efficient alternative to the exhaustive search is the depth-
first branch-and-bound algorithm [9,10,11,12]. It is an exponential search method
and guarantees to find the optimal subset of feature variables without evaluating all
possible subsets. However, prior knowledge of potential interdependencies between
features and the target always leads to faster convergence and earlier termination of
the algorithm. The performance therefore depends crucially on the features of the
data set, which influence not only the performance of the feature-selection task, but
also the maximum strength of the interdependence between features and the target.
It may be that the given features only lead to a weak dependency. In these cases, it
is recommended to include and consider as many features as possible in the feature-
selection task and perform the analysis again.

In short, branch and bound maximizes an objective function Q∗ : X′ → R de-
fined on a subset of features X′ ⊆ X by making use of the monotonicity condition
of a feature selection criterion, Q : X′ → R, and a bounding function, Q̄ : X′ → R.
The monotonicity condition assumes that feature subsets X1, X2, · · · , Xk obtained by
adding k features from the set of feature variables X satisfy

X1 ⊆ X2 ⊆ ·· · ⊆ Xk , (27)
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Data: features X, target Y
Result: Optimal features X⊇ X∗← optimal

1 begin
2 S0 =∅;
3 subsets = {S0};
4 optimal = S0;
5 while subsets do
6 for Xi ∈ X\Sk−1 do
7 Sk = Sk−1⊗Xi;
8 Compute Q(Y ;Sk) and Q̄(Y ;Sk);
9 if Q(Y ;Sk)< Q̄(Y ;Sk) then

10 subsets = subsets∪{Sk};
11 if Q(Y ;Sk)> Q(Y ;optimal) then
12 optimal = Sk;
13 end
14 end
15 end
16 end
17 end

Algorithm 1: Simplified branch and bound algorithm for feature selection.

so that feature selection criterion Q and bounding function Q̄ are monotonically
increasing and decreasing respectively,

Q(X1)≤Q(X2)≤ ·· · ≤Q(Xk)

Q̄(X1)≥ Q̄(X2)≥ ·· · ≥ Q̄(Xk) .
(28)

The branch and bound algorithm, sketched in Alg. 1 and Fig. 2, constructs a
search tree where the root represents the empty subset and leaves represent subsets
of k features. While traversing the tree down to leaves from left to right, a limited
number of (non-redundant) sub-trees is generated by augmenting the subset by one
feature from the initial set of features X (branching step). The algorithm keeps the
information about the currently best subset X∗ := Xk and the corresponding objective
function it yields (the current maximum). Anytime the objective function Q∗ in some
internal nodes exceeds the bounding function Q̄ of sub-trees, it decreases – either due
to the condition Eq. 28 or the bounding function is lower than the current maximum
value of the objective function, sub-trees can be pruned and computations be skipped
(bounding step). On termination of the algorithm, the bound contains the optimum
objective function value and found subsets of features are ranked in descending order
of the objective function values.

As objective and criterion function we set Q∗ = D∗TCMI(Y ;X), the criterion func-
tion to be Q =min(D(Y ;X),D ′(Y ;X)), and, as a pruning rule, the bounding function
to be Q̄ = 1−min(D̂0(Y ;X),D̂ ′0(Y ;X)) (Eq. 24). Proofs for the monotonicity con-
ditions for Q and Q̄ follow similar arguments as for Shannon entropy [52] and are
provided in the appendix.
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x.xx Bounding function = 1 min( 0(Y; X), ′

0(Y; X))

Fig. 2 Example of a depth-first tree search strategy of the branch and bound algorithm [9,10,11,12] to
search for the optimal subset of features. Shown is the tree traversal going from top to down and left to
right by dashed arrows, the estimated fraction of total cumulative information (objective function inside
circles), subsets of features (labels at the bottom of the circles), fraction of cumulative information (crite-
rion function, first number, right or left the circles), and the expected fraction of cumulative information
contribution (bounding function, second number, right or left the circles). Capital roman symbols indicate
applied pruning rules or updates of the current maximum objective function. Anytime the objective func-
tion in some internal nodes exceeds the bounding function of sub-trees (I), it decreases (II) – either due to
the condition Eq. 28 or the bounding function is lower than the current maximum value of the objective
function (III), sub-trees can be pruned and computations be skipped. On termination of the algorithm, the
bound contains the optimum objective function value (IV).

4.4 Complexity Analysis

Finally, we analyze the computational complexity of TCMI. In the worst case, for n
number of example data and d features, cumulative mutual information must eval-
uate the integral O(nd) times and O(n2) times to calculate the baseline adjustment
term. Thus, TCMI has time complexity O(nd) and suffers from the curse of dimen-
sionality [74]. Second, branch and bound evaluates

(d
1

)
features in the first level,

(d
2

)
features in the second level,

(d
3

)
features in the third level, and so on until all fea-

tures are explored. Thus, a total of ∑
d
k=1
(d

k

)
= 2d −1 subsets of features with a total

time complexity of about O(2d) are evaluated. Third, the ranking of subsets involves
O((n logn)d) sorting operations in case all subsets are relevant.

As a result, the total time complexity of the feature selection algorithm is non-
deterministic polynomial-time (NP)-hard and, in general, the search strategy of ex-
amining all possible subsets is not viable. In the vast majority of cases, however, de-
pendencies are relatively simple relationships of only a small number of features. In
addition, feature selection can be restricted at any time to examine subsets of features
that are less than or equal to a predefined dimensionality of a feature subset. Then the
time complexity is greatly reduced and the feature selection can be solved in poly-
nomial time. Whether the assumptions apply to arbitrary data sets is a case-by-case
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Name ρ2 〈D̂∗TCMI〉 〈D̂TCMI〉 〈D̂TCMI, 0〉 CMI MAC UDS MCDE

linear 1.0000 0.97 1.00 0.03 1.00 1.00 0.67 1.00

exponential 1.0000 0.97 1.00 0.03 1.00 1.00 0.65 1.00

step–2 0.9999 0.96 0.98 0.02 1.00 1.00 0.67 1.00

step–4 0.9996 0.93 0.95 0.02 1.00 1.00 0.67 1.00

step–8 0.9984 0.87 0.88 0.01 1.00 1.00 0.67 1.00

random 0.0091 0.33 0.65 0.32 0.02 0.34 0.00 0.54

sawtooth–8 0.0016 0.23 0.31 0.07 0.03 0.03 0.00 0.14

sawtooth–4 0.0004 0.17 0.27 0.10 0.00 0.01 0.00 0.09

sawtooth–2 0.0001 0.09 0.19 0.09 0.00 0.00 0.00 0.03

constant 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 3 Dependence scores, 〈D̂∗TCMI(Y ;X)〉, between a linear data distribution and a linear, exponential,
step, sawtooth and uniform (random) distribution. The data sample size is n = 200. Step-like distributions
were generated by discretization of the linear distribution with each value repeating r-times. Sawtooth-like
distributions have 2, 4, or 8 number of steps per ramp and dn/levele ramps in total. The table also shows
Spearman’s rank correlation coefficient squared ρ2, total cumulative mutual information contributions,
〈D̂TCMI(Y ;X)〉 and 〈D̂TCMI, 0(Y ;X)〉, and the scores from similar dependence measures such as CMI [25],
MAC [26], UDS [28,29], and MCDE [35].

study. However, indicators such as the convergence rate of the TCMI approaching
the maximum value or the estimated strength of the relationships are helpful in ex-
ploratory data analysis to search for relevant features.

5 Experiments

To demonstrate the performance of TCMI in different settings, we first look at gen-
erated data and show that our method can detect both univariate and multivariate de-
pendencies. Then, we discuss applications of TCMI on data sets from KEEL and UCI
Machine Learning Repository [75,76,77] and a typical scenario from the materials
science community, namely to predict the crystal structure of octet-binary compound
semiconductors [6,78].

5.1 Case study on generated data

In a number of experiments, we test the theoretical properties of TCMI, i.e., its in-
variance properties and performance statistics. We also study an exemplified feature-
selection task to find a bivariate normal distribution defined in a multi-dimensional
space.

5.1.1 Interpretability of TCMI

In the first experiment we investigate TCMI with respect to a linear data distribution
Y of size n = 200 and different distributions X as features of different similarity to the
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Fig. 3 Expected empirical cumulative mutual information, 〈D̂0(Y ;X), with respect to the number of sam-
ple data. Shown is the dependency (solid line) and a heuristic derived analytic functional relationship
(dashed line).

output (Tab. 3). Besides linear, exponential, and constant distributions (zero vector),
we consider stepwise distributions generated by discretization of the linear distribu-
tion, where each value is repeated 2, 4 or 8 times. Furthermore, we consider uniform
(random) and sawtooth distributions with 2, 4 or 8 steps per ramp. The results show
that (i) there is a clear relationship between the TCMI values in terms of the similar-
ity between the feature and the output, (ii) TCMI is zero for a constant distribution,
or approaching one for an exact dependency (see also Fig. 3), and that (iii) depen-
dence measures such as CMI [25], MAC [26], UDS [28,29] and MCDE [35] are less
sensitive in the distributions than TCMI.

Further, results show that MCDE cannot differentiate between a linear and a con-
stant distribution and that the random distribution has a higher TCMI score, i.e.,
stronger dependency, than sawtooth distributions. In fact, the strength of the TCMI
dependency score in this bivariate example is consistent with Spearman’s rank co-
efficient of determination ρ2 [37], which is well suited to assessing the similarity
between bivariate monotonic distributions.

There is one remark, we would like to point out here: Due to the limited avail-
ability in the data, random variables lead to spurious dependencies that are clearly
reflected in TCMI and MCDE, but not in CMI, MAC and UDS. Especially, the base-
line adjustment 〈D̂TCMI, 0〉 for a random variable is larger than any other tested de-
pendence of Tab. 3. A large baseline adjustment results in smaller TCMI values, so it
is unlikely that random variables will be part of the feature selection. However, if the
dependencies are of the same strength as spurious dependencies induced by random
variables, TCMI may select features that do not influence the output. Therefore, the
strength of the dependency must always be compared with dependencies of random
variables.

5.1.2 Properties of the baseline correction term

In the second experiment, we take a closer look at the baseline adjustment term that
decreases monotonically with respect to the number of sample data. Baseline adjust-
ment is given by expected empirical cumulative mutual information (Eqs. 20 and 21).
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Fig. 4 Fraction of cumulative information scores against increasing dimensionality for {Y,X} using 10,
50, 100, and 500 data samples generated from mutually independent and uniform distributions of size X =
{Y,X1, · · · ,X4}. Contributions of average fraction of total cumulative mutual information, 〈DTCMI(Y ;X)〉
and 〈DTCMI, 0(Y ;X)〉 are shown on either side of the plot and the resulting score 〈D∗TCMI(Y ;X)〉 as points.
Error bars indicate standard deviations from repeating the experiment 50 times. Since X and Y are inde-
pendent, average total cumulative mutual information 〈D∗TCMI(Y ;X)〉 should be constant across subsets of
features independent of sample size and subset dimensionality. While 〈DTCMI(Y ;X)〉 is increasing with the
cardinality of the feature set and 〈DTCMI, 0(Y ;X)〉 decreasing, 〈D∗TCMI(Y ;X)〉 is approximately constant for
a wide range of data samples 10 . . .500 and subset dimensionality 1 . . .4. The crosses represent the devia-
tion of the TCMI from the constant baseline. By enlarging the feature subset with a shuffled version of the
feature, TCMI can be corrected.

As our evaluation of the baseline adjustment shows, expected empirical cumulative
mutual information decreases with increasing number of sample sizes in all our test
cases presented below. For instance, the baseline adjustment for linear dependencies
roughly follows a 〈D̂ (′)

0 (Y ;X)〉 ∼ n−2/3 scaling law that vanishes as n→ ∞ (Fig. 3).

5.1.3 Invariance properties of TCMI

In the third experiment, we investigate the invariance properties of TCMI. By con-
struction, TCMI is invariant under positive monotonic transformations (Eq. 9). To
provide a comprehensive evaluation, we generated random distributions X of differ-
ent sizes and reparameterize variables using invertible transformation (cf. Sec. 2.2).
Results on monotonic transformations, e.g., T (X) = aXk + b where a,b,k ∈ R, or
compositions, e.g., T (X) = T1(X)±·· ·±Tm(X), show that as long as the order of
the original elements of the features is preserved, TCMI is invariant. Furthermore,
experiments with different feature subset sizes of random distributions show the in-
variance of TCMI by exchanging features, namely D̂∗TCMI(Y ;X) = D̂∗TCMI(Y ;X′) for
all X′ ∈ perm(X), without having to define a sorted order of feature set as compared
to CMI, MAC or UDS [25,65,28,29].

5.1.4 Baseline adjustment of TCMI

In the fourth experiment, we investigate baseline adjustment (Sec. 4.1). We generated
mutually independent and uniform distributions Z = {Y,X1, . . . ,Xd} of dimensional-
ity d with sample sizes 10, 50, 100, and 500 and compared TCMI across subsets of
feature variables of different subspace dimensionality while repeating the experiment
50 times. Fig. 4 summarizes the results.

While scores are constantly zero in the discrete case [48], scores are zero for
TCMI only if the distribution is exactly uniform. In general, uniform distributions are
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Fig. 5 Bivariate normal probability distribution with mean µ = (0,0) and covariance matrix Σ =
[1,0.5;0.5,1]. Shown is a scatter plot with 50, 100, 200, and 500 data samples, its cumulative
probability distributions, P(Z ≤ z), Z ∈ {X ,Y}, and contour lines of equal probability densities ∈
{0.01,0.02,0.05,0.08,0.13}.

generated pseudo-randomly and due to random sampling, we expect constant scores
approaching 〈D∗TCMI(Y ;X)〉 → 0.5 as n→ ∞ independent of the dimensionality of
X = {X1, . . . ,Xd} in the case if none of the features is relevant.

Indeed, TCMI is approximately constant for a wide range of data samples 10 . . .500
and subset dimensionality 1 . . .4 and approaches 〈D∗TCMI(Y ;X)〉 → 0.5 as n→ ∞.
Only in the one-dimensional case, TCMI under-estimates the dependency as CMI,
MAC, UDS, and MCDE does even for higher dimensional subsets. The reason for
this is that TCMI does not contain the self-correlation of the statistical noise of a fea-
ture. By enlarging the feature subset with a shuffled version of the feature, TCMI can
be corrected (Fig. 4). As a result, TCMI shows to have a clear comparison mecha-
nism of scores across different subsets of features independent of the number of data
samples.

5.1.5 Bivariate normal distribution

At last, we consider a simple feature-selection task with known ground truth, namely
to find a bivariate normal distribution defined in a high-dimensional space. For this
purpose, we generated a bivariate normal distribution of size n = 500 from features
x and y, added features such as normal, exponential, logistic, triangular, uniform,
Laplace, Rayleigh, and Weibull distributions all with zero mean µ = 0 and identity
covariance matrix σ = 1, and augmented the feature space as described in Section 2.2.
In terms of Pearson or Spearman’s correlation coefficient, none of the features have
coefficients of determinations higher than 1% with respect to the bivariate normal
distribution, so the data set appears to be completely uncorrelated. However, since
the ground truth is known, there are two features, namely x and y, to describe the
bivariate normal distribution of the data set.
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Dependence
Measure

Sample size
50 100 200 500

TCMI {logistic,x}=0.54
{rayleigh,weibull}=0.53
{x,y}=0.52
{x}=0.35
{rayleigh}=0.35
{laplace}=0.35
{triangular}=0.34

{y,rayleigh}=0.57
{y,laplace}=0.55
{y,uniform}=0.55
{y}=0.46

{x,y}=0.58
{y,exponential}=0.55
{y}=0.48
{y,poisson}=0.47

{y,x}=0.60
{x,normal}=0.57
{normal,triangular}=0.57
{x}=0.38

CMI
[25]

{y}=1.00
{logistic}=1.00
{triangular}=1.00
{laplace}=1.00

{y}=1.00
{logistic}=1.00
{normal}=1.00
{triangular}=1.00
{laplace}=1.00

{y}=1.00
{x}=1.00
{triangular}=1.00
{laplace}=1.00
{logistic}=1.00
{normal}=1.00

{y}=1.00
{x}=1.00
{logistic}=1.00
{triangular}=1.00
{laplace}=1.00
{normal}=1.00

MAC
[26]

{y,laplace}=0.90
{y,x}=0.89
{y,triangular}=0.89
{y,exponential}=0.89
{y,normal}=0.89
{y,rayleigh}=0.89
{y,uniform}=0.89
{y,weibull}=0.89
{y,logistic}=0.89
{y}=0.88

{x,laplace}=0.82
{x,logistic}=0.82
{x,weibull}=0.82
{x,triangular}=0.82
{x,exponential}=0.82
{x,normal}=0.82
{x,rayleigh}=0.82
{x,uniform}=0.82
{x,y}=0.82
{y}=0.81

{y}=0.83
{x}=0.83

{y}=0.81
{weibull}=0.78

UDS
[28,29]

{laplace}=0.52 {y}=0.49
{normal}=0.48

{normal}=0.47 {normal}=0.45
{logistic}=0.44

MCDE
[35]

{y}=0.84 {x}=0.88
{y}=0.86

{x}=0.92
{y}=0.88

{y}=0.94
{x}=0.92

Table 4 Topmost feature subsets in the order of identification from the bivariate normal distribution data
set with 50, 100, 200, and 500 data samples as being restricted to subset dimensionality≤ 2 and selected by
the following dependence measures: total cumulative mutual information (TCMI), cumulative mutual in-
formation (CMI), multivariate maximal correlation analysis (MAC), universal dependency analysis (UDS),
and Monte Carlo dependency estimation (MCDE).

Subspace search In order to find the two most relevant features from the high-dimensional
data set, subspace search is performed up to the second subset dimensionality. Fur-
ther, feature selection is being performed for four sets of 50, 100, 200, and 500 data
samples (Fig. 5). Results are reported in Table 4.

Overall, almost all dependence measures find at least one of the two relevant fea-
tures x, y, both, or at least similar distributions, such as the normal distribution. How-
ever, scores and subset sizes of relevant features decrease with larger sample sizes for
MAC and UDS, and CMI identifies exact dependencies even between distributions
where none dependency exists, e.g., between a Laplacian and bivariate normal distri-
bution. In contrast, MCDE robustly finds one of the relevant features x or y, but never
finds two of them being jointly relevant. TCMI also finds relevant features, but scores
and relevance are more determined by sample size as it is being reflected in the score.
Hence, with sample sizes greater than 200, TCMI is the only dependence measure
that correctly identifies the optimal feature subset to be {x,y}. Still, TCMI scores are
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Fig. 6 Statistical power analysis with 95% confidence of dependence measures at different noise levels
σ = 0 . . .1: total cumulative mutual information (TCMI), cumulative mutual information (CMI), multi-
variate maximal correlation analysis (MAC), universal dependency analysis (UDS), and Monte Carlo de-
pendency estimation (MCDE). The diagrams also show the trends in the dependence scores of the optimal
feature subset {x,y} of the bivariate normal distribution.

lower than of the other dependence measures, even though the score increases for
larger sample sizes.

Statistical power analysis To assess the robustness of dependence measures, we per-
formed statistical power analysis of CMI, MAC, UDS, MCDE, and TCMI and added
Gaussian noise with increasing standard deviation σ [26,28,35]. We considered 5+1
noise levels, distributed linearly from 0 to 1, inclusive. We computed the score of the
bivariate normal distribution for each dependency Λ ={CMI, MAC, UDS, MCDE,
TCMI}, i.e., 〈Λ(Y ;X)〉σ , with n = 500 data samples and feature subset {x,y} and
compared it with the score of independently drawn random data samples, 〈Λ(Y ; I)〉0,
of the same size (n = 500) and dimension (d = 1+ 2). The power of a dependence
measure Λ , was then evaluated as the probability P of a dependence score to be larger
than the γ-th percentile of the score with respect to the independence,

Powerγ

Λ ,σ (Y ;X) := P
(
〈Λ(Y ;X)〉σ > 〈Λ(Y ; I)〉γ0

)
. (29)

Essentially, the power of a dependence measure quantifies the contrast, i.e., dif-
ference, between dependence X and independence I at noise level σ with γ% confi-
dence. It is a relative statistical measure and depends on the strength of the depen-
dency. Therefore, dependence strengths that are close to independence are likely to
be more sensitive to analysis than stronger dependencies.

For our experiments, we set γ = 95%, repeated the experiment 500 times, while
shuffling the data samples at each iteration, computed the scores 〈Λ(Y ;X)〉σ and
〈Λ(Y ; I)〉γ0 for every dependence measure at noise level σ , and recorded the average
and standard deviation of the respective dependence measures. The results of statisti-
cal power analysis, the average score of the dependence measures and independence
as well as the contrast are summarized in Figure 6.

With the exception of MAC, the statistical power of all dependence measures
tends to be constant or to decrease with increasing noise level. It is remarkable that
MCDE is the only dependence measure that has a high statistical power, offers a
high contrast and assesses a strong dependency. In particular, the contrast of MCDE
provides excellent statistics, even at noise levels much higher than TCMI. Although
MAC and CMI also have high statistical power, their contrasts or dependence scores
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are low. While a low contrast raises difficulties in identifying feature subsets and
is a serious problem, a low dependence score is not a problem as long as all other
subsets assess dependencies of the same or smaller strength. Thus, in our analysis,
UDS completely fails to detect dependencies in line with observations [35] and TCMI
shows some peculiar features: In general, TCMI is dependent on the number of sam-
ples (Eq. 19) and its contrast generally increases with more data samples. However,
TCMI is more sensitive and, therefore, less robust as compared to the other depen-
dence measures. An in-depth analysis shows: the sensitivity is merely due to the
moderate strength of the dependency as the statistical power is much more robust for
stronger dependencies in other data sets we tested.

5.2 Case study on real-world data

Next, we study selected real-world data sets from KEEL and UCI Machine Learning
Repository [75,76,77], and highlight TCMI for one, not restricted to, typical appli-
cation of the materials science community, namely crystal-structure predictions of
octet-binary compound semiconductors [6,78].

5.2.1 KEEL and UCI regression data sets

We investigate how TCMI and similar dependence measures perform in real-world
problems developed for multivariate regression tasks. Unfortunately, in practice, not
every data set is known to have relevant features. Therefore, we compare our results
with analyzed data sets with known relevant features. All in all, we consider one
simulated data set from the KEEL database [75,76] and two data sets from the UCI
Machine Learning Repository [77]:

1. Friedman #1 regression [79]
This data set is used for modeling computer outputs. Inputs X1 to X5 are indepen-
dent features that are uniformly distributed over the interval [0,1]. The output Y
is created according to the formula:

Y = 10sin(πX1X2)+20(X3−0.5)2 +10X4 +5X5 + ε (30)

where ε is the standard normal deviate N(0,1). In addition, the data set has five
redundant variables X6 . . .X10 that are i.i.d random samples. Further, we enlarge
the number of features by adding four variables X11 . . .X14 each very strongly
correlated with X1 . . .X4 and generated by f (x) = x+N(0,0.01).

2. Concrete compressive strength [80]
The aim of this data set is to predict the compressive strength of high perfor-
mance concrete. Compressive strength is the ability of a material or structure to
withstand loads that tend to reduce size. It is a highly nonlinear function of age
and ingredients. These ingredients include cement, water, blast furnace slag (a
by-product of iron and steel production), fly ash (a coal combustion product),
superplasticizer (additive to improve the flow characteristics of concrete), coarse
aggregate (e.g., crushed stone or gravel), and fine aggregate (e.g., sand).
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3. Forest fires [81]
This data set focuses on wildfires in the Montesinho Natural Park, which is lo-
cated at the northern border of Portugal. It includes features such as local coordi-
nates x and y where a fire occurred, the time (day, month, and year), temperature
(temp), relative humidity (RH), wind, rain, and derived forest fire features such as
fine fuel moisture code (FFMC), duff moisture code (DMC), drought code (DC),
and initial spread index (ISI) to estimate the propagation speed of fire.

For each data set, we performed feature selection using all aforementioned depen-
dence measures (TCMI, CMI, MAC, UDS, MCDE) and compared resulting feature
subsets with potentially relevant features reported from the original references. Re-
sults are summarized in Table 5.

As our results show, even in the simplest example of the Friedman regression data
set, two dependence measures show extreme behavior: UDS selects no features and
MAC selects all features of the data set and therefore does not perform any selection
at all. Both dependence measures do not only completely fail to identify the actual
dependencies of the Friedman regression data set, but also fail in the concrete com-
pressive strength and forest fires data set. Therefore, it is likely that these dependence
measures report incorrect results in other data sets and are therefore inappropriate for
feature selection and dependence assessment tasks.

In contrast, CMI and MCDE tend to identify low-dimensional feature subsets
and, thus, can only detect a few dependencies of a data set. In this case, both depen-
dence measures are able to find relevant features, in the sense that they partly agree
with potentially relevant features reported from the respective references. The only
exception is TCMI, which effectively selects all relevant features of the Friedman re-
gression data set. However, TCMI it is not free from selecting non-relevant features
in other feature subsets as it reports X7 or X8 in the fourth or fifth best feature subset.
Therefore, dependence scores need to be directly related with the baseline adjustment
term, and the lower the dependence scores are, the more likely non-relevant features
are in the subsets (cf. Sec. 5.1.1).

Found feature subsets for the Friedman regression data set as well as for the con-
crete compressive strength data set have high dependence scores. They agree well
with relevant features as reported by the references, even though TCMI misses slag
in the concrete compressive strength example: It is likely that features such as fine
and coarse aggregate or superplasticizer serve as a substitute for slag due to the lim-
ited number of data samples. However, we cannot test this assumption as all data
samples were used for the analysis and none are available for further tests.

The only difference in the selection of feature subsets is in the forest fires data
set. Apart from weather conditions, TCMI also includes some of the derived forest
fires features such as duff moisture (CMD) and drought code (DC), that are indirectly
related to rainfall and estimate the lower and deeper soil moisture content. Since tem-
perature and relative humidity as well as duff moisture and drought code are not only
reported by TCMI, but also by CMI and MCDE, indicates the relevance of these
features in the forest fire prediction, although they were not mentioned as in the ref-
erence [81]. Admittedly, the TCMI scores are moderate, which indicates difficulties
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in assessing the interdependencies between the features and the burnt area of forest
fires as a whole.

5.2.2 Octet-binary compound semiconductors

Our last example is dedicated to a typical, well characterized, and canonical materials-
science problem, namely the crystal-structure stability prediction of octet-binary com-
pound semiconductors [6,78]. Octet-binary compound semiconductors are materials
consisting of two elements formed by groups of I/VII, II/VI, III/V, or IV/IV elements
leading to a full valence shell. They crystallize in rock salt (RS) or zinc blende (ZB)
structures, i.e., either with ionic or covalent bindings and were already studied in the
1970’s [82,83], followed by further studies [84,85], and recent work using machine
learning [86,6,78,7].

The data set is composed of 82 materials with two atomic species in the unit
cell. The objective is to accurately predict the energy difference ∆E between RS and
ZB structures based on 8 electro-chemical atomic properties for each atomic species
A/B (in total 16) such as atomic ionization potential IP, electron affinity EA, the
energies of the highest-occupied and lowest-unoccupied Kohn-Sham levels, H and
L, and the expectation value of the radial probability densities of the valence s-, p-,
and d-orbitals, rs, rp, and rd , respectively [6]. As a reference, we added Mulliken
electronegativity EN = −(IP+EA)/2 to the data set and also studied the best two
features from the publication [6]

D1 =
IP(B)−EA(B)

rp(A)2 , D2 =
|rs(A)− rp(B)|

exp[rs(A)]
, (31)

as known dependencies to show the consistency of the method as well as to probe
TCMI with linearly dependent features [6].

To predict the energy difference ∆E between RS and ZB structures, we conducted
a subspace search with TCMI to identify the subset of features that have the strongest
dependence on ∆E. Results are summarized in Table 6. In total, the strongest depen-
dence on ∆E was found with six features from both atomic species, A and B, before
TCMI decreased again with seven features.

Results reveal that there are several feature subsets that are found to be optimal
among different cardinalities. We note that TCMI never selects Mulliken electroneg-
ativity EN together with either electron affinity EA or ionization potential IP for the
same atomic species. We also notice that EN can be replaced by IP (see bold feature
subsets in Tab. 6), whereas EN replaced by EA result in slightly smaller TCMI values
(by at least 0.02 in case of the optimal subsets, not shown in the table) as EN is found
to be stronger linearly correlated with IP than with EA. Thus, results do not only cor-
roborate the functional relationship between EN, IP, and EA, but also the consistency
of TCMI.

Furthermore, TCMI indicates that features, like the atomic radii rs(B) and rp(B)
or the energies EN(B), H(B), H(B) and IP(B) of IV to VIII elements, can be used
interchangeably without reducing the dependence scores. Indeed, by assessing de-
pendencies between pairwise feature combinations, TCMI identifies rs(B) and rp(B)
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Dependence
Measure

Relevant feature subsets
(Data set, reported relevant features, feature subsets by dependence measures)

Friedman #1 regression [79]: X1 . . .X14
Potentially relevant features: X1 . . .X5 and X11 . . .X14 [500 data samples]

TCMI {X14,X12,X1,X5,X3}= 0.79, {X14,X12,X1,X5}= 0.77, {X4,X2,X1,X3}= 0.77,
{X4,X2,X1,X8}= 0.76, {X14,X12,X1,X7}= 0.75

CMI {X14}= 1.00, {X4}= 1.00

MAC {X14,X8,X9,X7,X11,X3,X6,X10,X12,X5}= 0.89, . . . (+ 119.981 subsets= 0.89)

UDS –

MCDE {X2}= 0.78, {X12}= 0.77, {X11}= 0.77, {X1}= 0.77

Concrete compressive strength [80]: age, cement, water, blast furnace slag (slag), fly ash, superplas-
ticizer (sp), coarse aggregate (coarse aggr), fine aggregate (fine aggr)
Potentially relevant features: age, cement, water, slag [1030 data samples]

TCMI {cement,sp,water,coarse aggr,fine aggr}= 0.68
{fine aggr,water,sp,coarse aggr,fly ash}= 0.68
{fine aggr,water,sp,coarse aggr,age}= 0.68
{cement,coarse aggr,water,slag,fine aggr}= 0.68
{fine aggr,slag,water,coarse aggr,age}= 0.67
{cement,coarse aggr,water,sp,age}= 0.67
{cement,coarse aggr,fine aggr,sp,age}= 0.67
{coarse aggr,cement,fine aggr,water,sp}= 0.66

CMI {age}= 1.00, {cement}= 1.00, {coarse aggr}= 1.00, {fine aggr}= 1.00,
{slag}= 1.00, {water}= 1.00, {sp}= 0.98

MAC {water,coarse aggr,fine aggr,cement,sp,slag,fly ash,age}= 0.76

UDS –

MCDE {age}= 0.90

Forest fires [81]: x, y, time (day, month, and year), temperature (temp), relative humidity (RH), wind,
rain, fine fuel moisture code (FFMC), duff moisture code (DMC), drought code (DC), initial spread
index (ISI)
Potentially relevant features: temp, rain, RH, wind [517 data samples]

TCMI {DMC,RH, ISI, temp,wind,DC}= 0.53,
{DMC,RH,DC, temp,FFMC,wind}= 0.51

CMI {temp,DC}= 1.00, {temp,DMC}= 1.00, {temp,RH}= 1.00,
{temp,FFMC}= 1.00, {FFMC,DC}= 1.00, {FFMC,DMC}= 1.00,
{FFMC,RH}= 1.00, {FFMC, temp}= 1.00, {DMC,DC}= 1.00,
{DMC, ISI}= 1.00, {DMC,RH}= 1.00, {DMC,month}= 1.00,
{DC,DMC}= 1.00, {DC, ISI}= 1.00, {DC,RH}= 1.00, {DC,month}= 1.00,
{RH,DMC}= 1.00, {RH,DC}= 1.00, {ISI,DMC}= 1.00, {ISI,DC}= 1.00,
{temp,month}= 1.00

MAC {temp,RH,DMC,FFMC,DC, ISI,wind,day,x}= 0.85,
{temp,RH,DMC,FFMC,DC, ISI,wind,day}= 0.83,
{temp,RH,DMC,FFMC,DC, ISI,wind,x}= 0.83

UDS {rain}= 0.35

MCDE {DMC, temp,RH}= 0.84, {DMC, temp,DC}= 0.82, {DMC, temp,FFMC}= 0.81

Table 5 Relevant feature subsets for selected data sets from the KEEL database [75,76] and UCI Ma-
chine Learning Repository [77], designed for multivariate regression tasks and feature selection as found
out by total cumulative mutual information (TCMI), cumulative mutual information (CMI), multivariate
maximal correlation analysis (MAC), universal dependency analysis (UDS), and Monte Carlo dependency
estimation (MCDE). For comparison, potentially relevant feature subsets mentioned in the references are
also included.
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Subset
dimension

Feature subsets and dependence score
(TCMI)

Metrics (GBDT)

RMSE MAE MaxAE r2

6 ? {D2,EA(A),rp(A),rs(A),rp(B),L(B)}= 0.84 0.15 0.10 0.43 0.86
{EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,,EN(((BBB))),,,L(((BBB))),,,rrrsss(((BBB)))}=== 000...888222 0.12 0.08 0.32 0.91
{EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,,EN(((BBB))),,,L(((BBB))),,,rrrppp(((BBB)))}=== 000...888222 0.12 0.08 0.32 0.91
{EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,, IP(((BBB))),,,L(((BBB))),,,rrrsss(((BBB)))}=== 000...888222 0.13 0.09 0.33 0.90
{EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,, IP(((BBB))),,,L(((BBB))),,,rrrppp(((BBB)))}=== 000...888222 0.13 0.09 0.33 0.90
{EA(A),rp(A),rs(A),H(B),L(B),rs(B)}= 0.82 0.14 0.10 0.36 0.87
{EA(A),rp(A),rs(A),H(B),L(B),rp(B)}= 0.82 0.14 0.10 0.36 0.87
{EA(A),H(A),rd(A),rp(A),L(B),rd(B)}= 0.82 0.15 0.10 0.45 0.86
{EA(A),H(A),rd(A),rs(A),L(B),rd(B)}= 0.82 0.16 0.10 0.46 0.85
{EA(A),H(A),rp(A),L(B),rd(B),rp(B)}= 0.81 0.14 0.10 0.37 0.88
{EA(A),H(A),rp(A),L(B),rd(B),rs(B)}= 0.81 0.14 0.10 0.37 0.87

5 {EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,, IP(((BBB))),,,L(((BBB)))}=== 000...777999 0.13 0.08 0.40 0.89
{EA(((AAA))),,,rrrppp(((AAA))),,,rrrsss(((AAA))),,,EN(((BBB))),,,L(((BBB)))}=== 000...777999 0.14 0.08 0.46 0.88
{EA(A),rp(A),rs(A),H(B),L(B)}= 0.79 0.15 0.09 0.42 0.86

? {D1,D2,rp(A),rs(A),rs(B)}= 0.79 0.17 0.10 0.50 0.83
{EN(A),rp(A),rs(A), IP(B),L(B)}= 0.78 0.14 0.08 0.43 0.88
{EA(A),H(A),rp(A),L(B),rs(B)}= 0.78 0.14 0.10 0.37 0.88
{EA(A),H(A),rp(A),L(B),rp(B)}= 0.78 0.14 0.10 0.37 0.88
{EA(A),H(A),rd(A),rp(A),L(B)}= 0.78 0.17 0.09 0.51 0.84
{EA(A),H(A),rd(A),rs(A),L(B)}= 0.78 0.17 0.10 0.53 0.83
{EA(A),H(A),L(A),rs(A),L(B)}= 0.78 0.18 0.10 0.55 0.82

4 {EA(A),rp(A),rs(A),L(B)}= 0.78 0.16 0.09 0.49 0.85
{L(A),rp(A),rs(A),rp(B)}= 0.76 0.13 0.09 0.35 0.90
{L(A),rp(A),rs(A),rs(B)}= 0.76 0.13 0.09 0.33 0.90
{EN(A),rp(A),rs(A),L(B)}= 0.76 0.17 0.10 0.52 0.83

? {D1,rp(A),rs(A),rs(B)}= 0.75 0.15 0.11 0.37 0.87

3 {rp(A),rs(A),rs(B)}= 0.73 0.13 0.10 0.31 0.89
{IP(((AAA))),,,rrrppp(((AAA))),,,L(((BBB)))}=== 000...777333 0.16 0.10 0.49 0.84
{rp(A),rs(A),L(B)}= 0.73 0.16 0.10 0.48 0.84
{EN(((AAA))),,,rrrppp(((AAA))),,,L(((BBB)))}=== 000...777333 0.18 0.11 0.53 0.80
{rp(A),rs(A),rp(B)}= 0.72 0.13 0.10 0.31 0.89
{IP(((AAA))),,,rrrsss(((AAA))),,,L(((BBB)))}=== 000...777222 0.17 0.10 0.49 0.82
{EN(((AAA))),,,rrrsss(((AAA))),,,L(((BBB)))}=== 000...777222 0.18 0.11 0.52 0.80

? {D1,rs(A),rp(B)}= 0.70 0.15 0.11 0.40 0.86

2 ? {D1,rs(B)}= 0.71 0.19 0.14 0.52 0.76
{rs(A),L(B)}= 0.69 0.18 0.12 0.49 0.80
{rs(A),rs(B)}= 0.67 0.14 0.10 0.34 0.88

? {D1,D2}= 0.62 0.19 0.14 0.53 0.77

1 ? {D1}= 0.57 0.23 0.18 0.56 0.69
{rs(A)}= 0.56 0.21 0.15 0.53 0.75
{rp(A)}= 0.55 0.21 0.15 0.54 0.75

All 16 features (GBDT reference): 0.15 0.09 0.45 0.86

Table 6 Relevant feature subsets for the octet-binary compound semiconductors data set as found out by
total cumulative mutual information (TCMI) showing the two most relevant feature subsets of each cardi-
nality. For comparison, feature best subsets for D1 = D1(IP(B),EA(B),rp(A)) and D2 = D2(rs(A),rp(B))
from reference [6] (entries with a star ?) are also listed. Bold feature subsets mark subsets with interchange-
able features EN and IP. The table also shows statistics of constructed machine-learning models using the
gradient boosting decision tree (GBDT) algorithm [87] with 10-fold cross-validation: root-mean-squared
error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and Pearson coefficient of
determination (r2).
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to be strongly dependent and EN(B), H(B), and IP(B) strongly dependent, consis-
tent with bivariate correlation measures such as Pearson or Spearman. In numbers,
the Pearson coefficient of determination (r2) between the atomic radii rs and rp are
r2(rs(A),rp(A)) = 0.94, r2(rs(B),rp(B)) = 0.99 and the Pearson coefficient of de-
termination between Mulliken electronegativity and ionization potential or electron
affinity is r2(EN(B), IP(B)) = 0.96, or r2(EN(B),H(B)) = 0.99, respectively. These
findings illustrate that TCMI assigns similar scores to collinear features.

Features D1 and D2 (Eq. 31) from the reference [6], are combinations of atomic
properties that best represent ∆E linearly,

D1 = D1(IP(B),EA(B),rp(A)) , (32)
D2 = D2(rs(A),rp(B)) . (33)

As such, they incorporate knowledge that generally lead to higher TCMI scores for
the same feature subset cardinality. While this applies to the first and second subset
dimensions, feature subsets with the aforementioned features D1, D2 are on par with
feature subsets based on atomic properties at higher dimensions. However, D1 and D2
are not selected consistently by TCMI because TCMI does not make any assumption
about the linearity of the dependency (D1,D2) 7→ ∆E. This suggests that the linear
combination of D1 and D2 is a good, but a not complete, description of ∆E.

A visualization of relevant subsets also reveals clear monotonous relationships in
one and two dimensions (Fig. 7). In addition, we construct machine-learning models
for each feature subset and report model statistics for the prediction of ∆E along with
statistics of the full feature set (Tab. 6). The details can be found in the appendix. We
partitioned the data set into k = 10 groups (so-called folds) and generated k machine-
learning models, using 9 folds to generate the model and the k-th fold to test the
model (10-fold cross validation). To reduce variability, we performed five rounds of
cross-validation with different partitions and averaged the rounds to obtain an es-
timate of the model’s predictive performance. For the machine-learning models we
used the gradient boosting decision tree algorithm (GBDT) [87]. GBDT is resilient to
feature scaling (Eq. 9) just like TCMI and is one of the best available, award-winning,
and versatile machine-learning algorithm for classification and regression [88,89,90].
Notwithstanding this, traditional methods sensitive to feature scaling may show su-
perior performances for data sets with sample sizes larger than number of considered
features [91] (compare also model performances in Tab. 6 with references [6,78,7]).

Machine-learning models are designed to improve with more data and a feature
subset that best represents the data for the machine learning algorithm [87,92]. There-
fore, we expect a general trend of higher model performances with larger subset car-
dinalities. Furthermore, we do not expect that the optimal feature subset of TCMI per-
forms best for every machine-learning model (“No free lunch” theorem [93,94,95,
96]) as an optimal feature subset identified by the feature selection criterion TCMI
may not be same according to other evaluation criteria such as root-mean-squared
error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), or
Pearson coefficient of determination (r2). This fact is evident in our analysis. The
choice of GBDT may not be optimal because its predictive performance generally
decreases with the number of noisy features (compare the model performance with
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Fig. 7 Feature spaces of the topmost selected feature subsets for one (left) and two dimensions (right).
Shown are the two classes of crystal-lattice structures as diamonds (zinc blende) and squares (rock salt),
their distribution, and the trend line/manifold in the prediction of the energy difference ∆E between rock
salt and zinc blende. The trend line/manifold was computed from with the gradient boosting decision tree
algorithm [87] and 10-fold cross validation. For reference, some octet-binary compound semiconductors
are labeled.

all 16 features to a subset, Tab. 6). However, to the best of our knowledge, there is
no other machine-learning algorithm that models data without making assumptions
about the functional form of dependency, is independent of an intrinsic metric, and
can operate on a small number of data samples. Therefore, our focus is only on the
predictive performance of the found subsets relative to the predictive performance of
identified subsets and all features in the data set (Tab. 6).

Results confirm the general trend of higher model performances with larger fea-
ture subset cardinalities and show that the initial subset of 16 features can be reduced
down to 6 features without decreasing model performances. Essentially, feature sub-
sets with three to four features are already as good as a machine-learning model with
all 16 features, where noisy features already start to degrade the prediction perfor-
mance of the GBDT model. The overall performance gradually increases with the
subset cardinality. However, our analysis identifies significant variability in perfor-
mance with a higher dispersion for feature subsets at smaller dependence scores than
for larger values.

An exhaustive search for the best GBDT model yields an optimum of seven fea-
tures to best predict the energy difference between rock salt and zinc blende crystal
structures with D1 and D2 neglected,

{EA(A), IP(A),rd(A),rp(A), IP(B),rs(B),rp(B)}
RMSE : 0.11, MAE : 0.08, MaxAE : 0.27, r2 : 0.92 .

In contrast to the optimal feature subsets of TCMI (cf. Tab. 6), the optimal GBDT
feature set is a variation of optimal feature subsets of TCMI with highest-occupied
Kohn-Sham level and ionization potential interchanged, H(A)↔ IP(A), and lowest-
unoccupied Kohn-Sham level, L(B), missing. Model performances demonstrate that
the optimal feature subsets of TCMI are close to the model’s optimum and corrobo-
rate the usefulness of TCMI in finding relevant feature subsets for machine-learning
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predictions. Slight differences in performances are mainly due to the variances of the
cross-validation procedure and the small number of 82 data samples, which effec-
tively limited the reliable identification of larger feature subsets in the case of TCMI
(Tab. 4).

6 Discussion

Although TCMI is a non-parametric, robust, and deterministic measure, the biggest
limitation is its computational complexity. For small data sets (n < 500) and feature
subsets (d < 5) feature selection finishes in minutes to hours on a modern computer.
For larger data sets, however, TCMI scales with O(nd) and quickly exceeds any re-
alizable runtime. Furthermore, the search for the optimal feature subset also needs
to be improved. Even though in our analysis only a fraction of less than one percent
of the possible search space had to be evaluated, TCMI was evaluated hundreds of
thousands of times. Future research towards pairwise evaluations [17], Monte Carlo
sampling [35], or gradual evaluation of features based on iterative refinement strate-
gies of sampling will show to what extent the computational costs of TCMI can be
reduced.

A further limitation is that non-relevant features may be selected in the opti-
mal feature subsets, when only a limited amount of data points is available (see
Sec. 5.1.5). By construction, the identification of feature subsets is dependent on the
feature selection search strategy (cf. Sec. 1). The results show that it is critical to use
optimal search strategies because sub-optimal search strategies can report subsets of
features that are not related to the output. Even if the exhaustive search for feature
subsets is computationally intensive, it can be implemented efficiently, e.g., by us-
ing the branch-and-bound algorithm. In our implementation, the branch-and-bound
algorithm was used to search for optimal, i.e, minimal non-redundant feature subsets.
However, as our results demonstrate, different feature subsets with few or no common
features may lead to similar dependence scores. The main rationale for this outcome
is that the features may be correlated with each other and therefore contain redun-
dant information about dependencies. Including these redundant features will surely
lead to a higher stability of the method, more consistent results, and better insights
into the actual dependency. If a machine-learning algorithm is given, the best option
at present is to generate predictive models for each of the found feature subsets and
select the one that works best.

7 Conclusions

We constructed a non-parametric and deterministic dependence measure based on
cumulative probability distribution [44,45] to propose fraction of cumulative mu-
tual information D(Y ;X), an information-theoretic divergence measure to quantify
dependencies of multivariate continuous distributions. Our measure can be directly
estimated from sample data using well-defined empirical estimates (Sec. 2). Fraction
of cumulative mutual information quantifies dependencies without breaking permuta-
tion invariance of feature exchanges, i.e., D(Y ;X) = D(Y ;X′) for all X′ ∈ perm(X),



28 B. Regler et al.

while being invariant under invertible transformations. Measures based on mutual
information are monotonously increasing with respect to the cardinality of feature
subsets and sample size. To turn fraction of cumulative mutual information into a
convex measure, we related the strength of a dependence with the dependence of the
same set of features under the independence assumption of random variables [48,
49]. We further constructed a measure based on complementary cumulative probabil-
ity distributions and introduced total cumulative mutual information 〈D̂∗TCMI(Y ;X)〉.

Tests with simulated and real data confirm that total cumulative mutual infor-
mation is capable of identifying relevant features of linear and nonlinear dependen-
cies. The main application of total cumulative mutual information is to assess depen-
dencies, to reduce an initial set of features before processing scientific data, and to
identify relevant subset of features, which jointly have the largest dependency and
minimum redundancy on the output. The performance of the total cumulative mutual
information is still exponential and thus outweighs potential benefits of TCMI. In
future works, we will address the performance issues of TCMI, the stability of identi-
fied feature subsets, and provide a feature selection framework that is also suitable for
discrete, continuous, and mixed data types. We will also apply TCMI to current prob-
lems in the physical sciences with a practical focus on the identification of feature
subsets to simplify subsequent data-analysis tasks.

Since total cumulative mutual information identifies dependencies with strong
mutual contributions, it is applicable to a wide range of problems directly operating
on multivariate continuous data distributions and does not need to require probability
density estimation, clustering, or discretization. Thus, total cumulative mutual infor-
mation has the potential to promote an information-theoretic understanding of func-
tional dependencies in different research areas and can be used to gain more insights
from data.
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Appendix

A Baseline adjustment

Dependency measurements that assign stronger dependencies for larger subsets of
features independently of the underlying relationship are considered biased [48]. To
actually compare dependence measures across subsets of features and different cardi-
nality, dependence measures must have a baseline. Baseline adjustment is addressed
by eliminating the inherent bias of the measure, so that the baseline becomes constant
under the random assumption of variables. The baseline adjustment was discussed for
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Fig. 8 A r× c cumulative contingency table M related to two clusterings X̃ and Ỹ with row marginals,
ai = ∑

c
j=1 ni j , and column marginals, b j = ∑

r
i=1 ni j . The two marginal sum vectors a = [ai] and b = [b j]

are constant and satisfy the fixed marginals condition, ∑
r
i=1 ai = ∑

c
j=1 b j = N.

mutual information in [48,49,50,52]. By following the notation of Vinh, Epps et. al.
[48], we propose the baseline adjustment for cumulative mutual information.

A common model of randomness is the hypergeometric model [73,48,50] (also
called permutation model). It uniformly and randomly generates m distinct permuta-
tions of pairs M with probability P(Y ;X |M) by permuting all values of each variable
in the data set,

Î0(Y ;X) = ∑
M∈M

Î (Y ;X |M)P(Y ;X |M) . (34)

Then the baseline-adjusted cumulative fraction of the information can be obtained
by subtracting fraction of the cumulative information (Eq. 10) from the expected frac-
tion of the cumulative information under the assumption of independent and identical
distributed random variables,

Î ∗(Y ;X) = Î (Y ;X)− Î0(Y ;X) , (35)

D̂∗(Y ;X) = D̂(Y ;X)− D̂0(Y ;X) =
Î ∗(Y ;X)

Ĥ (Y )
. (36)

Specifically, the average cumulative mutual information between all different per-
mutations with |Xi|= ai, i = 1, · · · ,r and |Yj|= b j, j = 1, · · · ,c has constant marginal
sum vectors a = [ai] and b = [b j]. Therefore, the cumulative information overlap be-
tween X and Y ,

Î0(Y ;X |M) = Î0(a,b|M = [ni j]
i=1···r
j=1···c) =−

r−1

∑
i=1

c

∑
j=1

∆yi(M)
ni j

n
log

ni j

b j
, (37)

can be summarized in the form of a r×c cumulative contingency table, M = [ni j]
i=1···r
j=1···c

(Tab. 8), with ni j as being a specific realization of the joint cumulative probability
given row marginal ai and column marginal b j.

By rearranging the sums in Eq. 37 and writing the sum over the entire permutation
of variable values as a sum over all permutations of possible values of ni j, we get

Î0(Y ;X) =− ∑
M∈M

r−1

∑
i=1

c

∑
j=1

∆yi(M)
ni j

n
log

ni j

b j
P(Y ;X |M)

=−
r−1

∑
i=1

c

∑
j=1

∑
ni j

∆yi(ni j,ai,b j|M) ·
ni j

n
log

ni j

b j
P(ni j,ai,b j|M) , (38)
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Î0(Y ;X) =−
r−1

∑
i=1

c

∑
j=1

∑
ni j

∆yi(M|ni j,ai,b j)
ni j

n
log
(

ni j

b j

)

·
(r− i)!(i−1)!(b j−1)!(r−b j)!

(b j−ni j)!(r− i−b j +ni j)!(ni j−1)!(i−ni j)!(r−1)!
(42)

where P(ni j,ai,b j|M) is the probability to encounter an associative cumulative con-
tingency table subject to fixed marginals.

The probability to encounter an associative cumulative contingency table subject
to fixed marginals, with the cell at the i-th row and j-th column equals to ni j, is given
by the hypergeometric distribution,

P(ni j,ai,b j|M) = P(b j−ni j,r−1,r− i,b j−1)

=

(
r− i

b j−ni j

)(
i−1

ni j−1

)/(
r−1
b j−1

)
. (39)

The hypergeometric distribution describes the probability of b j − ni j successes
in b j − 1 draws without replacement where the finite population consists of r− 1
elements, of which r− i are classified as successes. It is limited by the number of
successes that must not exceed the limit of max(0, i+b j− r)≤ ni j ≤min(i,b j).

Similar, the distance ∆yi(M) between two consecutive ordered values is described
by a binomial distribution,

∆yi(ni j,ai,b j|M) =
1

N

kmax

∑
k=1

(
r− k−1

b j−2

)(
y(i+k)− y(i)

)
, (40)

where the upper limit is given by kmax = min(n−b j +1,r− i) and N is the normal-
ization constant:

N =
kmax

∑
k=1

(
r− k−1

b j−2

)
. (41)

Summarizing all the single parts of Eq. 37, the final formula for the expected frac-
tion of cumulative information under the assumption of the hypergeometric model of
randomness is given by Eq. 42.

B Monotonicity conditions for total cumulative mutual information

In the following we will prove that expected cumulative mutual information under
the randomness assumption of variables Î0(Y ;X) is monotonically increasing with
respect to the number of features in the subset, i.e,

Î0(Y ;X)≤ Î0(Y ;X ′) for X ⊂ X ′ ⊆ X (43)

with X ′ = X ∪{χ} and some χ 6∈ X . For reference, we will closely follow the proof
for the baseline correction term in the discrete case with mutual information [52].
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Let the row and column marginals of Y,X ,X ′ be ai for i = 1 . . .R, b j for j = 1 . . .C
and b′j for j = 1 . . .C′, respectively. We note that C′ >C. In order to show that

∑
M∈M

Î (Y ;X |M)P(Y ;X |M)≤ ∑
M′∈M ′

Î (Y ;X |M′)P(Y ;X |M′) . (44)

we define a relation between the cumulative contingency tables M = M (Y ;X) and
M ′ = M (Y ;X ′) via the projection operator π : M ′→M . The projection operator
links the projection π : V (X ′)→ V (X) of values from X ′ to values of X defined by
π(X ′) = X with the projection to the sets of cumulative contingency tables by finding
the counts in the column corresponding to X ∈ V (X) of π(M′) as the sum of the
columns in M′ corresponding to π−1(X). Therefore, it remains to show that for all
M ∈M holds:

Î (Y ;X |M)P(Y ;X |M)≤ ∑
M′∈π(M)

Î (Y ;X |M′)P(Y ;X |M′) . (45)

Then, from the chain rule of cumulative mutual information [44,97,45], it fol-
lows that Î (Y ;X |M) ≤ Î (Y ;X |M′) for M = π(M′). Thus, showing the relation
P(Y ;X |M) = ∑M′∈π(M)P(Y ;X |M′) concludes the proof. We will show the proof
by contradiction.

Formally, let Sn denote the symmetric group of degree n, i.e., Sn consists of all n!
bijections σ : {1 . . .n} → {1 . . .n}. For a bijection σ ∈ Sn, we denote the permuted
version of Y as Yσ . Then, for any cumulative contingency table N ∈M (Y ;Z) Sn[N] =
{σ ∈ Sn : M(Yσ ;Z)=M} denotes the permutations that result in Z. Let σ ∈ Sn\Sn[M].
This means that Mi j(Y ;X) 6= Mi j(Yσ ;X) for at least one cell i, j. Further, denote the
set of all indices of values of X ′ that are projected down to X by

π
−1( j) = { j′ : 1≤ j′ ≤C′,π(X ′j′) = X j} , (46)

for which, by definition, follows that

∑
j′∈π−1( j)

M′i j′(Y ;X ′) 6= ∑
j′∈π−1( j)

M′i j′(Yσ ;X ′) . (47)

Since for at least one index j′ ∈ π−1( j) we get M′i j′(Y ;X ′) 6= M′i j′(Yσ ;X ′), we also
find σ 6∈ Sn[M′] and can conclude

Sn[M]⊇
⋃

M′∈π−1(M)

Sn[M′] . (48)

Now let N′ ∈M (Y ;X ′) with π(N′) 6= M and assume that Sn[M] ⊃ Sn[M′], i.e.,
there is a σ ∈ Sn[M]∩Sn[N′]. Let us denote N = π(N′). Since Sn[M]∩Sn[N] = /0, we
know that σ 6∈ Sn[N]. However, it follows from Eq. 48 that σ 6∈ Sn[N′] – a contradic-
tion and, hence,

Sn[M] =
⋃

M′∈π−1(M)

Sn[M′] (49)

and

P(Y ;X |M) =
|Sn[M]|
|Sn|

= ∑
M′∈π−1(M)

|Sn[M′]|
|Sn|

= ∑
M′∈π(M)

P(Y ;X |M′) . (50)

�
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C Gradient boosting decision trees

We used LightGBM [98], a recent modification of the gradient boosting decision trees
algorithm [87]. LightGBM improves the efficiency and scalability without sacrificing
performance. The following settings were used and were found by hyper-parameter
tuning: number of leaves (num_leaves, 1% of the number of samples), number of
iterations (n_estimators, 2000), and model depth (max_depth, -1).

During the training, i.e., the model optimization, we performed a regularization
to automatically select the inflection point at which the performance of the test data
set begins to decrease while the performance of the training data set continues to
improve. The data set was partitioned into 10 groups (so-called folds), using 9 folds
to generate the model and the remaining fold to test the model (10-fold cross val-
idation). To reduce variability, we performed five rounds of cross-validation with
different partitions and averaged the rounds to obtain an estimate of the model’s pre-
dictive performance. We monitored the L1 and L2 norms [87,92] and simultaneously
penalized the model optimization (“learning”) process on the 9 folds to minimize the
squared residuals and the complexity of the model (eval_metric, [‘l1’, ‘l2 root’]),
while stopping the learning process as soon as one metric of the remaining fold in the
last n = 50 rounds did not improved (early_stopping_rounds, 50).

Conflict of interest

The authors declare that they have no conflict of interest.

Software license

We implemented total cumulative mutual information in Python. Our Python-based
implementation is part of B.R.’s doctoral thesis and is made publicly available under
a Apache License 2.0.

Data availability

All data and scripts involved in producing the results can be downloaded from GitHub
(https://github.com/sommerregen/tcmi). An online tutorial to reproduce the main re-
sults presented in this work can also be found in the NOMAD Analytics Toolkit
(https://labdev-nomad.esc.rzg.mpg.de/jupyterhub/hub/user-redirect/tree/tutorials/tcmi/
tcmi.ipynb).

Corresponding authors

Correspondence to Benjamin Regler or Luca M. Ghiringhelli.

https://opensource.org/licenses/Apache-2.0
https://github.com/sommerregen/tcmi
https://labdev-nomad.esc.rzg.mpg.de/jupyterhub/hub/user-redirect/tree/tutorials/tcmi/tcmi.ipynb
https://labdev-nomad.esc.rzg.mpg.de/jupyterhub/hub/user-redirect/tree/tutorials/tcmi/tcmi.ipynb
mailto:regler@fhi-berlin.mpg.de
mailto:ghiringhelli@fhi-berlin.mpg.de


TCMI: a non-parametric mutual-dependence estimator 33

References

1. T. Hey, S. Tansley, K. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery (Microsoft
Research, 2009). The concept of a fourth paradigm was probably first discussed by J. Gray at a
workshop 22on Januar 11, 2007 before he went missing at the Pacific on January 28, 2007.

2. I. Guyon, A. Elisseeff, Journal of Machine Learning Research 3, 1157 (2003)
3. A.L. Blum, P. Langley, Artificial Intelligence 97(1), 245 (1997). DOI 10.1016/S0004-3702(97)

00063-5
4. R. Kohavi, G.H. John, Artificial Intelligence 97(1), 273 (1997). DOI 10.1016/S0004-3702(97)

00043-X
5. J.R. Koza, Statistics and Computing 4(2), 87 (1994). DOI 10.1007/BF00175355
6. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Physical Review Letters 114,

105503 (2015). DOI 10.1103/PhysRevLett.114.105503
7. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, Phys. Rev. Materials 2(8),

083802 (11) (2018). DOI 10.1103/PhysRevMaterials.2.083802
8. L. Breiman, J. Friedman, C.J. Stone, R. Olshen, Classification and regression trees (Chapman and

Hall/CRC, Boca Raton, FL, 1984)
9. A.H. Land, A.G. Doig, Econometrica 28(3), 497 (1960). DOI 10.2307%2F1910129

10. Narendra, Fukunaga, IEEE Transactions on Computers C-26(9), 917 (1977). DOI 10.1109/TC.1977.
1674939

11. J. Clausen, Branch and bound algorithms – principles and examples. Tech. rep., Department of
Computer Science, University of Copenhagen, Universitetsparken 1, DK2100 Copenhagen, Denmark
(1999)

12. D.R. Morrison, S.H. Jacobson, J.J. Sauppe, E.C. Sewell, Discrete Optimization 19, 79 (2016). DOI
10.1016/j.disopt.2016.01.005

13. Y. Huhtala, J. Krkkinen, P. Porkka, H. Toivonen, The Computer Journal 42(2), 100 (1999). DOI
10.1093/comjnl/42.2.100

14. A.W. Whitney, IEEE Transactions on Computers C-20(9), 1100 (1971). DOI 10.1109/T-C.1971.
223410

15. P. Pudil, J. Novoviov, J. Kittler, Pattern Recognition Letters 15(11), 1119 (1994). DOI 10.1016/
0167-8655(94)90127-9

16. T. Marill, D. Green, IEEE Transactions on Information Theory 9(1), 11 (1963). DOI 10.1109/TIT.
1963.1057810

17. H. Peng, F. Long, C. Ding, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8),
1226 (2005). DOI 10.1109/TPAMI.2005.159

18. U.M. Khaire, R. Dhanalakshmi, Journal of King Saud University - Computer and Information Sci-
ences (2019). DOI 10.1016/j.jksuci.2019.06.012

19. M. Basseville, Signal Processing 18(4), 349 (1989). DOI 10.1016/0165-1684(89)90079-0
20. H. Almuallim, T.G. Dietterich, Artificial Intelligence 69(1), 279 (1994). DOI 10.1016/0004-3702(94)

90084-1
21. M. Modrzejewski, in Machine Learning: ECML-93, ed. by P.B. Brazdil (Springer Berlin Heidelberg,

Berlin, Heidelberg, 1993), pp. 213–226. DOI 10.1007/3-540-56602-3 138
22. A. Arauzo-Azofra, J.M. Benitez, J.L. Castro, Journal of Intelligent Information Systems 30(3), 273

(2008). DOI 10.1007/s10844-007-0037-0
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90. R. Couronné, P. Probst, A.L. Boulesteix, BMC Bioinformatics 19(1), 270 (2018). DOI 10.1186/

s12859-018-2264-5
91. F. Lu, E. Petkova, Statistics in Medicine 33(3), 401 (2014). DOI 10.1002/sim.5937
92. G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning, Springer Texts

in Statistics, vol. 103 (Springer, New York, 2013). DOI 10.1007/978-1-4614-7138-7
93. D.H. Wolpert, Neural Computation 8(7), 1341 (1996). DOI 10.1162/neco.1996.8.7.1341
94. D.H. Wolpert, Neural Computation 8(7), 1391 (1996). DOI 10.1162/neco.1996.8.7.1391
95. D.H. Wolpert, W.G. Macready, No free lunch theorems for search. Technical Report SFI-TR-95-02-

010 10, Santa Fe Institute (1995)



36 B. Regler et al.

96. D.H. Wolpert, W.G. Macready, IEEE Transactions on Evolutionary Computation 1(1), 67 (1997).
DOI 10.1109/4235.585893

97. F. Wang, B.C. Vemuri, M. Rao, Y. Chen, A New & Robust Information Theoretic Measure and Its
Application to Image Alignment (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), pp. 388–400.
DOI 10.1007/978-3-540-45087-0 33

98. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu, in Advances in Neural In-
formation Processing Systems 30, ed. by I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, R. Garnett (Curran Associates, Inc., 2017), pp. 3146–3154


	1 Introduction
	2 Theoretical background
	3 Empirical estimations of cumulative entropy and cumulative mutual information
	4 Implementation details
	5 Experiments
	6 Discussion
	7 Conclusions
	A Baseline adjustment
	B Monotonicity conditions for total cumulative mutual information
	C Gradient boosting decision trees

