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Abstract

The hydrated electron has fundamental and practical significance in radiation and radical

chemistry, catalysis and radiobiology. While its bulk properties have been extensively studied,

its behavior at buried solid/liquid interfaces is still unclear due to the lack of effective tools

to characterize this short-lived species in between two condensed matter layers. In this

study, we develop a novel optoelectronic technique for the characterization of the birth and

structural evolution of solvated electrons at the metal/liquid interface with a femtosecond

time resolution. We thus recorded for the first time their transient spectra (in a photon energy

range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs. The transient species

show state-dependent optical transition behaviors from being isotropic in the hot state to

perpendicular to the surface in the trapped and solvated states. The technique will enable

a better understanding of hot electron-driven reactions at electrochemical interfaces.
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Introduction

The hydrated electron is the most fundamental ion in solution [1], a metastable structure

of water molecules interacting with a free electron. In bulk water, the hydrated electron’s

lifetime is relatively long and reaches up to microseconds in span [2], but its strong reducing

potential renders it highly reactive, and thus short-lived, in the presence of electron acceptors.

Consequently, hydrated electrons can damage DNA, create radicals and induce a plethora of

reductive reactions. Electrons in solution have been extensively studied from the standpoint of

radiobiology, radical and radiation chemistry, and charge transfer systems for their importance

in radiotherapy, physiology, catalysis and atmospheric reactions [3–6].

The hydrated electron structure and dynamics from inception to solvation are well known

in the bulk [7–11], in clusters [12–14], and at the metal/thin amorphous ice interface [15–17].

Work is also underway to better understand its behavior at the air/water interface [18–21].

In bulk water, the generally accepted model proposes that a 4- to 6-molecule solvation shell

hosts the electron in a cavity [22, 23]with a radius of gyration (rg) of∼2.45 Å [1]. A contested

alternative noncavity model suggests that the bulk hydrated electron resides in a volume of

increased water density [24]. The hydrated electron at the metal/liquid water interface is,

however, much less well understood presumably because of the lack of suitable experimental

characterization tools for such an environment.

Assuredly, the electrified metal/electrolyte interface [25, 26] is highly relevant to tech-

nological systems—e.g. batteries, fuel cells, Grätzel’s cells, etc.—that rely on heterogeneous

electron transfer (HET) [27, 28] to store and convert energy or to carry out electrochemical

reactions. "Improving such devices requires to understand the mechanism by which the elec-

tron moves across the solid/liquid interface. However, such a task is extremely challenging as

the charge transfer dynamics are exceedingly short, on the femto- to picosecond time scale.

Conventional electrochemical methods, such as those based on potential sweep or impedance

measurements, may access the time scale of tens of nanoseconds to the best [29, 30], which

may be sufficient to address the mass diffusion problems. They are, however, unfit to provide

the desired dynamical information on ultrafast time scales (� picoseconds), on which hot elec-

tron relaxation, solvent reorganization and photoexcited isomerization take place. To study

these processes, an integration of ultrashort laser pulses and electrochemical control has the
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potential to grant access to the relevant time scales, provided that several significant obstacles

can be resolved.

From an experimental perspective, elucidating the mechanism of electron transfer under

steady-state nonequilibrium conditions is generally not possible: a perturbation experiment

is in fact required, in which the electron transfer is triggered at a well-defined time and the

electrochemical interface is characterized with a high time resolution as the system returns

to steady-state [31]. However, performing such an experiment with a conventional electrical

detection scheme also has a limited time resolution, which is set by the RC value of the system,

i.e.,�nanoseconds, regardless of the electrical or optical trigger length [32–37].

To investigate with higher time resolution the ejection of an electron from a metal and

the formation of a solvated electron, several groups have characterized model systems in UHV,

i.e., solids with few monolayers of ice, using femtosecond optical pulses to initiate the electron

transfer and femtosecond-resolved photoemission measurements as a probe [38, 39]. While

this approach on model systems yielded important and interesting developments, we need to

perform measurements with a similar time resolution under operando conditions to appropri-

ately characterize the reactions at the electrified electrochemical interface. Unfortunately, the

thick liquid layer covering the buried interface precludes direct application of UHV surface sci-

ence techniques in which electrons or atoms are probes. Moreover, purely optical techniques

often suffer from interfering signals from the metal surface charge dynamics: the pump pulse

both perturbs the metal surface electronic structure and causes an electron transfer, making the

deconvolution from the sought-after signal difficult. In part because of those challenges, there

are no reports of the spectral observables that offer insight into the structure of the hydrated

electron at electrochemical interfaces.

We have developed a surface-sensitive optoelectronic technique for the synthesis and

detection of hydrated electrons at the electrode/electrolyte interface that gives access to

the interfacial dynamics from birth to the solvation of the electron species. This method

reveals not only the transient spectra of different interfacial hydrated electron states, from

the terahertz/mid-infrared (THz/MIR) to the near-infrared (NIR) spectral region, but also

the polarization properties of the transient species. Because the method demonstrated here is

quite general, we expect it to find wide applicability in the study of the structure and dynamics

of short-lived ionic species at electrochemical interfaces.
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Experimental Section

Details of the ultrafast photovoltage measurement scheme can be found in the Supp. Info. In

brief, through excitation by a repeated ultrashort UV pulse (1 kHz, 267 nm) with a fluence

of ≈ 0.6 mJ / cm2, electrons are ejected from the electrode into the solution using the

photoelectric process. This creates a photovoltage ∆V1, which can be measured using a

conventional potentiostat, that reaches a stationary value after 20-30 min as governed by mass

transport and the cell geometry. A second pulse of lower photon energy (same repetition rate)

is used to perturb the stabilized system at a variable ultrashort time delay. A photovoltage

change ∆V2 is induced that depends strongly on the photon energy of the 2nd pulse and the

delay between the two pulses. Measuring and extracting∆V2 for a series of delay values yields

a trace reflecting the ultrafast hydrated electron dynamics at the electrode interface.

The UV pulse at 267 nm (4.64 eV) is generated by tripling a 800 nm (1.55 eV) pulse in a

β-barium borate (BBO) crystal. The Gaussian full width at half maximum (FWHM) of the UV

pulse is ≈ 110 fs after transmission through the lens, window and water layer overlying the

sample (see Supp. Info.) Various combinations of an optical parametric amplifier (OPA) and

a noncollinear difference frequency generation accessory (nDFG) were used to obtain pulses

of different photon energies for the second pump (see the Supp. Info. for details). The second

pump pulses had an estimated Gaussian FWHM of ∼ 80 fs. The second laser pulse is delayed

with respect to the first pulse by times ranging from -4 to 100 ps, such that a full delay trace is

created at every photon energy. The UV-induced bleaching of the nonresonant sum-frequency

generation (SFG) signal of the gold surface, generated by mixing a 1.55 eV beam with the

second pump beam, is used to define the position of time zero.

The spectroelectrochemical cell is depicted in Fig. S2 of the Supp. Info. Three electrodes

(auxiliary, pseudo reference and working electrode) were patterned on a quartz plate of

45 mm in diameter by electron beam evaporation resulting in a 5 nm chromium adhesion

layer overlain by 200 nm of gold. Copper foil stripes electrically connected the gold pads

to the potentiostat. The cell is capped with a CaF2 window of 25 mm in diameter, that has

been drilled with two holes to allow for the flow of electrolyte (∼6 µL / s, maintained by a

peristaltic pump). A spacer of polytetrafluoroethylene (PTFE, 50 µm thick) sets the height

of the cell’s inner chamber for a volume of approximately 6 µL, such that absorption of light

by the liquid phase is minimized. For the electrolyte, we used a solution of 0.5 M Na2SO4 in
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Figure 1: (a-b) The photovoltage change∆V2 versus the delay time. (a) At delay times smaller
than 4 ps. (b) At longer delay times, up to 100 ps. Red dashed traces show the best fit of the
three-level hydrated electron model, while the thin blue line show the position and width of
the UV pump pulse. (c) The photovoltage change∆V2 sliced at different delay times, presented
against the second pump energy. Top panel: At negative delay times. Bottom panel: Positive
delay times. Inset: Zoom of the region around the shoulder at 1.55 eV. The gray bands delimit
a region where Laenen et al. found strong mid-infrared absorption bands due to e−:(H2O)n
and OH:e− precursors [40].

deionized water (18.2 MΩ · cm, Millipore), degassed by bubbling N2 for at least 30 min prior

to the experiment. The photoinduced electrode potential was measured in open circuit mode

(open circuit potential, OCP) and corrected for the pulse energy of the first and second pulses

and water absorption coefficient at the second pulse wavelength (see Supp. Info.)

Results and Discussion

Fig. 1(a) presents the photovoltage change ∆V2 (induced by the 2nd laser beam) as a function

of the time delay between the two pulses for a range< 4 ps. At a second pulse photon energy of

0.31 eV [4 µm in wavelength, upper panel of Fig. 1(a)], we observe a rapid rise, but the signal

decays almost as fast reaching a null intensity in about 500 fs. As we tune to higher second

pulse photon energies, e.g., 1.55 eV [800 nm in wavelength, lower panel of Fig. 1(a)], the rise

is delayed by 50-100 fs, the signal decays much slower and it persists for tens of picoseconds
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[Fig. 1(b)]. The dynamics traces for all second pulse photon energies used are shown in the

Supp. Info. (Fig. S6).

Fig. 1(c) shows the transient, coarse spectral profile of the response of the electrode/electrolyte

interface excitation from its inception to its stabilization with the change in photovoltage,∆V2

plotted as a function of the energy of the second pump. The figure is created by slicing the

dynamics data for a set of representative delays, with negative delays in the upper panel and

positive delays in the lower panel. Before the arrival of the first pump pulse (e.g., at -1 ps),

we observe a null response (diamonds, dark blue). The onset of the UV-induced excitation

is marked by the rapid rise of a component in the mid-infrared region that culminates at

∼+0.1 ps [upward facing triangles, orange, Fig. 1(c), lower panel]. The rise is followed by

a signal decay that is almost as fast, reaching a null intensity in less than 1 ps. This compo-

nent is a broad feature whose maximum intensity clearly lies at photon energies below our

measurement window. Similar spectra in the far- to mid-infrared were observed previously in

bulk water experiments [7, 11, 41] and attributed to photon absorption of delocalized excess

electrons prior to localization.

The broad feature also shows a shoulder that concomitantly appears at∼1.55 eV (800 nm)

[inset of Fig. 1(c)], continues to grow until approximately +0.25 ps, and then starts to slowly

decay. A small residual of the shoulder is still observable even after 100 ps, while ∆V2 for

the other energies has already returned to zero. The feature appears at energies close to, but

slightly lower than, the reported p← s transition of the solvated electron at 1.72 eV (720 nm)

in bulk liquid water [7], and much lower than gold’s interband transitions (2.38 eV) [42].

In a simplified portrait, the delocalized hot electron population in the water conduction

band would yield a Drude-like optical response in the THz/MIR region of the electromagnetic

spectrum, and hydrogen-like localized electrons would behave as particles-in-a-box, with the

p← s transition resonant in the near-infrared region. The low and high energy features in our

experimental spectra [Fig. 1(c)] thus closely coincide with the optical transitions of the bulk

localized solvated electron and its precursor states [7, 8, 11, 43, 44]. Thereby, here we propose

that the resonant species at the electrode/electrolyte interface is the hot electron synthesized

by the UV pulse, and that we follow the localization and relaxation to the solvated state.

In our experimental configuration, we envision two ways in which incident photons

can be transduced into a photovoltage: by heating the metal and creating a temperature

gradient at the metal/solution boundary (such as in temperature jump measurements [45–
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47]), or by injecting uncompensated charges in the electrical double layer (EDL), which

acts as a capacitor [32]. In order to prove that the observed photovoltage ∆V2 is related to

photoinjection and not to the metal film heating, we conducted an experiment where the UV

(4.64 eV, 267 nm) first pump was replaced by a blue (3.10 eV, 400 nm) pump beam of equal

power such that photoinjection would be attenuated, while a hot nonequilibrium electron

population would still be generated in the metal [Fig. 2(a)] [42]. In the metal film heating

scenario, the effects of the two colors on the system should not differ dramatically. The 267 nm

pumped signal is displayed in the lower panel of Fig. 2(b), where a photovoltage increase of

7-9 mV is observed when the shutter of the second pump beam (0.31 eV) is open. In stark

contrast, the 400 nm pumped signal (upper panel) is barely modulated by the second pump

shutter actuation. As sketched in Fig. 2(a), we deduce that metal electrons excited by 3.10 eV

photons are unable to efficiently reach the water conduction band, or any other solution-side

acceptor states, while UV pumped electrons are imparted with enough energy to do so and

thus that the measured photovoltage arising from the spatial and temporal overlap of two

pulsed beams is result of photoinjected charges in solution.

We further argue that the observed change in photovoltage ∆V2 (Fig. 1) caused by the

second pump beam involves a resonant excitation at the electrochemical interface subsequent

to the photoinjection produced by the first pump beam. Other potential contributions (such as

further photoinjection from the electrode, photoejection of charge carriers from the aqueous

interface to the electrode, and also the metal’s optical properties thermomodulation) can be

ruled out from the 2nd pump photon energy-dependent dynamics, relative signs of the signal,

as well as the power- and polarization-dependent results (see the Supp. Info. for details).

Accordingly, the second pulse photons are absorbed by species located at the interface with a

cross section that is proportional to the transition probability. The relaxation back to ground

state then releases the extra energy to the solvent and thus locally raises the temperature,

inducing a photovoltage from the temperature gradient at the metal/solution boundary.

Our results suggest that we measure for the first time the transient spectra of the hydrated

electron and its precursors at the gold/water interface using the two-photon excitation–

photovoltage detection scheme. Because the structure, structural dynamics and relative

permittivity of electrolyte solutions at an electrode boundary differ dramatically from those

of the bulk solution, one might expect that the solvated electron’s dynamics and structure

should differ as well. Indeed, as shown below, our optoelectronic technique reveals one such
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difference with the bulk properties: different states of the hydrated electron actually display

distinct polarization properties when interacting with light.

To elucidate the interaction of the transient species with the substrate, we conducted

polarization dependence measurements of the photovoltage induced by the second pump beam

at 0.31 and 1.55 eV photon energies. The delay condition was set independently in order to

maximize the signal for each second pump beam photon energy (∼0 at 0.31 eV, ∼+0.25 ps

at 1.55 eV). As shown in Fig. 3, a small change (≈ 1 mV) of ∆V2 is observed for the 0.31 eV

laser upon the polarization change from p (red vertical arrows) to s (blue horizontal arrows).

In comparison, ∆V2 measured in the same conditions, but for a second pump beam at 1.55 eV

(lower panel), is almost entirely attenuated in the s polarization state, with a possible small

negative component appearing upon the change of polarization. The disparity between these

experiments can be rationalized as the nature of the optical transitions taking place at the metal

surface for different types of interfacial species as will be discussed in detail below. However

the presence of an anisotropic response contrasts strongly with the isotropic feature observed

for equilibrated hydrated electrons in the bulk (a response typically attributed to the sphericity

of the cavity [48]).

The hydrated electron properties at electrochemical interfaces have been discussed early

on [49] after the report of the solvated electron’s bulk spectrum [43], but limited by the

available tools, conclusions were largely speculative. Here, combining femtosecond laser

pulses and photovoltage measurement, we measured the transient spectra of interfacial

9



0.0

0.5

a2
Lorentz
Gauss

0.00

0.05

Ab
so
rp
tio
n
co
ef
fic
ie
nt
,a

i/
m
V

a3

0.5 1.0 1.5

Energy / eV

0.00

0.02

0.04 a4

40
00

20
00

13
33

10
00

80
0

72
0

67
0

Wavelength / nm

Products
& diffusion

τ3

S0

S1

hν1

S2

S4

S3

τ0 τ1

τ2τth

ζ

(1 - ζ)

0 25 50 75 100

Delay / ps

0

Po
pu

la
tio
n
/a

rb
itr
.u

.

N2

N3

N4

0 2 4

0

A

B

C

El
ec
tro

de

El
ec
tro

ly
te

Figure 4: (a) Schematics of the proposed molecular kinetics model. (b) Evolution of hot,
trapped and solvated electron populations. Inset: Zoom near origin. (c) The absorption
coefficient for the three electron populations in solution.

hydrated electrons and their polarization dependence, hence providing essential information

to establish a molecular picture of the hydrated electron’s evolution from synthesis to decay.

The similarities in the spectra of hydrated electron at the electrochemical interface and those

in the bulk and at the metal/ice interface in UHV support a similar relaxation process to the

ones in those systems, with intriguing differences described below. In brief, at the metal/ice

interface the first step in the photoinjection of electrons from the metal is the creation of

hot electrons, right after the transfer, while a small proportion may directly reach preexisting

traps [15]. From that hot electron population, a large portion will rapidly return to the

electrode (∼ 85% [50]), but the remaining fraction (∼15%) is now in a delocalized state in

the aqueous medium. In bulk liquid water, the hot electron will first localizes in an excited

p state and subsequently relaxes via an internal conversion (IC) step to a modified s state in

a nonadiabatic manner [14]. Reorganization of the surrounding solvent molecules completes

the relaxation.

Following these works, here we also adopt a three-level hydrated electron model to fit our

results that is depicted in Fig. 4(a) and is fully described in the Supp. Info. Tentatively, the state

S0 is assigned to gold’s ground state “Au”, S1 to gold’s nonequilibrium athermal state “Au*”, S2
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to hot electrons in the water conduction band “CB”, S3 to hydrated electrons in the trapped

state “e−(trap)” and S4 to the solvated state “e−(aq)”. Electrons are injected from the Au* state into

the electrolyte with a time constant τ0. The great majority of these electrons reach the CB

state. A minor fraction (1−ζ) is directly injected to the e−(trap) state (wet electron) [15, 17]; we

estimate ζ to be approximately 0.98. Although there is currently no report of preexisting trap

states in liquid water, the appearance from time zero of the shoulder at 1.55 eV in Fig. 1(c)

suggests that a similar process happens in the liquid phase at the interface. This is plausible

since it is known that the hydrogen bond lifetime in bulk liquid water is ∼ 2.5 ps [51]. While

interfacial water molecules may perform libration motions during the 250 fs initial period

in which the peak intensity at 1.55 eV continuously grows, it seems unlikely that significant

changes would occur in the water network structure. Finally, the hot, trapped and solvated

electron populations are related to the measured signal ∆V2 through absorption coefficients,

ai with i = 2, 3,4.

The results of the fits are shown in Fig. 1(a) and (b) as the red dashed lines and in the

Supp. Info (Fig. S6). The model describes well the experimental data at all energies for a

common set of parameters. The sharp initial transient is mainly caused by the hot and trapped

electron populations in the electrolyte [red and green traces, respectively, Fig. 4(b)], while the

persisting, slowly decreasing signal is due to the decaying solvated electron population [blue

trace, Fig. 4(b)]. The corresponding lifetimes are determined to be τ1 ∼ 140 fs, τ2 ∼ 820 fs

and τ3 ∼ 51 ps for IC, solvent reorganization and slow population decay, respectively. As

depicted in Fig. 4(a), the solvated electron population (S4) has two possible loss channels

lumped into τ3: recapture by the electrode or oxidized species from the solution, and transport

outside of the EDL into the bulk. In the bulk, the solvated electron diffuses by ∼0.3 nm in

10 ps (diffusion constant ∼ 4.75 × 10−5 cm2 s−1) [52]. This distance being comparable to

the solvated electron radius and the average hydrogen bond length, the transport channel’s

contribution is likely negligible.

Interestingly, the e−(trap), i.e. S3, state lifetime (820 fs) matches the reorientation dynamics

of the free (non H-bonded) water −OH at the air-water interface [53]. Further studies along

this line may provide insight into the interface-specific mechanisms of electron localization.

From the fits, we also obtained the effective spectra of the hydrated electron at different states

[Fig. 4(c)] (see the Supp. Info. for a discussion of the center energy and FWHM of the spectra).

The spectrum a2 (top panel), which belongs to the state S2, can be understood as a Drude-
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like optical transition, while the spectra a3 (middle) and a4 (bottom), assigned to the states

S3 and S4, respectively, are consistent with p ← s optical transitions. These physical models

explain well the polarization behavior in Fig. 3, where the photovoltage is mostly independent

of polarization at a 0.31 eV photon energy, but displays a significant dependence at 1.55 eV.

This is because Drude-like transitions involving a population uncoupled to the substrate are

mostly isotropic, and the p ← s transitions of populations in proximity with the electrodes

display anisotropy due to image dipoles in the metal (dipole cancellation rule).

It is noteworthy that the center energy of the spectral response of the e−(trap) and e−(aq)

species, i.e. the S3 and S4 states, (∼1.5 eV) appears at a significantly lower photon energy

than reported in the bulk (1.7 eV). Such a decrease may be due to the displacement of the

absolute energy of either or both the ground and excited states of the solvated electron by

the proximity of the highly polarizable gold electrode and a low density water network in

the presence of the electron. Furthermore, as pointed out above, the dipole cancellation rule

at the metal surface allows only the pz suborbital as optically active. The observed lower

energy maximum may thus be due to the splitting of the p suborbitals [48, 54, 55] by solvent

polarization and an incomplete solvation shell.

Upon close inspection of the spectra in Fig. 1(c), an isosbestic point at ∼1.24 eV (1 µm)

can be found between 0 and +0.25 ps. This points to the transformation from state S2 to

states S3 and/or S4. Does the hydrated electron evolve smoothly from the hot to the solvated

states, adopting a continuum of in-between states, or does it jump from one state to another

at the gold/liquid water interface? In bulk solution, work by Migus et al. [7], followed by

measurements by Eisenthal el al. [56, 57], seemed to support the latter scenario, because an

isosbestic point was observed in the transient absorption of the hydrated electron species.

Later, a time-dependent shift of the spectral weight from the low to high energy was confirmed

first in the NIR [8, 9], then in the terahertz [11], while different intermediate species were

observed in the MIR [40]. No studies ever showed the evolution of the spectrum in one set

of experiments. Our measurements, which give access to a large breadth of the spectrum,

suggest that the discrete states model seems also valid at the metal/liquid water interface.

Further comparison with bulk data will require better spectral resolution and testing against

purely optical sampling.

Further work will address open questions regarding, notably, the actual molecular level

changes in the EDL during relaxation, the influence of the electrolyte flow and the tracking
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of the electron as it induces chemistry using a mixture of nonlinear optical and optoelectronic

approaches.

Conclusion

A novel, double optical pump, photovoltage detection method enables the observation of a

wavelength-dependent time-resolved response after excitation by an ultrafast UV pulse of

a polycristalline gold electrode immersed in an aqueous electrolyte. The spectra provide a

window on the interfacial solvated electron and its precursor states. A kinetic model with three

electrolyte-side levels, i.e., hot, trapped and solvated electron states, produces a satisfactory fit

of the dynamics. Fitting the model to the data yields lifetimes (convoluted with the oxidation

by the electrode) of the hot electron of τ1 ∼140 fs, the trapped electron of τ2 ∼820 fs

and the solvated electron (at the electrode) of τ3 ∼51 ps. An isosbestic point near 1.24 eV

is observable at short time delays, consistent with the transformation of electrons from a

localized state to a trap state. The hot and trapped states exhibit significantly different dipole

properties: the hot electron state is isotropic and the trapped electron state is anisotropic

with a transition dipole perpendicular to the surface. In contrast with conventional electrical

methods, the optoelectronic technique thus provides the means for the study of hot electron-

driven processes at the electrified metal/electrolyte interface, and gives access to unique

energy- and time-resolved information about charge transfer mechanisms and interfacial

chemistry. Granting access to the hydrated electron’s birth and stabilization, our approach

offers a promising pathway—observing its structure and dynamics evolution with respect to

the substrate material and geometry, and the electrolyte nature—to advance the fundamental

physics and chemistry of photoelectrocatalysis.
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S-1 Experimental principles

This optoelectronic technique to probe the electrode-electrolyte interface combines optical pertur-

bation of the system with coulostatic measurements. As described by Richardson et al., “coulo-

static” measurements consist of a perturbation of the electrode-electrolyte interface by an instan-

taneous pulse of charges [1], followed by monitoring the working electrode (WE) potential in the

open circuit potential (OCP) mode of the potentiostat instrument.

Two pulsed beams spatially overlap at the electrode-electrolyte interface while the time

averaged photovoltage is continuously monitored with a potentiostat. As the shutter of the first

pump beam [ultraviolet (UV), 267 nm, ∼ 110 fs] is opened [Fig. S1(a)], carriers are photoexcited

in the continuum of electronic states in the metallic electrode, and a portion of the carriers are

ejected to the conduction band of water [2]. The combined effect of heat generated at the electrode

and photoinjection of carriers to the solution induces a large potential jump ∆V1 on the order of

200–300 mV [inset of Fig. S1(b)] [1, 3, 4].

A potentiostatic variant of the two-pulse technique was used to report on the picosecond

dynamics of photoelectrons in hexane [5]. The detection scheme used by Scott was also different:

A fast high voltage pulse (2 kV) moved the electrons out from the sample interface to the sensor

electrode, 4 mm away.
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Figure S1: (a) Sequence of pulses for the two pump beams and their effect on the photovoltage
represented conceptually. (b) Experimental data of the photovoltage jumps ∆V2 caused by the
second pump beam for various delay values. Inset: Photovoltage jump ∆V1 caused by the UV
pump beam alone.

S-3



The electrical double layer (EDL) acts as a capacitor with Q = CV , where Q is the charge, C

is the capacitance of the EDL and V is the voltage. The presence of uncompensated charges in

the EDL thus results in a photovoltage. At a concentration of 0.5 M Na2SO4 in water, the Debye

length λD is ∼2.5 Å, meaning that we are only probing the charged species located closer than

circa two bond lengths from the surface.

As noted above, a voltage can also be established by creating a temperature difference

between electrodes. The temperature dependence of the voltage has been exploited previously

in temperature jump measurements [3, 6, 7]. The total photovoltage due to heating of the metal

solution boundary is the sum of the internal drop of potential at the metal-solution boundary

Vi , of the thermodiffusion potential of the solution (Soret effect) VS , and of the thermal EMF

of the metal VEM F , such that V = Vi + VS + VEM F . The contribution of VEM F is negligible in

comparison to Vi , but the Soret effect VS , while typically much smaller than Vi , can be important,

depending on the electrolyte nature and pH [3]. Following Benderskii et al.’s method, we estimate

that the metal-solution boundary heats up locally by ∼ 180 K due to the UV pump beam (with a

reflection coefficient at 267 nm of 0.35, a peak power density of 5.79 × 109 W cm−2, a spot radius

of 0.5 mm, a pulse duration of 110 fs, and gold’s isobaric mass heat capacity of 0.129 J g−1 K−1,

thermal conductivity of 0.129 W cm−1 K−1 and specific density of 19.3 g cm−3) [3]. As shown

below using the two-temperature model, heating resulting from an ultrafast pulse can yield a

transient electronic temperature Te as high as 1750 K, which results to an increase of the lattice

temperature Tl on the order of 15 K.

S-2 Methodology

S-2.1 Spectroelectrochemical cell

The spectroelectrochemical cell (SEC) consists of a set of 3 gold electrodes (5 nm Cr /200 nm Au)

deposited through electron beam deposition on top of a quartz plate (ϕ = 45 mm) [Fig. S2(a)],

thus defining the working, reference and counter electrodes (WE, RE and CE, respectively). The

WE is a disk of 5 mm diameter at the center of the plate (effective area: 30.8 mm2). The CE

is larger in area, totalling 51.5 mm2, while the metallic RE (effective area: 10 mm2) provides

a pseudo-reference. The gap between the WE and the CE is 1 mm and so is the gap between
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(a) (b)

(c)

Figure S2: (a) Set of polycrystalline gold electrodes on a quartz plate fabricated by electron beam
evaporation. (b) Shape of the 50 µm thick PTFE spacer used to defined the inner chamber of
the spectroelectrochemical cell yielding a volume of ∼ 6 µL. (b) The cell assembly showing the
aperture for the laser beams, and the inlet / outlet for flowing the electrolyte.

the WE and the RE. The gap between the RE and the CE is 1.5 mm. The cell is closed by capping

with a CaF2 window [diameter 25 mm, thickness 3 mm, UV grade, Global Optics (UK) Ltd], drilled

through with two holes to allow the flow of the electrolyte, and separated by a 50 µm PTFE spacer

cut in the shape shown in Fig. S2(b), using the assembly displayed in Fig. S2(c). Copper foil is

used to electrically contact the electrodes externally.

The electrolyte consists of Na2SO4 in deionized water (18.2 MΩ· cm, Millipore) at a concen-

tration of 0.5 M. It is deaerated by bubbling dry N2 in the reservoir for at least 30 min. before the

measurement is started. The flow of the electrolyte is assured by a peristaltic pump at a rate of

6 µL / s. In order to avoid any spurious effect by species generated at the CE, the electrolyte inlet

is located above the RE and the outlet above the CE.

S-2.2 Electrochemical measurements

A potentiostat (VSP, Bio-Logic Science Instruments) was employed to record the open circuit

potential (OCP). It was found useful, before the coulostatic measurements, to “clean” the WE by

performing a series of cyclic voltammetry (CV) sweeps until the CV data showed the appropriate

profile for a polycrystalline gold electrode in a thin film configuration. The RE would be cleaned

in a similar manner whenever the drift was becoming important.
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Figure S3: Diagram of the laser setup. The dashed boxed represent the elements that were
interchanged as described in § S-2.3.1 to generate the various second pump wavelengths. From
dispersion calculations presented in § S-2.6 and Fig. S4, the pulse width of the 267 nm beam is
estimated to be ∼110 fs at the buried electrode (after transmission through a lens, windows and
water layer.

S-2.3 Laser setup

The layout of the laser system that was employed in this study is shown in [Fig. S3]. In brief, the

laser system is composed of a Ti:Sapphire oscillator (Vitara, Coherent) and regenerative amplifier

(Legend Elite Duo HE and Cryo PA, Coherent). One third of the amplifier output—7.0 mJ / pulse,

45 fs pulses, 1 kHz, centered at 800 nm—was used for the current experiment. 1 mJ / pulse of

this output was used to feed the home-built optical tripler, from which the 267 nm and 400 nm

photons were generated. A half-wave plate / polarizer / half-wave plate combination was used to

adjust the energy of the 267 (400) nm beam at the sample. A typical value of ∼ 4 µJ / pulse and

a lens with a 500 mm focal length were chosen for the experiments. Depending on the frequency,

the second pump beam was either generated from difference frequency generation of Signal and

Idler output from a commercial optical parametric amplifier (HE-TOPAS, Light Conversion), or

used directly the Idler or Signal or double the frequency of the them.

Synchronization of the arrival of the pulses is necessary. For this purpose, we have used

the bleaching by the UV pump of the nonlinear optical signal coming from the gold-electrolyte
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interface. The nonlinear optical signal ωNL = ω1 +ω2 stems from a nonresonant sum-frequency

generation mixing a 800 nm ω1 beam with the beam ω2 also serving as a second pump.

The bleaching of the optical nonlinear signal is coarsely correlated with the maximum of the

photovoltage change due to the second pump pulse. The first pump delay stage is thus swept to

find the maximal bleaching.

S-2.3.1 Generation of various wavelengths for the second pump’s pulse

Various ultrashort pulses have been employed in this study as the second pump’s pulses. They

were generated as following:

670 and 720 nm The TOPAS’ Signal outputs at 1340 and 1440 nm, respectively, were doubled

in a BBO crystal and the fundamental beams were subsequently filtered out.

800 nm The 800 nm residual from the TOPAS after the parametric process was separated from

the Idler and Signal beams and attenuated to required energy.

1000 nm The TOPAS’ Idler output at 2000 nm was double in a BBO crystal and the fundamental

beam was subsequently filtered out.

1333 and 2000 nm The TOPAS’ Signal and Idler beams were directly taken at 1333 and 2000 nm,

respectively.

4000 nm The TOPAS’ Signal and Idler beams were mixed in the DFG crystal (AgGaS2) in a

noncollinear geometry. The Idler and Signal residuals were spatially filtered out.

S-2.4 Optoelectronic measurements

After the first pump beam shutter is opened, we let ∆V1 reach an equilibrium value for approx-

imately 10 min before the time delay series of the second pump beam is started. The shutter of

the second pump beam is then sequentially opened and closed at 1 min intervals and the delay

between the pulses of the first and second pumps is stepped at every repetition while photovoltage

is continuously acquired in OCP mode. As can be seen in Fig. S1(b), every delay step corresponds

to a spike of photovoltage ∆V2 of varying amplitude reaching up to 10 mV. Maximum amplitude

occurs in the vicinity of the zero time delay. The spikes are lost in the noise when the 2nd pump
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pulses precede the 1st pump (negative time delays) or when the beams are largely detuned. When-

ever the UV pump beam is shut off, the second pump beam does not have any measurable effect

on the photovoltage. Such series of delay steps is repeated for every energy of the second pump

beam [0.31 (4000), 0.62 (2000), 0.93 (1333), 1.24 (1000), 1.55 (800), 1.72 (720) and 1.85 eV

(670 nm)].

S-2.5 Data processing

The photovoltage change∆V2 due to the action of the second pump beam is first extracted in (post-

measurement) data processing from the as-measured photovoltage versus elapsed experimental

time [shown in Fig. S1(b)]. It is defined as the difference of the photovoltage measured when the

second beam has been impinging for 1 min to the photovoltage measured after the second pump

beam has been shut off for 1 min. Each photovoltage spike thus corresponds to a different delay

of the first and second pump pulses. The photovoltage change is then corrected for the measured

pulse energy of the first (P1) and second pump (P2) beams and the absorptivity of water at the

wavelength of the second pump for a given angle θ of the second pump beam, a water layer

thickness dw and known water extinction coefficients α [8–10]. The effective water thickness deff
w

is calculated from Snell’s law and the second pump incidence angle in air (θair = 0.95993 rad) with

dCaF2
= 3 mm and wavelength-dependent nCaF2

and nw [11]. The different pulse energy values

and water extinction coefficients are tabulated in Table S1. The correction to the raw photovoltage

change ∆V raw
2 is expressed as:

∆V corr
2 =∆V raw

2

�

P1P2 exp
�

−αdeff
w

��−1
. (S1)

It is thus ∆V corr
2 that is presented in the main text as ∆V2 for simplicity.

S-2.6 Ultrafast pulse dispersion

The effect of CaF2 optics (15 mm lens + 3 mm window) and water layer (50 µm) on the UV pulse

duration (nominally 60 fs, 267 nm, at the amplifier’s output) was calculated [11–13]. As seen in

Fig. S4, the smallest pulse duration is∼ 106 fs. Given that the output from the amplifier is∼ 60 fs,

that there should be no significant change of the pulse duration in the tripler, and that the curve
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Wavelength Photon UV pulse 2nd pulse Water Reference
of 2nd pump energy energy energy abs. coeff.
(nm) (eV) (µJ) (µJ) (cm−1)

670 1.85 5.3 4 0.00439 [8]
720 1.72 5.3 4 0.01231 [8]
800 1.55 5 8 0.02 [9]
1000 1.24 4 6 0.36 [9]
1333 0.93 4 5.1 1.4 [9]
2000 0.62 4 3.85 67 [9]
4000 0.31 5 4 170 [10]

Table S1: Pulse energy for the first (UV) and second pumps, and the absorption coefficients of
water at the second pump wavelength.
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Figure S4: Broadening of the UV pulse after traversal of 15 mm CaF2 lens, a 3 mm CaF2 window
and 50 µm of water.

shown in Fig. S4 is rather flat between 60 and 110 fs, a pulse FWHM of 110 fs for the UV light

pulse duration is reasonable and will be used in data analysis and simulations.

S-3 Heating of the interface

Heating of the gold electrode has been simulated numerically using a two-temperature model

(TTM) in Python 3 [14]. The code was tested against the data and numerical simulations from

Eesley et al. from nonequilibrium electron heating in copper [15].

We used a gold thickness of 200 nm, a thermal conductivity of 317 W m−1 K−1 [16] and

1 W m−1 K−1 for the electron and lattice systems, respectively, an electron heat capacity of Te×

3.6×10−3 J g−1 K−1 [16] and a lattice heat capacity of 0.129 J g−1 K−1. Gold density was taken as

19.3 g cm−3 and the electron-phonon coupling term was 2.2×1010 W cm−3 K−1 [17].
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S-4 Model and fitting

Aiming to model the dynamics at the interface, we used a system of five coupled ordinary

differential equations that are solved numerically to find the populations Ni at various states S0

to S4 in the system [Fig. 3(a)]:
dN0

dt ′
= −I(t ′)N0 +

N1

τth
, (S2)

dN1

dt ′
= I(t ′)N0 −

N1

τth
−

N1

τ0
, (S3)

dN2

dt ′
= ζ

N1

τ0
−

N2

τ1
, (S4)

dN3

dt ′
= (1− ζ)

N1

τ0
+

N2

τ1
−

N3

τ2
, (S5)

dN4

dt ′
=

N3

τ2
−

N4

τ3
, (S6)

where and I(t) is the intensity of the time-dependent UV pump pulse. In order to correctly capture

the dynamics of the shoulder feature in Fig. 1(c), where some amplitude appears early, we follow

the concept used by Stähler et al. where a minority portion of the injected electrons reaches directly

a trap state [18]. In equations S4 and S5, ζ is thus the ratio of electrons injected directly to the

state S2.

Assuming that only electron populations on the solution side contribute to the signal, the pho-

tovoltage change ∆V2 is related to populations N2, N3 and N4 through absorption coefficients ai:

∆V2 = a2 N2 + a3 N3 + a4 N4. (S7)

Only four parameters are thus adjusted for every excitation energy: three absorption coefficients

and a delay offset.

Metals dynamics have been taken into account in the model, even though it was found to

be mostly insensitive to them: We have therefore lumped the metal-side thermalization into an

effective relaxation time τth = 1 ps [19]. The characteristic times τ0 = 0.12 ps and τ1 = 0.14 ps,

respectively assigned to injection and initial trapping, have been determined while fitting the

fastest decay at an excitation energy of 0.31 eV. Considering that the excitation pulse width has
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been taken as 0.11 ps after calculation of the dispersion in the media it traverses, τ0 and τ1

values are likely to be limited by the experimental time resolution. Nonetheless, τ1 can’t possibly

be much smaller than the excitation pulse width, otherwise the contribution from light absorption

by state S2 would not be observed. Finally, the characteristic time τ2 = 0.82 ps related to the final

solvation step and the time τ3 ' 51 ps, encompassing the decay into products and the diffusion

away from the EDL, have been extracted from the fit of the trace corresponding to an excitation

energy of 1.85 eV. Time resolution is limited by the determination of time zero, which is lying

within the convolution of the excitation (110 fs) and the second pulses (65 fs).

Back capture by the electrode [orange arrow in Fig. 3(a)] has not been explicitly implemented

but it is expected to contribute to the effective characteristic times. As the back capture rate is

higher for electrons of higher energy, the contribution should be more important for τ0 and τ1.

S-5 Results

S-5.1 Characterization of the spectroelectrochemical cell

Figure S5 shows a cyclic voltammogram (CV) of the gold electrode in 0.5 M Na2SO4 aqueous

solution collected with a scan rate of 1 mV/s in the spectroelectrochemical cell.
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Figure S5: Cyclic voltammogram of the gold electrode in 0.5 M Na2SO4 in spectroelectrochemical
cell (scanning speed 1 mV/s).
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Table S2: Characteristic times used in the fitting of the model.
τ0 0.12 ps
τ1 0.14 ps
τ2 0.82 ps
τ3 51.0 ps
UV pulse FWHM 0.11 ps

S-5.2 Time delay traces

The full set of time delay traces for various second pump energies is presented in Fig. S6. A zoom

near the origin is shown for all energies in Fig. S6(a), while longer traces are displayed in (b) for

energies 1.24 to 1.85 eV. The fit results (red dashed lines, computed as described in section S-4)

are overlaid on the data (gray circles). As described in the main text, the photovoltage response

∆V2 to the UV excitation (first pump) is highly dependent on the second pump wavelength. At

low energies, the signal rise and decay is fast, on the order of 100 fs. As the second pump energy

is increased, the signal persists for much longer, with residual intensity at 100 ps at 1.55 eV and

above. We also note the large changes in peak ∆V2. At 0.31 eV, the signal reaches approximately

0.18 mV, while the peak signal at 1.85 eV is more than 1000 times weaker.

S-5.3 Effect of the first pump energy

Fig. S7 compares on the same scale the untreated response to a 0.31 eV second pump for two

different first pump energies: 3.10 eV (blue, top) and 4.64 eV (UV, bottom). Both traces display

an initial drift, but settle to a different photovoltage. The red bands indicate when the second

pump shutter is open, with a clear difference between the blue and UV first pumps. Indeed, for

the blue first pump, the second pump shutter has a negligible effect on the signal, while a clear

photovoltage increase is measured in the case of the UV first pump.

S-5.4 Simulation of heating of the gold electrode surface by an ultrafast UV pulse

We have simulated the heating of the gold-water interface as described in section S-3 using the

two-temperature model and calculated the temperature-related changes due to intraband and

interband transitions. Results for both Te and Tl are displayed in Fig. S8(a). The UV pulse

interaction with the gold surface creates a transient hot electron population with Te rising up to
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Figure S6: (a-b) The photovoltage change ∆V2 versus the delay time. (a) At delays smaller than
4 ps. (b) At longer delays, up to 100 ps.
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Figure S7: Comparison of the photovoltage when the first excitation pulse is changed from UV
(4.64 eV, bottom) to blue (3.10 eV, top). The second pulse’s energy is 0.31 eV in both cases. The
red boxes show the times during which the shutter is open and the second pulse impinges on the
electrode. The green dashed lines show the polynomial baseline subtracted to give the data shown
in Fig. 1 of the main text.
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incoming UV pulse (267 nm) with 110 fs Gaussian FWHM and a peak power density of 5.79 ×
109 W cm2 on a 200 nm thick gold film. (a) Electronic and lattice temperatures. (b) Lattice
temperature only.
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Figure S9: Calculated change in reflectivity due to intraband transitions in gold. (a) As a function
of delay time. (b) As a function of photon energy for selected delay times.

1750 K. The electron system’s temperature Te nevertheless rapidly decreases as the hot electrons

diffuse into the substrate and scatter with the lattice’s phonons. Upon this action, the latter’s

temperature Tl rises by about 15 K in 4 ps. It is noteworthy that neither temperature profile

matches directly the delay-dependent ∆V2 traces (Fig. S6.

The reflectivity change∆R/R0 due to temperature-dependent Drude-like intraband transitions

has been modeled according to Block et al. (main text and supplementary materials) [20]. The

simulations results are presented in Fig. S9 with the evolution as function of delay in (a) and

as a function of second pump energy in (b). We note from (a) that the general time-dependent

∆R/R0 trace is similar to Te in Fig. S8(a). Also, ∆R/R0 is much larger at lower energies, as can

be expected from intraband transitions.

Similarly, we have computed the change in Fermi-Dirac (FD) electron distribution (∆ f / f0)

as a function of temperature (Fig. S10). In order to relate ∆ f / f0 to the optical response due to

interband transitions, a detailed knowledge of gold’s complex permittivity in the k-space would

be necessary. Nevertheless, the interband transition probability should be dependent on the FD

electron distribution and we use here the readily available ∆ f / f0 parameter to represent the

temporal changes in the system. From Fig. S10(a), we can see that ∆ f / f0 rapidly increases upon

excitation, but decays almost as fast. In this case, the larger change can be seen at higher energies

S-15



(a)

1 0 1 2 3 4
Time / ps

30

25

20

15

10

5

0

f/
f 0

×
10

3

Wavelength / nm
4000
2000
1333
1000
800
720
670

(b)

0.5 1.0 1.5
Energy, h  / eV

30

20

10

0

f/
f 0

×
10

3

Delay / ps
-0.2
-0.1
0.0
0.1
0.2
1.0
4.0

Figure S10: Calculated change (smearing) in Fermi-Dirac electron distribution in gold due to a
perturbation by a UV pulse. (a) As a function of delay time for given wavelengths. (b) As a
function of photon energy for selected delay times.
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energy, of this study’s data.
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[Fig S10(b)]. Fermi smearing is indeed maximal just above and below the interband threshold

(∼2.38 eV), yielding the typical “first derivative” shape (Fig. S11).

S-6 Discussion

S-6.1 Nature of the photovoltage ∆V2

We discuss here four hypotheses for the origin of the photovoltage∆V2 and we expose arguments

to rule out the first three: i. further photoinjection from the electrode, ii. photoejection of carriers

from the aqueous interface to the electrode, iii. heat originating at the metal surface via metal’s

electronic system excitation, and iv. heat generated at the aqueous side of the interface via resonant

absorption by interfacial species.

i. In the first hypothesis, we consider the possibility of injecting more electrons in the electrolyte

from the population of hot electrons in the electrode through the action of the second laser

pulse. However, this effect would follow the relaxation dynamics of hot nonequilibrium electron

population in gold, which thermalization time is about 1 ps [19]. The expected dynamics thus do

not correspond to the observations where a long-lasting signal persists up to 100 ps.

ii. The second hypothesis addresses the reverse process of i., namely the photon-triggered

return of hot carriers from the electrolyte interface to the electrode, in analogy to charge transfer

inverse photoemission spectroscopy (CTRIPS). This possibility can be ruled out because the

depletion from the EDL of carriers of the same charge as those photoinjected in the first place

would mark a reversal of sign of the photovoltage deltas. Yet, the observations show∆V2, induced

by the second pump, to be of the same sign as ∆V1 which is caused by the first pump.

iii. The third hypothesis assumes that the elevated temperature of the metal electrode sur-

face induces a change in the metal absorptivity that increases the amount of heat generated upon

excitation with the second pump. This change in metal absorptivity can come from the pertur-

bation of three types of optical transitions: intraband transitions, normal interband transitions,

and low energy interband transitions. Firstly, elevated Te and Tl modify the reflectivity related to

intraband transitions through an increase of the effective electron scattering rate and decrease of

the free carrier density [see Fig. S9(a) and (b)] [20]. Temperature-induced changes in intraband

transitions affect mainly the lower energy portion of the spectrum, with a monotonous decrease

S-17



towards higher energy; a Drude-like model does not afford any mechanism to account for a shoul-

der appearing at higher energy. Moreover, the expected dynamics of the intraband contributions

is a sharp initial transient due to the nonequilibrium hot electron population, and a persisting

signal due to the long-lasting effect of the heat transferred to the lattice (Tl). To the contrary,

our observations show a rapid rise and fall of the signal at 0.31 and 0.62 eV, with no residual

after ∼500 fs [Fig. 1(a), main text]. Secondly, perturbation of the normal interband transitions

of gold results in a differential spectral shape reflecting the change of electron occupancy [21].

The electron occupancy change is itself described by the Fermi smearing induced by the first ex-

citation pump [see Fig S10(a) and (b)]. Fermi smearing, however, can not explain the sloping of

the spectra from the infrared to the visible, nor the presence of a shoulder at 1.55 eV [Fig. 1(c),

main text]. Nevertheless, the reversal of the sloping of the spectra at short delays [reddish traces,

Fig. 1(c), main text] in comparison to the spectra at longer delays cannot be explained by Fermi

smearing, in which case a smooth decay of the signal concomitant with a shift towards higher

energy would be expected. We instead observe a signal that seems to peak in the THz region and

traverses the measurement range to settle in the visible region. Thirdly, depletion of the metal

valence states opens the possibility of low energy interband transitions from the d band to the

s band. The spectral response of these low energy interband transitions should evolve inversely to

the intraband transitions, where the lower energy transitions will be quenched before the higher

energy ones due to the energy dependence of the electron-electron scattering time [22]. We have

not been able to rule out this possible contribution to the signal, nor the concurrent evolution of

intraband and normal interband transitions. A proper modeling of the gold dielectric function

response to an excitation pulse with respect to time would be required to understand their con-

tribution. While it is not possible to rule out this possible contribution to the signal, no previous

studies have shown metal dynamics similar to Fig. 1(c) (main text). Furthermore, as discussed

above, replacing the 267 nm first pump with a 400 nm pump completely quenches the ultrafast

response at the interface [Fig. 2(b), main text].

This leads to iv. the resonant excitation of species present at the interface, resulting in an

increase in the amount of heat generated at the metal/solution boundary. In bulk water, the

excess electron frequency-dependent dynamics are characterized by a high energy absorption

band centered around 1.72 eV (720 nm) and by a low energy absorption band peaking in the
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terahertz region. Moreover, as the localized electrons lose kinetic energy in the first few hundreds

of femtoseconds, the size of its box shrinks down, and its p ← s transition is displaced towards

higher energies to attain an equilibrium point, which is in bulk water around 1.72 eV (720 nm).

S-6.2 Effective spectra

The spectrum a2 [top panel of Fig. 4(c), main text] corresponding to the hot electron population

shows a profile that rises strongly at low energies. It can be best fitted by a Lorentzian peak shape

centered at 0 with a full width at half maximum (FWHM) of (0.2 ± 0.1) eV. The spectrum of

the trapped electron population a3 [middle panel of Fig. 4(c), main text] exhibits a peak shape

that can be described almost equally as well by a Lorentzian or Gaussian function, centered at

(1.51 ± 0.03) eV with a FWHM of (0.31 ± 0.05) eV and (0.38 ± 0.02) eV, respectively. Similarly,

fitting the spectrum of the solvated electron population a4 [bottom panel of Fig. 4(c), main text]

yields a center position of (1.45 ± 0.03) eV and a FWHM of (0.1 ± 0.1) eV for the Lorentzian

function, and (1.47± 0.02) eV and (0.27± 0.03) eV for the Gaussian function, the latter matching

better the amplitude of the spectrum a4.
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