
Prep
rin

t
Sustainable Research Software Hand-Over

J. Fehr∗ C. Himpe† S. Rave‡ J. Saak§

Abstract
Scientific software projects evolve rapidly in their initial development phase, yet
at the end of a funding period, the completion of a research project, thesis, or
publication, further engagement in the project may slow down or cease com-
pletely. To retain the invested effort for the sciences, this software needs to be
preserved or handed over to a succeeding developer or team, such as the next
generation of (PhD) students.

Comparable guides provide top-down recommendations for project leads.
This paper intends to be a bottom-up approach for sustainable hand-over pro-
cesses from a developer’s perspective. An important characteristic in this regard
is the project’s size, by which this guideline is structured. Furthermore, check-
lists are provided, which can serve as a practical guide for implementing the
proposed measures.

1 Introduction
Research software, software artifacts as research products, or computer-based
experiments are drivers of modern science. Yet, while computerization has mas-
sively accelerated science, the intangible and volatile nature of software has also
inhibited scientific progress: Once-developed-software is often not usable in sub-
sequent development of algorithms, for example, due to technical incompatibil-
ities, insufficient documentation, or plain unavailability. Even though advances
in supplying source codes together with published results are achieved [22], the
reusability of such scientific codes remains unsatisfactory [17], and of limited
reach when tied to a publication. So, instead of building on top of “shoulders
of giants”, the “wheel is reinvented” regularly in many branches of sciences and
not least in computational mathematics. A frequently occurring symptom of

∗Institute of Engineering and Computational Mechanics, University of Stuttgart, Pfaffen-
waldring 9, 70569 Stuttgart, Germany
ORCID: 0000-0003-2850-1440, joerg.fehr@itm.uni-stuttgart.de

†Computational Methods in Systems and Control Theory, Max Planck Institute for Dy-
namics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
ORCID: 0000-0003-2194-6754, himpe@mpi-magdeburg.mpg.de

‡Institute for Computational and Applied Mathematics, University of Münster, Einstein-
strasse 62, 48149 Münster, Germany
ORCID: 0000-0003-0439-7212, stephan.rave@uni-muenster.de

§Computational Methods in Systems and Control Theory, Max Planck Institute for Dy-
namics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
ORCID: 0000-0001-5567-9637, saak@mpi-magdeburg.mpg.de

1

ar
X

iv
:1

90
9.

09
46

9v
1 

 [
cs

.G
L

] 
 1

9 
Se

p 
20

19

joerg.fehr@itm.uni-stuttgart.de
himpe@mpi-magdeburg.mpg.de
stephan.rave@uni-muenster.de
saak@mpi-magdeburg.mpg.de


Prep
rin

t
this deficiency is the inadequate treatment of software developed for, or over
the course of a PhD thesis, which may be disregarded either by the original or
subsequent developing PhD candidate.

As scientists, scientific organizations, and funding agencies are becoming
more aware of these issues, guidelines and best practices for good scientific soft-
ware conduct are in demand. Examples for such academically driven efforts
are the guides published by the alliance of German research associations [18],
the DFG “guidelines for safeguarding good scientific practice” [7], the DLR
(Deutsche Zentrum für Luft- und Raumfahrt) guideline [24], or the software sus-
tainability institute guideline [16]. These guides present top-down approaches
aimed at principal investigators, decision-makers and coordinators. Our con-
tribution, on the other hand, intends to be a bottom-up approach presenting
requirements and recommendations for academic software developers, such as
undergraduate students, PhD students, postdoctoral researchers, or research
software engineers. Furthermore, instead of focusing on the development pro-
cess of scientific software, as in [12, 13, 15, 9] and references therein, we focus
on the continuation of a project, when the developer (or a maintainer) leaves,
e.g. after completing her PhD project.

We note that industry has already adapted robust collaborative software
development practices, see for example [10]. Yet, given that developers of sci-
entific codes may have no formal training in software engineering, and scientific
software development processes can differ, in academia only certain ideas can
be transferred to support researchers or departments.

While the issues addressed in this work apply to all branches of science, we
emphasize that mathematical software projects hold particular responsibilities.
An example are the numerical libraries BLAS [21] and LAPACK [1], which consti-
tute the basis for numerical computations in many sciences. Hence, authors of
this foundational layer in scientific software stacks need to take into account the
continued use and possibly further development outside the field of mathematics.
Best practices for mathematical software [6] and numerical software [20, 3] are
long known (yet still not established), and properties such as reliability, robust-
ness or transportability [5], the numerical experiment attributes replicability,
reproducibility and reusability [9], code as a form of scientific notation [11], as
well as basic guidelines for research software [23] have been discussed in the liter-
ature, yet, sustainable hand-over strategies for (mathematical) research software
projects have not been documented to the best knowledge of the authors.

The core of this work aims at the hand-over of general scientific software
projects, illustrated in Fig. 1, which is discussed in detail in the following
sections. We consider two classes of research software projects: First, small
projects, see Section 2.1, which are implemented by a single developer, for ex-
ample over the course of a PhD program or a funding period; Second, large
projects, see Section 2.2, which have multiple developers. Since these two project
categories serve different purposes, the proposed requirements and recommen-
dations differ. Minimal requirements, as well as optional recommendations, are
given for both project categories. Finally in Section 3, a brief conclusion is given
alongside two checklists, which summarizes the proposed measures for a practi-
cal hand-over process, followed by a brief comment on minimal documentation
of numerical software in the Appendix.

2



Prep
rin

tFigure 1: Project hand-over illustrative summary.

2 Project Hand-Over
In the following, we lay out minimal and optional measures for a sustainable
project hand-over distinguished by the size of the project. From our experi-
ence, we recommend the distinction of software projects into the two categories
“small” and “large”. A more fine grained categorization is surmisable too, see
e.g. [14], still, we think that two categories are sufficient in covering the essential
aspects of sustainable software hand-over, with the rationale that more straight-
forward guidelines may have a higher chance of general acceptance compared to
more complicated rule sets.

As a general remark: When a project is handed over, a time period from
before the previous developer leaves, till after the next developer enters the
project is considered the hand-over time, which should be allocated in a manner
to suitably prepare the hand-over, and allow for a training phase. To this end,
it can be worth the extra cost of having the previous and next developer(s)
overlap for some time, depending on the project size and complexity. We also
note that if a project is not continued in direct succession, it can be conserved,
see for example [25], for information on archiving.

2.1 Small Project
We consider a small project to be code developed and maintained by a single
author, which means, for example, a project written from scratch, or a fork of
an existing project that throughout the development is not merged back into the
parent project. This is often the case for tools developed as part of a publication,
thesis or with a tight focus. Such projects have their developer as the sole user,
or at least a limited user basis.

Following, we will lay out minimal requirements, which ensure the project’s
sustainability, as well as optional recommendations that facilitate long-term
usability, such as, when a new student takes over, after a previous student
finishes her work, or if an abandoned project is revived.

3



Prep
rin

t
2.1.1 Minimal Requirements

Code availability The most important requirement for continuation or at
least conservation is the availability of the project contents — utilized specific
hardware components may need to be kept available physically, if no virtual-
ization is possible — including the source code, configuration and data files.
Therefore, the project location should be discoverable, i.e.: not solely on the
developer’s personal computer hard-drive, but rather in a central repository of
the associated institute at a known and accessible storage location.

Code ownership If the code is available, the next important question is:
Who owns the code? Potential owners could be the associated institute or uni-
versity, the superior or supervisor of the developer, or the original developer
herself. Additionally, if there is third-party funding involved, the funding entity
may have regulations about the funded project’s ownership. Besides owner-
ship, third-party rights need to be considered, originating from prior developers,
third-party projects, or parts thereof included in the project. These ownership
question can be resolved by documentation of stakeholders alongside the code
and with a license statement, which can be as easy as the project’s developer
self-licensing her work or following the respective guidelines applicable to them.
For further information on software licensing see [26].

Execution environment Given all legal prerequisites are resolved, a mini-
mal description of the required runtime environment, such as operating system,
dependencies, and compiler or interpreter is needed, together with a short de-
scription on how to compile, if necessary, and run the project. A tested upon
operating system needs to be stated (with compute architecture and endianess if
applicable). We also recommend listing all depending software libraries, tools or
toolboxes, which are not part of the default installation of the compatible oper-
ating systems. Furthermore, all components of the required software stack need
to be given with a version number. We caution that even in case of high-level
cross-platform runtime environments, certain behavior may depend voluntarily,
accidentally, or due to restrictions, on the underlying operating system (for a
minimal report, in this case, see the Appendix). In view of increasingly complex
scientific computing software stacks (Fig 2), providing a reproducible execution
environment (see below) is highly recommended.

Working example An essential requirement for a small project hand-over, is
sample code (In [9] such a file is suggested to be named RUNME.), which can run
and demonstrate the core feature(s) of the project. Such an example is essential,
to test if the code is executable and also serves as a starting point to understand
the structure of the code, since the workflow can be traced for a known working
example, e.g. by a debugging program. Moreover, the results can be used to
verify that future changes do not (unintentionally) affect computational results.
To these ends, the execution of such an example code should sufficiently cover
the complete functionality of the software project.

4



Prep
rin

t
Operating System

B
LA

S

LA
PA

C
K

C
U

D
Amy

old library

M
P
I

PDE Solver

GUIV
is

u
a
liz

a
ti

o
n

M
o
d
e
l 
R

e
d
u
ct

io
n

Optimization

Figure 2: Software stack dependencies: “Tower of Doom”.

Minimal documentation Typically the information of the previous require-
ments is gathered in a README file (README is a widely used file name for a plain
text file, holding a minimal documentation; see: [9]). Further information that
should be included in the README is:

• Is the code functioning, and if, on what hardware (see Appendix)?

• Is the available project state current (latest use in a thesis or publication)?

• New algorithms from which publications are implemented by this project?

• Existing algorithms from which publications are utilized by this project?

• What publications use this project?

• What are the known limitations or issues?

Referencing all associated publications helps to put a small research software
project in the appropriate scientific context, and has also educational function
for the subsequent developer(s).

2.1.2 Optional Recommendation

Public release As the availability of the project is crucial, for the documen-
tation of the scientific findings, the best measure is a public release under an,
ideally, open license on a stable service [8]. If legal or other reasons prevent such
line of action, the reasons should be stated near the top of the aforementioned
README file, so this important information is not lost in transition.

5



Prep
rin

t
Version control We strongly recommend to use a version control software
to track the changes during the development of the project in a repository.
Besides documenting the history of a project, modern version control systems
allow to tag (mark) states of the repository. This is useful for associating ex-
periments, for example in publications, during the development process. Hence,
all experiments can refer to a specific revision of the source code, in order to
ensure replicability and reproducibility, in particular for future developers. At
the very least a version control repository serves as a (very sophisticated) back
up method. An introduction to generic version control workflows can be found
in [27].

Basic code cleanup Furthermore, some software development anti-patterns [4]
are more common (in our experience) in small projects, and impede project
continuation by another than the original developer. First, undocumented con-
stants used in the source code hinder the interpretation in the absence of the
original developer. Second, comments containing code, so called dead code, in-
troduce the uncertainty which code has been used for what experiments, and
if the commented out code is still needed or not. Third, the use of hard-coded
file paths may prevent the project from functioning in a different environment,
such as another developer’s computer. All these issues can, if not fixable, be
easily resolved by a few additional source code comments.

Reproducible execution environment In addition to the minimally re-
quired documentation, we recommend to report if the project was tested in
other compute environments than the developer’s. To ensure long term com-
patibility and conservation, it is relevant if the project can run on a simulated
computer, i.e. a virtual machine. This allows conserving an image file, treated as
a hard drive by such a virtual machine, containing the complete software stack
(including the operating system). Thus, the image file completely defines the
software aspect of the compute environment, and the virtual machine software
presents an abstraction from the hardware.

As an alternative to a virtual machine image, a step-by-step guide can be
included, which explains the preparation, i.e. correct sequence of installation
of dependencies, starting from the base installation of a compatible operating
system. Such a guide can be easily distributed with the software, whereas,
due to their size, virtual machine images often need to be archived separately.
Moreover, the guide can serve as a starting point for installing the software in
other execution environments.

Integration into larger project A possible path for small projects is the in-
clusion into a larger project, which, for example, provides a collection of topically
related functionality. Such a large project mitigates some of the aforementioned
problems due to development guidelines. To be included into such a super-
project, it is essential for the small project to be modular as well as compatible
with the including project’s principle design, interfaces, style and contribution
guidelines, as well as possibly a build and test systems. Furthermore, planned or
unsuccessful directions of development should be included into the documenta-
tion, to support the future (third-party) development of the incorporated small
project.

6



Prep
rin

t
Figure 3: Project hand-over illustrative summary for a larger project.

Practically, there are three paths to include a smaller project into an overar-
ching project: First, the continuous development, for example, as a feature of the
infrastructure of the large project. This approach naturally requires adherence
to project guidelines, yet often entails slower progress due to this overhead. Sec-
ond, after completion, requesting inclusion of the finished “small project”. While
quick progress can be made this way during development, integration may be
hard due to independent design. Lastly, a fork of the super-project with subse-
quent independent development and a final merge, allows efficient development
without giving up the frame of the super-project.

2.2 Large Project
We define a large project as a software package that is developed by mul-
tiple authors, possibly located at different institutions. An example setting is
a project consortium developing a joint tool driven by their research that also
should be made available, e.g. to their peers. While the developing researchers
may be a significant subgroup of the software’s users, in this case the community
can be far larger and the users might even be unrelated to this community.

In our experience it is advisable that large projects have a hierarchy of
contributors, see Fig. 3, which follows de-facto standards. Unprivileged users
serve as reporters, who file feature requests or bug reports (These can jointly be
called issues.). Contributors that work on closing bugs or contributing features
are called developers. They have limited, or no write access to the main
development line of the software. The maintainers have extended permissions
on the repository and oversee the progress of the software project. They also
merge the contributions of the developers into the main development line. While
reporters and developers may change frequently, maintainers ensure consistency
of the development, at most superseded by a rights holding entity, depicted in
Fig. 3 as a roof of the project.

7



Prep
rin

t
In the following sections, we propose hand-over guidelines for large projects,

subdivided into bare minimum requirements and optional, but desired, recom-
mendations. While for developers the guidelines for small projects (Sec. 2.1)
apply to their branches (a branch is a copy of the development resources under
version control which can evolve in separate, but is still part of the overall source
code repository.), the presentation, here, focuses on maintainers.

2.2.1 Minimal Requirements

Software license The chosen project license is important, even crucial for
publicly available projects. While for a small project only few entities are eligible
to act as the rights holder, for large projects the situation can be, and often is,
more complex. This, in turn, leads to additional difficulties that need further
attention: Project funding can end after a certain period, and maintainers may
change their employers or even fields of interest. Thus, to ensure continued
availability of the project, the developers need to come to a formal agreement,
i.e. a software license, under which terms the project should be available. For
an open-source license hierarchy, see [28].

Code ownership of contributions Compared to small projects, the ques-
tion of contributed code ownership is more relevant for large projects. In par-
ticular, developers need to consider that a later change of license requires the
consent of all copyright holders, which may have long left academia. Therefore,
if a license change shall remain feasible, all code contributors could transfer their
copyright to a single entity, for example, a society or association as copyright
holder. It should also be noted, that there are important differences in copyright
laws over the world and obtaining proper legal advice is desirable.

Access to project resources Similarly important as legal rights are the
access permissions in the software repository and further project resources, such
as servers, websites, domain names or mailing lists. As a minimal requirement,
there should always be at least two persons with administrator access to all
project resources. In case of a smaller development team with only one active
maintainer, it is sufficient if these rights are held by a second person who is
associated with the project but is not an active developer (like a research group
leader). This measure prevents a project depending on the health and goodwill
of a single individual.

Management of development branches Modern version control systems
permit ways to continue developing a version of the software independently
from a given state of the main development stream, e.g., for development of
new features. These are called branches, and it is good practice to use one
branch per user, or issue. Each branch has to be documented with respect to
its purpose and status; furthermore, it should be clear which developers are
responsible for the branch. If the withdrawal of a developer from the project
leads to an unmaintained branch, the branch should either be merged into the
main development branch, a new developer for the branch should be found, or
in case either is not feasible, a detailed description of the open and completed
tasks should be added to the documentation to allow continuation after a stale
phase.

8



Prep
rin

t
Stable main branch To ensure that a leaving maintainer cannot cause an
unknown or unusable state of the project, it is essential to make sure that
the main branch of the software can be (if applicable compiled and) executed
by more than a single person (the main developer) and runs on all targeted
platforms at any time during the development process. This also means that
the installation is flexible enough to at least specify user-specific paths during
the build process.

2.2.2 Optional Recommendation

Code maintainability All measures that improve the overall quality of the
code and its maintainability are also beneficial in a hand-over process as they
facilitate the familiarization of a new developer with the project. More impor-
tantly, after the withdrawal of a developer, old code that has been written by this
developer will be much easier to understand if standard software development
best practices are followed. In particular, we mention usage of continuous inte-
gration (CI). In software engineering, continuous integration is the practice of
merging all developers’ working copies into the main development line regularly.
This is often followed by a test-phase to ensure that none of the recent changes
break other functionality (see also [2]). An optional add-on, which is especially
relevant for scientific computing software, is the more recent technique of con-
tinuous benchmarking that additionally tries to ensure optimal performance of
the implementation at all times. Furthermore, if applicable, we recommend the
usage of build systems that automatically resolve dependencies, especially to
other projects, during the compilation process.

Changelog As soon as a software is developed and used by more than one
person, keeping track of important changes in the software compared to earlier
versions becomes consequential. While the history of version control systems
allows inspecting every change of the software, this information is usually too
fine grained to for the “big picture”. Therefore, the most relevant changes should
be documented in a CHANGELOG file [19] or the release notes. This document not
only informs users about new features, the removal of faulty code or changes
in the interfaces, but also helps developers of other software projects relying
on the function interfaces, to keep track of changes and necessary updates to
their own projects. More importantly in the scope of a project hand-over it is
helpful for the new maintainer to comprehend changes and note dependencies
as well as compatibilities, especially if legacy versions of a project need to be
maintained, e.g. due to hardware restrictions, in parallel to the evolution in the
main development branch.

Code of conduct A document defining rules for the introduction and retire-
ment of project maintainers as well as handling project administration questions
can have an essential role in project hand-over. In particular, when a maintainer
no longer actively works on the project but is hesitant to step down, a code of
conduct document can prevent an entailing gridlock in the project.

9



Prep
rin

t
Small Software Project Handover

� Minimal Requirements

� Code availability Where are source code, data and configuration
files?

� Code ownership Who owns the software and who holds rights?

� Execution environment What hardware and software stack is required?

� Working example How are the features of the code producing
what results?

� Minimal documentation What does a new developer need to know at the
least?

� Optional Recommendations

� Public release Is a public open-source release possible?

� Version control Are revision of the software automatically
tracked? Where?

� Basic code cleanup Are constants, dead code and hard paths re-
moved?

� Reproducible execution environment Is a (virtual) machine back up available?

� Integration into larger project Is inclusion into a larger project possible or
planned?

Table 1: Checklist for sustainable research software hand-over of small projects.

Contribution policy Besides the legal status of contributions discussed above,
a contribution policy defines the practical requirements for the contributed code.
Typical requirements regard the general workflow of the project. For example,
requirements state whether single or multiple pull/merge requests, with what
level of documentation and tests, are expected. The code should be merge-
able with the main development branch. Also, (passing) tests for all included
features can be expected in the project’s favored test suite. The licensing and
copyright of the contributed code as well as the form of attribution of the contri-
bution should be clear. Oftentimes also restrictions on the code’s general layout
and naming schemes are prescribed, in order to improve readability and thus
accessibility of the implemented ideas.

As discussed above, a case of project hand-over is the inclusion of a smaller
into larger project. Such a policy can simplify this process, in particular, if these
requirements are known during the development of the small project.

10



Prep
rin

t
Large Software Project Handover

� Minimal Requirements

� Software license Has a suitable (and compatible) software li-
cense been chosen?

� Code ownership of contributions Who owns which parts of the code?

� Access to project resources Are full permissions to all project resources
granted to at least two persons?

� Management of development branches Are there unmaintained development
branches?

� Stable main branch How is stability of the main branch ensured?

� Optional Recommendations

� Code maintainability Is continuous integration / testing / bench-
marking utilized?

� Changelog Are the core changes of the releases tracked
in a changelog or release notes?

� Code of conduct What are the central points of the code of
conduct and why?

� Contribution policy How are contribution policies communicated?

Table 2: Checklist for sustainable research software hand-over of large projects.

3 Sustainable Hand-Over
In this work we presented measures for the sustainable hand-over of research
software, by differentiating between small and large software projects and propos-
ing minimal requirements and optional recommendation for both categories.
With this, we aim to spark a discussion in the sciences on sustainability of re-
search software development and appreciate feedback. Furthermore, we hope
that this document, and especially the checklists in Table 1 and Table 2 help
software sustainability (maybe even beyond science) or at least serve as a tem-
plate prototype.

Alternative strategies to academic development, which can also ensure sus-
tainable development, such as commercialization were not discussed, as the
requirements for small and large projects alike, first and foremost involve legal
issues. Nonetheless, also in case of academic research software hand-overs, it is
always advisable to consult the involved entity’s legal department(s), due to the
complex situation with copyright, licensing and ownership.

11



Prep
rin

t
Appendix
Due to background of the authors, we give some specific documentation hints for
numerical software; this automatically includes code written in the languages
MATLAB/Octave, Python (NumPy/SciPy), R, and Julia, as well as most research
software depending numerical computations. The bare minimum information
on the computation environment for these non-compiled numerical software is
given by:

• Runtime interpreter name and version.

• Operating system name, version and architecture / word-width.

• Processor name and exact identifier.

• Required amount of random access memory.

• BLAS library implementation name and version.

• LAPACK library implementation name and version.

Obviously, in other sciences additional minimal information may be necessary.
For example in lab-sciences hardware and protocols for access to lab equipment
providing the processed data would be essential information.

Acknowledgments
Supported by the German Federal Ministry for Economic Affairs and Energy,
in the joint project: “MathEnergy — Mathematical Key Technologies for
Evolving Energy Grids”, sub-project: Model Order Reduction (Grant number:
0324019B).

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy EXC 2044 –390685587, Math-
ematics Münster: Dynamics–Geometry–Structure.

Supported by the German Federal Ministry of Education and Research
(BMBF) under contract 05M18PMA.

The authors would like to thank Arnim Kargl for his help in preparing
the hand-over illustrations.

References
[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999. doi:10.1137/
1.9780898719604.

[2] K. Beck. Test Driven Development: By Example. Addison-Wesley Profes-
sional, Boston, MA, USA, 2003.

[3] R. F. Boisvert, editor. Quality of Numerical Software. IFIP Advances in
Information and Communication Technology. Springer, Boston, MA, 1997.
doi:10.1007/978-1-5041-2940-4.

12

https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1007/978-1-5041-2940-4


Prep
rin

t
[4] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray.

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley, 1998.
URL: http://antipatterns.com.

[5] W. J. Cody. Basic concepts for computational software. In P. C. Messina
and A. Murli, editors, Problems and Methodologies in Mathematical Soft-
ware Production, volume 142 of Lecture Notes in Computer Science, pages
1–23. Springer, Berlin, 1982.
URL: https://doi.org/10.1007/3-540-11603-6_1.

[6] H. Crowder, R. S. Dembo, and J. M. Mulvey. On reporting computational
experiments with mathematical software. ACM Trans. Math. Software,
5(2):193–203, 1979. doi:10.1145/355826.355833.

[7] Deutsche Forschungsgemeinschaft. Guidelines for safeguarding good scien-
tific practice. https://www.dfg.de/en/research_funding/principles_
dfg_funding/good_scientific_practice/, 2019.

[8] R. Di Cosmo and S. Zacchiroli. Software heritage: Why and how to pre-
serve software source code. In iPRES 2017: 14th International Conference
on Digital Preservation, 2017.
URL: https://ipres2017.jp/wp-content/uploads/
19Roberto-Di-Cosmo.pdf.

[9] J. Fehr, J. Heiland, C. Himpe, and J. Saak. Best practices for replicability,
reproducibility and reusability of computer-based experiments exemplified
by model reduction software. AIMS Mathematics, 1(3):261–281, 2016. doi:
10.3934/Math.2016.3.261.

[10] F. Henderson. Software engineering at Google. Technical report, Google,
2017.
URL: https://arxiv.org/pdf/1702.01715.pdf.

[11] K. Hinsen. The roles of code in computational science. Computing in
Science & Engineering, 19(1):78–82, 2017. doi:10.1109/MCSE.2017.18.

[12] N. C. Hong. Minimal information for reusable scientific software. In Pro-
ceedings of the 2nd Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2.1), 2014.
URL: https://doi.org/10.6084/m9.figshare.1112528.

[13] N. C. Hong. Why do we need to compare research software, and how should
we do it? In Proceedings of the 4th Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE4.1), volume 1686 of CEUR
Workshop Proceedings, 2016.
URL: http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf.

[14] INRIA Evaluation Committee. Criteria for software self-assessment.
https://www.inria.fr/content/download/112967/1906146/.

[15] D. Irving. A minimum standard for publishing computational results in
the weather and climate sciences. Bull. Amer. Meteor. Soc., 97:1149–1158,
2015. doi:10.1175/BAMS-D-15-00010.1.

13

http://antipatterns.com
https://doi.org/10.1007/3-540-11603-6_1
https://doi.org/10.1145/355826.355833
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://www.dfg.de/en/research_funding/principles_dfg_funding/good_scientific_practice/
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://ipres2017.jp/wp-content/uploads/19Roberto-Di-Cosmo.pdf
https://doi.org/10.3934/Math.2016.3.261
https://doi.org/10.3934/Math.2016.3.261
https://arxiv.org/pdf/1702.01715.pdf
https://doi.org/10.1109/MCSE.2017.18
https://doi.org/10.6084/m9.figshare.1112528
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_29.pdf
https://www.inria.fr/content/download/112967/1906146/
https://doi.org/10.1175/BAMS-D-15-00010.1


Prep
rin

t
[16] M. Jackson. Software deposit guidance (version 1.0). Technical report,

Software sustainability Institute, 2018. see also https://softwaresaved.
github.io/software-deposit-guidance/.
URL: https://doi.org/10.5281/zenodo.1327310.

[17] A. Johanson and W. Hasselbring. Software engineering for computational
science: Past, present, future. Computing in Science & Engineering,
20(2):90–109, 2018. doi:10.1109/MCSE.2018.021651343.

[18] M. Katerbow and G. Feulner. Handreichung zum Umgang mit
Forschungssoftware, 2018. Herausgegeben von der Arbeitsgruppe
Forschungssoftware im Rahmen der Schwerpunktinitiative Digitale Infor-
mation der Allianz der deutschen Wissenschaftsorganisationen. Unter Mi-
tarbeit von M. Bornschein, B. Brembs, M. Erben-Russ, K. Förstner, M.
Franke, B. Fritzsch, J. Fuhrmann, M. Goedicke, S. Janosch, U. Konrad, D.
Zielke.
URL: https://doi.org/10.5281/zenodo.1172970.

[19] Olivier Lacan. Keep a Changelog.
URL: https://keepachangelog.com.

[20] A. J. Laub. Numerical linear algebra aspects of control design com-
putations. IEEE Trans. Automat. Control, 30(2):97–108, 1985. doi:
10.1109/TAC.1985.1103900.

[21] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra
subprograms for FORTRAN usage. ACM Trans. Math. Software, 5:303–
323, 1979. doi:10.1145/355841.355847.

[22] Nature Publishing Group. Code check. Nature, 555:142, 2018. doi:10.
1038/d41586-018-02741-4.

[23] F. Queiroz, R. Silva, J. Miller, S. Brockhauser, and H. Fangohr. Good
usability practices in scientific software development. In Proceedings of the
5th Workshop on Sustainable Software for Science: Practice and Experi-
ences (WSSSPE5.1), 2017.
URL: https://doi.org/10.6084/m9.figshare.5331814.v3.

[24] T. Schlauch, M. Meinel, and C. Haupt. DLR software engineering guide-
lines, 2018.
URL: http://doi.org/10.5281/zenodo.1344612.

[25] Software Heritage. How to use software heritage for archiving and
referencing your source code: guidelines and walkthrough, 2019.
URL: https://annex.softwareheritage.org/public/guidelines/
archive-research-software.pdf.

[26] V. Stodden. Enabling reproducible research: Open licensing for scientific
innovation. International Journal of Communications Law and Policy,
pages 1–55, 2009.
URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
1362040.

14

https://softwaresaved.github.io/software-deposit-guidance/
https://softwaresaved.github.io/software-deposit-guidance/
https://doi.org/10.5281/zenodo.1327310
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.5281/zenodo.1172970
https://keepachangelog.com
https://doi.org/10.1109/TAC.1985.1103900
https://doi.org/10.1109/TAC.1985.1103900
https://doi.org/10.1145/355841.355847
https://doi.org/10.1038/d41586-018-02741-4
https://doi.org/10.1038/d41586-018-02741-4
https://doi.org/10.6084/m9.figshare.5331814.v3
http://doi.org/10.5281/zenodo.1344612
https://annex.softwareheritage.org/public/guidelines/archive-research-software.pdf
https://annex.softwareheritage.org/public/guidelines/archive-research-software.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1362040
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1362040


Prep
rin

t
[27] E. J. H. Westby. Git for Teams. O’Reilly Media, 2015.

URL: http://gitforteams.com.

[28] D. A. Wheeler. The free-libre / open source software (floss) license slide,
2007.
URL: https://dwheeler.com/essays/floss-license-slide.pdf.

15

http://gitforteams.com
https://dwheeler.com/essays/floss-license-slide.pdf

	1 Introduction
	2 Project Hand-Over
	2.1 Small Project
	2.1.1 Minimal Requirements
	2.1.2 Optional Recommendation

	2.2 Large Project
	2.2.1 Minimal Requirements
	2.2.2 Optional Recommendation


	3 Sustainable Hand-Over

