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Abstract
The identification of relevant features, i.e., the driving variables that determine a pro-
cess or the properties of a system, is an essential part of the analysis of data sets
with a large number of variables. A mathematical rigorous approach to quantifying
the relevance of these features is mutual information. Mutual information determines
the relevance of features in terms of their joint mutual dependence to the property
of interest. However, mutual information requires as input probability distributions,
which cannot be reliably estimated from continuous distributions such as physical
quantities like lengths or energies. Here, we introduce total cumulative mutual infor-
mation (TCMI), ameasure of the relevance ofmutual dependences that extendsmutual
information to random variables of continuous distribution based on cumulative prob-
ability distributions. TCMI is a non-parametric, robust, and deterministic measure that
facilitates comparisons and rankings between feature sets with different cardinality.
The ranking induced by TCMI allows for feature selection, i.e., the identification of
variable sets that are nonlinear statistically related to a property of interest, taking into
account the number of data samples as well as the cardinality of the set of variables.We
evaluate the performance of ourmeasurewith simulated data, compare its performance
with similar multivariate-dependence measures, and demonstrate the effectiveness of
our feature-selection method on a set of standard data sets and a typical scenario in
materials science.
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1 Introduction

The past two decades have beenmarked by an explosion in the availability of scientific
data and significant improvements in statistical data analysis. In particular, the physical
sciences have seen an unprecedented surge in data exploration aimed at the data-driven
discovery of statistical dependencies of physical variables relevant to a property of
interest. These observations culminated in the emergence of a newparadigm in science,
the so-called “big-data driven” science (Hey et al. 2009).

1.1 Feature selection

The identification of relevant variables, i.e., the properties or the driving variables of
a process or system’s property, has propelled investigations for an understanding of
the underlying processes that generated the data (Guyon and Elisseeff 2003). Such
a variable X ∈ �X may be an attribute, parameter, or a combination of properties
measured or obtained from experiments or simulations. The fundamental challenge
is to find a functional dependency f : �X �→ Y , between a set of variables �X ′ ∈ �X
related to a certain output Y (target, response function). The objective is to find a set of
variables (the so-called features) that maximizes a feature-selection criterion Q with
respect to a property of interest Y (Blum and Langley 1997; Kohavi and John 1997),

�X∗ = arg max
�X ′⊆ �X

Q(Y ; �X ′) . (1)

Feature selection comprises two parts: (i) the choice of a search strategy and (ii) a
feature-selection criterion Q for evaluating a feature-subset’s relevance.

Search strategies

There are several search strategies to identify the relevant features of a data set (Naren-
dra and Fukunaga 1977; Siedlecki and Sklansky 1993; Pudil et al. 1994; Eberhart and
Kennedy 1995; Michalewicz and Fogel 2004), ranging from optimal solvers (such as
exhaustive search or acceleratedmethods based on themonotonic property of a feature-
selection criterion), to sub-optimal solvers (such as greedy, heuristic, or stochastic
solvers) (Guyon and Elisseeff 2003; Kohavi and John 1997; Narendra and Fukunaga
1977; Siedlecki and Sklansky 1993; Pudil et al. 1994; Whitney 1971; Pudil et al.
2002; Marill and Green 1963; Land and Doig 1960; Yu and Yuan 1993; Clausen 1999;
Morrison et al. 2016; Forsati et al. 2011; Reunanen 2006). Optimal solvers explore all
feature-subset combinations for a global optimum and, as such, are generally imprac-
tical for data sets with a large number of features due to cost and time constraints on
computer resources. Sub-optimal search strategies (e.g., sequential floating forward
selection (Pudil et al. 1994; Whitney 1971), sequential backward elimination (Marill
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TCMI: a non-parametric mutual-dependence estimator

Fig. 1 Empirical cumulative entropy Ĥ(Y ) of a normal distribution for 50 data samples, which are shown
as ticks in the bottom of the figure. Insets a.) and b.) show the (ground-truth) probability density (PDF)
and cumulative probability (CDF) of the normal distribution, empirical cumulative distribution, P̂(Y ≤ y),
and estimated probability density, p̂(y). The estimated probability density was obtained by optimizing the
bandwidth of a kernel-density estimator through 10-fold cross-validation. Further, histograms of PDF and
CDF are also drawn to provide an example of how continuous distributions can be approximated by discrete
discontinuous functions

and Green 1963), and minimal-redundancy-maximal-relevance criterion (Peng et al.
2005)), conversely, balance accuracy and speed, but may not find the optimal set of
features with respect to a targeted property. A search strategy that can be used both as
an optimal or sub-optimal solver, is branch and bound (Narendra and Fukunaga 1977;
Pudil et al. 2002; Land and Doig 1960; Yu and Yuan 1993; Clausen 1999; Morrison
et al. 2016). Branch and bound implicitly performs an exhaustive search, but uses
an additional bounding criterion to discard feature subsets, whose feature-selection
criteria are lower than the feature-selection criterion of the current best feature subset
in the search.

Feature-selection criterion

The feature-selection criterion Q can be used as a score that allows the identi-
fied features to be ranked by relevance prior to subsequent data analyses. The
academic community has extensively explored several feature-selection criteria to
evaluate a feature’s relevance (Khaire and Dhanalakshmi 2019), including distance
measures (Basseville 1989; Almuallim and Dietterich 1994), dependency measures
(Modrzejewski 1993), consistency measures (Arauzo-Azofra et al. 2008), and infor-
mation measures (Vergara and Estévez 2014). Ideally, feature-selection criteria are
not restricted to specific type of dependencies, are robust against imprecise values in
the data, and are deterministic, i.e., such that the feature selection is consistent and
reproducible for the same set of variables, type of settings, and data. The prevailing
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method for quantifying multivariate dependences is mutual information, which deter-
mines the relevance of variables in terms of their joint mutual dependence to a property
of interest (Shannon 1948).

There are several reasons to consider mutual-information-based quantities for fea-
ture selection. The two most important reasons are: (i) mutual information quantifies
multivariate nonlinear statistical dependencies and (ii) mutual information provides an
intuitive quantification of the relevance for a feature subset �X ′ ⊆ �X relative to an output
Y (Vergara and Estévez 2014): it is bounded from below (for statistically independent
variables with respect to an output) and can be bounded from above (for functional
dependence variables), increases as the number of sample sizes increases, and quan-
tifies the strength of the dependence based on a mathematical rigorous framework
from communication theory (Shannon 1948). However, mutual information requires
probability distributions, which are problematic for high-dimensional data sets and
are difficult to obtain from real-valued data samples of continuous distributions.

1.2 Our approach

We propose total cumulative mutual information (TCMI): a non-parametric, robust,
and deterministic measure of the relevance of mutual dependences of continuous
distributions between variable sets of different cardinality. TCMI can be applied if
the dependence between a set of variables and an output is not yet known and the
dependence is nonlinear and multivariate. Like mutual information, TCMI relates the
strength of the dependence between a set of variables and an output to the number of
data samples. In addition, TCMI relates the strength of the dependence to the cardi-
nality of the subsets. Thus, TCMI allows an unbiased comparison between different
sets of variables without depending on externally adjustable parameters.

TCMI is based on cumulative mutual information and inherits many of the proper-
ties of mutual-information based feature-selection measures: it is bounded from below
and above and monotonically increases the more features are subsequently added to a
candidate feature set, but only until all variables related to an output are included. In
contrast to other feature-selection measures based on cumulative mutual information,
TCMI uses cumulative probability distributions. Cumulative probability distributions
can be directly obtained from empirical data of continuous distributions, without the
need to quantize the set of variables prior to estimating a feature subset’s dependence
to a property of interest.

We combine TCMI with the branch-and-bound algorithm (Narendra and Fukunaga
1977; Pudil et al. 2002; Land and Doig 1960; Yu and Yuan 1993; Clausen 1999;
Morrison et al. 2016), which has proven to be efficient in the discovery of nonlinear
functional dependencies (Zheng and Kwoh 2011; Mandros et al. 2017). TCMI there-
fore identifies a set of variables that are statistically related to an output. As TCMI
is model independent, a functional relationship must be constructed (in the following
referred to as a model) to relate these features with an output. The model construction
is not part of this work, but can be done, for example, through data-analytics tech-
niques such as symbolic regression, both in the genetic-programming (Koza 1994)
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and in compressed-sensing implementations (Ghiringhelli et al. 2015; Ouyang et al.
2018), or regression tree-based approaches (Breiman et al. 1984).

In brief, our feature-selection procedure can be divided into three steps: In the first
step, we quantify the dependence between the set of features and an output as the
difference between cumulative marginal and cumulative conditional distributions. In
the second step, we estimate the relevance of a feature set by comparing its strength of
dependence to the mean dependence of features under the assumption of independent
random variables. In the third step, we identify a set of relevant features with the
branch-and-bound algorithm to find the set of variables from an initial list that best
characterizes an output.

1.3 Outline

The remainder of thiswork is organized as follows. Section 2 discusses the relationship
between TCMI and previous work. Section 3 introduces the theoretical background
of cumulative mutual information. Section 4 describes the empirical estimation of
cumulative mutual information for continuous distributions from limited sample data.
Section 5 explains the steps introduced to adjust the cumulative mutual information
with respect to the number of data samples and the cardinality of the feature sub-
set. Section 6 introduces TCMI. Section 7 describes the implementation details of
the feature-subset search using the branch-and-bound algorithm in detail. Section 8
reports on the performance evaluation of TCMI on generated data, standard data sets,
and on a typical scenario in materials science. In the same section, TCMI is also
compared with similar multivariate dependence measures such as cumulative mutual
information (CMI: Nguyen et al. (2013)), multivariate maximal correlation analysis
(MAC: Nguyen et al. (2014b)), and universal dependency analysis (UDS, Nguyen
et al. (2016), Wang et al. (2017)). We would like to point out that feature selection is
a broad area of research and can be achieved using a variety of techniques; this work
therefore focuses on feature-selection methods based on mutual information that can
be applied prior to subsequent data-analysis tasks. To illustrate this, we provide a real-
world example in Sect. 8.2.2 by building a model from the identified features using
TCMI, and comparing its performance to in-built feature-selection methods that per-
form feature selection during model construction. Finally, Sects. 9 and 10 present the
discussion and conclusions of this work. Abbreviations, notations, and terminologies
are summarized in Tables 1 and 2.

Table 1 Abbreviations used in the manuscript

Abbreviation Explanation Reference

CMI Cumulative mutual information Nguyen et al. (2013)

MAC Multivariate maximal correlation analysis Nguyen et al. (2014b)

UDS Universal dependency analysis Nguyen et al. (2016), Wang et al. (2017)

MCDE Monte Carlo dependency estimation Fouché and Böhm (2019), Fouché et al. (2021)

TCMI Total cumulative mutual information This work
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Table 2 List of symbols and notations used in this paper

Symbol Definition

Y Output, target, response function

X , �X , X ′, �X ′ Features, variables

DKL(U‖V ) Kullback-Leibler divergence of two distributions U and V

Discrete data

p(y) (Marginal) probability density of y ∈ Y

p(x, y) Joint probability density of x ∈ X and y ∈ Y

p(y|x) Conditional probability density of y ∈ Y given x ∈ X

H(Y ) Shannon entropy of Y

I (Y ; X) Shannon mutual information

I0(Y ; X) Baseline correction term of the Shannon mutual information

D(Y ; X) Normalized mutual information/ fraction of information

Continuous data

P(y), P(Y ≤ y) (Marginal) cumulative distribution of y ∈ Y

P ′(x), P ′(X ≤ x) (Marginal) residual cumulative distribution of x ∈ X

P(x, y), P(X ≤ x, Y ≤ y) Joint cumulative distribution of x ∈ X and y ∈ Y

P(y|x), P(Y ≤ Y |X ≤ x) Conditional cumulative distribution of y ∈ Y given x ∈ X

H(Y ) Cumulative entropy of Y

I(Y ; X), I∗(Y ; X) (Adjusted) cumulative mutual information

I0(Y ; X) Baseline correction term for cumulative mutual information

D(Y ; X), D∗(Y ; X) (Adjusted) fraction of cumulative information

Empirical estimates

E Estimator

Ê Empirical estimator, e.g., Ĥ(Y )

E0 Baseline adjustment term of an estimator E
Total cumulative mutual information (TCMI)

D̂∗
min(Y ; X) Minimum adjusted contribution of empirical cumulative mutual information

〈D̂∗
TCMI(Y ; X)〉 Average adjusted contribution of cumulative mutual information (TCMI)

Branch and bound

Q̄ Bounding criterion

Q, Q∗ (Adjusted) feature-selection criterion

2 Related work

Many dependence measures such as Pearson R and Spearman’s rank ρ correlation
coefficients (Pearson 1896; Spearman 1904), distance correlation (DCOR: Székely
et al. (2007), Székely andRizzo (2014)), kernel density estimation (KDE: Scott (1982),
Silverman (1986)), or k-nearest neighbor estimation (k-NN: Kozachenko and Leo-
nenko (1987)) are limited to bivariate dependencies only (Pearson, Spearman), are
limited to specific types of dependencies (Spearman, DCOR), or require assump-
tions about the functional form of f (KDE, k-NN). Bivariate extensions (Schmid and
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Schmidt 2007), KDE, and k-NN are further not applicable to high-dimensional data
sets.

For high-dimensional data sets, several authors proposed subspace-slicing tech-
niques (Fouché and Böhm 2019; Fouché et al. 2021; Keller et al. 2012), which
repeatedly apply conditions on each variable and perform statistical hypothesis tests
to estimate the degree of dependence to an output. However, with these methods,
all possible combinations of variables must be enumerated and, therefore, are com-
putationally intractable for feature-selection tasks. In addition, the strength of their
dependences are not related to the cardinality of feature subsets and therefore cannot
be used to compare different sets of variables.

Model-dependent methods such as data-analytics techniques (Koza 1994; Ghir-
inghelli et al. 2015; Ouyang et al. 2018; Breiman et al. 1984) perform feature selection
while creating a model. Alternatively, post-hoc analysis tools such as unified depen-
dence measures (Lundberg and Lee 2017) can be used to assign each variable an
importance value for a particular estimation. However, these methods add an addi-
tional degree of complexity, which makes it difficult to reliably assess the dependence
among variables. Another approach are information-theoretic dependence measures.
These measures are based on mutual information and ascertain whether or not the
values of a set of variables are related to an output. As a result, they provide a model-
independent approach to estimating the strength of dependences between variables.

Multivariate extensions to mutual information (e.g., interaction information
(McGill 1954) and total correlation (Watanabe 1960)) require knowledge about the
underlying probability distributions and are therefore difficult to estimate: estimations
either require large amount of data and needs to be specified for each new data set
at hand (Belghazi et al. 2018) or are affected by the curse of dimensionality (Bell-
man 1957) such as the Kozachenko-Leonenko estimator (Kozachenko and Leonenko
1987; Kraskov et al. 2004). Recently, several authors proposed related approaches to
extending mutual information: cumulative mutual information (CMI: Nguyen et al.
(2013)), multivariate maximal correlation analysis (MAC: Nguyen et al. (2014b)), and
universal dependency analysis (UDS: Nguyen et al. (2016), Wang et al. (2017)). All
three methods estimate the strength of dependence between a set of variables from
cumulative probability distributions, and thus can be viewed as alternativemeasures of
uncertainty that extend Shannon entropy (andmutual information) to randomvariables
of multivariate continuous distributions.

CMI quantifiesmultivariatemutual dependences by considering the cumulative dis-
tributions of variables and by heuristically approximating the conditional cumulative
entropy via data summarization and clustering.MAC is based onShannon entropy over
discretized data which MAC obtains by maximizing the normalized total correlation
with respect to cumulative entropy. UDS uses optimal discretization to compute the
conditional cumulative entropy, where the Shannon entropy defines the number of bins
required to estimate the conditional cumulative entropy. Since all three dependence
measures expose adjustable parameters to optimize the quantization of continuous dis-
tributions, the choice of these parameters therefore has a strong impact on the strength
of mutual dependence between a set of variables �X = {X1, . . . , Xn} and an output
Y , and thus on the ranking induced by the relevance function and a feature-selection
criterion. For feature selection, these measures are impractical.
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Our approach, TCMI, extendsCMI, but does not require to quantize real-valued data
samples of continuous data distributions to estimate the joint cumulative distribution
of continuous distributions. TCMI therefore does not require data summarization tech-
niques to estimate multivariate dependences between continuous distributions, unlike
similar approaches such as MAC and UDS. TCMI is non-parametric, as opposed to
other estimation methods based on mutual information, e.g., neural networks (Belg-
hazi et al. 2018) or mutual-information-based feature selection algorithms originally
developed for discrete data (Kwak and Choi 2002; Chow and Huang 2005; Estevez
et al. 2009; Hu et al. 2011; Reshef et al. 2011; Bennasar et al. 2015). TCMI therefore
allows to reliably compare the strength of dependence between different sets of vari-
ables. On top of that, TCMI relates the strength of a dependence to a feature-subset’s
cardinality and the number of data samples by basing the score on the dependence
of the same set of variables under the independence assumption of random variables
(Vinh et al. 2009, 2010).

3 Theoretical background

Mutual information and all measures presented in the following quantify relevance
by means of the similarity between two distributions U ( �X ,Y ) and V ( �X ,Y ) using
Kullback-Leibler divergence, DKL(U ( �X ,Y )‖V ( �X ,Y )) (Kullback and Leibler 1951).
They do not require any explicit modeling to quantify linear and nonlinear dependen-
cies, monotonically increase with the cardinality of a feature’s subset �X ′ ⊆ �X ,

min
X∈ �X ′

DKL(U ( �X ′ \ X ,Y )‖V ( �X ′ \ X ,Y ))

≤ DKL(U ( �X ′,Y )‖V ( �X ′,Y )) , (2)

and are invariant under invertible transformations such as translations and reparam-
eterizations that preserve the order of the values of variables �X and of an output Y
(Kullback 1959; Vergara and Estévez 2014).

For illustration purposes, only the case with two variables X and an output Y is
discussed in the theoretical section. However, a generalization to multiple variables
can be derived directly from the independence assumption of random variables, as
will be done in later sections.

3.1 Mutual information

Mutual information (Shannon and Weaver 1949; Cover and Thomas 2006) relates the
joint probability distribution p(x, y) of two discrete random variables with the product
of their marginal distribution p(x) and p(y),

I (Y ; X) =
∑

y∈Y

∑

x∈X
p(y, x) log

p(y, x)

p(y)p(x)

≡ DKL(p(y, x)‖p(y)p(x)) . (3)
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Mutual information is non-negative, is zero if and only if the variables are statistically
independent, p(x, y) = p(x)p(y) (independence assumption of random variables),
and increases monotonically with the mutual interdependence of variables otherwise.
Further, mutual information indicates the reduction in the uncertainty of Y given X as
I (Y ; X) = H(Y )−H(Y |X), where H(Y ) denotes the Shannon entropy and H(Y |X)

the conditional entropy (Shannon 1948). Shannon entropy H(Y ) is defined as the
expected value of the negative logarithm of the probability density p(y),

H(Y ) = −
∑

y∈Y
p(y) log p(y) , (4)

and can be interpreted as a measure of the uncertainty on the occurrence of events y
whose probability density p(y) is described by the random variable Y .

The conditional entropy H(Y |X) quantifies the amount of uncertainty about the
value of Y , provided the value of X is known. It is given by

H(Y |X) = −
∑

y∈Y

∑

x∈X
p(y, x) log p(y|x) , (5)

where p(y|x) = p(y, x)/p(x) is the conditional probability of y given x . Clearly,
0 ≤ H(Y |X) ≤ H(Y )with H(Y |X) = 0 if variables X andY are related by functional
dependency and H(Y |X) = H(Y ) if variables are independent of each other.

Although mutual information is restricted to the closed interval 0 ≤ I (Y ; X) ≤
H(Y ), the upper bound is still dependent on Y . To facilitate comparisons, mutual
information is normalized,

D(Y ; X) = I (Y ; X)

H(Y )
= H(Y )− H(Y |X)

H(Y )
. (6)

Normalized mutual information, hereafter referred to as fraction of information (also
known as coefficients of constraint (Coombs et al. 1970), uncertainty coefficient (Press
et al. 1988), or proficiency (White et al. 2004)) quantifies the proportional reduction
in uncertainty about Y when X is given. It is in the range D : R×R→ [0, 1], where
0 and 1 represent statistical independence and functional dependence, respectively
(Reimherr and Nicolae 2013).

3.2 Probability and cumulative distributions

Mutual information and fraction of information are only defined for discrete distribu-
tions. Although mutual information can be generalized to continuous distributions,

I (Y ; X) =
∫

y∈Y

∫

x∈X
p(y, x) log

p(y, x)

p(y)p(x)
dx dy , (7)

probability densities are not always accessible from sample data and therefore need to
be estimated. Common algorithms for probability-density estimations are clustering
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(Nguyen et al. 2013; Pfitzner et al. 2008;Xu andTian 2015), discretization (Fayyad and
Irani 1993; Dougherty et al. 1995; Nguyen et al. 2014a), and density estimation (Keller
et al. 2012; Garcia 2010; Bernacchia and Pigolotti 2011; O’Brien et al. 2014, 2016).
However, these methods implicitly introduce adjustable parameters whose choice has
a strong impact on the strength of mutual dependence between a set of variables
�X = {X1, . . . , Xn} and an output Y , and thus on the ranking induced by the relevance
function and a feature-selection criterion (cf., Fig. 1). In practice, such approaches are
extremely dependent on the applied parameter set and therefore are sensitive to the
scale of variables (cf., Sect. 8).

An alternate approach to using probability distributions is cumulative probabil-
ity distributions to determine the mutual dependence between variables. Cumulative
probability distributions P (and residual cumulative distribution P ′ ≈ 1 − P) of a
variable X evaluated at x describe the probability that X takes on a value less than or
equal to x (or a value greater than or equal to x , respectively),

P(x) := P(X ≤ x) , (8)

P ′(x) := P(X ≥ x) = 1− P(X < x) . (9)

If the derivatives exists, they are the anti-derivatives of probability distributions,

P(x) := P(X ≤ x) =
∫ x

−∞
p(x ′) dx ′ . (10)

Both residual and cumulative distributions are defined for continuous and discrete
variables and are based on accumulated statistics. As such, they are more regular
and less sensitive to statistical noise than probability distributions (Crescenzo and
Longobardi 2009b, a). In particular, they are monotonically increasing and decreasing,
respectively, i.e., P(x1) ≤ P(x2) or P ′(x1) ≥ P ′(x2), ∀x1 ≤ x2, with limits

lim
x→−∞ P(x) = 0

lim
x→∞ P(x) = 1

,
lim

x→−∞ P ′(x) = 1

lim
x→∞ P ′(x) = 0

. (11)

Similar to probability distributions, cumulative and residual cumulative distributions
are invariant under a change of variables. However, they are invariant only for parame-
terizations that preserve the order of the values of each variable X ∈ �X and Y . Positive
monotonic transformations T : R→ R,

P(x) = P(T (x)) ∀x ∈ X : x �→ T (x)

such that x1 < x2 ⇒ T (x1) < T (x2) , (12)

such as translations and nonlinear scaling of variables are among the transformations
whose cumulative distributions remain invariant. In contrast, invertible and especially
non-invertible mappings (Mira 2007) (such as inversions, T (X) �→ ±X , and non-
bijective transformations, e.g., T (X) = ±|X |) change the order of the values of a
variable and with it the cumulative distribution. Consequently, these mappings must
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be considered as additional variables during feature selection if it is expected that such
transformations might be related to an output.

3.3 Cumulative mutual information

Cumulative mutual information is an alternative measure of uncertainty that extends
Shannon entropy (andmutual information) to random variables of continuous distribu-
tions. Cumulative mutual information has the same properties as mutual information
to bemonotonically increasingwith the cardinality of the set of variables (Eq. 2). Anal-
ogous to mutual information, cumulative mutual information describes the inherent
dependence expressed in the joint cumulative distribution P(x, y) = P(X ≤ x,Y ≤
y) of random variables x ∈ X and y ∈ Y relative to the product of their marginal
cumulative distribution P(x) and P(y),

I(Y ; X) =
∫

y∈Y

∫

x∈X
P(y, x) log

P(y, x)

P(y)P(x)
dx dy

= DKL(P(y, x)‖P(y)P(x)) . (13)

The independence assumption of random variables, P(y, x) = P(y)P(x), induces a
measure that is again zero only if variables X and Y are statistically independent, and
non-negative otherwise. Similarly to mutual information, cumulative mutual informa-
tion quantifies the degree of dependency as the reduction in the uncertainty of Y given
X , i.e., I(Y ; X) = H(Y )−H(Y |X). It is a function of cumulative entropyH(Y ) and
conditional cumulative entropy H(Y |X),

H(Y ) = −
∫

y∈Y

∫

x∈X
P(y, x) log P(y) dx dy (14)

H(Y |X) = −
∫

y∈Y

∫

x∈X
P(y, x) log P(y|x) dx dy , (15)

where P(y|x) = P(y, x)/P(x) is the conditional cumulative distribution of Y ≤ y
given X ≤ x (cf., Table 2). Again, H(Y |X) = 0 if variables X and Y are functional
dependent and H(Y |X) = H(Y ) if variables X and Y are independent of each other.

Bounds restrict cumulative mutual information to a closed interval 0 ≤ I(Y ; X) ≤
H(Y ) with an upper bound dependent on Y . For this reason, cumulative mutual infor-
mation is normalized,

D(Y ; X) = I(Y ; X)

H(Y )
= H(Y )−H(Y |X)

H(Y )
, (16)

and, likewise to mutual information, is hereafter referred to as fraction of cumulative
mutual information.
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4 Empirical estimations of cumulative entropy and cumulative
mutual information

The closed-form expression of cumulative mutual information (Eq. 13) quantifies the
dependence of a set of variables based on the assumption of smooth and differentiable
cumulative distributions. Due to the limited availability of data, however, the exact
functional shape of the cumulative distribution is not directly accessible and hence
must be empirically inferred from a limited set of sample data.

For this reason, let us assume an empirical sample {(y1, x1), (y2, x2), . . ., (yn, xn)}
drawn independently and identically distributed (i.i.d.) according to the joint dis-
tribution of X and Y . Such sample data induces empirical (cumulative) probability
distributions for all variables Z ∈ {Y , X}, which lead to empirical estimates Ê of an
estimator E (cf., Table 2).

Based on the maximum likelihood estimate (Dutta 1966; Rossi 2018), the cumula-
tive probability distribution P̂(Z ≤ z) can be obtained by counting the frequency of
occurring values of a variable Z :

P̂(Z ≤ z) = 1

n

n∑

i=1
1zi≤z =

1

n
|{ i | zi ≤ z }| ,

∀zi ∈ Z , z ∈ Z , Z ∈ {Y , X} , (17)

where 1A denotes the indicator function that is one if A is true, and zero otherwise.
Equation 17 asymptotically converges to P(Z ≤ z) as n → ∞ for every value
of z ∈ Z (Glivenko-Cantelli theorem: Glivenko (1933), Cantelli (1933)). Thus, any
empirical estimate, Ê , based on empirical cumulative distributions converges pointwise
as n → ∞ to the actual value of E , i.e., Ê(Z) → E(Z) (Rao et al. 2004; Crescenzo
and Longobardi 2009a).

4.1 Empirical cumulative entropy

For i.i.d. random samples that contain repeated values, the maximum likelihood esti-
mate of the cumulative entropyH (Eq. 15) can be obtained by calculating the empirical
cumulative distribution P̂ according to Eq. 17,

Ĥ(Y ) = −
k−1∑

i=1
�yi P̂(y) log P̂(y)

= −
k−1∑

i=1

(
y(i+1) − y(i)

) ni
n
log

ni
n

,

(18)

where y(i) denotes the values y(0) < y(1) < · · · < y(k) occurring in the data set in
sorted order of Y with y(0) = −∞, multiplicity ni =

∣∣{ j ∈ n : y(i−1) < y j ≤ y(i)}
∣∣,

and constraint n = ∑k
i=1 ni .
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4.2 Empirical conditional cumulative entropy

Similar to empirical cumulative entropy, conditional cumulative entropy can be esti-
mated by

Ĥ(Y ; �X) = −
n−1∑

i=1

n−1∑

j=1
�yi��x j P̂(yi , �x j ) log P̂(yi |�x j )

= −
n−1∑

i=1

n−1∑

j1=1
. . .

n−1∑

jd=1

(
yi+1 − yi

)(
x (1)
j1+1 − x (1)

j1

)·

. . . · (x (d)
jd+1 − x (d)

jd

)
P̂(yi , �x j ) log P̂(yi |�x j ) , (19)

where P̂(yi , �x j ) denotes the joint cumulative distribution of yi ∈ Y , �x j ∈ �X ,
�X = {X1, . . . Xd}, and x (k)

i ∈ Xk is the i component of the k-th variable of the data
set (k = 1, . . . d). In contrast to the empirical cumulative entropy, which can be cal-
culated from the set of sample data with linear time complexity O(n), the empirical
conditional cumulative entropy has exponential time complexity O(nd). The non-
parametric estimation of the joint or conditional cumulative distribution therefore
becomes computationally demanding for data sets with a large number d of variables
and data samples n.

4.3 Empirical cumulative mutual information

By construction, cumulative entropy is sensitive to the range of Y (cf., Eq. 18). The
same is true for conditional cumulative entropy H(Y |X) and its empirical estimate
Ĥ(Y |X) (cf., Eq. 19). Fraction of cumulative mutual information D, e.g., the ratio
between cumulative entropy and conditional cumulative entropy, is independent of
the scale of X and Y (Eq. 16). Formally, its empirical estimate D̂ is given by

D̂(Y ; �X) = 1− 1

n

[ n−1∑

i, j=1
�yi�x j P̂(yi , �x j ) log P̂(yi |�x j )

/

n−1∑

i, j=1
�yi�x j P̂(yi ) log P̂(yi )

]
. (20)

Computationally, we apply the following trick: To eliminate the implicit scale depen-
dence of X , we use the fact that variables X are invariant under rank-order preserving
transformations T (Eq. 12). Then, all variables can be scaled to x ′ = T (x) such that
�x ′i = xi+1 − xi is constant and the volume element dx ′ in the integrals cancels out
(cf., Eq. 15).

D̂(Y ; X) = 1− 1

n

n−1∑

j=1

∑n−1
i=1 �yi P(yi , x j ) log P(yi |x j )∑n−1
i=1 �yi P(yi , x j ) log P(yi )

. (21)
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Such a transformation is always possible and effectively removes the implicit range
dependence of variables from the fraction of cumulative information in the computa-
tion.

5 Baseline adjustment

The limited availability of data makes it challenging to estimate or calculate depen-
dencies on empirical estimators. Because measures are meant to provide a comparison
mechanism, empirical estimators need to assign a value (dependence score) close to
zero for statistical independent variables and a score close to one for functional depen-
dent variables. However, empirical estimators based on mutual information are known
to never reach their theoretical maximum (functional dependence) or minimum (sta-
tistical independence), respectively, and are known to assign stronger dependences for
larger sets of variables regardless of the underlying relationship (Fouché and Böhm
2019; Fouché et al. 2021; Vinh et al. 2009, 2010). Consequently, measures based on
mutual information have a considerable inherent bias and therefore may incorrectly
identify variables as relevant that are not related to an output Y . To actually compare
dependence measures between subsets and different sizes of variable sets, an adjust-
ment to mutual information is necessary. One solution to estimate the relevance of a
set of variables X and Y is to compare the relevance of a variable X and an output Y
to the mean Ê0 of an empirical estimator Ê ,

Ê∗(Y ; X) = Ê(Y ; X)− Ê0(Y ; X) . (22)

The mean Ê0 requires to be constant across random permutations of all variables
independently for each data sample, i.e.,

Ê0(Y ; X) := 1

|M|
∑

M∈M
Ê(YM ; XM ) , (23)

where M ∈ M is a specific realization of such a permutation. The underlying intu-
ition is that the actual value of an empirical estimator Ê may be caused by spurious
(random) dependences. Therefore, by considering all random permutations of all vari-
ables independently for each data sample, the spurious contribution of the empirical
estimator can be factored out and an adjusted unbiased empirical estimator obtained.
The permutations can be computed by enumeration, which however is impractical. An
alternative description is provided by a hypergeometric model of randomness (Vinh
et al. 2009; Romano et al. 2014) (also known as permutation model (Lancaster 1969)).
Such a model describes the permutation of variables as (cumulative) probability dis-
tributions, where the average can be calculated separately for each sample of a data
set with quadratic complexity. Under the independence assumption of random vari-
ables (Vinh et al. 2009, 2010), we derived the correction term for cumulative mutual
information as follows,

123



TCMI: a non-parametric mutual-dependence estimator

Î0(Y ; X) = −
r−1∑

i=1

c∑

j=1

∑

ni j

�yi (ni j , ai , b j |M) ·

ni j
n

log
ni j
b j

P(ni j , ai , b j |M) , (24)

where the difference �yi (M) between two consecutive values of Y can be described
by a binomial distribution,

�yi (ni j , ai , b j |M) = 1

N

kmax∑

k=1

(
r − k − 1

b j − 2

)(
y(i+k) − y(i)

)
, (25)

kmax is the upper limit is given by kmax = min(n−b j +1, r− i).N is a normalization
constant,

N =
kmax∑

k=1

(
r − k − 1

b j − 2

)
, (26)

and P(ni j , ai , b j |M) is the probability to encounter an associative cumulative con-
tingency table subject to fixed marginals between all permutations of two variables X
and Y with |Yi | = ai , i = 1, . . . , r and |X j | = b j , j = 1, . . . , c. ni j is a specific
realization of the joint cumulative distribution P(yi , x j ) given row marginal ai and
column marginal b j . The details can be found in the appendix and are analogous to
the baseline adjustment for mutual information (Vinh et al. 2009).

The empirical estimator Ê0 in Eq. 22 is required to vanish for a large number of
samples Ê0(Y ; X) → 0 as n → ∞ in case there is an exact functional dependence
between X and Y (Romano et al. 2016). Further, Ê0 is required to be zero if variables
are proportional to the output, E0(Y ; X) → 0 as X → Y .

In practice, Ê0 is generally greater than zero when the number of data samples
is limited and can become as large as Ê when the number of data samples is very
small. Ê0 can therefore be interpreted as a correction term for comparing empirical
estimates of different sets of variables on a common baseline: In general, if the value
of the correction term is large, more data samples are needed to reliably estimate the
dependence between X and Y . If the value of correction term is small, the adjusted
empirical estimator either indicates a strong mutual dependence between X and Y
(high Ê∗) or a weak mutual dependence, if the variables of the data set are not related
to Y (low Ê∗).

For cumulative mutual information, we define the empirical estimator as follows

Î∗(Y ; X) = Î(Y ; X)− Î0(Y ; X) , (27)

D̂∗(Y ; X) = Î∗(Y ; X)

Ĥ∗(Y )
= D̂(Y ; �X)− D̂0(Y ; �X) , (28)
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where Î∗(Y ; X) is the adjusted empirical cumulative mutual information, D̂∗(Y ; X)

is the adjusted fraction of empirical cumulative information, and Î0(Y ; X) is the
expected cumulative mutual information under the independence assumption of ran-
dom variables.

6 Total cumulativemutual information

Empirical cumulative mutual information provides a non-parametric deterministic
measure to estimate the dependence of continuous distributions. Equation 16 estimates
cumulativemutual information based on cumulative probability distributions, P(X) =
P(X ≥ x). Similarly, ameasure can be instantiated for residual cumulative probability
distributions, P ′(X) := P(X ≥ x) = 1− P(X ≤ x),

D′(Y ; X) = H′(Y )−H′(Y |X)

H′(Y )
. (29)

Both measures D(Y ; X) and D′(Y ; X) estimate the dependence between a set of
variables and an output from different sides of the distribution: therefore, they set
lower and upper bounds on the information they contain. As the sample size increases
to infinity, both measures converge to the same value. However, due to the limited
number of data samples (cf., Sect. 5), these measures are different and need to be
adjusted in practice,

D̂∗(Y ; X) = D̂(Y ; X)− D̂0(Y ; X) ,

D̂∗′(Y ; X) = D̂′(Y ; X)− D̂′
0(Y ; X) . (30)

The baseline adjustment turns both measures convex by relating the strength of a
dependence among variables with the dependence of the same set of variables under
the independence assumption of random variables (Vinh et al. 2009, 2010). They can
therefore be used to efficiently search for the strongest mutual dependence between a
set of variables and an output, e.g., by using the minimum contribution of fraction of
empirical cumulative mutual information of the two measures,

D̂∗
min(Y ; X) := min(D̂∗(Y ; X), D̂∗′(Y ; X)) . (31)

Total cumulative mutual information (TCMI) combines D̂∗(Y ; X) and D̂′∗(Y ; X)

into a single measure. TCMI is defined as the average strength of cumulative mutual
dependence between a set of variables X and an output Y ,

〈D̂∗
TCMI(Y ; X)〉 := 〈D̂TCMI(Y ; X)〉 − 〈D̂TCMI, 0(Y ; X)〉 , (32)
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where

〈D̂TCMI(Y ; X)〉 = 1

2

[
D̂(Y ; X)+ D̂′(Y ; X)

]

〈D̂TCMI, 0(Y ; X)〉 = 1

2

[
D̂0(Y ; X)+ D̂′

0(Y ; X)
]

. (33)

7 Feature selection

Feature selection (Eq. 1) is an optimization problem that either requires a convex
dependence measure or additional criteria to judge the optimality of a feature set (Yu
and Príncipe 2019). Measures based on (cumulative) mutual information do not meet
either requirement, but an adjusted measure such as TCMI does.

As already mentioned in the introduction, the optimal search strategy (subset selec-
tion) of k features from an initial set of variables �X = {X1, . . . , Xd} is a combinatorial
and exhaustive search procedure that is only applicable to low-dimensional problems.
An efficient alternative to the exhaustive search is the (depth-first) branch-and-bound
algorithm (Land and Doig 1960; Narendra and Fukunaga 1977; Clausen 1999; Mor-
rison et al. 2016). The branch-and-bound algorithm guarantees to find an optimal set
of feature variables without evaluating all possible subsets. The performance depends
crucially on the variables of a data set and the maximum strength of the mutual depen-
dence between a set of variables and an output. It may be that an output is only weakly
related to the variables in the data set, making it necessary to repeat the feature selec-
tion with a different set of variables. It may also be that prior knowledge of potential
mutual dependences is available, which speeds up the feature selection (e.g., that only
m < k of d variables X are related to Y and therefore not all combinations need to be
implicitly enumerated).

The branch-and-bound algorithm maximizes an objective function Q∗ : �X ′ → R

defined on a subset of variables �X ′ ⊆ �X by making use of the monotonicity condition
of a feature-selection criterion, Q : �X ′ → R, and a bounding criterion, Q̄ : �X ′ → R.
Themonotonicity condition requires that feature subsets �X1, �X2, . . ., �Xk , k = 1, . . . , d,
obtained by sequentially adding k features from the set of variables �X , satisfy

�X1 ⊆ �X2 ⊆ · · · ⊆ �Xk , �Xk ⊆ �X , (34)

so that the feature-selection criterion Q and bounding criterion Q̄ are monotonically
increasing and decreasing respectively,

Q( �X1) ≤ Q( �X2) ≤ · · · ≤ Q( �Xk)

Q̄( �X1) ≥ Q̄( �X2) ≥ · · · ≥ Q̄( �Xk) .
(35)

The branch-and-bound algorithm builds a search tree of feature subsets �X ′ ⊆ �X
with increasing cardinality (Clausen 1999; Morrison et al. 2016) (Alg. 1 and Fig. 2).
Initially the tree contains only the empty subset (the root node). At each iteration, a
limited number of (non-redundant) sub-trees are generated by augmenting one variable
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X ∈ �X at a time to the current subset and then adding it to the search tree (branching
step). While traversing the tree from the root down to terminal nodes from left to
right, the algorithm keeps the information about the currently best subset X∗ := �Xk

and the corresponding objective function it yields (the current maximum). Anytime
the objective function Q∗ in some internal nodes exceeds the bounding criterion Q̄
of sub-trees, it decreases (either due to the condition Eq. 35 or the bounding criterion
is lower than the current maximum value of the objective function), sub-trees can be
pruned and computations be skipped (bounding step). Once the entire tree has been
examined, the search terminates and the optimal set of variables is returned, along
with a ranking of sub-optimal variable sets in descending order of the value of the
objective function values.

As objective and criterion function we set

Q∗ = D∗
TCMI(Y ; X) , (36)

the criterion function to be

Q = min(D(Y ; X),D′(Y ; X)) , (37)

and, as a pruning rule, the bounding criterion to be (cf., Eq. 31),

Q̄ = 1−min(D̂0(Y ; X), D̂′
0(Y ; X)) . (38)

Proofs for the monotonicity conditions for Q and Q̄ follow similar arguments as for
Shannon entropy (Mandros et al. 2017) and are provided in the appendix.
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Fig. 2 Example of a depth-first tree search strategy of the branch-and-bound algorithm (Land and Doig
1960; Narendra and Fukunaga 1977; Clausen 1999; Morrison et al. 2016) to search for the optimal subset of
features. Shown is the tree traversal going from top to down and left to right by dashed arrows, the estimated
fraction of total cumulative information (objective function inside circles), subsets of features (labels at the
bottom of the circles), fraction of cumulative information (criterion function, first number, right or left
the circles), and the expected fraction of cumulative information contribution (bounding function, second
number, right or left the circles). Capital roman symbols indicate applied pruning rules or updates of the
current maximum objective function. Anytime the objective function in some internal nodes exceeds the
bounding function of sub-trees (I), it decreases (II) – either due to the condition Eq. 35 or the bounding
function is lower than the current maximum value of the objective function (III), sub-trees can be pruned
and computations be skipped. On termination of the algorithm, the bound contains the optimum objective
function value (IV)

7.1 Complexity Analysis

The computational complexity of the branch-and-bound algorithm is largely deter-
mined by two factors: the branching factor B and the depth D of the tree (Morrison
et al. 2016). The branching factor is the maximum number of generated variables
combinations at each level l of the tree and can be estimated by the central binomial
coefficient B ≤ maxl=1,...,D

(d
l

) ≈ ( d
d/2

)
, if �X has d variables. The depth D of the

tree is given by the largest cardinality of a variable set, represented as the longest
path in the tree from the root to a terminal node. The ranking of the variable sets
involves O((n log n)d) sorting operations when all variables are relevant. Thus, any
branch-and-bound implementation has worst-case O(M · BD) computational time
complexity, where M is the time needed to evaluate the feature-selection criterion for
a combination of variables in the tree.

In the worst case, for n number of example data and d variables, cumulative mutual
information requires to evaluate the integral O(nd) times and O(n2) times to cal-
culate the baseline adjustment term. Thus, TCMI has time complexity M ∼ O(nd)
and a feature-subset search in the current implementation suffers from the curse of
dimensionality (Koller and Sahami 1996).
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As a result, the total time complexity of the feature selection algorithm is non-
deterministic polynomial-time (NP)-hard and, in general, the search strategy of
examining all possible subsets is not viable. In the vast majority of cases, however,
dependencies are relatively simple relationships of only a small number of features. In
addition, feature selection can be restricted at any time to examine subsets of variables
that are less than or equal to a predefined dimensionality. Then the time complexity is
greatly reduced and the feature selection can be solved in polynomial time. Whether
the assumptions apply to arbitrary data sets is a case-by-case study. However, indi-
cators such as the convergence rate of the TCMI approaching the maximum value or
the estimated strength of the relationships are helpful in exploratory data analysis to
search for the relevant features of a data set.

8 Experiments

To demonstrate the performance of TCMI in different settings, we first consider gen-
erated data and show that our method can detect both univariate and multivariate
dependences. Then, we discuss applications of TCMI on data sets from the KEEL
and UCIMachine Learning Repository (Alcalá-Fdez et al. 2009, 2011; Dua and Graff
2017) and a typical scenario from the materials-science community, namely to pre-
dict the crystal structure of octet-binary compound semiconductors (Ghiringhelli et al.
2015, 2017).

8.1 Case study on generated data

In a number of experiments, we test the theoretical properties of TCMI, i.e., its
invariance properties and performance statistics.We also study an exemplified feature-
selection task to find a bivariate normal distribution embedded in a multi-dimensional
space.

8.1.1 Interpretability of TCMI

In the first experiment, we use TCMI, CMI, MAC, UDS, and MCDE to estimate
the dependence between a linear data distribution Y of size n = 200 and different
distributions X as features (Table 3). Besides linear, exponential, and constant distri-
butions (zero vector), we consider stepwise distributions generated by discretizing a
linear distribution, where each value is repeated 2, 4, and 8 times. Furthermore, we
consider uniform (random) and saw-tooth distributions with 2, 4, and 8 steps per ramp.
Results show that (i) the TCMI score increases nonlinearly with the similarity between
a variable and an output, (ii) TCMI is zero for a constant distribution, and (iii) TCMI
is approaching one for an exact dependence (see also Fig. 3). CMI, MAC, UDS, and
MCDE perform similarly well, but they seem to be less sensitive than TCMI in assess-
ing the strength of a mutual dependence. In particular, the strength of a dependence
with CMI, MAC, UDS, MCDE does not change with the shape of a distribution (i.e.,
of different cumulative probability distributions such as the step-like distributions).
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Fig. 3 Expected empirical
cumulative mutual information,
〈D̂0(Y ; X)〉, with respect to the
number of sample data. Shown
is the dependency (solid line)
and a heuristic derived analytic
functional relationship (dashed
line)

MCDE does not differentiate between a linear and a constant distribution, while UDS
seems to be limited and does not reach the maximum score even in the presence of an
exact dependence.

Due to the limited availability of data samples, a random distribution has a higher
TCMI,MAC, andMCDEscore, i.e., stronger dependence, than a sawtooth distribution,
in agreement with Spearman’s rank coefficient of determination ρ2 (Spearman 1904).
It should be noted that the baseline adjustment 〈D̂TCMI, 0〉 for a random variable is
larger than any other tested dependence of Table 3. A large baseline adjustment results
in smaller TCMI values, such that it is unlikely that a random variable will be part in
any feature selection. However, if the dependences are of the same strength as spurious
dependencies induced by random variables, TCMI may select variables that are not
related to an output.

8.1.2 Properties of the baseline correction term

In the second experiment (Fig. 3), we take a closer look at the baseline adjustment
term that decreasesmonotonicallywith respect to the number of data samples. Baseline
adjustment is given by the expected empirical cumulativemutual information (Eqs. 24
and 28). Expected empirical cumulative mutual information follows a clear downward
trend in the scorewith increasing number of sample sizes in all our test cases. For linear
dependencies, for example, we found that the baseline adjustment roughly follows a
〈D̂(′)

0 (Y ; X)〉 ∼ n−2/3 scaling law that vanishes as n → ∞ (Fig. 3). However, the
exact scaling behavior in general varies depending on the presence of duplicate values
of each variable in a data set.

8.1.3 Invariance properties of TCMI

In the third experiment, we investigate the invariance properties of TCMI as compared
to CMI, MAC, UDS, and MCDE. To this end, we generated random distributions X
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Table 4 Overview of the invariance properties of the dependence measures: cumulative mutual informa-
tion (CMI: Nguyen et al. (2013)), multivariate maximal correlation analysis (MAC: Nguyen et al. (2014b)),
universal dependency analysis (UDS: Nguyen et al. (2016), Wang et al. (2017)), Monte Carlo dependency
estimation (MCDE: Fouché and Böhm (2019), Fouché et al. (2021)), and total cumulative mutual informa-
tion (TCMI). Checkmarks and crosses in parentheses denote invariance in terms of probabilistic tolerance

Dependence measure scale invariant permutation invariant

CMI ✗ ✗

MAC ✓ ✗

UDS ✗ ✗

MCDE (✓) (✓)

TCMI ✓ ✓

of different sizes (50, 100, 200, and 500) and reparameterized variables by applying
positive monotonic transformations (cf., Sect. 3.2). Table 4 summarizes the results of
comparing the dependence scores between a linear distribution and reparameterized
variables, e.g., between D̂(Y ; X) and D̂(Y ; T (X)), where monotonic transformations
T (X) = aXk + b with a, b, k ∈ R and compositions T (X) = T1(X)± · · · ± Tm(X)

were explored.
By construction, TCMI is invariant under positive monotonic transformations

(Eq. 12). Our experiments show that TCMI is indeed both scale and permutation
invariant. For CMI, MAC, and UDS, the order of the variables plays a crucial role in
determining which permutation of the variable achieves either the highest dependence
score (CMI, UDS) or the best discretization (MAC). Hence, deterministic dependence
measures such as CMI and UDS with which TCMI is most closely related are neither
scale nor permutation invariant. MAC is scale invariant, but not permutation invariant.
In contrast, the stochastic dependencemeasureMCDE is scale and permutation invari-
ant, but only within a probabilistic tolerance (i.e., dependence scores vary between
different runs of a program within a certain threshold).

8.1.4 Baseline adjustment of TCMI

In the fourth experiment, we investigate the necessity of a baseline adjustment to
estimatemutual dependences (Sect. 5). To this end,wegeneratedmutually independent
and uniform distributions Z = {Y , X1, . . . , Xd} of dimensionality d with sample
sizes 10, 50, 100, and 500. We compared TCMI, CMI, MAC, UDS, and MCDE
across subsets of variables of different subspace dimensionality while repeating the
experiment 50 times. Figure 4 summarizes the results.

By definition, the score of the dependence measures for independent random vari-
ables must be zero independent of the sample size (cf., Sect. 5). However, none of the
investigated dependence-measure scores are zero for all sample sizes. This is due to the
fact that sample data are rarely exactly uniform. In practice, due to random sampling,
we expect constant scores approaching 〈D̂∗

TCMI(Y ; �X)〉 → 0.5 and D̂MCDE(Y ; �X) →
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Fig. 4 Fraction of cumulative information scores against increasing dimensionality for {Y , �X} using
10, 50, 100, and 500 data samples generated from mutually independent and uniform distributions of
size �X = {Y , X1, . . . , X4}. Contributions of average fraction of total cumulative mutual information,
〈D̂TCMI(Y ; X)〉 and 〈D̂TCMI, 0(Y ; X)〉 are shown on either side of the plot and the resulting score

〈D̂∗
TCMI(Y ; X)〉 as points. Error bars indicate standard deviations from repeating the experiment 50 times.

Since X and Y are independent, average total cumulative mutual information should be constant across
subsets of features independent of sample size and subset dimensionality. While 〈D̂TCMI(Y ; X)〉 is increas-
ing with the cardinality of the variable feature set and 〈D̂TCMI, 0(Y ; X)〉 decreasing, 〈D̂∗

TCMI(Y ; X)〉 is
approximately constant for a wide range of data samples 10 . . . 500 and subset dimensionality 1 . . . 4. The
crosses represent the deviation of the TCMI from the constant baseline. By enlarging the feature subset
with a shuffled version of the same variable, TCMI can be corrected. For comparison the dependence scores
for the other investigated measures against increasing dimensionality – cumulative mutual information
(CMI: Nguyen et al. (2013)), multivariate maximal correlation analysis (MAC: Nguyen et al. (2014b)), and
universal dependency analysis (UDS: Nguyen et al. (2016), Wang et al. (2017)) – are also shown
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0.5 as n →∞ independent of the dimensionality of �X = {X1, . . . , Xd} in the case if
none of the variables are dependent to Y , and zero scores for CMI, MAC, and UDS.

Dependence scores of TCMI and MCDE are approximately constant for a wide
range of data samples 10 . . . 500 and subset dimensionality 1 . . . 4 and approach
〈D∗

TCMI〉 → 0.5 or D̂MCDE → 0.5 as n → ∞ as expected. In contrast, CMI, MAC,
and UDS show a clear bias towards larger dependence scores at larger subset car-
dinalities. Furthermore, their scores are nonzero even at larger sample sizes between
mutually independent random variables. In addition, their dependence scores decrease
with more data samples, indicating that these measures are unreliable in estimating
the strength of mutual dependences.

In comparison toMCDE,CMI,MAC,UDS, andTCMIunderestimate dependencies
in the one-dimensional case when noise is present in the data. By enlarging the subset
with a shuffled version of the same variable, thereby simulating a variable with noise,
these measures can be corrected (Fig. 4). As a result, both the corrected version of
TCMI andMCDEprovide a clear comparisonmechanism of dependence scores across
different subsets of variables, independent of the number of data samples.

8.1.5 Bivariate normal distribution

At last, we consider a simple feature-selection task with known ground truth, namely
to find a bivariate normal distribution embedded in a high-dimensional space. For this
purpose, we generated a bivariate normal distribution of size n = 500 from features
x and y, added additional variables such as normal, exponential, logistic, triangular,
uniform, Laplace, Rayleigh, and Weibull distributions all with zero mean μ = 0
and identity covariance matrix σ = 1, and augmented the feature space as described
in Sect. 3.2. In terms of Pearson or Spearman’s correlation coefficient, none of the
features have coefficients of determinations higher than 1%with respect to the bivariate
normal distribution. Thus, without knowing the ground truth, the data set appears to
be uncorrelated. However, since the ground truth is known, there are two features,
namely x and y, to completely describe the bivariate normal distribution of the data
set.

Subspace search
In order to find the two most relevant features from the high-dimensional data set, a
subspace search is performed up to the second subset dimensionality. Further, feature
selection is being performed for four sets of 50, 100, 200, and 500 data samples (Fig. 5).
Results are reported in Table 5.

Overall, almost all dependencemeasures find at least one of the two relevant features
x , y, both, or at least similar distributions, such as the normal distribution. However,
scores and subset sizes of relevant features decrease with larger sample sizes for MAC
and UDS, while CMI identifies exact dependencies even between distributions where
none dependence exists, e.g., between a Laplacian and bivariate normal distribution.
In contrast, MCDE robustly finds one of the relevant features x or y, but never finds
two of them being jointly relevant. TCMI also finds one or both of the two relevant
features, but scores and relevance are more determined by sample size. With sample
sizes greater than 200, TCMI is the only dependence measure that correctly identifies
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Fig. 5 Bivariate normal probability distribution with mean μ = (0, 0) and covariance matrix � =
[1, 0.5; 0.5, 1]. Shown is a scatter plot with 50, 100, 200, and 500 data samples, its cumulative prob-
ability distributions, P(Z ≤ z), Z ∈ {X , Y }, and contour lines of equal probability densities ∈
{0.01, 0.02, 0.05, 0.08, 0.13}

the optimal feature subset to be {x, y}. Still, TCMI scores are lower than of the other
dependence measures, even though the score increases for larger sample sizes.

Statistical power analysis
To assess the robustness of dependence measures, we performed a statistical power
analysis for CMI, MAC, UDS, MCDE, and TCMI and added Gaussian noise with
increasing standard deviation σ (Nguyen et al. 2014b, 2016; Fouché and Böhm 2019;
Fouché et al. 2021). We considered 5 + 1 noise levels, distributed linearly from 0
to 1, inclusive. We computed the score of the bivariate normal distribution for each
dependence� ={CMI, MAC, UDS, MCDE, TCMI}, i.e., 〈�(Y ; X)〉σ , with n = 500
data samples and subset {x, y} and compared it with the score of independently drawn
random data samples, 〈�(Y ; I )〉0, of the same size (n = 500) and dimension (d =
1+ 2). The power of a dependence measure �, was then evaluated as the probability
P of a dependence score to be larger than the γ -th percentile of the score with respect
to independence I ,

Powerγ�,σ (Y ; X) := P
(〈�(Y ; X)〉σ > 〈�(Y ; I )〉γ0

)
. (39)

Essentially, the power of a dependence measure quantifies the contrast, i.e., the differ-
ence between dependence X and independence I at noise level σ with γ%confidence.
It is a relative statistical measure and depends on the strength of the dependence.
Therefore, dependence strengths that are close to independence are likely to be more
sensitive to noise than stronger dependences.
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Table 5 Topmost feature subsets in the order of identification from the bivariate normal distribution data set
with 50, 100, 200, and 500 data samples as being restricted to subset dimensionality≤ 2 and selected by the
following dependence measures: total cumulative mutual information (TCMI), cumulative mutual informa-
tion (CMI), multivariate maximal correlation analysis (MAC), universal dependency analysis (UDS), and
Monte Carlo dependency estimation (MCDE)

Dependence
Measure

Sample size
00500200105

TCMI {logistic,x}=0.54
{rayleigh,weibull}=0.53
{x,y}=0.52
{x}=0.35
{rayleigh}=0.35
{laplace}=0.35
{triangular}=0.34

{y,rayleigh}=0.57
{y,laplace}=0.55
{y,uniform}=0.55
{y}=0.46

{x,y}=0.58
{y,exponential}=0.55
{y}=0.48
{y,poisson}=0.47

{y,x}=0.60
{x,normal}=0.57
{normal,triangular}=0.57
{x}=0.38

CMI (Nguyen et al, 2013) {y}=1.00
{logistic}=1.00
{triangular}=1.00
{laplace}=1.00

{y}=1.00
{logistic}=1.00
{normal}=1.00
{triangular}=1.00
{laplace}=1.00

{y}=1.00
{x}=1.00
{triangular}=1.00
{laplace}=1.00
{logistic}=1.00
{normal}=1.00

{y}=1.00
{x}=1.00
{logistic}=1.00
{triangular}=1.00
{laplace}=1.00
{normal}=1.00

MAC (Nguyen et al, 2014b) {y,laplace}=0.90
{y,x}=0.89
{y,triangular}=0.89
{y,exponential}=0.89
{y,normal}=0.89
{y,rayleigh}=0.89
{y,uniform}=0.89
{y,weibull}=0.89
{y,logistic}=0.89
{y}=0.88

{x,laplace}=0.82
{x,logistic}=0.82
{x,weibull}=0.82
{x,triangular}=0.82
{x,exponential}=0.82
{x,normal}=0.82
{x,rayleigh}=0.82
{x,uniform}=0.82
{x,y}=0.82
{y}=0.81

{y}=0.83
{x}=0.83

{y}=0.81
{weibull}=0.78

UDS (Nguyen et al, 2016;
Wang et al, 2017)

{laplace}=0.52 {y}=0.49
{normal}=0.48

{normal}=0.47 {normal}=0.45
{logistic}=0.44

MCDE (Fouché and Böhm,
2019; Fouché et al, 2021)

{y}=0.84 {x}=0.88
{y}=0.86

{x}=0.92
{y}=0.88

{y}=0.94
{x}=0.92

For our experiments, we set γ = 95% and repeated the experiment 500 times.
At each iteration, we shuffled the data samples, computed the scores 〈�(Y ; X)〉σ
and 〈�(Y ; I )〉γ0 for every dependence measure at noise level σ , and recorded the
average and standard deviation of the respective dependence measures. The results
of the statistical power analysis, the average score of the dependence measures and
independence as well as the contrast are summarized in Fig. 6.

With the exception of MAC, the statistical power of all dependence measures tends
to be constant or to decrease with increasing noise level. It is remarkable thatMCDE is
the only dependencemeasure that has a high statistical power, offers a high contrast and
assesses a strong dependence. In particular, the contrast of MCDE provides excellent
statistics, even at noise levels much higher than TCMI. Although MAC and CMI also
have high statistical power, their contrasts and dependence scores are low.

While a lowcontrast introduces difficulties in identifying subsets of related variables
to an output, a low dependence score needs to be viewed in terms of the dependence
score of all other possible subsets of features: If the subset has the highest score, it is
still the subset that is most strongly related to an output given a dependence measure.

In our analysis, MCDE has the highest scores, followed byMAC, TCMI, and CMI.
UDS completely fails to detect dependences in line with observations (Fouché and
Böhm 2019; Fouché et al. 2021). In general, TCMI is dependent on the number of
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Fig. 6 Statistical power analysis with 95% confidence of dependence measures at different noise levels σ =
0 . . . 1: total cumulative mutual information (TCMI), cumulative mutual information (CMI), multivariate
maximal correlation analysis (MAC), universal dependency analysis (UDS), and Monte Carlo dependency
estimation (MCDE). The diagrams also show the trends in the dependence scores of the optimal feature
subset {x, y} of the bivariate normal distribution

samples (Eq. 27) and its contrast generally increaseswithmore data samples.However,
TCMI seems to be more sensitive and, therefore, less robust as compared to the other
dependence measures. An in-depth analysis shows: the sensitivity is merely due to the
moderate strength of the dependence as the statistical power is much more robust for
stronger dependences in other data sets we tested.

8.2 Case study on real-world data

Next, we study selected real-world data sets from KEEL and UCI Machine Learn-
ing Repository (Alcalá-Fdez et al. 2009, 2011; Dua and Graff 2017), and highlight
TCMI for one, not restricted to, typical application of the materials-science commu-
nity, namely the crystal-structure prediction of octet-binary compound semiconductors
(Ghiringhelli et al. 2015, 2017).

8.2.1 KEEL and UCI regression data sets

We investigate how TCMI and similar dependence measures perform in real-world
problems developed for multivariate regression tasks. Unfortunately, in practice, not
every data set is known to have relevant features. Therefore, we compare our results
with analyzed data sets with known relevant features. All in all, we consider one
simulated data set from the KEEL database (Alcalá-Fdez et al. 2009, 2011) and two
data sets from the UCI Machine Learning Repository (Dua and Graff 2017):

1. Friedman #1 regression (Friedman 1991)
This data set is used for modeling computer outputs. Inputs X1 to X5 are indepen-
dent features that are uniformly distributed over the interval [0, 1]. The output Y is
created according to the formula:

Y = 10 sin(πX1X2)+ 20(X3 − 0.5)2 + 10X4 + 5X5 + ε (40)

where ε is the standard normal deviate N (0, 1). In addition, the data set has five
redundant variables X6 . . . X10 that are i.i.d random samples. Further, we enlarge
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the number of features by adding four variables X11 . . . X14 each very strongly
correlated with X1 . . . X4 and generated by f (x) = x + N (0, 0.01).

2. Concrete compressive strength Yeh (1998)
The aim of this data set is to predict the compressive strength of high performance
concrete. Compressive strength is the ability of a material or structure to withstand
loads that tend to reduce size. It is a highly nonlinear function of age and ingredients.
These ingredients include cement,water, blast furnace slag (a by-product of iron and
steel production), fly ash (a coal combustion product), superplasticizer (additive to
improve the flow characteristics of concrete), coarse aggregate (e.g., crushed stone
or gravel), and fine aggregate (e.g., sand).

3. Forest fires Cortez and Morais (2007)
This data set focuses on wildfires in the Montesinho Natural Park, which is located
at the northern border of Portugal. It includes features such as local coordinates x
and y where a fire occurred, the time (day, month, and year), temperature (temp),
relative humidity (RH), wind, rain, and derived forest-fire features such as fine-fuel
moisture code (FFMC), duff moisture code (DMC), drought code (DC), and initial
spread index (ISI) to estimate the propagation speed of fire.

For each data set, we performed feature selection using all aforementioned dependence
measures (TCMI, CMI, MAC, UDS, MCDE) and compared resulting feature subsets
with potentially relevant features reported from the original references. Results are
summarized in Table 6.

Our results show that even in the simplest example of the Friedman regression
data set, two dependence measures show extreme behavior: UDS selects no variables
and MAC selects all variables of the data set and therefore both do not perform any
feature selection at all. Both dependence measures do not only completely fail to
identify the actual dependences of the Friedman regression data set, but also fail in
the concrete compressive strength, and forest fires data set. Therefore, it is likely that
these dependence measures report incorrect results in other data sets and are therefore
inappropriate for feature selection and dependence-assessment tasks.

CMI and MCDE partially agree with potentially relevant features from the respec-
tive references: Therefore, they may be useful when low-dimensional feature subsets
need to be identified. In contrast, TCMI effectively selects all relevant variables of the
Friedman regression data set. However, TCMI it is not free from selecting non-relevant
variables in sub-optimal feature subsets as it reports X7 or X8 in the fourth or fifth
best feature subset. Therefore, dependence scores need to be related with respect to
the baseline adjustment term, and the lower the dependence scores are, the more likely
non-relevant variables are in the subsets (cf., Sect. 8.1.1).

Found feature subsets with TCMI for the Friedman regression data set as well as
for the concrete compressive strength data set have high dependence scores. They
agree well with relevant features as reported by the references, even though TCMI
misses slag in the concrete compressive strength example: It is likely that variables
such as fine and coarse aggregate or superplasticizer serve as a substitute for slag due
to the limited number of data samples. However, we cannot test this assumption as all
data samples were used to compute the dependence scores and no curated test sets are
available for further tests.
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Table 6 Relevant feature subsets for selected data sets from the KEEL database (Alcalá-Fdez et al. 2009,
2011) and UCI Machine Learning Repository (Dua and Graff 2017), designed for multivariate regres-
sion tasks and feature selection as found out by total cumulative mutual information (TCMI), cumulative
mutual information (CMI), multivariate maximal correlation analysis (MAC), universal dependency analy-
sis (UDS), and Monte Carlo dependency estimation (MCDE). For comparison, potentially relevant feature
subsets mentioned in the references are also included

Dependence
Measure

Relevant feature subsets
(Data set, reported relevant features, feature subsets by dependence measures)

Friedman #1 regression (Friedman, 1991): X1 . . . X14
Potentially relevant features: X1 . . . X5 and X11 . . . X14 [500 data samples]

TCMI {X14, X12, X1, X5, X3} = 0.79, {X14, X12, X1, X5} = 0.77, {X4, X2, X1, X3} = 0.77,
{X4, X2, X1, X8} = 0.76, {X14, X12, X1, X7} = 0.75

CMI {X14} = 1.00, {X4} = 1.00

MAC {X14, X8, X9, X7, X11, X3, X6, X10, X12, X5} = 0.89, . . . (+ 119.981 subsets= 0.89)

UDS –

MCDE {X2} = 0.78, {X12} = 0.77, {X11} = 0.77, {X1} = 0.77

Concrete compressive strength (Yeh, 1998): age, cement, water, blast furnace slag (slag),
fly ash, superplasticizer (sp), coarse aggregate (coarse aggr), fine aggregate (fine aggr)
Potentially relevant features: age, cement, water, slag [1030 data samples]

TCMI {cement, sp,water, coarse aggr, fine aggr} = 0.68
{fine aggr,water, sp, coarse aggr, fly ash} = 0.68
{fine aggr,water, sp, coarse aggr, age} = 0.68
{cement, coarse aggr,water, slag, fine aggr} = 0.68
{fine aggr, slag,water, coarse aggr, age} = 0.67
{cement, coarse aggr,water, sp, age} = 0.67
{cement, coarse aggr, fine aggr, sp, age} = 0.67
{coarse aggr, cement, fine aggr,water, sp} = 0.66

CMI {age} = 1.00, {cement} = 1.00, {coarse aggr} = 1.00, {fine aggr} = 1.00,
{slag} = 1.00, {water} = 1.00, {sp} = 0.98

MAC {water, coarse aggr, fine aggr, cement, sp, slag, fly ash, age} = 0.76

UDS –

MCDE {age} = 0.90

Forest fires (Cortez and Morais, 2007): x, y, time (day, month, and year), temperature
(temp), relative humidity (RH), wind, rain, fine fuel moisture code (FFMC), duff moisture
code (DMC), drought code (DC), initial spread index (ISI)
Potentially relevant features: temp, rain, RH, wind [517 data samples]

TCMI {DMC,RH, ISI, temp,wind,DC} = 0.53,
{DMC,RH,DC, temp,FFMC,wind} = 0.51

CMI {temp,DC} = 1.00, {temp,DMC} = 1.00, {temp,RH} = 1.00,
{temp,FFMC} = 1.00, {FFMC,DC} = 1.00, {FFMC,DMC} = 1.00,
{FFMC,RH} = 1.00, {FFMC, temp} = 1.00, {DMC,DC} = 1.00,
{DMC, ISI} = 1.00, {DMC,RH} = 1.00, {DMC,month} = 1.00,
{DC,DMC} = 1.00, {DC, ISI} = 1.00, {DC,RH} = 1.00, {DC,month} = 1.00,
{RH,DMC} = 1.00, {RH,DC} = 1.00, {ISI,DMC} = 1.00, {ISI,DC} = 1.00,
{temp,month} = 1.00

MAC {temp,RH,DMC,FFMC,DC, ISI,wind, day, x} = 0.85,
{temp,RH,DMC,FFMC,DC, ISI,wind, day} = 0.83,
{temp,RH,DMC,FFMC,DC, ISI,wind, x} = 0.83

UDS {rain} = 0.35

MCDE {DMC, temp,RH} = 0.84, {DMC, temp,DC} = 0.82, {DMC, temp,FFMC} = 0.81
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In the forest-fires data set, temperature and relative humidity as well as duff mois-
ture and drought code are not only reported by TCMI, but also by CMI and MCDE. It
is therefore likely that these variables are also relevant in the forest-fires predictions,
although none of them were mentioned in the reference (Cortez and Morais 2007).
Apart from weather conditions, TCMI also includes some of the derived forest-fires
variables such as duff moisture (CMD) and drought code (DC) – these variables are
indirectly related to precipitation and are used to estimate the lower and deeper mois-
ture content of the soil. Admittedly, the TCMI scores are moderate, which indicates
difficulties in assessing the mutual dependences between a set of features and the
burnt area of forest fires as a whole. A detailed analysis shows that although forest
fires are devastating, they are isolated events – not enough to actually reliably identify
the precursors of wildfires from the investigated data set.

8.2.2 Octet-binary compound semiconductors

Our last example is dedicated to a typical, well characterized, and canonical materials-
science problem, namely the crystal-structure stability prediction of octet-binary
compound semiconductors (Ghiringhelli et al. 2015, 2017). Octet-binary compound
semiconductors are materials consisting of two elements formed by groups of I/VII,
II/VI, III/V, or IV/IV elements leading to a full valence shell. They can crystallize in
rock salt (RS) or zinc blende (ZB) structures, i.e., either with ionic or covalent bindings
and were already studied in the 1970’s (Van Vechten 1969; Phillips 1970), followed by
further studies (Zunger 1980; Pettifor 1984), and recent work using machine learning
(Saad et al. 2012; Ghiringhelli et al. 2015, 2017; Ouyang et al. 2018).

The data set consists of 82 materials with two atomic species in the unit cell.
The objective is to accurately predict the energy difference �E between RS and
ZB structures based on 8 electro-chemical atomic properties for each atomic species
A/B (in total 16) such as atomic ionization potential IP, electron affinity EA, the
energies of the highest-occupied and lowest-unoccupied Kohn-Sham levels, H and L,
and the expectation value of the radial probability densities of the valence s-, p-, and
d-orbitals, rs , rp, and rd , respectively (Ghiringhelli et al. 2015). As a reference, we
addedMulliken electronegativity EN = −(IP+EA)/2 to the data set and also studied
the best two features from the publication (Ghiringhelli et al. 2015)

D1 = IP(B)− EA(B)

rp(A)2
, D2 = |rs(A)− rp(B)|

exp[rs(A)] , (41)

as known dependences to show the consistency of the method as well as to probe
TCMI with linearly dependent features (Ghiringhelli et al. 2015).

To predict the energy difference�E betweenRS and ZB structures, we performed a
subspace search with TCMI to identify the subset of features that exhibit the strongest
dependence on �E . Results are summarized in Table 7. In total, the strongest depen-
dence on �E was found with six features from both atomic species, A and B, before
TCMI decreased again with seven features.

Results reveal that there are several feature subsets that are found to be optimal
among different cardinalities. We note that TCMI never selects Mulliken electroneg-
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Table 7 Relevant feature subsets for the octet-binary compound semiconductors data set as found out by
total cumulative mutual information (TCMI) showing the most relevant feature subsets of each cardinality.
For comparison, best feature subsets for D1 = D1(IP(B),EA(B), rp(A)) and D2 = D2(rs (A), rp(B))

from reference (Ghiringhelli et al. 2015) (entries with a star 
) are also listed. Bold feature subsets mark
subsets with interchangeable variables EN and IP. The table also shows statistics of constructed machine-
learning models using the gradient boosting decision tree (GBDT) algorithm (Friedman 2001) with 10-fold
cross-validation: root-mean-squared error (RMSE), mean absolute error (MAE), maximum absolute error
(MaxAE), and Pearson coefficient of determination (r2). Units are in electronvolts (eV)

Subset dimension Feature subsets and dependence score (TCMI) Metrics (GBDT)
RMSE MAE MaxAE r2

6 
 {D2,EA(A), rp(A), rs (A), rp(B),L(B)} = 0.84 0.15 0.10 0.43 0.86

{EA(A), r p(A), rs(A),EN(B),L(B), rs(B)} = 0.82 0.12 0.08 0.32 0.91

{EA(A), r p(A), rs(A),EN(B),L(B), r p(B)} = 0.82 0.12 0.08 0.32 0.91

{EA(A), r p(A), rs(A), IP(B),L(B), rs(B)} = 0.82 0.13 0.09 0.33 0.90

{EA(A), r p(A), rs(A), IP(B),L(B), r p(B)} = 0.82 0.13 0.09 0.33 0.90

{EA(A), rp(A), rs (A),H(B),L(B), rs (B)} = 0.82 0.14 0.10 0.36 0.87

{EA(A), rp(A), rs (A),H(B),L(B), rp(B)} = 0.82 0.14 0.10 0.36 0.87

{EA(A),H(A), rd (A), rp(A),L(B), rd (B)} = 0.82 0.15 0.10 0.45 0.86

{EA(A),H(A), rd (A), rs (A),L(B), rd (B)} = 0.82 0.16 0.10 0.46 0.85

{EA(A),H(A), rp(A),L(B), rd (B), rp(B)} = 0.81 0.14 0.10 0.37 0.88

{EA(A),H(A), rp(A),L(B), rd (B), rs (B)} = 0.81 0.14 0.10 0.37 0.87

5 {EA(A), r p(A), rs(A), IP(B),L(B)} = 0.79 0.13 0.08 0.40 0.89

{EA(A), r p(A), rs(A),EN(B),L(B)} = 0.79 0.14 0.08 0.46 0.88

{EA(A), rp(A), rs (A),H(B),L(B)} = 0.79 0.15 0.09 0.42 0.86


 {D1, D2, rp(A), rs (A), rs (B)} = 0.79 0.17 0.10 0.50 0.83

{EN(A), rp(A), rs (A), IP(B),L(B)} = 0.78 0.14 0.08 0.43 0.88

{EA(A),H(A), rp(A),L(B), rs (B)} = 0.78 0.14 0.10 0.37 0.88

{EA(A),H(A), rp(A),L(B), rp(B)} = 0.78 0.14 0.10 0.37 0.88

{EA(A),H(A), rd (A), rp(A),L(B)} = 0.78 0.17 0.09 0.51 0.84

{EA(A),H(A), rd (A), rs (A),L(B)} = 0.78 0.17 0.10 0.53 0.83

{EA(A),H(A),L(A), rs (A),L(B)} = 0.78 0.18 0.10 0.55 0.82

4 {EA(A), rp(A), rs (A),L(B)} = 0.78 0.16 0.09 0.49 0.85

{L(A), rp(A), rs (A), rp(B)} = 0.76 0.13 0.09 0.35 0.90

{L(A), rp(A), rs (A), rs (B)} = 0.76 0.13 0.09 0.33 0.90

{EN(A), rp(A), rs (A),L(B)} = 0.76 0.17 0.10 0.52 0.83


 {D1, rp(A), rs (A), rs (B)} = 0.75 0.15 0.11 0.37 0.87

3 {rp(A), rs (A), rs (B)} = 0.73 0.13 0.10 0.31 0.89

{IP(A), r p(A),L(B)} = 0.73 0.16 0.10 0.49 0.84

{rp(A), rs (A),L(B)} = 0.73 0.16 0.10 0.48 0.84

{EN(A), r p(A),L(B)} = 0.73 0.18 0.11 0.53 0.80

{rp(A), rs (A), rp(B)} = 0.72 0.13 0.10 0.31 0.89

{IP(A), rs(A),L(B)} = 0.72 0.17 0.10 0.49 0.82
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Table 7 continued

Subset dimension Feature subsets and dependence score (TCMI) Metrics (GBDT)
RMSE MAE MaxAE r2

{EN(A), rs(A),L(B)} = 0.72 0.18 0.11 0.52 0.80


 {D1, rs (A), rp(B)} = 0.70 0.15 0.11 0.40 0.86

2 
 {D1, rs (B)} = 0.71 0.19 0.14 0.52 0.76

{rs (A),L(B)} = 0.69 0.18 0.12 0.49 0.80

{rs (A), rs (B)} = 0.67 0.14 0.10 0.34 0.88


 {D1, D2} = 0.62 0.19 0.14 0.53 0.77

1 
 {D1} = 0.57 0.23 0.18 0.56 0.69

{rs (A)} = 0.56 0.21 0.15 0.53 0.75

{rp(A)} = 0.55 0.21 0.15 0.54 0.75

All 16 features (GBDT reference): 0.15 0.09 0.45 0.86

ativity EN together with either electron affinity EA or ionization potential IP for the
same atomic species. We also note that EN can be replaced by IP (see bold feature
subsets in Table 7). However, EN cannot be replaced by EA, as EN is found to be
stronger linearly correlated with IP than with EA and hence results in slightly smaller
TCMI values (by at least 0.02 in case of the optimal subsets, not shown in the table).
Results therefore do not only corroborate the functional relationship between EN, IP,
and EA, but also the consistency of TCMI.

Furthermore, TCMI indicates that features, like the atomic radii rs(B) and rp(B)

or the energies EN(B), H(B), H(B) and IP(B) of IV to VIII elements, can be used
interchangeably without reducing the dependence scores. Indeed, by assessing depen-
dences between pairwise feature combinations, TCMI identifies rs(B) and rp(B)

to be strongly dependent and EN(B), H(B), and IP(B) strongly dependent, consis-
tent with bivariate correlation measures such as Pearson or Spearman. In numbers,
the Pearson coefficient of determination (r2) between the atomic radii rs and rp are
r2(rs(A), rp(A)) = 0.94, r2(rs(B), rp(B)) = 0.99 and the Pearson coefficient of
determination between Mulliken electronegativity and ionization potential or elec-
tron affinity is r2(EN(B), IP(B)) = 0.96, or r2(EN(B),H(B)) = 0.99, respectively.
These findings illustrate that TCMI assigns similar scores to collinear features.

Features D1 and D2 (Eq. 41) from the reference (Ghiringhelli et al. 2015), are
combinations of atomic properties that best represent �E linearly,

D1 = D1(IP(B),EA(B), rp(A)) , (42)

D2 = D2(rs(A), rp(B)) . (43)

As such, they incorporate knowledge that generally lead to higher TCMI scores for
the same feature subset cardinality. While this applies to the first and second subset
dimensions, feature subsets with the aforementioned features D1, D2 are on par with
feature subsets based on atomic properties at higher dimensions. However, D1 and D2
are not selected consistently by TCMI because TCMI does not make any assumption
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Fig. 7 Feature spaces of the topmost selected feature subsets for one (left) and two dimensions (right).
Shown are the two classes of crystal-lattice structures as diamonds (zinc blende) and squares (rock salt),
their distribution, and the trend line/manifold in the prediction of the energy difference �E between rock
salt and zinc blende. The trend line/manifold was computed from with the gradient boosting decision
tree algorithm (Friedman 2001) and 10-fold cross validation. For reference, some octet-binary compound
semiconductors are labeled

about the linearity of the dependency (D1, D2) �→ �E . This suggests that the linear
combination of D1 and D2 is a good, but not complete, description of the energy
difference �E .

A visualization of relevant subsets also reveals clear monotonous relationships in
one and two dimensions (Fig. 7). In addition, we constructedmachine-learningmodels
for each feature subset and report model statistics for the prediction of �E along with
statistics of the full feature set (Table 7). The details can be found in the appendix.
We partitioned the data set into k = 10 groups (so-called folds) and generated k
machine-learning models, using 9 folds to generate the model and the k-th fold to
test the model (10-fold cross validation). To reduce variability, we performed five
rounds of cross-validation with different partitions and averaged the rounds to obtain
an estimate of the model’s predictive performance. For the machine-learning models
we used the gradient boosting decision tree algorithm (GBDT) (Friedman 2001).
GBDT is resilient to feature scaling (Eq. 12) just like TCMI and is one of the best
available, award-winning, and versatile machine-learning algorithm for classification
and regression (Natekin and Knoll 2013; Fernández-Delgado et al. 2014; Couronné
et al. 2018). Notwithstanding this, traditional methods sensitive to feature scaling may
show superior performances for data sets with sample sizes larger than the number
of considered features (Lu and Petkova 2014) (compare also model performances in
Table 7 with references (Ghiringhelli et al. 2015; Ouyang et al. 2018; Ghiringhelli
et al. 2017)).

Machine-learningmodels are designed to improvewithmore data and a feature sub-
set that best represents the data for the machine-learning algorithm (Friedman 2001;
James et al. 2013). Therefore, we expect a general trend of higher model performances
with larger feature-subset cardinalities. Furthermore, we do not expect that the optimal
feature subset of TCMI performs best for every machine-learning model (“No free
lunch” theorem: Wolpert (1996b, a), Wolpert and Macready (1995, 1997)) as an opti-
mal feature subset identified by the feature-selection criterion TCMI may not be same
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according to other evaluation criteria such as root-mean-squared error (RMSE), mean
absolute error (MAE), maximum absolute error (MaxAE), or Pearson coefficient of
determination (r2). This fact is evident in our analysis. The choice of GBDT may not
be optimal because its predictive performance generally decreases with the number of
variables (compare the model performance with all 16 variables to a subset with two
or four variables, Table 7). However, to the best of our knowledge, there is no other
machine-learning algorithm that models data without making assumptions about the
functional form of dependence, is independent of an intrinsic metric, and can operate
on a small number of data samples. Therefore, we focus only on the predictive perfor-
mance of the found subsets compared to the predictive performance of the identified
features with respect to all variables in the data set (Table 7).

Results confirm the general trend of highermodel performances with larger feature-
subset cardinalities and show that the initial subset of 16 variables can be reduced down
to 6variableswithout decreasingmodel performances. Essentially, feature subsetswith
three to four variables are already as good as a machine-learning model with all 16
variables, where the large number of variables already start to degrade the prediction
performance of the GBDT model. The overall performance gradually increases with
the subset cardinality. However, our analysis identifies significant variability in per-
formance with a higher standard deviation for feature subsets at smaller dependence
scores than for larger values.

An exhaustive search for the best GBDTmodel yields an optimum of seven features
to best predict the energy difference between rock salt and zinc blende crystal structures
with D1 and D2 neglected,

{EA(A), IP(A), rd(A), rp(A), IP(B), rs(B), rp(B)}
RMSE : 0.11, MAE : 0.08, MaxAE : 0.27, r2 : 0.92 .

In contrast to the optimal feature subsets of TCMI (cf., Table 7), the optimal GBDT
feature set is a variation of optimal feature subsets of TCMI with highest-occupied
Kohn-Sham level and ionization potential interchanged, H(A) ↔ IP(A), and lowest-
unoccupied Kohn-Sham level, L(B), missing. Model performances demonstrate that
the optimal feature subsets of TCMI are close to the model’s optimum and corrobo-
rate the usefulness of TCMI in finding relevant feature subsets for machine-learning
predictions. Slight differences in performances are mainly due to the variances of the
cross-validation procedure and the small number of 82 data samples, which effec-
tively limited the reliable identification of larger feature subsets in the case of TCMI
(Table 5).

9 Discussion

Although TCMI is a non-parametric, robust, and deterministic measure, the biggest
limitation is its computational complexity. For small data sets (n < 500) and feature
subsets (d < 5) feature selection finishes in minutes to hours on a modern computer.
For larger data sets, however, TCMI scales with O(nd) and quickly exceeds any
realizable runtime. Furthermore, the search for the optimal feature subset also needs
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to be improved. Even though in our analysis only a fraction of less than one percent
of the possible search space had to be evaluated, TCMI was evaluated hundreds of
thousands of times. Future research towards pairwise evaluations (Peng et al. 2005),
Monte Carlo sampling (Fouché and Böhm 2019; Fouché et al. 2021), or gradual
evaluation of features based on iterative refinement strategies of sampling will show
to what extent the computational costs of TCMI can be reduced.

A further limitation is that non-relevant variables may be selected in the optimal
feature subsets, when only a limited amount of data points is available (cf., Sect. 8.1.5).
By construction, the identification of feature subsets is dependent on the feature-
selection search strategy (cf., Sect. 1). The results show that it is critical to use optimal
search strategies because sub-optimal search strategies can report subsets of features
that are not related to an output. Even if the exhaustive search for feature subsets is
computationally intensive, it can be implemented efficiently, e.g., by using the branch-
and-bound algorithm. In our implementation, the branch-and-bound algorithm was
used to search for optimal, i.e., minimal non-redundant feature subsets. However, as
our results demonstrate, different feature subsets with few or no common features
may lead to similar dependence scores. The main rationale for this outcome is that the
featuresmaybe correlatedwith each other and therefore contain redundant information
about dependences. Including these redundant features will surely lead to a higher
stability of the method, more consistent results, and better insights into the actual
dependence. If a machine-learning algorithm is given, the best option at present is to
generate predictive models for each of the found feature subsets and select the one
that works best.

10 Conclusions

We constructed a non-parametric and deterministic dependence measure based on
cumulative probability distribution (Rao et al. 2004; Rao 2005) to propose fraction of
cumulative mutual information D(Y ; �X), an information-theoretic divergence mea-
sure to quantify dependences of multivariate continuous distributions. Our measure
can be directly estimated from sample data using well-defined empirical estimates
(Sect. 3). Fraction of cumulative mutual information quantifies dependences without
breaking permutation invariance of feature exchanges, i.e., D(Y ; �X) = D(Y ; �X ′) for
all �X ′ ∈ perm( �X), while being invariant under positive monotonic transformations.
Measures based on mutual information are monotonously increasing with respect to
the cardinality of feature subsets and sample size. To turn fraction of cumulativemutual
information into a convex measure, we related the strength of a dependence with the
dependence of the same set of variables under the independence assumption of ran-
dom variables (Vinh et al. 2009, 2010). We further constructed a measure based on
residual cumulative probability distributions and introduced total cumulative mutual
information 〈D̂∗

TCMI(Y ; �X)〉.
Tests with simulated and real data corroborate that total cumulative mutual infor-

mation is capable of identifying relevant features of linear and nonlinear dependences.
The main application of total cumulative mutual information is to assess dependences,
to reduce an initial set of variables before processing scientific data, and to identify
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relevant subsets of variables, which jointly have the largest mutual dependence and
minimum redundancy with respect to an output. The performance of the total cumu-
lative mutual information is still exponential and thus outweighs potential benefits of
TCMI. In future works, we will address the performance issues of TCMI, the stability
of identified feature subsets, and provide a feature-selection framework that is also
suitable for discrete, continuous, and mixed data types. We will also apply TCMI to
current problems in the physical sciences with a practical focus on the identification
of feature subsets to simplify subsequent data-analysis tasks.

Since total cumulative mutual information identifies dependences with strong
mutual contributions, it is applicable to a wide range of problems directly operating on
multivariate continuous data distributions. In particular, it does not need to quantize
variables by using probability density estimation, clustering, or discretization prior to
estimating the mutual dependence between variables. Thus, total cumulative mutual
information has the potential to promote an information-theoretic understanding of
functional dependences in different research areas and to gain more insights from
data.
Supplementary information. We implemented total cumulative mutual information
in Python. Our Python-based implementation is part of B.R.’s doctoral thesis and is
made publicly available under a Apache License 2.0.

All data and scripts involved in producing the results can be downloaded from
Zenodo (https://doi.org/10.5281/zenodo.6577261).An online tutorial to reproduce the
main results presented in this work can also be found on GitHub (https://github.com/
benjaminregler/tcmi) or in the NOMAD Analytics Toolkit (https://analytics-toolkit.
nomad-coe.eu/public/user-redirect/notebooks/tutorials/tcmi.ipynb).

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10618-022-00847-y.
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Appendix A Baseline adjustment

Dependence measurements that assign stronger dependences for larger subsets of
features independently of the underlying relationship are considered biased (Vinh
et al. 2009). To actually compare dependence measures across subsets of variables and
different cardinality, dependence measures need to be adjusted. Baseline adjustment
is addressed by eliminating the inherent bias of the measure, so that the dependence
measure becomes constant under the independence assumption of random variables.
The baseline adjustment was discussed for mutual information in (Vinh et al. 2009,
2010; Romano et al. 2014; Mandros et al. 2017). Following the notation of Vinh et al.
(2009), we derive the baseline adjustment for cumulative mutual information.

A common model of randomness is the hypergeometric model (also called permu-
tation model) (Lancaster 1969; Vinh et al. 2009; Romano et al. 2014). It uniformly and
randomly generates m distinct permutations of pairs M with probability P(Y ; X |M)

by permuting all values of each variable in the data set,

Î0(Y ; X) =
∑

M∈M
Î(Y ; X |M)P(Y ; X |M) . (A1)

The baseline-adjusted cumulative fraction of the information can be obtained by
subtracting fraction of the cumulative information (Eq. 13) from the expected fraction
of the cumulative information under the assumption of independent and identical
distributed random variables,

Î∗(Y ; X) = Î(Y ; X)− Î0(Y ; X) , (A2)

D̂∗(Y ; X) = D̂(Y ; X)− D̂0(Y ; X) = Î∗(Y ; X)

Ĥ(Y )
. (A3)

Specifically, the average cumulative mutual information between all different per-
mutations with |Xi | = ai , i = 1, . . . , r and |Y j | = b j , j = 1, . . . , c has constant
marginal sum vectors a = [ai ] and b = [b j ]. Therefore, the cumulative information
overlap between X and Y ,

Î0(Y ; X |M) = Î0(a, b|M = [ni j ]i=1···rj=1···c)

= −
r−1∑

i=1

c∑

j=1
�yi (M)

ni j
n

log
ni j
b j

,
(A4)

can be summarized in the form of a r × c cumulative contingency table, M =
[ni j ]i=1···rj=1···c (Fig. 8), with ni j as being a specific realization of the joint cumulative
probability given row marginal ai and column marginal b j .
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Fig. 8 A r × c cumulative
contingency tableM related to
two clusterings X̃ and Ỹ with
row marginals, ai =

∑c
j=1 ni j ,

and column marginals,
b j =

∑r
i=1 ni j . The two

marginal sum vectors a = [ai ]
and b = [b j ] are constant and
satisfy the fixed marginals
condition,∑r

i=1 ai =
∑c

j=1 b j = N

By rearranging the sums in Eq. A4 and writing the sum over the entire permutation
of variable values as a sum over all permutations of possible values of ni j , we get

Î0(Y ; X) = −
∑

M∈M

r−1∑

i=1

c∑

j=1
�yi (M)

ni j
n

log
ni j
b j

P(Y ; X |M)

= −
r−1∑

i=1

c∑

j=1

∑

ni j

�yi (ni j , ai , b j |M)

· ni j
n

log
ni j
b j

P(ni j , ai , b j |M) ,

where P(ni j , ai , b j |M) is the probability to encounter an associative cumulative con-
tingency table subject to fixed marginals.

The probability to encounter an associative cumulative contingency table subject
to fixed marginals, with the cell at the i-th row and j-th column equals to ni j , is given
by the hypergeometric distribution,

P(ni j , ai , b j |M) = P(b j − ni j , r − 1, r − i, b j − 1)

=
(

r − i

b j − ni j

)(
i − 1

ni j − 1

)/(
r − 1

b j − 1

)
. (A5)

The hypergeometric distribution describes the probability of b j − ni j successes
in b j − 1 draws without replacement where the finite population consists of r − 1
elements, of which r − i are classified as successes. It is limited by the number of
successes that must not exceed the limit of max(0, i + b j − r) ≤ ni j ≤ min(i, b j ).

Similar, the distance �yi (M) between two consecutive ordered values is described
by a binomial distribution,

�yi (ni j , ai , b j |M) = 1

N

kmax∑

k=1

(
r − k − 1

b j − 2

)(
y(i+k) − y(i)

)
, (A6)
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where the upper limit is given by kmax = min(n − b j + 1, r − i) and N is the
normalization constant:

N =
kmax∑

k=1

(
r − k − 1

b j − 2

)
. (A7)

Summarizing all the single parts of Eq. A4, the final formula for the expected
fraction of cumulative information under the assumption of the hypergeometric model
of randomness is given by

Î0(Y ; X) = −
r−1∑

i=1

c∑

j=1

∑

ni j

�yi (M |ni j , ai , b j )
ni j
n

log

(
ni j
b j

)

· (r − i)!(i − 1)!(b j − 1)!(r − b j )!
(b j − ni j )!(r − i − b j + ni j )!(ni j − 1)!(i − ni j )!(r − 1)! . (A8)

Appendix B Monotonicity conditions for total cumulative mutual
information

In the following we will prove that expected cumulative mutual information under the
independence assumption of random variables Î0(Y ; X) is monotonically increasing
with respect to the number of features in the subset, i.e.,

Î0(Y ; X) ≤ Î0(Y ; X ′) for X ⊂ X ′ ⊆ �X (B9)

with X ′ = X ∪ {χ} and some χ /∈ X . For reference, we will closely follow the proof
for the baseline correction term in the discrete case with mutual information (Mandros
et al. 2017).

Let the row and column marginals of Y , X , X ′ be ai for i = 1 . . . R, b j for j =
1 . . .C and b′j for j = 1 . . .C ′, respectively. We note that C ′ > C . In order to show
that

∑

M∈M
Î(Y ; X |M)P(Y ; X |M)

≤
∑

M ′∈M′
Î(Y ; X |M ′)P(Y ; X |M ′) . (B10)

we define a relation between the cumulative contingency tables M = M(Y ; X) and
M′ =M(Y ; X ′) via the projection operator π :M′ →M. The projection operator
links the projection π : V (X ′) → V (X) of values from X ′ to values of X defined
by π(X ′) = X with the projection to the sets of cumulative contingency tables by
finding the counts in the column corresponding to X ∈ V (X) of π(M ′) as the sum of
the columns in M ′ corresponding to π−1(X). Therefore, it remains to show that for
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all M ∈M holds:

Î(Y ; X |M)P(Y ; X |M)

≤
∑

M ′∈π(M)

Î(Y ; X |M ′)P(Y ; X |M ′) . (B11)

From the chain rule of cumulative mutual information (Rao et al. 2004; Wang et al.
2003; Rao 2005), it follows that Î(Y ; X |M) ≤ Î(Y ; X |M ′) for M = π(M ′). Thus,
showing the relation P(Y ; X |M) = ∑

M ′∈π(M) P(Y ; X |M ′) concludes the proof. We
will show the proof by contradiction.

Formally, let Sn denote the symmetric group of degree n, i.e., Sn consists of all
n! bijections σ : {1 . . . n} → {1 . . . n}. For a bijection σ ∈ Sn , we denote the per-
muted version of Y as Yσ . Then, for any cumulative contingency table N ∈M(Y ; Z)

Sn[N ] = {σ ∈ Sn : M(Yσ ; Z) = M} denotes the permutations that result in Z . Let
σ ∈ Sn \ Sn[M]. This means that Mi j (Y ; X) �= Mi j (Yσ ; X) for at least one cell i, j .
Further, denote the set of all indices of values of X ′ that are projected down to X by

π−1( j) = { j ′ : 1 ≤ j ′ ≤ C ′, π(X ′j ′) = X j } , (B12)

for which, by definition, follows that

∑

j ′∈π−1( j)
M ′

i j ′(Y ; X ′) �=
∑

j ′∈π−1( j)
M ′

i j ′(Yσ ; X ′) . (B13)

Since for at least one index j ′ ∈ π−1( j) we get M ′
i j ′(Y ; X ′) �= M ′

i j ′(Yσ ; X ′), we
also find σ /∈ Sn[M ′] and can conclude

Sn[M] ⊇
⋃

M ′∈π−1(M)

Sn[M ′] . (B14)

Now let N ′ ∈M(Y ; X ′) with π(N ′) �= M and assume that Sn[M] ⊃ Sn[M ′], i.e.,
there is a σ ∈ Sn[M]∩ Sn[N ′]. Let us denote N = π(N ′). Since Sn[M]∩ Sn[N ] = ∅,
we know that σ /∈ Sn[N ]. However, it follows from Eq. B14 that σ /∈ Sn[N ′] – a
contradiction and, hence,

Sn[M] =
⋃

M ′∈π−1(M)

Sn[M ′] (B15)

and

P(Y ; X |M) = |Sn[M]|
|Sn| =

∑

M ′∈π−1(M)

|Sn[M ′]|
|Sn|

=
∑

M ′∈π(M)

P(Y ; X |M ′) .

(B16)

 "

123



B. Regler et al.

Appendix C Gradient boosting decision trees

We used LightGBM (Ke et al. 2017), a recent modification of the gradient-boosting
decision trees algorithm (Friedman 2001). LightGBM improves the efficiency and
scalability without sacrificing performance. The following settings were used and
were found by hyper-parameter tuning: number of leaves (num_leaves, 1% of the
number of samples), number of iterations (n_estimators, 2000), and model depth
(max_depth, -1).

During the training, i.e., the model optimization, we performed a regularization
to automatically select the inflection point at which the performance of the test data
set begins to decrease while the performance of the training data set continues to
improve. The data set was partitioned into 10 groups (so-called folds), using 9 folds
to generate the model and the remaining fold to test the model (10-fold cross val-
idation). To reduce variability, we performed five rounds of cross-validation with
different partitions and averaged the rounds to obtain an estimate of the model’s
predictive performance. We monitored the �1 and �2 norms (Friedman 2001; James
et al. 2013) and simultaneously penalized the model optimization (“learning”) pro-
cess on the 9 folds to minimize the squared residuals and the complexity of the
model (eval_metric, [“l1”, “l2_root”]), while stopping the learning process as
soon as one metric of the remaining fold in the last n = 50 rounds did not improved
(early_stopping_rounds, 50).

Appendix D Feature-subset search

We performed a feature-subset search using CMI, MAC, UDS, MCDE, and TCMI
on the octet-binary compound semiconductors data set. Results of the feature-subset
searches with TCMI can be found in Table 7 and with CMI, MAC, UDS, and MCDE
in Table 8. CMI, MAC, and MCDE dependence measures identify feature subsets
with one atomic species only. Since the octet-binary compound semiconductor is
uniquely determined by the atomic number of both atomic species, i.e., by at least one
atomic property of each atomic species considered, CMI, MAC, and MCDE led to
unreliable results. Due to issues with permutation and scale invariance (cf., Table 4),
UDS along with CMI, MAC, UDS, and MCDE were therefore not used further for
model construction.
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