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a b s t r a c t 

Analyzing data from multiple neuroimaging studies has great potential in terms of increasing statistical power, 

enabling detection of effects of smaller magnitude than would be possible when analyzing each study separately 

and also allowing to systematically investigate between-study differences. Restrictions due to privacy or pro- 

prietary data as well as more practical concerns can make it hard to share neuroimaging datasets, such that 

analyzing all data in a common location might be impractical or impossible. Meta-analytic methods provide a 

way to overcome this issue, by combining aggregated quantities like model parameters or risk ratios. Most meta- 

analytic tools focus on parametric statistical models, and methods for meta-analyzing semi-parametric models 

like generalized additive models have not been well developed. Parametric models are often not appropriate in 

neuroimaging, where for instance age-brain relationships may take forms that are difficult to accurately describe 

using such models. In this paper we introduce meta-GAM, a method for meta-analysis of generalized additive 

models which does not require individual participant data, and hence is suitable for increasing statistical power 

while upholding privacy and other regulatory concerns. We extend previous works by enabling the analysis of 

multiple model terms as well as multivariate smooth functions. In addition, we show how meta-analytic p -values 

can be computed for smooth terms. The proposed methods are shown to perform well in simulation experiments, 

and are demonstrated in a real data analysis on hippocampal volume and self-reported sleep quality data from 

the Lifebrain consortium. We argue that application of meta-GAM is especially beneficial in lifespan neuroscience 

and imaging genetics. The methods are implemented in an accompanying R package metagam , which is also 

demonstrated. 
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. Introduction 

Combining brain imaging data across studies has great potential in

erms of increasing statistical power, enabling discoveries of effects that

ight not be detectable in any single dataset. Due to regulatory and

ractical concerns, privacy in particular, it may not be possible to an-

lyze all data in a single place. It may also sometimes be beneficial to

nalyze data from multiple studies in two stages, even when the data

re available at a single location, e.g., when data do not fit in com-
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uter memory or runtime is nonlinear in the number of participants

 Riley et al., 2010 ). 

Meta-analytic techniques offer one way to increase statistical power

ithout sharing raw data. By estimating the relationships under study

eparately in each data location, pooled estimates are obtained by com-

ining the estimates without sharing the underlying data. With some

xceptions, meta-analytic methods have been developed for combin-

ng parameters from parametric statistical models or for effect measures

ike relative risks ( Hedges and Olkin, 1985; Sutton and Higgins, 2008 ).
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Fig. 1. Modeling lifespan trajectories. Example of modeling lifespan hip- 

pocampal volume with longitudinal data using linear mixed models with 

quadratic and cubic terms for age, as well as a generalized additive model. The 

black dots show individual observations and the black lines connect subsequent 

observations from the same individual. The GAMM was fitted with 20 cubic 

regression splines and a random intercept term for each individual, and the op- 

timal smoothing parameter estimated with restricted maximum likelihood. 
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owever, there are important cases in which it is impractical and sub-

ptimal to enforce a parametric representation of the association under

nvestigation, e.g., when an appropriate parametric model to approxi-

ate the data is not known, or its interpretability is not clear, as with

igh-degree polynomials. Examples include lifetime trajectories of brain

evelopment ( Fjell et al., 2010 ), air quality measures ( Gasparrini and

rmstrong, 2010 ), and ecological phenomena ( Borchers et al., 1997;

edersen et al., 2019 ). Generalized additive models (GAMs) ( Hastie and

ibshirani, 1986; Wood, 2017 ) are attractive for studying such relation-

hips, and can easily be extended to longitudinal or other forms of clus-

ered data via generalized additive mixed models (GAMMs), which, in

ddition to GAMs, can also estimate random effects. 

Fig. 1 illustrates modeling lifespan trajectories of hippocampal vol-

me changes using linear mixed models (LMMs) with quadratic and cu-

ic polynomials for the age term, and a GAMM with a smooth term for

ge. 1 The data were taken from 4364 observations of 2023 healthy par-

icipants (age 4–93 years, 1–8 measurements per participant) from the

enter for Lifespan Changes in Brain and Cognition (LCBC) longitudinal

tudies ( Fjell et al., 2017; Walhovd et al., 2016 ). Detailed sample char-

cteristics are presented in Supplementary Material I. The quadratic fit

s not flexible enough to capture the steep increase during adolescence -

oreover, it estimates the hippocampal volume to increase until the age

f around 40. The cubic fit captures the volume growth during adoles-

ence better than the quadratic fit, but fails to capture the decline that

ccurs after the age of around 70. The GAMM fit, on the other hand, is

exible enough to both capture the steep increase during adolescence,

 period of moderate decline during adulthood, and finally a steeper

ecline at older age. 2 

As the methods for meta-analysis of GAMs and GAMMs are identical,

e will refer to both as GAMs in the rest of this paper, unless distinc-

ion is necessary. For reasons that we will explain below, in this paper

e will not discuss meta-analysis of the underlying parametric func-

ions across GAMs. Rather, we present methods for combining GAM fits

or neuroimaging data by pointwise meta-analysis of the fitted values.

lthough developed for use in meta-analytic neuroimaging studies, the
1 The LMMs were fitted using R ( Team, 2019 ) package nlme ( Pinheiro et al., 

019 ) and the GAMM was fitted using mgcv ( Wood, 2017 ), all with a random 

ntercept term. 
2 Fig. 1 and all other figures in this paper were created using ggplot2 
 Wickham, 2016 ). 
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ethods can of course be applied to other types of data as well. The mod-

ls under study can include any number of terms, including multivariate

mooth functions. In order to employ these techniques, models should be

t separately for each cohort, with basis functions and knot placement

hosen independently. Related previous works include meta-analysis

f locally weighted regression fits ( Schwartz and Zanobetti, 2000 ) and

eta-analytic estimation of nonlinear dose-response relationships using

ndividual participant data ( Crippa et al., 2018; Sauerbrei and Royston,

011 ). 

The main applications we have in mind are meta-analysis of pub-

ished results where the effects of interest are represented by functional

elationships rather than single parameters, and multi-center studies

n which it is impractical or not possible to analyze all brain imag-

ng data in a single location. An example of the latter is the Enhanc-

ng Neuro Imaging Genetics through Meta Analysis project (ENIGMA:

ttp://enigma.ini.usc.edu/ ), where meta-analysis of individual site sum-

ary statistics is the commonly applied strategy (e.g., Dennis et al.,

018; van Erp et al., 2018 ). The methods developed require that some

odel relating an outcome of interest to a set of explanatory variables

as been fitted on data from each cohort, and that the model esti-

ates can be shared across cohorts such that the expected response

nd their standard errors at new values of the explanatory variables can

e computed. We provide a companion R package named metagam
 Sørensen et al., 2020 ) containing functions for removing all individual

articipant data from GAMs fitted with the mgcv and gamm4 packages

 Wood and Scheipl, 2017; Wood, 2017 ), such that the resulting model

bject only contains aggregate measures which can easily be shared. The

ackage also contains methods for combining the fits and analyzing the

esults, and will be demonstrated in Section 5.1 . The comprehensive re-

iew of meta-analysis packages in R by Polanin et al. (2017) does not

ention any existing packages for conducting this type of pointwise

eta-analysis, so to the best of our knowledge, metagam is the first R

ackage to provide this functionality. 

The methods presented in this paper were motivated by a

roject in the Lifebrain consortium ( http://www.lifebrain.uio.no/ )

 Walhovd et al., 2018 ). The goal was to study the relationship between

elf-reported sleep and hippocampal volume across six Lifebrain cohorts,

nd GAMMs were a natural model choice due to the expected non-linear

ge-relationships for self-reported sleep parameters and hippocampal

olume. In this case a safe common data store was in place, but we

nitially hypothesized that it might be easier to have each cohort fit a

odel locally and share the overall result rather than analyzing all data

n a single place, leading to the development of the methods presented

ere. 

. Background 

.1. Meta-analysis of parametric models 

Consider a situation in which M cohorts 𝑚 = 1 , … , 𝑀 each have a

ataset D m 

with n m 

participants. The response variable of interest is

enoted y and there are p explanatory variables represented by the vec-

or x . If subject i in cohort m has been measured n mi times, the data

re 𝐷 𝑚 = {( 𝑦 𝑖𝑗 , 𝐱 𝑖𝑗 ) , for 𝑖 = 1 , … , 𝑛 𝑚 , 𝑗 = 1 , … , 𝑛 𝑚𝑖 } . Notably, this includes

he case of individually varying numbers of assessments and time inter-

als between assessments. In practice, some of the explanatory variables

ill be time-varying, while others will be time-invariant. Purely cross-

ectional data correspond to 𝑛 𝑚𝑖 = 1 for all m and i . 

Our interest concerns statistical inference on data from all studies, in

he case where data cannot be analyzed jointly. When the relationship

nder study can be represented by a parametric model, well established

ethods exist for obtaining meta-analytic estimates of the model param-

ters. For example, if an LMM is used for longitudinal data ( Laird and

are, 1982 ), parameter estimates from each study can be combined us-

ng parametric meta-analysis ( DerSimonian and Laird, 1986; Gasparrini

t al., 2012 ). The same applies to related approaches based on structural

http://enigma.ini.usc.edu/
http://www.lifebrain.uio.no/
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Table 1 

Spline coefficients for models described in Section 2.4 . The coefficient 𝛾2 was not possible to 

determine for Barcelona and Whitehall-II. In addition, 𝛾1 for Barcelona and Whitehall-II, 𝛾3 

for Whitehall-II, and 𝛾8 for BASE-II are severe outliers. 

Study 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 𝛾8 

Barcelona 28142 – 6195 7719 7629 7421 7190 6310 

BASE-II 4694 8374 6274 7919 7770 7213 7297 − 17182 

Betula 9605 8481 8380 8072 7840 7389 6994 7734 

Cam-CAN 8298 8452 8397 8040 7916 7468 7291 6375 

LCBC 8408 8479 8324 7689 7401 7468 7202 5819 

Whitehall-II 1625151 – − 120033 7580 7528 7353 6935 6084 
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quation modeling (e.g., Brandmaier et al., 2018; Kievit et al., 2018 ) or

eneralized linear models ( McCullagh and Nelder, 1989 ). 

.2. Generalized additive models 

In many applications, assuming that the response 3 y is a smooth func-

ion of the explanatory variables, rather than following a model that is

inear in its parameters (e.g., polynomial), may lead to better statistical

t, cf. Fig. 1 . Generalized additive models (GAMs) ( Hastie and Tibshi-

ani, 1986 ) take this approach. Letting  𝑠 denote the set of explanatory

ariables used by smooth function f s ( · ), a GAM with S smooth terms

an be written on the form 

 = 𝛽0 + 

𝑆 ∑
𝑠 =1 

𝑓 𝑠 
(
 𝑠 

)
+ 𝜖, (1)

here 𝛽0 denotes the intercept and 𝜖 is a normally distributed resid-

al. Constraints necessary for model identification are discussed in

ppendix A . Each smooth function is a linear combination of K s basis

unctions b ks ( · ) with weights 𝛾ks , 𝑘 = 1 , … , 𝐾 𝑠 , 

 𝑠 

(
 𝑠 

)
= 

𝐾 𝑠 ∑
𝑘 =1 

𝑏 𝑘𝑠 (  𝑠 ) 𝛾𝑘𝑠 . (2)

ypically, each basis function is nonzero over a small part of the range of

ts variables, as defined by its knot locations. A linear parametric term

or x j is given by the special case  𝑠 = { 𝑥 𝑗 } , 𝐾 𝑠 = 1 , 𝑏 1 𝑠 ( 𝑥 𝑗 ) = 𝑥 𝑗 , and

ence 𝑓 𝑠 (  𝑠 ) = 𝛾1 𝑠 𝑥 𝑗 . Examples are provided in Supplementary Material

I. 

.3. Smoothing 

Least squares estimation of model (1) with a large number of basis

unctions for each term typically leads to wiggly estimates which overfit

he data. Smoothing is thus necessary, and a popular and efficient solu-

ion involves penalizing the second derivatives of the smooth functions,

hile making sure the number of basis functions is sufficiently large to

epresent a wide range of functional forms ( Wood, 2017 ). In the context

f meta-analysis, smoothing is performed independently for each study.

upplementary Material II presents further details and a visualization of

he effect of smoothing. 

.4. Limitations of parametric meta-analysis of generalized additive models

If each study used identical basis functions, a meta-analytic fit could

e obtained by treating their weights as linear regression parameters

 Gasparrini et al., 2012 ). However, as also noted by Crippa et al. (2018) ,

f the range of some variable x j differs between cohorts, enforcing the
3 For ease of presentation, we assume a continuous outcome with normally 

istributed residuals, corresponding to an identity link function in a generalized 

dditive model. The methods developed extend directly to other outcomes (e.g., 

inomial or count) by introducing a linear predictor 𝜂 = 𝛽0 + 
∑𝑆 

𝑠 =1 𝑓 𝑠 (  𝑠 ) with 

ink function g ( · ) satisfying 𝑔( 𝑦 ) = 𝜂. 

𝑓

w

s  
ame knot placement is suboptimal and the model may not even be

dentified. 

As an example, we consider modeling of lifespan trajectories of hip-

ocampal volumes from six European cohorts. The data are further de-

cribed in Section 5 . As shown in Fig. 6 (top), these studies have widely

arying age distributions. We fit GAMs relating baseline age to hip-

ocampal volume for each cohort, but enforced the same knot location

or all models, placed at eight equally spaced quantiles of the full data

ample. Table 1 shows the corresponding spline coefficients. While these

oefficients are not directly interpretable, outliers for a given sample in-

icate that its fit is highly different from the others, and a missing value

ndicates that the fit for the sample was not identified. As can be seen,

arcelona and Whitehall-II have missing values (-) for spline coefficient

2 . In addition, there are extreme outliers: Barcelona has a severely out-

ying value for 𝛾1 , BASE-II has an outlying value for 𝛾8 , and Whitehall-II

as outlying values for 𝛾1 and 𝛾3 . This lack of identification and unsta-

le coefficients is caused by using knot locations which, because they

re forced to be equal across cohorts, are not suitable for the actual age

istributions. 

. Pointwise meta-analysis of generalized additive models 

.1. Estimation of overall fits in pointwise meta-analysis 

We now propose a model for meta-analysis of GAMs. We assume

hat a GAM has been fitted to the data from each cohort m separately,

nd that the vector x represents values of the explanatory variables for

hich a meta-analytic estimate of the regression function is sought. The

xpected response in cohort m is then given by 

̂ 𝑚 = 𝑓 𝑚 ( 𝐱 ) = 𝛽0 ,𝑚 + 

𝑆 ∑
𝑠 =1 

𝑓 𝑠,𝑚 
(
 𝑠 

)
, 𝑚 = 1 , … , 𝑀. (3)

mportantly, the basis functions and knot placements for a given smooth

erm 𝑓 𝑠,𝑚 
(
 𝑠 

)
will in general vary across cohorts m . Each model term has

 corresponding estimated standard deviation 𝜎̂𝑠,𝑚 (  𝑠 ) , and the overall

t has estimated standard deviation 𝜎̂𝑚 ( 𝐱) . 
We illustrate our methods by considering meta-analytic estimation of

ach single term separately, but note that inference on any combination

f smooth terms, including the overall function, is readily obtained with

he same methods. Some additional details related to identification of

mooth terms are discussed in Appendix A . For ease of notation, we omit

he dependency on  𝑠 and x in the rest of this section. For example, f s,m 

eans 𝑓 𝑠,𝑚 (  𝑠 ) and 𝜎s,m 

means 𝜎𝑠,𝑚 (  𝑠 ) . 
The meta-analytic estimate of smooth term s is the weighted mean 

 ̂𝑠 = 

∑𝑀 

𝑚 =1 𝑓 𝑠,𝑚 

(
𝜎̂2 
𝑠,𝑚 

+ 𝜎̂2 
𝑠 

)−1 

∑𝑀 

𝑚 =1 

(
𝜎̂2 
𝑠,𝑚 

+ 𝜎̂2 
𝑠 

)−1 (4) 

ith standard error 

e 
𝑓 𝑠 

= 

{ 

𝑀 ∑
𝑚 =1 

𝜎̂2 
𝑠,𝑚 

+ 𝜎̂2 
𝑠 

} −1∕2 

. (5)
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f  
he term 𝜎̂2 
𝑠 

represents the estimated between-study variance, and

xed effects meta-analysis corresponds to the special case 𝜎̂2 
𝑠 
=

 . The DerSimonian-Laird estimator for between-sample variance

 DerSimonian and Laird, 1986 ), 

̂ 2 
𝑠 
= max 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 , 

∑𝑀 

𝑚 =1 𝜎̂
−2 
𝑠,𝑚 

( 

𝑓 𝑠,𝑚 − 

∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 𝑓 𝑠,𝑚 ∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 

) 

− ( 𝑀 − 1 ) 

∑𝑀 

𝑚 =1 𝜎̂
−2 
𝑠,𝑚 

− 

∑𝑀 

𝑚 =1 ̂𝜎
−4 
𝑠,𝑚 ∑𝑀 

𝑚 =1 ̂𝜎
−2 
𝑠,𝑚 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (6)

s computationally efficient as it does not require iteration, making it

ttractive in pointwise meta-analysis in which a separate estimate is

equired over a large number of grid points. However, iterative methods

ay give more accurate estimates ( Veroniki et al., 2016 ). We refer to,

.g. Viechtbauer (2005) and Viechtbauer et al. (2015) for an overview

f estimators of between-sample variance, all of which can be used with

he methods presented. 

Eqs. (4) and (5) are the familiar weighted means formulas used in

eta-analysis, and have been used by Sauerbrei and Royston (2011) in

 similar setting, focusing on meta-analysis of univariate functions es-

imated by fractional polynomials. In the fixed effects case, 𝑓 𝑠 is the

stimated mean conditional on randomly pooling from the populations

f the observed cohorts alone. Random effects analysis, on the other

and, estimates the marginal population effect f s across all potential

tudies. See Viechtbauer (2010 , Section. 2.3) for an excellent discussion

f the interpretation of fixed vs. random effects meta-analyses. Confi-

ence bands with level (1 − 𝛼) are readily obtained for either estimates

s 

𝑓 𝑠 + 𝑧 𝛼∕2 se 𝑓 𝑠 
, 𝑓 𝑠 + 𝑧 1− 𝛼∕2 se 𝑓 𝑠 

]
, (7)

here z q denotes the q th quantile of the standard normal distribution. 

Pointwise meta-analysis requires software for computing predictions

nd standard errors for the models fitted in each study. In the case

f GAMs, this requires knowledge of the basis functions along with

he estimates and covariance matrices of spline weights, quantities

hich are readily available from software for fitting GAMs, like mgcv
 Wood, 2017 ) or pyGAM ( Servén and Brummitt, 2018 ). Importantly,

ndividual participant data are not required for computing such predic-

ions from already fitted models. 

.2. Inference for smoothing terms in pointwise meta-analysis 

Tests for statistical significance of smooth terms can be performed

y combining the p -values from each separate fit using methods

or meta-analytic combination of p -values as summarized, e.g., in

ecker (1994) or Loughin (2004) . In particular, let p s,m 

denote the p -

alue obtained in cohort m for the hypothesis 𝐻 0 ,𝑚 ∶ 𝑓 𝑠 (  𝑠 ) = 0 that the

mooth term s is zero over the whole range of explanatory variables  𝑠 

n cohort m , and let 𝐻 𝐴,𝑚 ∶ 𝑓 𝑠 (  𝑠 ) ≠ 0 denote the alternative hypothesis.

uch p -values can be computed using the methods in Wood (2012) . The

eta-analytic null hypothesis then states that all p -values are uniformly

istributed between 0 and 1, i.e., H 0 : p s,m 

~ U (0, 1), 𝑚 = 1 , … , 𝑀, while

he meta-analytic alternative hypothesis H A states that all p -values have

he same unknown non-uniform density which is non-increasing in the

est statistic ( Birnbaum, 1954 ). A large number of methods exist for com-

uting the combined p -values. For example, Stouffer’s sum of z method

 Stouffer et al., 1949 ) uses the Z-score 

 𝑠 = 

∑𝑀 

𝑚 =1 𝑤 𝑚 Φ−1 (1 − 𝑝 𝑠,𝑚 
)√ ∑𝑀 

𝑚 =1 𝑤 

2 
𝑚 

, (8)

here Φ is the standard normal distribution and Φ−1 its quan-

ile function, and 𝑤 𝑚 , 𝑚 = 1 , … , 𝑀 are meta-analytic weights.

aykin (2011) suggests defining the weights as the square root of

he sample size, 𝑤 𝑚 = 

√
𝑛 𝑚 . The combined p -value is then defined by

 = 1 − Φ( 𝑍 ) . 
𝑠 𝑠 
. Simulation studies 

Simulation studies were conducted in order to compare the perfor-

ance of the pointwise meta-analysis approach presented in Section 3 to

he ideal mega-analysis ( McArdle and Horn, 1985 ) case, in which all

ata can be analyzed jointly. Section 4.1 reports simulation results com-

aring estimation of smooth terms, and Section 4.2 reports simulation

esults comparing statistical inference performance. 

.1. Function estimation 

The first set of simulations compared pointwise meta-analysis to

ega-analysis in terms of their ability to accurately estimate nonlin-

ar functional forms and to quantify uncertainty with confidence bands.

ata were generated from the model 

 = 𝑓 0 ( 𝑥 0 ) + 𝑓 1 ( 𝑥 1 ) + 𝑓 2 ( 𝑥 2 ) + 𝑓 3 ( 𝑥 3 ) + 𝜖, 

ith all explanatory variables independently uniformly distributed in

0, 1] and 𝜖 ~ N (0, 𝜎2 ). The functional forms assumed were similar to

hose used by Marra and Wood (2012) , and are shown as dashed black

ines in Fig. 2 . 

Datasets with 4000 observations of ( x 0 , x 1 , x 2 , x 3 , y ) were indepen-

ently sampled 1000 times. For each dataset, the following four cases

ere considered: 

• In the mega-analysis case, all 4000 observations were analyzed

jointly. This served as a gold standard, yielding the model that would

be fit if all data were available to analyze with a single model. 
• In the equal sample size case, the dataset was split into 5 ”cohorts ”

of 800 observations each. Each cohort was analyzed independently,

and the meta-analytic fit computed as outlined above. 
• In the unequal sample size case, the dataset was split into 5 ”cohorts ”

with 300, 500, 800, 1,000, and 1400 observations each. 
• In the unequal range and sample size case, a first ”cohort ” was

created by sampling 300 observations with x 2 < 0.5 from the

full dataset, the second cohort by sampling 500 observations with

x 2 ≥ 0.5 from the remaining observations, the third cohort by sam-

pling 800 observations with x 1 < 0.5 from the remaining observa-

tions, the fourth cohort by sampling 1000 observations with x 1 ≥ 0.5

from the remaining observations, and the fifth cohort contained the

remaining 1400 observations. Hence, this case has the same sample

sizes as the unequal sample size case, but the ranges of x 1 and x 2 
vary between cohorts. 

In the latter three cases, fixed effects meta-analysis was conducted.

nivariate smooth terms were estimated using cubic regression splines

ith 20, 10, 30, and 5 basis functions for f 0 ( x 0 ), f 1 ( x 1 ), f 2 ( x 2 ), and

 3 ( x 3 ), respectively. Knot placement was determined independently for

ach cohort, based on the quantiles of the explanatory variables. Second

erivative smoothing was performed using generalized cross-validation,

nd standard error computations for each term included the uncertainty

bout the overall intercept as described in Marra and Wood (2012) . For

dentifiability, the smooth terms were subject to sum-to-zero constraints

ver [0,1], cf. Appendix A . In the case study reported in Section 5 , with

 GAM regressing hippocampal volume on age and sleep quality, the

ega-analysis case had an adjusted R squared value 𝑅 

2 
𝑎𝑑𝑗 

= 0 . 37 (cf. Sup-

lementary Material IV, p. 13). Setting 𝜎 = 1 . 0 in the simulations gave

 

2 
𝑎𝑑𝑗 

≈ 0 . 40 , thus close to a realistic noise level in neuroimaging stud-

es, while 𝜎 = 1 . 6 corresponds to a high noise case with 𝑅 

2 
𝑎𝑑𝑗 

≈ 0 . 20 . All

imulations were repeated with each of these noise levels. Computations

ere performed in R version 3.6.2 ( Team, 2019 ) with the package mgcv
 Wood, 2017 ). 

Figure 2 shows the average fits over all simulations. One can hypoth-

size that splitting a dataset into smaller parts and performing smooth-

ng separately might lead to oversmoothing compared to analyzing all

ata in a single model. Considering Fig. 2 we see that this was the case

or estimating f ( x ) in the case with 𝜎 = 1 . 0 , in which all meta-analysis
2 2 
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Fig. 2. Simulation estimates overlaid on true func- 

tions. Dashed black lines show true functions. The col- 

ored lines show mean fits averaged over 1,000 simula- 

tions as described in Section 4.1 . 

Table 2 

Mean root-mean-square error of fitted terms in the case of equal sample sizes, unequal sample sizes, and 

mega-analysis, with residual standard deviation 𝜎 = 1 . 0 or 𝜎 = 1 . 6 . Standard deviations across simulations 

are shown in parentheses. 

Term 𝜎 Equal sample size Unequal sample size Unequal range and sample size Mega-analysis 

f 0 ( x 0 ) 1.00 0.037 (0.011) 0.037 (0.011) 0.038 (0.012) 0.035 (0.013) 

f 1 ( x 1 ) 1.00 0.037 (0.014) 0.037 (0.014) 0.040 (0.013) 0.031 (0.011) 

f 2 ( x 2 ) 1.00 0.060 (0.011) 0.060 (0.011) 0.062 (0.012) 0.054 (0.010) 

f 3 ( x 3 ) 1.00 0.016 (0.009) 0.017 (0.009) 0.021 (0.010) 0.017 (0.012) 

f 0 ( x 0 ) 1.60 0.054 (0.019) 0.053 (0.019) 0.055 (0.019) 0.052 (0.022) 

f 1 ( x 1 ) 1.60 0.057 (0.020) 0.056 (0.020) 0.055 (0.018) 0.046 (0.020) 

f 2 ( x 2 ) 1.60 0.089 (0.018) 0.089 (0.019) 0.089 (0.019) 0.079 (0.018) 

f 3 ( x 3 ) 1.60 0.027 (0.015) 0.027 (0.015) 0.030 (0.016) 0.029 (0.020) 

Table 3 

Mean coverage of 95 % confidence intervals for fitted terms in the case of equal sample sizes, unequal 

sample sizes, and mega-analysis, with residual standard deviation 𝜎 = 1 . 0 or 𝜎 = 1 . 6 . Standard deviations 

across simulations are shown in parentheses. 

Term 𝜎 Equal sample size Unequal sample size Unequal range and sample size Mega-analysis 

f 0 ( x 0 ) 1.00 0.95 (0.21) 0.95 (0.21) 0.95 (0.23) 0.97 (0.16) 

f 1 ( x 1 ) 1.00 0.89 (0.31) 0.90 (0.30) 0.89 (0.31) 0.97 (0.17) 

f 2 ( x 2 ) 1.00 0.88 (0.32) 0.89 (0.31) 0.87 (0.33) 0.96 (0.20) 

f 3 ( x 3 ) 1.00 0.99 (0.10) 0.99 (0.10) 0.96 (0.19) 0.99 (0.11) 

f 0 ( x 0 ) 1.60 0.96 (0.20) 0.96 (0.19) 0.96 (0.20) 0.98 (0.15) 

f 1 ( x 1 ) 1.60 0.86 (0.34) 0.88 (0.33) 0.91 (0.28) 0.97 (0.17) 

f 2 ( x 2 ) 1.60 0.87 (0.33) 0.87 (0.34) 0.87 (0.34) 0.96 (0.20) 

f 3 ( x 3 ) 1.60 0.99 (0.11) 0.99 (0.11) 0.98 (0.15) 0.98 (0.13) 
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ases slightly underestimated the two peaks of the true term. For the

hree other terms, the 𝜎 = 1 . 0 case had very low bias. In the high noise

ase, with 𝜎 = 1 . 6 , oversmoothing can also be seen in the estimates of

 1 ( x 1 ). The two meta-analyses with unequal sample size, also had some-

hat too smooth estimates of f 1 ( x 1 ) in the 𝜎 = 1 . 0 case. Overall, how-

ver, the average fits in the meta-analysis cases were very close to the

rue curves. 

Table 2 shows the root-mean-square error (RMSE) of the fitted terms

ver the range [0, 1]. In both noise settings, the meta-analyses with

qual and unequal sample size had only slightly higher RMSE than the

ega-analytic estimates, and there did not seem to be any systematic

ifference between them. The meta-analysis with unequal range and

ample size had RMSE very close to the two other meta-analytic cases. 
o  
Table 3 shows the average coverage across [0, 1] of 95 % confi-

ence intervals computed with (7) . The coverage of the confidence in-

ervals of the mega-analytic estimates were close to 95 %, as expected

rom Marra and Wood (2012) , and always conservative. All three meta-

nalytic cases had very similar coverage, varying between 86 % and 99

. In particular for f 1 ( x 1 ) and f 2 ( x 2 ) the confidence intervals were some-

hat too narrow, whereas for f 0 ( x 0 ) and f 3 ( x 3 ) the confidence intervals

ere slightly conservative. 

.2. Hypothesis testing and power 

A second set of simulation experiments was conducted with the goal

f comparing the statistical inference performance of meta-analysis to
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Fig. 3. Lifespan trajectories with group interaction. Functional forms as- 

sumed for lifespan trajectories in Section 4.2 . Subjects are assumed to belong to 

either group 0 or 1, whose mean lifespan trajectories differ as shown by the two 

curves. 
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Fig. 4. P-value distribution under the null hypothesis. Quantile-quantile 

plot of p -values under the null hypothesis as described in Section 4.2 , for the case 

of residual standard deviation equal to 3,500 and total sample size 3,000. Meta- 

analytic p -values were computed using both Stouffer’s and Tippet’s method, as 

shown by the legend. 
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ega-analysis. Two issues are of particular interest in this regard; first,

hether the distribution of p -values is close to uniform when the null

ypothesis is true (e.g., Murdoch et al. (2008) ), and second, the power to

eject a false null hypothesis. A nonlinear functional form approximat-

ng the lifespan trajectory of cerebellum cortex volume was estimated

ith the LCBC data ( Fjell et al., 2017; Walhovd et al., 2016 ), as shown in

ig. 3 . For the power analysis, it was assumed that a dichotomous group

ariable interacted with the lifespan trajectory, leading to slightly higher

trophy for members of the baseline group, especially in advanced ages.

or analysis of the null distribution of p -values, the two groups had iden-

ical lifespan trajectories. Analyzing this type of smooth interactions is

elevant, e.g., when investigating the impact of a given genetic variation

n lifespan trajectories of brain measures ( Walhovd et al., 2019 ). 

Cross-sectional measurements were simulated with age uniformly

istributed between 4 and 94 years, and group memberships randomly

llocated to 0 or 1 with equal probabilities. For the mega-analysis,

ll measurements were analyzed in a single GAM, while for the meta-

nalysis, the data were first split into 6 datasets and analyzed separately,

efore a meta-analytic p -value was computed. For reference, the power

btained when using a single dataset of size 1/6th of the total dataset

as also computed. A total of 1000 Monte Carlo samples were analyzed

or each parameter setting. For the case of a nonzero group interaction,

tatistical power was computed as the fraction of the 1000 random sim-

lations in which the group interaction was significant at a 5 % level. In

he first set of simulations, the total sample size was fixed at 3000 while

he residual standard deviation varied between 1000 and 15,000. In the

econd set of simulations, the residual standard deviation was fixed at

500, and the total sample size varied between 900 and 3000. In all

ases, ”cohort fits ” were computed by randomly splitting the dataset

nto 6 equally sized parts. The GAMs used to analyze the data in each

ample were of the form 

 = 𝛽0 ,𝑚 + 𝑓 1 ,𝑚 
(
𝑥 1 
)
+ 𝑓 2 ,𝑚 

(
𝑥 1 
)
𝑥 2 + 𝛽2 ,𝑚 𝑥 2 + 𝜖, 𝑚 = 1 , … , 𝑀, 

here x 1 is age, x 2 ∈ {0, 1} is an indicator for group membership,

nd 𝜖 is a normally distributed residual. The parameter 𝛽0, m 

represents

he intercept, 𝛽2, m 

is the offset effect of membership in group 1, the

mooth term f 1, m 

( x 1 ) represents the age trajectory of subjects in group

, and f 2, m 

( x 1 ) represents the difference between the smooth term of

ubjects in group 1 and subjects in group 0. Hence, subjects in group

 have age trajectory given by 𝑓 1 ,𝑚 
(
𝑥 1 
)
+ 𝑓 2 ,𝑚 

(
𝑥 1 
)
. GAMs were fitted

ith the gam function in mgcv ( Wood, 2017 ), using cubic regression

plines to construct the smooth terms and generalized cross-validation

or smoothing. Knot placement was determined independently for each

tudy. The null hypothesis states that there is no difference between

he lifespan trajectories across groups, and the p -values corresponding
o this null hypothesis in each sample were directly obtained from the

odel fit, which uses the methods described in Wood (2012) . For the

eta-analysis, we compared several different methods for combining p -

alues: Wilkinson’s maximum p ( Wilkinson, 1951 ), Tippet’s minimum p

 Tippet, 1931 ), the logit- p method ( Becker, 1994 ), Fisher’s sum of logs

 Fisher, 1925 ), Edgington’s sum of p ( Edgington, 1972 ), and Stouffer’s

um of z ( Stouffer et al., 1949 ), using the implementations in the R pack-

ge metap ( Dewey, 2019 ). As all samples in the meta-analysis were

f equal size, equal meta-analytic weights were used in Stouffer’s sum

f z (8) . The other methods do not use weights. Tippet’s minimum p

ethod gave p -values closest to uniform under the null hypothesis un-

er most parameter settings, while Stouffer’s sum of z method typically

ave highest power. The p -values resulting from these two methods are

ence shown in the results in this section, while complete results for all

ethods can be found in Supplementary Material III. 

Fig. 4 shows quantile-quantile plots of the p -values obtained by meta-

nalysis, mega-analysis, and a fit of a single dataset in the case of no

ctual interaction between the group variable and the lifespan trajecto-

ies in the case with sample size 3000 and residual standard deviation

500. Results for other values of these parameters were similar, and

re shown in Supplementary Material III. The gray line shows the ideal

eference line. All methods yielded p -values which deviated to some

egree from the uniform distribution. Meta-analytic p -values computed

sing Tippet’s minimum p method were close to the p -values obtained

ither in the mega-analysis or in the single data fit. p -values computed

sing Stouffer’s sum of z, on the other hand, were considerably further

rom being uniformly distributed. As Fig. 4 shows, the p -values of the

ega-analysis were not perfectly uniformly distributed. This is due to

he approximate nature of the algorithms used to compute p -values in

AMMs, which need to take into account the overall uncertainty in the

moothing parameter ( Wood, 2017 , Sec. 6.12). 

Fig. 5 (left) shows power curves for varying residual standard errors,

nd Fig. 5 (right) shows power curves over a range of sample sizes. In

oth cases, the mega-analytic approach outperforms the meta-analytic

pproaches. Stouffer’s sum of z method obtained power closest to the

ega-analysis, while Tippet’s minimum p method had lower power. An-

lyzing a single dataset, representing 1/6th of the total data, gave much

ower power than either of the other two approaches. This highlights

he benefit of pointwise meta-analysis compared to separate analyses

y each center, when data cannot be shared. 

To summarize, meta-analysis using Stouffer’s sum of z method had

ower fairly close to that of a mega-analysis, at an increased risk of

alsely rejecting true null hypotheses. On the other hand, meta-analysis
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Fig. 5. Statistical power to detect interaction. Results of statistical power simulations desribed in Section 4.2 . Left: fixed total sample size 3,000 and varying noise 

level. Right: fixed noise level 𝜎= 3,500 and varying total sample size. Shaded areas around curves show 95 % confidence intervals computed using the R package 

Hmisc ( Harrell, 2019 ). Meta-analytic p -values were computed using both Stouffer’s and Tippet’s method, as shown by the legend. 

u  

h  

T  

t

5

 

f  

c  

t  

e  

C  

2  

n  

I  

(  

S  

p  

p  

o  

3  

t  

b  

E  

s

 

i  

m  

c  

o  

p  

a  

b  

t

 

𝑦  

y  

a

i  

i  

s  

s  

i  

u  

b  

v  

o  

t  

s  

e  

fl  

w  

F  

f  

s  

v

 

p  

d  

e  

t  

o  

r  

m  

t

 

T  

b  

w  

n  

h  

m  

y  

w  
sing Tippet’s minimum p method had risk of falsely rejecting a true null

ypothesis close to that of a mega-analysis, at the cost of lower power.

he other methods for combining p -values were somewhere inbetween

hese extremes, as shown in Supplementary Material III. 

. Case study 

We will now illustrate the proposed methods on brain imaging data

rom six European cohorts analyzed by Fjell et al. (2019) . The datasets

ontained measurements of sleep quality and hippocampal volume from

he Berlin Study of Aging-II (BASE-II) ( Bertram et al., 2013; Gerstorf

t al., 2016 ), the Betula project ( Nilsson et al., 1997 ), the Cambridge

entre for Ageing and Neuroscience study (Cam-CAN) ( Taylor et al.,

017 ), Center for Lifespan Changes in Brain and Cognition longitudi-

al (LCBC) studies ( Fjell et al., 2017; Walhovd et al., 2016 ), Whitehall-

I ( Filippini et al., 2014 ), and University of Barcelona brain studies

 Abellaneda-Pérez et al., 2019; neiro et al., 2014; Rajaram et al., 2017 ).

elf-reported sleep and hippocampal volume data from 2843 partici-

ants (18–90 years) were included. Longitudinal information on hip-

ocampal volume was available for 1,065 participants, yielding a total

f 4621 observations. Mean interval from first to last examination was

.8 years (range 0.2–11.0 years). Participants were screened to be cogni-

ively healthy and in general not suffer from conditions known to affect

rain function, such as dementia, major stroke, multiple sclerosis, etc.

xact screening criteria were not identical across subsamples. Detailed

ample characteristics are presented in the Supplementary Material I. 

In Fjell et al. (2019) , the data were analyzed jointly using GAMMs

n a mega-analysis, taking into account both the clustering of repeated

easurements within the same subject, and of subjects within a given

ohort. However, the methods proposed in this paper enable this type

f multi-cohort analysis also when the data cannot be shared. In this

articular example we examine how hippocampal volume is related to

ge and to sleep quality as measured by the global score on the Pitts-

urgh Sleep Quality Index (PSQI) ( Buysse et al., 1989 ). A low value of

he PSQI variable indicates good sleep. 

The following model was first fit to data from each study separately:

 𝑖𝑗 = 𝛽0 + 𝑓 1 ( 𝑥 𝑖𝑗, 1 ) + 𝑓 2 ( 𝑥 𝑖𝑗, 1 ) 𝑥 𝑖, 2 + 𝛽3 𝑥 𝑖, 3 + 𝑏 𝑖 + 𝜖𝑖𝑗 . (9)
 ij denotes hippocampal volume of subject i at timepoint j, x ij ,1 is the

ge of subject i at timepoint j, x i ,2 is the global PSQI score, and x i ,3 
s the sex of subject i . 𝑏 𝑖 ∼ 𝑁(0 , 𝜎2 

𝑏 
) is the random intercept of subject

 and 𝜖ij ~ N (0, 𝜎2 ) is the residual. The main effect of age is repre-

ented by f 1 ( x 1 ). f 2 ( x 1 ) x 2 is a varying-coefficient term ( Hastie and Tib-

hirani, 1993 ), in which f 2 ( x 1 ) is a regression coefficient for sleep qual-

ty which varies smoothly with age. Restricted maximum likelihood was

sed both for smoothing and estimation of random effect terms, and cu-

ic regression splines were used as basis functions. The range of the age

ariable differed considerably between studies, as shown in the top part

f Fig. 6 . Hence, both the knot placement and the number of knots used

o fit f 1 ( x 1 ) and f 2 ( x 1 ) was determined for each cohort separately. The

imulation procedure described in Wood (2017 , Ch. 5.9) was used to

nsure that the number of knots was large enough to allow sufficient

exibility for the shapes of the smooth terms. The sleep quality scores

ere similarly distributed across cohorts, as shown in the bottom part of

ig. 6 . Betula differs somewhat in shape from the others, due to a trans-

ormation that had to be applied to these data ( Fjell et al., 2019 ). Fig. 7

hows the fits of the term 𝛽0 + 𝑓 1 ( 𝑥 1 ) in (9) relating age to hippocampal

olume, over the range of ages in each cohort. 

For the meta-analysis, we will focus on the effect of age on hip-

ocampal volume including the intercept term, 𝛽0 + 𝑓 1 ( 𝑥 1 ) , and the age-

ependent effect of sleep quality on hippocampal volume, f 2 ( x 1 ). To this

nd, we set up a grid over which to compute the estimates, containing

he range of ages from 20 to 90 equally spaced by 0.1 year, and the value

f the sleep quality score set to 𝑥 2 = 1 , such that 𝑓 2 ( 𝑥 1 ) 𝑥 2 = 𝑓 2 ( 𝑥 1 ) , rep-

esenting the main effect of sleep as a function of age. Random effects

eta-analysis was used, with between-study variance estimated with

he DerSimonian-Laird estimator shown in Eq. (6) . 

Fig. 8 shows the meta-analytic fits compared to the full data case.

he estimated effects of age on hippocampal volume are very similar

etween the two approaches, although the meta-analytic fit lies some-

hat above the mega-analytic fit for ages below 60 and has somewhat

arrower confidence bands at low ages and wider confidence bands at

igh ages. A possible reason for the narrow confidence bands of the

eta-analytic estimate of f 1 ( x 1 ) for ages in the range from 30 to 55

ears is that this age range is dominated by LCBC and Cam-CAN ( Fig. 9 ),

hich have very similar estimated functional forms ( Fig. 7 ). As shown in
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Fig. 6. Empirical distribution of explanatory variables. Raincloud plots 

( Allen et al., 2019 ) showing the distribution of baseline age (top) and global 

PSQI score (bottom) in the data from each study in Section 5 . 
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Fig. 7. Age trajectories for each cohort. Estimates of 𝛽0 + 𝑓 1 ( 𝑥 1 ) in (9) , show- 

ing how age predicts hippocampal volume in each cohort. Gray shaded areas 

are 95 % confidence intervals. 
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upplementary Material IV (p. 16), the estimated between-sample vari-

nce is even identically zero over part of this range. Since the standard

rror of the meta-analytic fit is estimated independently at each age

cf. Eq. (5) ), the confidence bands hence become narrow, in contrast

o the mega-analytic fit, for which the global smoothness assumption

nd the utilization of repeated measurements contribute to confidence

ands whose width has little variation in the interior of the age range. 

As in Fjell et al. (2019) , there seems to be no effect of global PSQI

core on hippocampal volume at any age, as can be seen by the confi-

ence intervals covering zero in both cases ( Fig. 8 , right). In the meta-
nalytic case, the estimated curve has a peak at around 70 years, as

pposed to the straight line estimated by the full data analysis. How-

ver, the confidence bands obtained with the two methods are highly

verlapping. We note that while the mega-analysis estimates a linear

arying-coefficient term f 2 ( x 1 ), the meta-analytic estimate is nonlinear.

s shown in Supplementary Material IV, all the individual cohort fits

xcept Betula were very close to linearity. However, pointwise meta-

nalytic fits are nonlinear by construction, so even if all individual co-

ort fits estimated a linear effect, the meta-analytic estimate would in

eneral be nonlinear. This can be seen by the fact that 𝑓 𝑠 ( 𝐱) depends

onlinearly on the covariates x in Eq. (4) , through the products of the

stimated smooth terms with the meta-analytic weights. In contrast,

he mega-analysis shrinks the total estimate towards a linear function

hrough the second-derivative penalty. As a result, the mega-analytic

stimate will be linear when the data do provide sufficient evidence of

 nonlinear effect. 

In order to quantify how much each study contributes to the meta-

nalytic fit at each value of an explanatory variable, we propose us-

ng dominance plots, visualizing 𝜎̂2 
𝑠,𝑚 

∕ se 2 
𝑓 𝑠 

for 𝑚 = 1 , … , 𝑀 . Fig. 9 (left)

hows that LCBC and Cam-CAN are the main contributors to the meta-

nalytic fit for the main effect of age on hippocampal volume for ages

p to around 50 years, after which the relative influence of the other

tudies starts increasing. Furthermore, the heterogeneity of the models

t in each study can be analyzed by computing Cochran’s Q statistic

 Cochran, 1954 ) over an explanatory variable, thus comparing 𝑓 𝑠,𝑚 for

 = 1 , … , 𝑀 independently at each value of the explanatory variable.

ig. 9 (right) shows a heterogeneity plot comparing the main effects of
Fig. 8. Comparison of meta-analytic and mega- 

analytic estimates. Meta-analytic fits obtained as de- 

scribed in Section 5 , compared to the corresponding fit 

obtained with full data. Left: effect of age on hippocam- 

pal volume, including the overall intercept. Right: ef- 

fect of PSQI global score on hippocampal volume as a 

function of age. 
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Fig. 9. Dominance and heterogeneity plots. Domi- 

nance and heterogeneity plots for 𝛽0 + 𝑓 1 ( 𝑥 1 ) in Eq. (9) . 

Left: the relative contribution from each study to the 

meta-analytic fit over age. Right: Cochran’s Q statistic 

for heterogeneity over age. Shaded areas represent 95 

% confidence intervals. 
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ge in each study, with 95 % confidence intervals represented by the

haded gray areas. The confidence interval in the heterogeneity plot

oes not contain zero for ages above 60, indicating that there is evi-

ence of systematic differences across cohorts in the effect of age on

ippocampal volume after the age of 60. 

.1. Pointwise meta-analysis in R with the ’metagam’ package 

This section shows how the meta-analysis described above can be

onducted in R using the metagam package, which implements the

ethods presented in this paper. Some details are omitted for clarity,

nd are shown in Supplementary Material IV. 

First, the following code fits a GAMM to the data for each study using

he mgcv package ( Wood, 2017 ). 

The fitted model objects returned by gamm() contain the orig-

nal data used to fit the model, as well as the responses. The

trip_rawdata() function from metagam removes all individual

articipant data from each model fit, returning an object containing only

ggregate quantities that can be shared without any individual data. The

ollowing lines attach the metagam package and then create an object

ohort_fit1 , which does not contain any individual-specific data. 

Assuming each cohort has followed the two steps above, the follow-

ng code gathers the model fits from each of the six cohorts in a list,

reates a grid over which to predict, and finally uses the metagam()
unction to compute the meta-analytic fits. 
The argument method = ’’DL’’ specifies that random ef-

ects meta-analysis should be used, with the DerSimonian-Laird es-

imator ( DerSimonian and Laird, 1986 ). The metafor package

 Viechtbauer, 2010 ) performs the actual estimation, and all estimators

vailable in metafor may be used. By default, predictions from each

odel are computed over the whole supplied grid, thus extrapolating

he estimates from cohorts whose data cover only a subset of the grid.

rguments can be specified in order to compute the predictions from

ach model only within the range of variables used to fit it. In practice,

his latter option does not have much impact, since the standard errors

re large outside of the range of the variables used in the fit, and hence

he corresponding predictions get a very low weight at these points. 

Finally, the dominance and heterogeneity plots shown in Fig. 9 are

btained with the commands: 

. Discussion 

We have proposed and illustrated a flexible way to obtain meta-

nalytic fits of GAMs in neuroimaging studies where individual partici-

ant data cannot be shared across cohorts. In the simulation studies, the

eta-analytic procedure showed estimation performance close to that

btained in the ideal case, in which all data were analyzed in a single

odel, except that the meta-analytic estimates tended to have somewhat

oo narrow confidence intervals. Furthermore, the simulations showed

hat when testing for an interaction between a smooth function and a

ategorical variable, the distribution of p -values under the null hypothe-

is of no interaction, and the power to detect an actual interaction, were

ighly dependent on the chosen method for combining p -values, offer-

ng a trade-off between power and the probability of making false re-

ections. The proposed method is particularly useful when the variables

nder study have different ranges across cohorts, such that enforcing

he same knot placement is suboptimal and might lead to nonidentified

odels. This is the case in many multi-cohort and consortium studies

sing neuroimaging data, where for instance age-range or patient distri-

ution across a clinical indicator may vary considerably across samples.

iffering variable ranges and knot placement are also inevitable across

ndependent studies using GAMs to estimate some effect of interest in

ifferent study populations. 

A case study illustrating the use of pointwise meta-analysis was con-

idered in Section 5 , in which the effect of sleep quality and age on

ippocampal volume was estimated for six European cohorts. Due to

he nonlinear lifespan relationship between age and hippocampal vol-

me, GAMMs were preferable to LMMs when analyzing these data. How-

ver, the highly varying age distributions ( Fig. 6 ) lead to nonidentified

odels when the same knot location was enforced across cohorts (cf.
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able 1 ). Meta-analysis of GAMMs by combining spline weights at each

not ( Gasparrini et al., 2012 ) could hence not be used. The pointwise

eta-analysis developed in this paper alleviated these issues, and al-

owed computing meta-analytic estimates of both the effect of age on

ippocampal volume and the age-varying effect of sleep quality on hip-

ocampal volume. Since the full data were available in a single location

n this case, the meta-analytic estimates could be directly compared to a

ega-analysis in which all data were analyzed jointly. The meta-analytic

stimate of the effect of age on hippocampal volume was very close to

he mega-analytic estimate ( Fig. 8 , left), although it had slightly nar-

ower confidence bands for the middle age ranges. The meta-analytic

stimate of the effect of sleep was also close to the mega-analytic es-

imate, both being almost zero over the full age range. A notable dif-

erence in the latter case was that while the mega-analysis estimated

he effect of sleep to vary linearly with age, the meta-analytic estimate

as nonlinear, as it will be by construction. An interesting topic for

urther study, which would enable a meta-analytic estimate to be lin-

ar when the smooth terms from each cohort are close to linear, in-

olves imposing additional constraints on the meta-analytic fit, by using

he degrees of freedom of the estimate from each cohort to inform the

hape of the overall meta-analytic estimate. Dominance and heterogene-

ty plots ( Fig. 9 ) were also introduced as additional tools for analyzing

he relative impact of each dataset on the meta-analytic fit, and the het-

rogeneity of the estimated effects, respectively, both as functions of

ge. 

One particular area of application for meta-GAM is imaging genet-

cs. The need for very large sample sizes has long been recognized

 Thompson et al., 2014 ), which imposes challenges due to privacy and

ata protection as well as practical issues regarding transfer, storage

nd processing of large amounts of neuroimaging data. These chal-

enges have successfully been overcome in initiatives such as ENIGMA

 Bearden and Thompson, 2017; Thompson et al., 2017 ) using a meta-

nalytic approach to gene discovery. Classic meta-analytic techniques

re often inappropriate in situations where genetic effects are studied in

nteraction with other variables, such as age in a lifespan study. To test

hether effects of genetic variants on a neuroimaging outcome mea-

ure vary as a function of age, or whether the lifespan trajectories of a

euroimaging outcome variable differ as a function of genetic variation

 Piers, 2018; Walhovd et al., 2019 ), more complex modeling is needed.

his functionality is provided by meta-GAM. As shown in Fig. 8 , this

eta-analytic approach yielded superior power to detect effects in such

ituations compared to single studies, although not completely reaching

he same statistical power as mega-analyses in cases of total sample size

ess than 2000. Other examples of situations where meta-GAM would

e applicable are when testing whether an effect varies as a function of

nother continuous variable, such as blood pressure, BMI or sleep du-

ation. In all of these cases, the neuroanatomical outcome variable is

xpected to show a more complex relationship to the predictor variable

han what can be captured by a parametric model. In these cases, meta-

nalytic GAM will be a powerful strategy to test genetic effects. Thus,

e believe the present strategy may be a useful tool in neuroimaging

enetics. 

An alternative to the pointwise meta-analysis approach presented in

his paper is to treat the fitted smooth functions from each cohort as sam-

les from a Gaussian process ( Murphy, 2012 , Ch. 15). A meta-analytic

t could then be obtained by using these samples to estimate the param-

ters of a common smoothing kernel. This approach has been taken by

alimi-Khorshidi et al. (2011) for meta-analysis of neuroimaging data.

nother alternative is using multiple imputation methods to generate

ynthetic data in each cohort with the same distributional properties as

he original data, which can then be shared and analyzed in a mega-

nalysis ( Little, 1993; Nowok et al., 2016; Rubin, 1993 ). Other possible

xtensions include accommodating potential correlation between the

ointwise estimates in a given cohort using the robust variance esti-

ation methods developed by Hedges et al. (2010) , and to model the

ffect of cohort-specific covariates using multivariate meta-regression
 Berkey et al., 1998 ). The latter may be used to account for systematic

ifferences between trajectories across cohorts (cf. Fig. 9 , right), and

ence reduce potential bias in the meta-analytic estimates ( Hofer and

iccinin, 2009 ). Also, deriving meta-analytic weights to use when com-

ining p -values ( Rosenthal, 1978 ) as in Section 4.2 could potentially

ield p -values closer to those of the mega-analysis. 

Although we have focused on the case in which data are not available

n a single location, the proposed methods can also be useful in two-stage

nalysis with GAMs. In two-stage analysis, models are fitted separately

or each cohort as described here, and then fit using meta-analytic tech-

iques ( Burke et al., 2016 ). This approach seems to be somewhat less

fficient than analyzing the data jointly in a one-stage model ( Boedhoe

t al., 2019; Kontopantelis, 2018 ), but is useful when combining the data

s impractical due to storage requirements or harmonization challenges

 Sung et al., 2014 ). Finally, use of meta-GAM as a research synthesis

ethod requires estimates and covariance matrices of spline weights as

ell as knot placement and basis functions to be properly reported by

he studies to be combined in the meta-analysis. The metagam package

asily allows extraction of such parameters from GAMs, creating model

bjects which can be made publicly available in repositories like the

pen Science Framework ( Foster and Deardorff, 2017 ), https://osf.io/ .

. Conclusion 

Here we propose and demonstrate an approach to meta-analysis of

euroimaging results in situations where parametric models might not

e appropriate, such as is often the case, e.g., in lifespan research. Para-

etric models might not be able accurately to capture lifespan trajec-

ories of most neuroanatomical volumes, here as demonstrated for hip-

ocampus. We show how such data can be analyzed using meta-analysis

f generalized additive (mixed) models, and demonstrate that this is a

owerful approach using simulated as well as real multi-cohort longitu-

inal data from the Lifebrain consortium. We believe this approach can

e successfully applied in a range of settings where neuroimaging vari-

bles are used as outcome, especially within lifespan and neuroimaging

enetics research, and beyond. 
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ppendix A. Identifiability constraints on smooth terms 

The smooth terms in the GAM (1) are only uniquely determined up

o some additive constant. In order to compute the model fit, constraints

ave to be imposed on the smooth terms, effectively fixing f s (0) to some

onstant value. The default in the R package mgcv is to let each smooth

erm 𝑓 𝑠 (  𝑠 ) sum to zero over the observed data  𝑠 . This means requiring

hat the smooth term estimated from data in each cohort satisfy ∑
∈ 𝑠,𝑚 

𝑓 𝑠,𝑚 ( 𝐱 ) = 0 , 𝑚 = 1 , … , 𝑀, (A.1)

here we let  𝑠,𝑚 denote the actual values of  𝑠 in cohort m . Using this

pproach the smooth term in each cohort has been constrained to sum

o zero over its own data, and hence the terms are not directly compa-

able without correcting for this difference in offset. This is particularly

mportant when the values of  𝑠,𝑚 cover different ranges across cohorts,

s in Fig. 6 . 

One solution is to note that the smooth plus its intercept are com-

arable across cohorts, since the difference between the constraints is

aptured by the intercept term. To be precise, assume a GAM with a sin-

le smooth term f 1 is fit to data in cohorts m 1 and m 2 , where the smooth

erm is constrained according to the data in cohort m 1 , i.e., ∑
∈ 𝑠,𝑚 1 

𝑓 𝑠,𝑚 ( 𝐱 ) = 0 , 𝑚 = 𝑚 1 , 𝑚 2 . 
his yields estimates 𝛽0 ,𝑚 + 𝑓 𝑠,𝑚 for 𝑚 = 𝑚 1 , 𝑚 2 , and the terms 𝑓 𝑠,𝑚 1 and

 ̃𝑠,𝑚 2 
would be directly comparable. Instead constraining 𝑓 𝑠,𝑚 2 over its

wn data would lead to a shift Δ𝛽0 ,𝑚 2 in the intercept estimated in cohort

 2 , i.e., ∑
∈ 𝑠,𝑚 1 

𝑓 𝑠,𝑚 2 
( 𝐱) = Δ𝛽0 ,𝑚 2 + 

∑
𝐱∈ 𝑠,𝑚 2 

𝑓 𝑠,𝑚 2 
( 𝐱) = 0 . 

he estimated intercept in cohort m 2 would now be 𝛽0 ,𝑚 2 = 𝛽0 ,𝑚 2 +
𝛽0 ,𝑚 2 , where Δ𝛽0 ,𝑚 2 takes into account the difference between the sum-

o-zero constraint in cohort m 1 and in cohort m 2 . This argument gener-

lizes to any number of cohorts and smooth terms. Hence, sum-to-zero

onstraints of the form (A.1) for each smooth can be imposed indepen-

ently in each cohort fit, as long as the estimated intercept 𝛽0 is added

o each smooth term before combining. This implies replacing 𝑓 𝑠,𝑚 with
̂0 ,𝑚 + 𝑓 𝑠,𝑚 in equation (4) . An important point for interpretation is that

hen using this option, the meta-analytic estimate of 𝛽0 + 𝑓 𝑠 incorpo-

ates both differences between estimated intercepts and differences be-

ween estimated smooth terms across cohorts. 

Another way to resolve this issue is by imposing a constraint for

ach smooth term, specifying a point at which it should be exactly zero

 Wood, 2017 , Ch. 5.4.1). If the same point constraints have been ap-

lied when fitting the GAM to the data from each cohort, the smooth

erms are all on the same scale and can be combined meta-analytically

s described in Section 3 . This approach hence replaces (A.1) by 

 𝑠,𝑚 

(
 

𝑝𝑐 
𝑠 

)
= 0 , 𝑚 = 1 , … , 𝑀, (A.2)

or some point  

𝑝𝑐 
𝑠 which is identical across cohorts. An advantage

f this approach is that it does not require the intercept to be in-

luded in the meta-analysis; hence the meta-analytic estimate 𝑓 𝑠 con-

ains only the smooth term. On the other hand, point constraint may

ead to wider confidence bands for the smooth terms ( Wood, 2017 , Ch.

.4.1). Also, this approach requires that point constraints are specified

s part of the model to be fit to the data from each cohort. Note that

he confidence interval for a smooth term subject to point constraint

A.2) does not need to have zero width at the constraint point  

𝑝𝑐 
𝑠 . The

ethods for constructing confidence intervals developed by Marra and

ood (2012) based on the work by Nychka (1988) , take into account

he uncertainty about the overall intercept as well as the uncertainty

bout the smooth term, and these typically yield better coverage prop-

rties than confidence intervals which only model the uncertainty of the

mooth term. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2020.117416 
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