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Elementary particles such as the electron carry several quantum numbers, for example, charge
and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom
can fundamentally differ from those of the individual constituents. Paradigmatic examples of this
phenomenon are one-dimensional systems described by independent quasiparticles carrying either
spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge
excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold

atoms.

excitations through their signatures in spin and charge correlations.

Using space- and time-resolved quantum gas microscopy, we track the evolution of the

By evaluating multi-point

correlators, we quantify the spatial separation of the excitations in the context of fractionalization
into single spinons and holons at finite temperatures.

Introduction

Strongly correlated quantum systems are known to
show peculiar behaviour, which often cannot be at-
tributed microscopically to the properties of weakly
dressed individual electrons such as in ordinary metals.
Instead, the collective nature of the excitations can lead
to the emergence of new quasiparticles, which are fun-
damentally distinct from free electrons. This behaviour
is a hallmark of one-dimensional (1D) quantum systems,
where electron-like excitations do not exist, but are re-
placed by decoupled collective spin and charge modes [I].
These two independent excitation branches feature differ-
ent propagation velocities [2] and have previously been
studied in the Luttinger liquid regime of quasi-1D solids
using spectroscopic techniques, such as angle-resolved
photoemission spectroscopy [3H5] and conductance mea-
surements in metallic quantum wires [6H8]. Cold atom
experiments have been used extensively to study attrac-
tive 1D bosonic and fermionic gases [9-13], but the in-
vestigation of repulsive 1D fermionic gases has been more
recent [14, [T5]. Such experiments can probe the regime
in between the low-energy Luttinger liquid description
and the spin-incoherent Luttinger liquid for which the
temperature is on the order of or exceeds the magnetic
energy [16]. Recent equilibrium signatures of spin-charge
separation have been observed in ultracold lattice gases
using quantum gas microscopy [17, [I§]. However, a real-
space tracking of the dynamics of the individual excita-
tions signalling their deconfinement has been lacking so
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far.

Here we demonstrate dynamical spin-charge separation
directly by performing a local quench in a 1D gas of ul-
tracold fermionic atoms and subsequently monitoring the
evolution of the system with spin- and density-resolved
quantum gas microscopy [15] (see Fig. 1). The local
quench is realized by the high fidelity removal of one atom
from a single site of a 1D optical lattice initially filled
with nearly one atom per site and short-range antiferro-
magnetic spin correlations [15, T9H21]. In the subsequent
dynamics, we observe the emergence of two apparently
independent excitations propagating at different veloci-
ties [22H24], which we assign to spinons and holons based
on their characteristic signatures in the spin and charge
(density) sectors.

Through the evaluation of multi-point correlators, such
as the spin correlations across the propagating hole and
the magnetization fluctuations in a finite region of space,
we quantify the spatial separation of the excitations. We
find the measured correlations to agree well with the ex-
pected signatures of fractionalization at finite tempera-
tures.

State preparation

Our experiment [I8] starts by loading a two-
dimensional balanced spin mixture of °Li atoms in the
lowest two hyperfine states into several 1D tubes using
an optical lattice of spacing a, = 2.3 um along the y-
direction. Next, a lattice of spacing a, = 1.15um is
ramped up along the x-direction. By varying the hop-
ping strength along the z—direction from t/h = 190 Hz
to t/h = 410Hz, we realize Fermi-Hubbard chains with
U/t ~ 8—20, where U is the onsite interaction energy. We
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Probing spin-charge deconfinement with cold atoms. A, Cartoon depicting fractionalization of a fermionic

excitation into quasiparticles. The dynamics is initiated by removing a fermion from the Hubbard chain. This quench creates
a spin (spinon) and a charge (holon) excitation, which propagate along the chain at different velocities vy and v¢. B, Using
quantum gas microscopy, we simultaneously detect the spin and density on every site of the chain after a variable time after
the quench. C, Average number of holes in the chain as a function of time. Error bars denote 1 s.e.m. The quench, performed
at 0 ms creates a hole with a probability of ~ 78% in the central site of the chain (bottom).

fix the total atom number in the gas to around 75 by the
choice of the evaporative cooling parameters such that
the resulting Hubbard chains are prepared close to half-
filling in the center of the harmonically confined cloud.
This produces at least three 1D chains of mean length 13
atoms, each with a unity filled region of about 9 sites. To
perform a local quench in which a single atom is simul-
taneously removed from all chains, we use an elliptically
shaped near-resonant laser beam at 671 nm focussed to
a waist of ~ 0.5 um along its narrow direction. This
pushout beam is pulsed on for 20 us addressing the cen-
tral sites. The power and alignment of the pushout beam
is adjusted such that the probability of spin-independent
removal of an atom from the addressed site is ~ 78%,
with ~ 14% chance of affecting the nearest neighbouring
sites (see Supplementary Information). After the quench,
we let the system evolve for a variable hold-time before
imaging the spin and density distributions. To collect
statistics, the experiment is repeated several thousand
times for a given evolution time.

Holon and spinon dynamics

We first investigate the difference in the dynamics of
holons and spinons by preparing 1D Hubbard chains
with ¢ = h x 250Hz and U/t = 15, corresponding to
an exchange interaction of J = h x 65Hz, and then
performing the local quench. A natural observable to
characterize the subsequent dynamics of holons is the
spatially resolved hole density distribution (Al') in each
chain, where i labels the lattice sites. The observed dis-
tribution broadens as a function of time with a light-
cone-like ballistic propagation of the wavefront (see Fig.

2A). Tt starts from the addressed site and reaches the
edge of the unity-filled region of the chain in 57, where
7 = h x (47t)7! = 0.32 ms is the time it takes for a
hole propagating at the theoretically expected maximum
group velocity v"®* = a, /7, to move by one site. The
coherent evolution of the hole can be seen in the evolv-
ing interference pattern of (ﬁf) over time. This dynam-
ics is found to be in excellent agreement with a single
particle quantum walk (see Fig. 2B), as expected for a
spin-charge separated system.

To study the time evolution of the spin excitation, we
measure nearest neighbour spin correlations C; (£ = 1) =
4((S’f§f+1> — (Sf)(é’irl}) in squeezed space (denoted by
~), obtained by removing holes and doublons from the
chain in the analysis [I7, 8]. For strong interactions
U/t Z 8, the spin dynamics in squeezed space is expected
to be well captured by an antiferromagnetic Heisenberg
model [25], 26] to which we compare our results. We ob-
serve a strong reduction of the antiferromagnetic correla-
tions in the direct vicinity of the quenched site immedi-
ately after the quench, demonstrating an enhanced prob-
ability to find parallel spins on neighbouring sites. Such
a suppression is expected from the creation of spinons by
the local quench (see Fig. 1A). The region with reduced
antiferromagnetic correlations spreads with time, with
a light-cone-like propagation of the wavefront (see Fig.
2C). Tt reaches the edge of the unity filled region in 4 7,
where 7; = h x (72J)~! = 1.56ms is the time it takes
for a spinon propagating at the theoretically expected
maximum group velocity v7** = a, /7, to move by one
site. In contrast to the highly coherent evolution of the
hole, the finite temperature kgT/J ~ 0.75 in our system
prevents us from observing any interference effects in the
spin dynamics. However, the observed ballistic wavefront
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FIG. 2.

Time evolution of spin and charge excitations.

7—position (site)

A, Hole density distribution (A!) as a function of time

after the quench. The wavefront of the distribution starts at the center of the chain and expands outwards linearly with time.
Interference peaks and dips are visible throughout the dynamics, indicating the coherent evolution of the charge excitation. B,
One-dimensional cuts of the experimental hole density distributions at times 07¢, 1.88 7 and 3.77 7 (blue circles) are compared
with simulations of a single particle quantum walk (grey squares). C, Nearest neighbour squeezed space spin correlation
C(z = 1) distribution as a function of time after the quench. D, One-dimensional cuts of the experimental C(Z = 1)
distributions at times 07y, 1.547; and 3.087; (red circles) along with exact diagonalization simulations of the Heisenberg

model (grey squares). Error bars denote 1 s.e.m.

is still expected from the Heisenberg model at our tem-
peratures (see Supplementary Information) [27, 28§].

Next, we extract the velocities of the spin and charge
excitations emerging from the quench. We monitor the
spatial width of the squeezed space correlator C; (Z = 1)
and hole distributions as a function of time (see Fig.
3A, inset). We then use a linear fit to determine their
respective velocities (see Fig. 3A). For the data shown in
Fig. 3A, taken at U/t = 15, we find a ratio of 5.31 £ 0.43
between the two propagation velocities, indicating a
strong difference in the velocities of the two excitation
channels. Despite the finite non-zero temperature in
our system, the extracted velocities are in excellent
agreement with both exact diagonalization results of an
extended ¢t — J model (see Supplementary Information),
as well as single particle quantum walk for a hole and a
Heisenberg model prediction at our temperature for the
spin excitations.

To investigate the scaling of the velocities with the

tunneling and spin exchange energies ¢ and .J, we repeat
the experiment for different U/t by tuning the lattice
depth. Within our experimental uncertainties, we find
the extracted velocities to be in good agreement with
the maximum expected group velocities v;*** and v7'**
for the two excitation channels (see Fig. 3B and 3C).
These correspond to the velocities of a free holon and
spinon at the maximum group velocity allowed by their
dispersion. Unlike the Luttinger liquid regime which
only describes low energy excitations, our local quench
excites all momentum modes, the fastest of which is
tracked here.

Spatial separation of the quasiparticles

An essential feature of spin-charge deconfinement is
the existence of unbound states of spin and charge ex-
citations, allowing them to spatially separate over ar-
bitrary large distances. To quantify the dynamical de-
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FIG. 3.

Quasiparticle velocities of spinons and holons.

A, Time evolution of the widths of the hole density

distributions (blue circles) and nearest neighbour spin correlation distributions (red circles) after the quench. The measured
widths are defined as the full width at 30% of maxima of the distributions (see inset). Density and spin excitations reach the
edge of the unity filled region of the chain (central 9 sites) after different evolution times. Their dynamics are in quantitative
agreement with both a single particle quantum walk for hole and exact diagonalization calculations of the Heisenberg model for
the spin (grey squares). They are also found to reproduce the predictions of the extended ¢ — J model at our temperature (grey
dashed lines). The velocities of the spin (0.58 & 0.04 sites/ms) and the charge (3.08 = 0.09 sites/ms) excitations are obtained as
half the slope of a linear fit to the data(solid blue and red lines), ignoring the width immediately after the quench. B, Holon
velocities as a function of t/h. The velocities of the holon (blue circles) increase linearly with the tunneling rate in the chain,
consistent with vl,,, = 47ta,/h sites/ms (blue dashed line). C, Spin excitation velocities as a function of J/h. The velocities of
the spin excitation (red circles) increase linearly with the spin-exchange coupling in the chain, consistent with U ax = T2 J /h

sites/ms (red dashed line). Error bars denote 1 s.e.m.

confinement, we study the spin correlations across the
propagating hole as a function of time, through the spin-
hole-spin (SHS) correlator Csps (2) = 4 (57 nl 1 SZ.,),
a spin correlator conditioned on having a hole at site
i+ 1 [I7, [18](see Fig. 4A).

Immediately after the quench, the hole is likely to be
surrounded by parallel spins and Csgg retains a posi-
tive value. The measured spin correlations are consis-
tent with the next-nearest-neighbour correlations C(2) =
4((S? Af+2> — (82)( Af+2>) in the absence of the quench.
As the hole propagates, the sign of C'sys becomes neg-
ative and by 47, approaches the nearest neighbour cor-
relations C(1) = 4((S7S57.1) — (S7)(S7,1)) without the
quench. These observations indicate the decoupling of
the two excitations. At longer evolution times, the an-
tiferromagnetic correlations across the hole are reduced.
We attribute this to the holon oscillating in the chain
due to the harmonic confinement present in our system
and hence to the changing overlap of the spin and charge
distributions (see Supplementary Information). The ab-
sence of binding between the spin and charge excitations
beyond the immediate vicinity of the hole is shown by
calculating the normalized deviation from the mean near-
est neighbour correlations 6C1(d) = (S7S7, /(S S7 1) —
1)e.@10ii11avia (see Fig. 4A, inset), where d is the
distance of the hole from the closest of sites ¢ and 7 4 1.

0C7 shows no dependence on d, indicating the lack of
influence of the holon on the spin excitation.

To locate the excess spin excitation in a fluctuating
spinon background, we introduce an operator quantify-
ing the local spin fluctuations in squeezed space 25?

(55 82 2 (1)2, where f2(3) = exp(— (i — 1)*/(20%) is a
smooth window function centered at lattice site j with
a characteristic size of 0. At zero temperature, this op-
erator is expected to capture local fractional quantum
numbers [29]. A single spinon located at site j, carrying
a spin 1/2, would increase <Z‘32> by 1/4, provided that
the mean distance between thermal spin fluctuations is
larger than o.

To study the spatial separation of the spin and charge
excitations, we consider the chains at time 3.77 7, where
the highest probability to detect the hole is at sites £2.
We post-select on chains with a single hole in the cen-
tral nine sites, which is located outside the central three
sites and compute (E?) on all sites j for a window size

o = 1.5 (see Fig 4B). Comparing (ﬁ?) with the quench
to its value (ZA'E2 YBG without the quench, we observe a

well localized signal extending over the central three sites,
distinct from the position of the holon. The maximum
deviation (Zf) - <252 )BG reaches 0.13+0.01, about half
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FIG. 4. Spatial deconfinement of spin and charge excitations. A, Spin-hole-spin correlations (Csus) averaged over
the entire chain as a function of time after the quench. The correlator starts with a positive value consistent with the next-
nearest neighbour spin correlations C'(2) in the absence of the quench (top grey shaded region) and turns negative, approaching
the nearest neighbour spin correlations C(1) without the quench (bottom grey shaded region) by 47,. At longer evolution
times, the correlator shows reduced antiferromagnetic correlations due to the oscillating dynamics of the hole in our finite size
system. The inset shows the lack of dependence of the normalized deviation from the mean nearest neighbour correlations
0C1 on the distance d from the hole at times ~ 47, (purple) and ~ 197 (yellow). Error bars denote 1 s.e.m. B, Spatially
resolved magnetization fluctuations (E]?‘ ) in sub-regions of the chain with (red) and without (grey) the quench at 3.777y. The
background fluctuations ( ﬁ’? yBG are due to quantum and thermal fluctuations in our system. The peak in the difference signal
(ZA'; ) — (ﬁ‘; )BG indicates the location of the spin excitation. Grey and red shades denote 1 s.e.m without and after the quench
respectively. C, Efficiency of initially creating at the central site a single local spinon 7spin = 4(( f,'?:O) — <i152':o )BG) with
o = 1.5 sites (orange) and holon 7ol = 1 — {(fti=o — 1)?) (blue) after an ideal quench as a function of temperature as predicted
from exact diagonalization of the Heisenberg model (for the spinon) and the Hubbard model (for the holon). With increasing
temperature, Nspin (Nhole, inset) decreases due to the increase of thermal spin (density) excitations, preventing the creation of a

localized spinon (holon) by the quench. Taking into account our quench efficiency, the measured amplitude is consistent with
the prediction at a temperature of kg7 /J = 0.75 (grey shaded region).

the value expected at zero temperature. We attribute mensional crossover from 1D to 2D, where polaronic sig-
this difference mainly to the finite temperature of our natures were recently observed [I8, [30]. The protocol
system leading to a background density of thermal spin used here could directly be implemented to extract the ef-
excitations. In this case, even an ideal quench would fective mass of a polaron. Finally, we demonstrated how

not create an initially localized spinon with unity prob- quantum gas microscopy can be used to study the fate of
ability and the fractionalization scenario, where a sin- spin-charge fractionalization at finite temperature. This
gle removed particle breaks up into precisely one holon opens new perspectives to dynamically probe the doped
and one spinon, holds only asymptotically at zero tem- Fermi-Hubbard model in higher dimensions and explore

perature (see Fig. 4C). A reduction in the deviation fractionalization in topological phases of matter.
<£’52 ) —( ZA? YBa from 1/4 is thus expected in our system
and the measured value is in good agreement with exact
diagonalization calculations of the Heisenberg model at
kT = 0.75 J taking into account our quench efficiency
(see Supplementary Information).
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SUPPLEMENTARY MATERIAL
Preparation of Fermi-Hubbard chains

Our experiments start with a degenerate spin-balanced
mixture of fermionic °Li atoms in the lowest hyperfine
states (FF = 1/2;mp = £1/2). This ultracold gas is
loaded into a single 2D plane of a 27 E? vertical lattice
with spacing 3.1 um, where E! = h?/8md? is the recoil
energy, m is the atomic mass, and d; is the lattice spacing
along direction [. The total atom number in the plane is
tuned by varying the parameters of our evaporative cool-
ing sequence. The cloud is then converted to independent
1D chains by ramping up the y- lattice, with a spacing of
2.3 pm, from 0 EY to 27 EY in 100ms. For experiments
performed at U/t = 15, the z-lattice, with a spacing of
1.15 pm, is simultaneously ramped up from 0 E¥ to 7 E¥.
The tunneling rates for the z- and y-directions are ex-
tracted from band width calculations to be 250 Hz and
1.3 Hz respectively. During the lattice ramp, the scatter-
ing length is tuned from 230ap to 2150 ap. The onsite
interaction is U/h = 3.75kHz, as calculated from the
ground band Wannier functions. The corresponding fi-
nal spin exchange amplitude is J = 4t? /U = h x 65 Hz.

At the end of the adiabatic ramps, the local quench is
performed by a 20 us pulse of the focused pushout beam
and the system is let to evolve for different periods of
time. For detection, the chains are frozen in place by
quickly ramping up the z-lattice to 33 B, suppressing
any further dynamical evolution. Our standard Stern-
Gerlach spin-detection technique is then performed using
a superlattice [I5]. Finally, fluorescence images are taken
via Raman sideband cooling in a pinning lattice, enabling
single-site spin and density resolution with a fidelity of
97% [15, [31].

The temperature in our system is estimated to be
0.75 £ 0.03J by comparison of the experimental mean
nearest and next-nearest neighbour spin correlations
without the quench to exact diagonalization predictions
of the Heisenberg model.

Fig. 3B and Fig. 3C include data taken at U/t =
8,11 and 20. This is achieved by keeping U fixed and
tuning the final ramp values of the x-lattice to achieve
t/h = 410Hz, 320Hz and 190Hz. The corresponding
spin exchange amplitudes are J/h = 207 Hz, 115Hz and
38 Hz, respectively.

Pushout beam calibration

Since we prepare multiple 1D chains in one experimen-
tal sequence, we use a pushout beam with a high aspect
ratio to simultaneously quench the central site of multiple
chains of atoms in the lattice gas. We tune the frequency
of the beam to realize spin-independent removal of the
atom (Fig. S1C).

The focus and power of the beam are calibrated to
maximize the pushout efficiency following the quench
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Chain properties with and without the quench. A, Density profile of the cloud without (left) and immediately

after (right) the quench. The white boxes indictes the central three Hubbard chains which are used in the analysis. B, Atom
number distribution per chain without (left) and after (right) the quench. Red bars indicate data which was excluded from
the analysis. C, Magnetization X;S? of the analyzed chains without (left) and after (right) the quench. The frequency of the
pushout beam is tuned to minimize the change in magnetization with and without the quench.

(AR /(A1) + (A%, ), where (Al) is the hole density at
the addressed site i. This ratio is monitored periodi-
cally throughout the data taking process and is kept to
a value > 2 for the central 3 chains (white box, Fig.
S2A and S2D). On average, for the dataset at U/t = 15,
(Al) ~ 78% and (Al ) ~ (Al ) ~ 14%, which includes
contributions of ~ 4% due to doublon-hole fluctuations.
However, in the analysis, we post-select on chains which
had only a single hole after the quench in the central 9
sites. This leads to (Al) ~ 81% and reduces (A ;) and
(Al 1) to ~ 5%. The probability to have a single hole in
the chain immediately after the quench in the analyzed
dataset is thus ~ 91%.

Data analysis

The data used in our results comprise of datasets taken
at U/t ~ 8 (15497 shots), U/t ~ 11 (11806 shots), U/t ~

15 (13578 shots) and U/t ~ 20 (9848 shots). Using a
quantum gas microscope with single-site density and spin
resolution enables us to determine the total atom number
and magnetization of every individual chain. Only clouds
with a total atom number between 60 and 90 are chosen
to ensure unity filling of the central three chains of the
cloud. To avoid averaging results over varying density
profiles due to the harmonic trap, we analyze the out of
equilibrium dynamics of only these central three chains.
The analysis is also done only for chains which had >
9 atoms in the absence of the quench and > 8 atoms
after the quench. Some characteristic statistics for the
analyzed chains are shown in Fig. S1 for U/t = 15, with
and without the quench.
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FIG. S2. Spin and charge dynamics at different lattice depths. A, The time-resolved hole density (ﬁf‘) distributions
(top), B, nearest neighbour spin correlation C(Z = 1) distributions and C, their spread as a function of time at U/t = 8 (left),
U/t = 11 (middle) and U/t = 20 (right). Slope of solid blue (red) lines gives the velocity of the holon (spinon). Error bars

denote 1 s.e.m.

Velocity extraction at different U/t

The velocity extraction procedure and analysis is dis-
cussed in the main text for U/t = 15, with ¢/h = 250 Hz
and J/h = 65Hz. The velocities of the charge and spin
excitations at different lattice depths corresponding to
U/t = 8,11 and 20 were extracted using an identical
analysis. First, the full width of the hole density (fl') and
squeezed space nearest neighbour correlation C(z = 1)
distributions at 30% of maxima are calculated at different
times after the quench (see Fig. S2). For the squeezed
space analysis, sites with holes or doublons are removed
from the central 9 sites, except for nearest neighbour
doublon-hole pairs. The lattice indices are then shifted
to the left. The resulting widths of the distributions are
plotted as a function of time to which a linear function is
fit, giving the velocity. As in the main text, the widths
of the distributions immediately after the quench are ex-
cluded from the fit. The ratio of the extracted velocities
of the spin and charge excitations v;/v; at the different
lattice depths are found to increase linearly with J/t (see
Fig S3), in good agreement with theory.

Mapping longer range spin correlations

To spatially probe the dynamics of the spin excita-
tion initiated by the quench beyond the nearest neigh-
bour correlations, we map out the measured (57 Sf, ) af-

ter the quench in squeezed space across the chain (see

0.4}

03 L // 4

/v,

0.2

0.1 ©

FIG. S3. Ratio of quasiparticle velocities as a func-
tion of J/t. The extracted ratio of velocities at J/t =
0.2,0.26,0.36 and 0.5 corresponding to U/t = 20,15,11 and
8 respectively increase linearly with J/t. Grey dashed line
shows the dependence of the ratio v /v{"*® on J/t. Grey
shade indicates an uncertainty in the estimation of ¢ of 5%.
Error bars denote 1 s.e.m.

Fig. S4A), where S’f includes contributions from both
the background fluctuations S’fbg and the spin excita-

tions created by the quench S’fsp.

_Subtracting the observed signal from the background
<S§sp5§,sp> = (SfSﬁ—(Sing;bg) (see Fig. S4B) enables
us to visualize the spatial extent of the spin excitations.
One sees a sign reversal of spin correlations even beyond

the nearest neighbour. Such a sign reversal of antifer-



&z &z bz &z -
A 4<S,-'s, ) 4<S,*,5psﬁsp> C(X)
6 6
0.77Y 0.777 0.4
3 3 0.2
E)
50 0 0.0
e
-3 -3 -0.2
-6 -6 -0.4
-6 -3 0 3 6 -6 -3 0 3 6
B
6 6
2.31y 231y
3 3
°
k3 0 0
e
-3 -3
-6 -6
-6 -3 0 3 6 -6 -3 0 3 6
(]
6 6
3.857 3.857
3 3
E)
B 0 0
e
-3 -3
-6 -6
-6 -3 0 3 6 -6 -3 0 3 6
I (site) i (site)

FIG. S4. Spin correlations beyond nearest neighbour
The spin correlations 4(S7 57) before (left column) and af-
ter (right column) subtracting the background correlations at
different times after the quench. The background-subtracted
correlations show both the extent of the antiferromagnetic
correlations in our chain and the spread of the spin excitation
at 0.777; (A),2.317; (B) and 3.857; (C).

romagnetic correlations caused when crossing a spinon
has been observed in an equilibrium setting [I8] and is
indicative of the nonlocal nature of the spin excitation.

Overlap of quasiparticle distributions

In the main text, the spin-hole-spin correlator (Csys)
was used to demonstrate the spatial separation of the
spin and charge excitations. The reduction in antifer-
romagnetic correlations across the hole at longer evolu-
tion times than 471; were attributed to the harmonic con-
finement of our trap which caused the hole to oscillate,
changing the overlap of the nearest neighbour spin corre-
lation and hole density distributions. Fig. S5A shows the
hole distribution at longer evolution times than plotted
in Fig. 2. Immediately after the quench, the spin and
charge distributions have the maximum overlap (see Fig.
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FIG. S5. Effect of harmonic confinement on hole dy-

namics A, Hole density (74?) distribution at longer evolution

times. The hole distribution spreads out and then oscillates
back to the center of the chain after 11.31 7 and later again
after 18.85 ¢ owing to the harmonic confinement in our sys-
tem. B, The oscillatory behaviour changes the overlap of the
hole distribution (blue) with the nearest neighbour spin cor-
relation C(Z = 1) distribution (red). The arrows indicate the
respective y— coordinates. Error bars denote 1 s.e.m.

By 4 4, the distributions are maximally separated and
at 11.317;, when the hole oscillates back to the center
of the chain, the distributions partially overlap again, as
the spinon has not spread far from the initial position.

Envelope analysis of magnetization fluctuations

In order to spatially evaluate spin fluctuations after
removing an atom, the operator Z‘? = (> Sff]?(z))z,
which determines magnetization fluctuations within an
envelope of width ¢ for an unpolarized chain, was intro-
duced. When o is larger than the system size, the op-
erator yields the total magnetization fluctuations of the
entire chain (see Fig. S6A). As o is reduced, the spatial
extent of the spin fluctuations can be located with better
resolution. In the main text, a width of o = 1.5 sites was
used to spatially locate the spin excitation.

At zero temperature and an envelope spread o larger
than system size, the measured spin fluctuation signal
from the quench <252 ), is expected to be 0.25 due to a
single spinon initially located at the quenched site. How-
ever, from our numerical simulations shown in Fig. 4C,
due to thermal spin fluctuations at finite temperatures,
even an ideal quench would not always create a spinon
initially located at the quenched site. At our tempera-
ture of kgT' = 0.75 J and with o = 1.5 sites, we expect to
measure a (Zf ) — (Zf )Bg ~ 0.15. Taking into account
the imperfect quench which creates a single hole with a
probability of 91%, our measured value of 0.13 £ 0.01 is
in agreement with the expected value.
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FIG. S6. Evaluation of spatially resolved magnetization fluctuations ﬁ‘? centered at 3 = 0 for different envelope

sizes o. A, By comparing datasets with (red) and without (grey) the quench, a large o can be used to extract the total
magnetization fluctuation in the chain and a small o can be used to determine the spatial extent of the spin excitation. B,
The maximum value of %2 evaluated at j = —0.5 as a function of o with (red) and without (grey) the quench. C, Maximum
deviation £2 5 — 230, 5,5c Obtained by subtracting the two curves in B. At o larger than system size, the measured deviation
approaches 0.19 £+ 0.06. Grey and red shades indicate 1 s.e.m. without and after the quench respectively.

To capture the contributions of unpaired spin exci-
tations originating from the finite-temperature quench,
a larger envelope spread o can be used (see Fig. S6B
and Fig. S6C). When o is increased to system size,
<232> - <2§>BG approaches 0.19 £ 0.06, in agreement
with the expected value of 0.25 for the creation of a sin-
gle localized spinon in the chain, within our experimental
uncertainties.

Extended ¢t — J model simulations

Below half filling, the Fermi-Hubbard model can in
leading order in t/U be approximated by the extended
t — J model [32],

R R R Foi 10
At oA g1
Ht_J* —73|:—t Z CI)UCJ‘J—FJZ (Sj+1 'Sj - T
(i,4),0 J
i#ET
_7 Ao h
Ci,oCr,oTj
(4,4,m),0
G P TR . T )}7)
i,090,0'Cr,0’ * Cj 1 Or,7'Cjr :
o’ 1,7’

(1)

Here, P denotes the projection operator on the sub-
space without double occupancy, and (i,j,7) is a se-

. . . .t

quence of neighbouring sites. The operator ¢; , creates
. . . o L Ao

a fermion with spin o on site j and 7; = > ¢ ¢

is the corresponding density operator. The spin opera-
tors are defined by Sj %ZUJ, 6;05'0,0/63-,0/, where &
are the Pauli matrices. The first two terms define the
t — J model with tunneling of holes with amplitude ¢ and
isotropic spin-exchange interactions with coupling con-
stant J = 4t2/U. For a single hole, the term fij+1M; leads
to a constant shift in energy. The extended ¢ — J model

)
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FIG. S7. Comparison between the extended ¢t—J and Heisenberg models for ¢/J = 3.8, T//J = 0.7 and V/J = 0.456.
A, Difference between the squeezed space nearest neighbour correlator distribution in the extended ¢ — J model and the

Heisenberg model AC(1).

B, Velocity extraction for the spinon in the simulation of the extended ¢ — J model (red squares)

and the Heisenberg model (green squares). The extracted velocities of 0.58 %+ 0.04 sites/ms for the extended ¢t — J model and
0.61 + 0.05 sites/ms for the Heisenberg model are obtained by fitting a straight line to the points (dashed lines).

additionally includes the last term, which describes next-
nearest neighbour tunneling of holes correlated with spin-
exchange interactions.

In order to simulate the experiment, we furthermore
include a confining harmonic potential for the fermions,
given by the additional term

,}:[pot = VZ(mi/a)Qﬁh (2)

where x; is the distance of site ¢ from the center of the
chain and V/J = 0.46.

In the main text, the experimental results are compared
to exact diagonalization calculations of the extended t—J
model with a single hole. We make use of the conserva-
tion of the z component of the total spin and thus ob-
tain a block diagonal Hamiltonian. In order to evaluate
multi-point correlators as shown in Fig. 4C, we numeri-
cally generate snapshots with probabilities given by the
time evolved density matrix.

Spinon velocity extraction and comparison to
Heisenberg model

The spinon velocity is extracted numerically by mea-
suring the width of the light-cone at 30% of the maximum
value as described in the main text for the experimen-
tal results. For temperatures T' < J, the open bound-
ary conditions have a strong effect on the squeezed space
nearest neighbour correlator C(Z = 1). The spin at the
boundary is only coupled to one other spin, such that the
corresponding correlations are stronger on every second
bond in the vicinity of the edge. This boundary effect
is visible throughout the spin chain in squeezed space
and renders the extraction of a spinon velocity with the

T T T T T T
L O C@E=1) i
1.1 0 y 0 u y
@ }
1.0 F %3 ° b os
é F12 -0.6
> 09 | ) o . i
BN Lattice site
0.8 [ 1
0 g
07 =
1 1 1 1 1 1
0 1 2 3 4 5
TJ
FIG. S8. Temperature dependence of the spinon ve-

locity The ratio of the numerically extracted velocity and
the maximum group velocity v}, = 72Jas/h for t/J = 3.8,
V/J = 0.456 and periodic (open) boundary conditions for the
spins (hole) as calculated for the extended ¢ — J model (red
squares) and the Heisenberg model (green squares). At low
temperatures, the coherent motion of the spinon which moves
by two sites every step (see inset), makes the extraction of the
velocity from a linear fit challenging.

method described above challenging. We therefore sim-
ulate periodic boundary conditions for the spins, while
the hole is still subject to open boundary conditions and
the harmonic potential described above. This leads to a
smooth behavior of the squeezed space C(Z = 1) corre-
lator and therefore enables the extraction of the spinon
velocity, which we use in Fig 3A.

The spin dynamics in the extended ¢t — J model after the
creation of a hole can be directly compared to a Heisen-
berg spin chain, where initially one site is removed. Since



in the latter case no hole is involved, the comparison be-
tween the two simulations yields insights into the effect
of the hole on the spin dynamics. In Fig. S7, the relative
difference between the squeezed space C(Z = 1) correla-
tions for the extended t — J and Heisenberg model are
shown. Apart from the initial dynamics on the central
bond, the relative difference is below 8% during the en-

12

tire time evolution, showing how similar the correlations
under consideration are in the two simulations. As shown
in Fig. S8, the extracted spinon velocity decreases with
increasing temperature. We attribute this effect to the
probability to create a spinon, which exhibits a similar
temperature dependence.
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