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ABSTRACT: The hypersonic phonon propagation in large-area two-
dimensional colloidal crystals is probed by spontaneous micro
Brillouin light scattering. The dispersion relation of thermally
populated Lamb waves reveals multiband filtering due to three
distinct types of acoustic band gaps. We find Bragg gaps accompanied
by two types of hybridization gaps in both sub- and superwavelength
regimes resulting from contact-based resonances and nanoparticle
eigenmodes, respectively. The operating GHz frequencies can be
tuned by particle size and depend on the adhesion at the contact
interfaces. The experimental dispersion relations are well represented
by a finite element method model enabling identification of observed
modes. The presented approach also allows for contactless study of
the contact stiffness of submicrometer particles, which reveals size
effect deviating from macroscopic predictions.
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Phonons, quanta of acoustic field, similarly as photons and
electrons, are carriers of energy, momentum, and

information. High-frequency phonons in the GHz-THz regime
corresponding to submicrometer wavelengths are responsible
for hypersound and heat transport, thus having importance for
wireless communication, optomechanics, and thermal energy
harvesting.1 Periodically structured materials that take
advantage of the wave-like nature of phonons, such as
phononic crystals (PnCs) and acoustic metamaterials, have
been shown to enable new mechanical and acoustic features,
including negative effective moduli and densities, frequency
filtering, and acoustic cloaking.2−7 Recently, this field has
experienced a tremendous growth of research in topological
PnCs showing unidirectional propagation of sound immune to
structural imperfections.8,9

To date, the majority of studies on PnCs and acoustic
metamaterials has involved macroscopic structures aimed to
affect Hz-kHz acoustic waves/phonons. Nowadays, however,
there is a significant need in developing PnCs in the nanoscale
and operating in GHz as well as THz frequency regimes.6,10,11

Nevertheless, nanofabrication of hypersonic PnCs faces several
practical challenges preventing their implementation in
everyday devices. The patterning needs to be performed over
large areas/volumes of matrices being CMOS compatible for
easy integration without sophisticated instrumentation. Fur-
thermore, fabricated materials should keep structural order and
coherence of GHz acoustic signals over long length scales. Self-
assembly of nanoparticles has emerged as a solution for low-
cost mass production.12 Propagation of GHz phonons in three-

dimensional (3D) self-assembled PnCs, typically known as
colloidal crystals, composed of glass or polymer nanoparticles
was initially investigated by means of Brillouin light scattering
(BLS).13−17 More recently, contact-based modes of colloidal
crystals have been extensively studied using the pump−probe
technique.18−25 This approach, unlike BLS, is limited to sub-
GHz frequencies and often requires additional fabrication of a
transducer for the acoustic wave generation.
Two-dimensional (2D) self-assembled PnCs, known as

colloidal monolayers,12 offers a low-cost and large-area
platform for harnessing high-frequency phonons. These
materials, if supported by ultrathin membranes, can overcome
the issue of signal/energy losses into the substrate. The use of
inorganic membranes provides a mechanically robust frame-
work serving as a waveguide for a discrete set of dispersive
(Lamb) waves that can be tuned by the membrane
thickness.26,27 The monolayer-membrane architecture enables
use of stiff and low-losses materials which can maintain signal
coherence, adding functionality to PnC. This solution goes
hand in hand with new features of PnCs, that is, elastic and
thermal size effects, unexplored schemes of band gap opening,
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as well as with experimental challenges related to their
investigation and understanding in the high-frequency regime.
In this work, we study the phonon propagation in large-area

2D PnCs composed of spherical polystyrene (PS) nano-
particles self-assembled on an ultrathin Si3N4 membrane
(Figure 1). We use micro BLS (μBLS)28,29 to record the
dispersion of thermally populated GHz phonons. To interpret
the experimental results, we develop a finite element method
(FEM) model. We find significant modification of the phonon
dispersion revealing three types of band gaps that are related to
nanoparticle: membrane contact resonance (hybridization),
lattice period (Bragg), and local resonances of nanoparticles
(hybridization). The latter type, unlike for the vast majority of
PnCs and metamaterials, appears above the Bragg band gap
frequency, that is, in the superwavelength regime.2,3,30 All these
mechanisms contribute to multiband filtering of hypersound
that can be easily tailored by means of the nanoparticle size
governing lattice spacing, frequencies of local resonances, and
adhesion forces. Noteworthy, for the latter, we find a size effect
and significant discrepancy from macroscopic predictions.
The samples were made of hexagonally close-packed (hcp)

monolayers of PS nanoparticles deposited on 3 × 3 mm2 and t
= 50 nm-thick Si3N4 membranes (Figure 1b). We used
emulsion polymerization31 to prepare monodispersed dis-
persions of PS nanoparticles, which were self-assembled on the
membranes using a pre-assembly at the air/water interface and
subsequent transfer to the target membrane.32 We fabricated
monolayer-membrane samples with nanoparticle diameters d =
2R = 245, 333, and 430 nm, which are labeled samples B, C,
and D, respectively. A pristine membrane, labeled sample A,

was used as a reference. In addition, we prepared three
reference samples using PS nanoparticles of the same size as
those of monolayer-membrane samples albeit assembled into
3D fcc clusters by means of drop cast evaporation. Such
structures were extensively investigated in prior studies13,33

and here are utilized to highlight similarities and foremost
differences with 2D hcp monolayer-membrane structures.
Figure 1a−e shows a schematic view of the experiment,
representative optical image, and SEM images from large to
small length scales, respectively. A schematic side view,
representative optical, and SEM images of the monolayer-
membrane samples are shown in Figure 1a−e), respectively.
Typically, the in-plane translational symmetry extends over
tens of micrometers.
We recorded the dispersion of acoustic waves propagating in

the samples at room temperature by means of angle-resolved
μBLS in p−p (TM−TM) backscattering geometry, as shown
schematically in Figure 1a. The incident laser light at λ0 = 532
nm was focused on the sample by means of 10× microscope
objective with 0.25 numerical aperture. The scattered light was
collected by the same objective and analyzed by a tandem type
Fabry−Perot interferometer. The laser spot size on the sample
and the corresponding power were in the order of a few
micrometers and <500 μW, respectively. BLS probes the
frequency shift f of the laser light inelastically scattered by
thermally populated acoustic phonons. For a pristine
membrane, which is well-approximated as a homogeneous
elastic continuum, the scattering wave vector q is the same as
the wave vector k of the acoustic phonons. However, for
periodic structures the momentum conservation defines the

Figure 1. (a) Schematic illustration of the sample and the μBLS experiment. (b) Optical image of the sample. PS monolayer is deposited over the
whole top surface of Si3N4 chip, while the central bright 3 × 3 mm2 square is fully suspended. Top view SEM images of samples with nanoparticle
diameter (c) d = 333 nm and (d, e) d = 430 nm. Dashed line lighter circle in (c) indicates approximately the area measured in the BLS experiment.
In (d) light rhombus and cyan circles denote the lattice unit cell and the first nearest neighbors, respectively. Scale bars in (c), (d), and (e) are 2
μm, 1 μm and 100 nm, respectively.

Figure 2. Measured (circles) normalized BLS spectra at q = 10 μm−1 obtained for samples (a) A [membrane] and (b) B [d = 245 nm]. (c) BLS
spectrum of self-assembled 3D fcc cluster made of PS nanoparticles with d = 245 nm. Solid lines correspond to Lorentzian multipeak fits of the
experimental data.
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scattering wave vector as q = k ± G. In particular, for the
hexagonal lattice π= [ − + ]a m m mG (2 /( 3 )) 3 , 21 1 2 is a
reciprocal lattice vector with lattice parameter a and integers
m1, m2. Following previous studies29 of thin membranes, we
define the magnitude of the scattering wave vector q as q =
4π sin θ/λ0 and assume the superposition of photoelastic and
moving-interface (surface ripple) effects contributing to BLS
spectra. Figure 2a,b displays BLS spectra obtained for samples
A and B at q = 10 μm−1, which were normalized by the thermal
population factor.34 The single peak present in the spectrum of
the bare membrane can be assigned to a fundamental
antisymmetric (flexural, A0) Lamb plate wave mode.26 PS
monolayer on top of the membrane results in increased
complexity of the spectrum, as evident in Figure 2b. However,
the latter spectrum is distinct from that of the corresponding
3D control sample showed in Figure 2c. Two peaks in Figure
2c are attributed to the dipolar (low frequency) and
quadrupolar (higher frequency) spheroidal Lamb modes of
nanoparticles.14,33 In principle, the contribution of spheroidal
Lamb modes to BLS is due to the photoelastic effect and
depends on deformation field and dimensionless magnification
factor qR.35 For a free homogeneous sphere, eigenfrequencies
of Lamb modes are given by the formula f n,l = An,lvT/d, where n
and l are integers defining radial and angular dependence of

the displacement, respectively, vT is the transverse speed of
sound in bulk PS, and An,l is a dimensionless mode- and
material-dependent parameter.33,36 The low-frequency peak in
Figure 2c originates in (1,1) mode, which is nonzero as one
would expect for a single sphere due to nanoparticle−
nanoparticle interactions. The peak line shape resembles
phonon density of states (DOS) of propagating waves in the
fcc cluster, as q is ill-defined due to the light multiple scattering
from the 3D cluster.14 The second peak is associated with
(1,2) mode, the expected frequency of which is indicated by an
arrow in Figure 2c. The asymmetry of this peak is due to
contact-induced splitting of (1,2) mode into weakly dispersive
branches.33 In principle, the BLS spectra of 3D clusters
characterize spheroidal Lamb modes (torsional remain silent)
and contain information about interparticle forces. By
comparing Figure 2b,c, we notice that the asymmetric peak
of (1,2) mode in the 3D fcc cluster turns into two peaks in the
2D hcp monolayer-membrane. The difference between the
spectra in Figure 2b,c is even more evident in the low
frequency range. The broad asymmetric peak of (1,1) mode in
the 3D sample is replaced by three distinct peaks recorded in
the monolayer-membrane. A similar comparison of the BLS
spectra of the other samples can be found in Supporting
Information (SI).

Figure 3. Experimental phonon dispersion relations f(q) for (a) bare 50 nm-thick Si3N4 membrane [sample A] and 50 nm membrane coated with a
PS nanoparticle monolayer with diameters (b) d = 245 nm [sample B], (c) d = 333 nm [sample C], and (d) d = 430 nm [sample D]. Right-hand
side bars denote band gaps (shading), where BG, CR, and LR stand for Bragg, nanoparticle−membrane contact resonance, and local resonance gap,
respectively. Vertical solid lines denote the Brillouin zone boundary (ZB) at the M point. Dashed curves indicate the calculated dispersion of the
fundamental antisymmetric Lamb mode (A0) of the bare membrane. Color scale indicates the BLS signal intensity normalized by the thermal
phonon population factor. Circles stand for the peak position fitted by a Lorentzian function. Arrows indicate frequencies of particle−membrane
contact resonance ( fpm) and unperturbed spheroidal Lamb modes ( f n,l).
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Figure 3 summarizes angle-resolved μBLS measurements for
all membrane-monolayer samples as dispersion relations f(q).
Here, the color scale refers to the normalized intensity of the
scattered light, and the circles stand for the frequencies at the
peak positions. The dispersion relation of sample A displayed
in Figure 3a shows only one branch that we identified as a
flexural (A0) wave of a bare membrane.26 The fundamental
symmetric (dilatational, S0) and shear-horizontal (SH0)
modes are not BLS active due to zero (SH0) or small (S0)
out-of-plane displacement (u3) for the measured range of wave
numbers q.29 As follows from Figure 3b−d, the adhered
monolayers in the samples B−D result in severely modified
and complex dispersion relations compared to the dispersion
of sample A.
At first glance, we can indicate three distinct effects and

corresponding partial gaps related to the measured bands, that
is, (i) Bragg reflections, hybridization of A0 mode with (ii)
nanoparticle−membrane contact-based resonance, or (iii)
spheroidal modes of nanoparticles. In each case, we define
the band gaps for the modes of predominant out-of-plane
displacement and indicate them only for the measured range of
wave numbers q. For samples C and D, we identify clear zone
folding and Bragg band gaps (BG) at frequencies f ≈ 2.5 GHz
and f ≈ 1.5 GHz, respectively. This observation confirms the
presence of wave-like/coherent effects and long-range order of
PnCs extending over distances larger than the measured
wavelengths. This phenomenon was neither observed nor
modeled in previous works on similar, albeit sub-GHz,
structures. Figure 3c,d suggests that the spectral position of
BG can be estimated at the crossing of A0 mode and zone
boundary (ZB). This provides simple geometric means for
tunability of this type of a stop band, as A0 and ZB can be
adjusted by the membrane thickness and nanoparticle
diameter, respectively.
The horizontal branches that appear above f ≈ 2 GHz in

dispersion relations of samples B−D can be attributed to the
spheroidal (n,l) modes of PS nanoparticles.35,36 This assign-
ment is supported by BLS spectra of the reference fcc clusters
showing similarities with the accumulative spectra of the
corresponding monolayer-membrane samples (SI, Figure S1).
We use the calculated frequencies of spheroidal modes of free
PS nanoparticles (arrows in Figure 3c,d) for a preliminary
identification of these branches.
In Figure 3b,d, we observe a split of the f1,2 mode that is

represented by two distinct branches. A similar split was not
captured for sample C, probably due to adverse qR
magnification factor and thereby weak scattering intensity for
the (1,2) mode.35 The (1,2) mode split can be explained by
the presence of nanoparticle−nanoparticle and nanoparticle−
membrane contacts.23,33 We will discuss this phenomenon in
more detail later in this work, making use of FEM modeling. In
the case of higher order (n,l) modes, as those in the dispersion
relation of sample D, it cannot be clearly stated that the mode
split is experimentally resolved. Although anticipated, it could
be masked by a close neighborhood of branches as for instance
those related to (2,1) and (1,3) modes. Despite this ambiguity,
we observe a clear hybridized interaction of the spheroidal
modes with the flexural wave at frequencies above BG, as
evident in Figure 3d. This results in a unique feature of
membrane-based PnCs, namely, opening of the local resonance
band gaps (LR) in the superwavelength regime. This
phenomenon was studied theoretically for pillared membranes
in terms of the impact on heat transport at THz frequencies37

and, more recently, demonstrated experimentally in the kHz
regime for a macroscopic trampoline metamaterial.38

Band diagrams of samples B−D reveal contact-based modes
falling below BG that is in the subwavelength regime typical for
acoustic metamaterials.3,5,39 These branches are a consequence
of the hybridization and avoided crossing between A0 wave
and the nanoparticle−membrane contact resonance. As we will
further show using FEM, this resonance originates from the
spheroidal (1,1) mode. From Figures 3b−d we can conclude
that corresponding contact resonance (CR) stop bands appear
in the hypersonic regime but at wavelengths longer than the
lattice parameter. That type of a band gap was previously
observed in the sub-GHz range for acoustic metamateri-
als18,19,21,22,24 and modeled using Hertzian contact40,41 and van
der Waals-type adhesive forces.42

The frequency of the nanoparticle−membrane resonance
denoted as f pm in Figure 3 yields information about the
nanoparticle−membrane adhesion force. Assuming q → 0 and
negligible effect of nanoparticle−nanoparticle contacts, the
normal contact stiffness KN can be determined from the two-

mass oscillator equation π = +− −f K m m2 ( )pm N p
1

m
1 , where

mp and mm denote masses of the PS nanoparticle and
corresponding fraction of the membrane, respectively (Figure
4a). Based in the latter expression, the contact resonance gap

depends on the nanoparticles mass, lattice packing, and
strength of the nanoparticle−membrane bonding. The
determined KN is plotted in Figure 4d and compared with
expected values calculated by means of Johnson−Kendall−
Roberts (JKR) model.43 For small displacements around the
equilibrium point in JKR model, the linearized contact stiffness
KJKR (Figure 4b) is given by41,43,44

i
k
jjj

y
{
zzzπ=K W R E

9
5

3
4N

JKR
pm

2
pm
2

1/3

(1)

Figure 4. (a) Schematics of the nanoparticle−membrane contact
stiffness KN and (b) JKR model of nanoparticle−membrane and
nanoparticle−nanoparticle contacts. (c) 3D scheme of FEM unit cell
(see text). (d) Measured (BLS) and predicted (JKR) contact stiffness
KN. (e) Fitted (FEM) from the experiment and predicted (JKR)
contact radii of the nanoparticle−nanoparticle and nanoparticle−
membrane interfaces.
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where Epm = 5.91 GPa is the nanoparticle−membrane effective
modulus, Wpm = 0.103 J/m2 is the work of adhesion of PS-
Si3N4, and R is the nanoparticle radius. Both values are derived
in SI (Section II). As we can infer from Figure 4d, for each
sample, the measured contact stiffness KN is about five times
higher than what is predicted by JKR model. This deviation
stems from additional physical bonding due to liquid or solid
bridges resulting from impurities in the fabrication that are
evident in SEM image in Figure 1e.25 Notably, the deviation
from the model increases as the nanoparticle diameter
becomes smaller. Conclusively, this manifests the impact of
the real size of the contact interfaces on the phonon
propagation in hypersonic colloidal PnCs in addition to the
geometry and bulk elastic properties.
Theoretical models used in previous studies18,20,45 did not

consider two phenomena evident in our measurements,
namely, interaction of the propagating waves with local
resonances and periodicity of the material. Therefore, to
capture these features and explain (1,2) mode split we
developed a FEM model. Figure 4c schemes FEM 3D unit
cell that includes lateral periodicity and assumes fused contacts
with fully deformable spheres and membrane. PS spheres of
radius R are connected to each other and to a membrane of
thickness t by fully deformable circular interfaces with radii rpp
and rpm, respectively. The periodicity of the structure in the
x1x2 plane is implemented by applying Bloch−Floquet periodic
boundary conditions to all vertical walls of the unit cell. In the
fitting procedure, we used two adjustable parameters, radii of
nanoparticle−membrane (rpm) and nanoparticle−nanoparticle
(rpp) contact areas. In addition to the dispersion relation, we
used FEM to determine the contribution of surface ripple and
photoelastic mechanisms to BLS by means of two parameters
ξ3 and ξR, respectively (SI, Section V). The superposition of
these effects as well as size effects (membrane thickness, qR
factor) are beyond the scope of this work. Further details and
material properties used in the FEM model can be found in the
SI (Section V).
Figure 5a shows good agreement of the calculated dispersion

relation with the experimental data obtained for sample C (d =
333 nm). In addition, the experimental BLS intensity follows

the calculated ξ3 that is related to the magnitude of the BLS
surface ripple mechanism. The discrepancies above about 2.5
GHz can result from the simplification, that is, neglected
contribution of the photoelastic effect and its interference with
the moving-interface effect, which can enhance as well as
cancel the BLS signal.28,29 Nevertheless, FEM allows sorting of
(n,l) modes in terms of the sphere radial displacement. For
that purpose we define the ξR parameter, which resembles BLS
activity of Lamb modes due to photoelastic effect (SI, Section
V).35 We note that this approach does not include the effect of
the qR magnification factor.35 Figure 5b shows the dispersion
relation calculated for sample C with a color scale overlaid
reflecting the magnitude of ξR. The frequency levels illustrate
the split of 2l + 1 degenerate vibrations of (n,l) modes of a free
sphere resulting from nanoparticle−membrane and nano-
particle−nanoparticle contacts and thereby symmetry low-
ering.22,33,46 For transparency, we limit the analysis to BLS
active modes at q = 0. To identify the modes, we utilized FEM
displacement fields showed in Figure 5c which are sorted with
respect to (n,l) parent mode and the azimuthal number m. The
example of (1,2) mode at q = 0 shows a split into two doublets
(m = 1, m = 2) and one singlet (m = 0), which we resolve as
two peaks by means of BLS. The situation is much more
complex for q ≠ 0. Namely, the degeneracy is not present, and
all five modes are of different frequencies. Furthermore, they
interact with propagating waves in the membrane and their
BLS activity varies with q. A similar analysis can be performed
for all spheroidal modes undergoing mode split as schemed in
Figure 5b,c. Here, for instance, (1,1) m = 0 mode with
nanoparticle and membrane vibrating out-of-phase in the out-
of-plane direction is the nanoparticle−membrane contact
resonance. The comparison of experimental and calculated
dispersion relations for samples B and D can be found in SI
(Section V).
The contact radii fitted by FEM and plotted in Figure 4e

reveal a trend that follows the JKR model,33,41,42 namely
∝r r d,pp

FEM
pm
FEM 2/3. In principle, the JKR model allows us to

predict the contact radii from the formula (Figure 4b):

π=r WR E(6 / )JKR
eff
2

eff
1/3

(2)

Figure 5. (a, b) Dispersion relations (dashed lines) calculated for sample C [d = 333 nm] with overlaid color intensity plots indicating (a) out-of-
plane displacement (ξ3) and (b) radial displacements (ξR). Circles in (a) stand for BLS experimental data. Right-hand panel of (b) schemes 2l + 1
hybridization of BLS active spheroidal (n,l) modes at q = 0 due to nanoparticle−membrane and nanoparticle−nanoparticle contacts, where m
stands for the azimuthal number. Corresponding FEM displacement fields are displayed in (c).
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where for the nanoparticle−membrane interface, the work of
adhesion isW =Wpm = 0.1036 J/m2, effective radius is Reff = R,
and Eeff = Epm = 5.91 GPa is the effective moduli. In the case of
the nanoparticle−nanoparticle contact in eq 2, we substituteW
= Wpp = 0.064 J/m2, Reff = R/2, and Eeff = Epp = 3.01 GPa (see
SI, Sections III and IV). From Figure 4e, we can conclude that
for both types of interfaces, the JKR model predicts over twice
lower contact radii as compared to values fitted by FEM model
for all samples. This goes along with the already mentioned
underestimation of the contact stiffnesses by JKR model with
respect to those measured by BLS. In principle, our results call
into question the applicability of JKR model to assemblies of
submicrometer particles with unavoidable fabrication imper-
fections.
In summary, we investigated the propagation of hypersonic

phonons in large-area self-assembled 2D colloidal PnCs
utilizing nondestructive μBLS technique. We showed that
these materials can simultaneously host three distinct
mechanisms for the phonon dispersion modification toward
opening of stop bands for GHz acoustic waves. Each
mechanism can be tailored by simple geometrical means as
they result from (i) the lattice period, (ii) nanoparticle−
membrane adhesion, and (iii) mechanical eigenmodes of
nanoparticles. We found Bragg band gaps accompanied by
subwavelength (contact resonance) and, noteworthy, multiple
superwavelength (local resonance) gaps. We developed a finite
element method model, which captured the physical
phenomena with nanoparticle−nanoparticle and nanopar-
ticle−membrane contact areas as fitting parameters. On the
experimental side, we showed that μBLS provides a new means
for contactless characterization of the interface mechanics at
the submicrometer scale. We envision self-assembled 2D PnCs
as a robust, chip-scale platform to study GHz signal processing
for next-generation telecommunication devices, for tailoring
sub-Kelvin thermal transport by coherent effects,47 for light−
sound interaction in optomechanics and for nonlinear
effects.45,48,49 These materials hold promise for downscaling
topological acoustics to the hypersonic regime.
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